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Abstract

A particular semiparametric model of interest is the generalized partial linear model
�GPLM� which allows a nonparametric modeling of the in�uence of the continuous co�
variables�
The paper reviews di�erent estimation procedures based on kernel methods and test

procedures on the correct speci�cation of this model �vs� a parametric generalized linear
model�� Simulations and an application to a data set on East	West German migration
illustrate similarities and dissimilarities of the estimators and test statistics�
Semiparametric methods are highly demanding on software� Thus
 the presentation

is completed by indicating the practical implementation in new version of the statistical
computing environment XploRe�
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� Introduction

In recent years a good deal of work has been devoted to �generalize� generalized linear
models �GLM�� Workable alternatives to the parametric generalized linear model

E�Y jX�  G�XT��� G known

are single index models �SIM�
 keeping the linear form of the index XT� but allowing G
to be an arbitrary smooth function
 and generalized additive models �GAM� that maintain
G to be a known function but allow the argument inside to be a sum of unknown smooth
functions� See Hastie � Tibshirani ������
 H�ardle � Turlach ������
 Horowitz ������

Powell
 Stock � Stoker ������
 Weisberg � Welsh ������ for more details on these models�
One of the reasons for the wide propagation of generalized linear models is the com�

putational feasibility and in particular the ability to handle both discrete and continuous
covariables in X � A generalization should take care of these properties� The generalized
linear model is a tool which covers many possible nonlinear relations between explanatory
variables X and the response variable Y � However
 the shape of the nonlinear relation
�link function G� is �xed
 in most cases monotone�
A way to incorporate a nonmonotone dependence of the response on the continuous

variables is given by a generalized partial linear model �GPLM�

E�Y jX�T �  GfXT� �m�T �g� ���

where �  ���� � � � � �p�
T is a �nite dimensional parameter and m��� is a smooth function�

These models allow a nonparametric inclusion of a part of the explanatory variables�
Here
 we assume a decomposition of the explanatory variables into two vectors
 X and
T � X denotes a p	variate random vector which usually covers discrete covariables� T
is a q	variate random vector of continuous covariables� In practice this can contain only
those continuous variables which have most in�uence on the dependent variable Y �
The estimation methods for model ��� are based on the idea that an estimate b� can

be found for known m���
 and an estimate cm��� can be found for known �� We will
concentrate on pro�le likelihood estimation and back�tting in the following�
In order to estimate the GPLM by semiparametric maximum	likelihood
 assume that

the �rst two conditional moments of Y can be speci�ed as

E�Y jX�T �  �  GfXT� �m�T �g
Var�Y jX�T �  ��V ���

and denote by L��� y� the individual log	likelihood or �if the distribution of Y does not
belong to an exponential family� quasi	likelihood function

L��� y� 

yZ
�

�s� y�

V �s�
ds�

In the following
 only the estimation of � and m��� by means of the sample values
fyi�xi� tig
 i  �� � � � � n is discussed� The possible scale parameter � can be obtained
from

b�� 
�

n

nX
i��

�yi � b�i��
V �b�i� � ���

�



when b�i  GfxT
i
b� �cm�ti�g�

All estimation methods presented in the following are iterative and thus need starting
values� Di�erent strategies to initialize the iterative algorithm are possible�

� Start with e�
 fm��� from a parametric �GLM� �t�
� Alternatively
 start with �  � and m�tj�  G���yj� �for example with the adjust�
ment mj  G��f�yj � ������g for binary responses��

� Back�tting procedures often use �  � and m�tj� � G���y��

��� Pro�le Likelihood

The pro�le likelihood method considered in Severini � Wong ������ aims to separate the
estimation problem into a parametric and a nonparametric part� Its essential idea is to
�x the parameter � and to estimate the nonparametric function in dependence of this
�xed �� The resulting estimate for m���� is then used to construct the pro�le likelihood
for �� As a consequence of the pro�le likelihood method
 b� is asymptotically e�cient�
Severini � Staniswalis ������ show that the resulting estimator b� is pn	consistent and
asymptotically normal
 and that estimators cm���  cmb���� are consistent in supremum
norm�
The algorithm can be motivated as follows� Consider the parametric �pro�le� likelihood

function

L��� 
nX
i��

L��i��� yi�� ���

�i��  GfxT
i � �m��ti�g� This function is optimized to obtain an estimate for �� The

smoothed or local likelihood

LH �m��t�� 
nX
i��

KH�t� ti�L��i�m��t�� yi�� ���

�i�m��t�  GfxT
i � �m��t�g is optimized to estimate the smooth function m��t� at point

t� The local weights KH�t � ti� here denote kernel weights with K denoting a �multidi�
mensional� kernel function and H a bandwidth matrix�
Abbreviate now mj  m��tj� and the individual log	 or quasi	likelihood in yi by

�i�	�  LfG�	�� yig�

In the following
 ��i and ���i denote the derivatives of �i�	� with respect to 	� The maxi�
mization of the local likelihood ��� requires to solve

� 
nX
i��

��i�x
T
i � �mj�KH�ti � tj�� ���

For � we have from ��� to solve

� 
nX
i��

��i�x
T
i � �mi� fxi �m

�

ig� ���

�



A further di�erentiation of ��� leads to an expression for the derivative m�

j of mj with
respect to �

m�

j  �
nP
i��

���i �x
T
i � �mj�KH�ti � tj�xi

nP
i��

���i �x
T
i � �mj�KH�ti � tj�

� ���

Equations ���	��� imply the following iterative Newton	Raphson type algorithm�

Algorithm �P�

� updating step for �

�new  � � B��
nX
i��

��i�x
T
i � �mi� exi

with a Hessian type matrix

B 
nX
i��

���i �x
T
i � �mi� exi exT

i

and

exj  xj �
nP
i��

���i �x
T
i � �mj�KH�ti � tj�xi

nP
i��

���i �x
T
i � �mj�KH�ti � tj�

�

� updating step for mj

mnew
j  mj �

nP
i��

��i�x
T
i � �mj�KH�ti � tj�

nP
i��

���i �x
T
i � �mj�KH�ti � tj�

�

Alternatively
 the functions ���i can be replaced by their expectations �w�r�t� to yi� to obtain
a Fisher scoring type procedure�
The updating step for mj is of quite complex structure� In some models �in particular

for identity and exponential link functions G� equation ��� can be solved explicitly for mj�
However
 it is possible to rewrite the updating step for � in a form which is comparable
with the estimators introduced later� De�ne SP the smoother matrix with elements

SP
ij 

���i �x
T
i � �mj�KH�ti � tj�

nP
i��

���i �x
T
i � �mj�KH�ti � tj�

���

and let X be the design matrix with rows xT
i � We can rewrite the updating step for ��

�



Algorithm �P�

� updating step for �

�new  �fX TWfX ���fX TW ez
with

fX  �I � SP �X �
ez  fX� �W��v�

I denotes the identity matrix
 v is a vector andW is a diagonal matrix containing the �rst
and second derivatives of �i�x

T
i � �mi�
 respectively� The variable ez is a sort of adjusted

dependent variable� From the formula for �new it becomes clear
 that the parametric
part of the model is updated by a parametric method �with a nonparametrically modi�ed
design matrix fX ��
��� Simpler Variant of Pro�le Likelihood

The pro�le likelihood estimator is particularly easy to derive in case of a model with
identity link G and normally distributed yi� Here
 �

�

i  yi� xT
i ��mj and �

��

i � ��� The
latter yields the smoother matrix S with elements

Sij  KH�ti � tj�
nP
i��
KH�ti � tj�

� ���

Moreover
 the update for mj simpli�es to

mnew
j 

nP
i��
�yi � xT

i ��KH�ti � tj�

nP
i��
KH�ti � tj�

or simply
mnew  S�y � X���

using the vector notation y  �y�� � � � � yn�
T and mnew  �mnew

� � � � � � mnew
n �T � The para�

metric component is determined y

�new  �fX T fX ���fX T ey
with fX  �I � S�X and ey  �I � S�y� These are the essentially the estimators for the
partial linear model proposed by Speckman �������
Recall that each iteration step of a GLM can be obtained by a weighted least squares

regression on an adjusted dependent variable� Hence
 in the partial linear model the
weighted least squares regression could be replaced by an partial linear �t on the adjusted
dependent variable

z  X� �m�W��v� ����

�



Now
 v is a vector and W a diagonal matrix containing the �rst and second derivatives
of �i�x

T
i � �mi�
 respectively� See Hastie � Tibshirani �����
 p� ���� for a reference for

this generalization of the Speckman estimator�
The basic simpli�cation of this approach is to use the smoothing matrix S

Sij  ���i �x
T
i � �mi�KH�ti � tj�

nP
i��

���i �x
T
i � �mi�KH�ti � tj�

� ����

Note the di�erence in ���i compared to the smoother matrix SP in the general case� We
will come back to the computational simpli�cation in Section ��
An expression for each iteration step in matrix notation is possible here�

Algorithm �S�

� updating step for �

�new  �fX TWfX ���fX TW ez�
� updating step for m

mnew  S�z � X��

using the notations

fX  �I � S�X �
ez  �I � S�z  fX� �W��v�

The update of the index X� �m in each iteration step can be expressed by a linear
estimation matrix

X�new �mnew  RSz

where
RS  fXffX TWfXg��fX TW�I � S� � S� ����

This matrix RS will allow an �approximate� generalization of the likelihood ratio test in
this case�
Recall
 that the essential di�erence of algorithms �S� and �P� lies in the fact
 that the

latter always uses ��i�x
T
i ��mi� and �

��

i �x
T
i ��mi� instead of �

�

i�x
T
i ��mj� and �

��

i �x
T
i ��mj��

Thus
 there are some cases when both algorithms obviously should produce very similar
results� This is �rst
 when the bandwidth H is small� Second
 algorithms �S� and �P� will
produce estimators that are close
 when m��� is relatively constant or small with respect
to the parametric part� We point out in Sections � and � that both estimators �P� and
�S� very often resemble each other�

��� Back�tting

The back�tting method was suggested as an iterative algorithm to �t an additive model
�Hastie � Tibshirani ������ The key idea is to regress the additive components separately

�



on partial residuals� The ordinary partial linear model �with identity link function�

E�Y jX�T � XT� �m�T �

is a special case
 consisting of only two additive functions� Denote P the projection
matrix P  X �X TX ���X T and S a smoother matrix� Abbreviate m  �m�� � � � � mn�

T 
�m�t��� � � � � m�tn��

T and y  �y�� � � � � yn�
T � Then back�tting means to solve

X�  P�y �m�

m  S�y �X���
In this case no iteration is necessary �Hastie � Tibshirani ����
 p� ���� and the explicit
solution is given by

b�  fX T �I � S�Xg��X T �I � S�y�
cm  S�y � X b���

For a GPLM
 back�tting means to perform an additive �t on the adjusted dependent
variable which was de�ned in ����� We use again the kernel smoother matrix S from �����
As in algorithm �S�
 an explicit expression for each iteration step is possible� Note the
di�erence in the updating step for �� Also
 as the algorithm �S�
 back�tting shares the
property of being linear on the variable z�

X�new �mnew  RBz

with
RB  fXfX TWfXg��X TW�I � S� � S� ����

see Hastie � Tibshirani �����
 p� �����

Algorithm �B�

� updating step for �

�new  �X TWfX ���X TW ez�
� updating step for m

mnew  S�z � X���

using the notations

fX  �I � S�X �
ez  �I � S�z  fX� �W��v�

In practice
 often some of the predictors are correlated� Hastie � Tibshirani ������
therefore propose also a modi�ed back�tting algorithm
 which �rst searches for a �para�
metric� solution and only �ts the remaining parts nonparametrically� For the simulations
�Section ��
 we considered additionally modi�ed back�tting and refer to it as algorithm
�MB��

�



� Testing the GPLM

Having estimated the in�uence m��� of the covariables T 
 it is naturally to ask
 whether
the estimate cm��� is signi�cantly di�erent from a linear function obtained by a parametric
GLM �t� Typically
 a test procedure for

H� � m�t�  tT� � 
�

H� � m��� is an arbitrary smooth function�
is based on semiparametric generalizations of the parametric likelihood ratio test� Hastie
� Tibshirani ������ propose to use the di�erence of the deviances of the linear and
the semiparametric model
 respectively
 and to approximate the degrees of freedom in
the semiparametric case� The asymptotic behavior of this method is unknown
 though�
H�ardle
 Mammen � M�uller ������ derive an asymptotic normal distribution for a slightly
modi�ed test statistic� We will concentrate on these two approaches here�

��� Likelihood ratio test and approximate degrees of freedom

Denote the the semiparametric estimates b�i  GfxT
i
b� �cm�ti�g and the parametric esti�

mates e�i  GfxT
i
e� � tT e� � e
�� A natural approach is to compare both estimates by a

likelihood ratio test statistic

R  �
nX
i��

L�b�i� yi�� L�e�i� yi�� ����

which would have an asymptotic �� distribution if the estimates b�i were from an nesting
parametric �t�
In the semiparametric case
 this test statistic seems to work well in practical situations�

However
 an approximate number of degrees of freedom needs to be de�ned for the GPLM�
The basic idea of Hastie � Tibshirani �����
 p� ���	���� is the following� Denote by

D�y� b��  � nX
i��

L��max
i � yi�� L�b�i� yi�� ����

the deviance in observations yi and �tted values b�i� �max
i are the parameter values that

maximize the log�likelihood
P

i L��� yi�� Abbreviate the estimated index b�  X b� � cm
and suppose an adjusted dependent variable z  b� � W��v� If at convergence of the
iterative estimation b�  Rz  R�b� �W��v�� ����

with a linear operator R
 then
D�y� b�� � �z � b��TW���z � b�� ����

which has approximately

df err�b��  n� tr
�
�R�RTWRW��

�
����

degrees of freedom� In practice
 the computation of the trace tr
�
RTWRW��

�
can be

rather di�cult� A simpler approximation is

df err�b��  n� tr �R� ����

�



which were correct if R were a projection operator�
Now
 for the comparison of the semiparametric b� and the parametric e� the test statistic

���� can be expressed by
R  D�y� e���D�y� b��

and should follow approximately a �� distribution with df err�e�� � df err�b�� degrees of
freedom�
Property ���� holds for the algorithms �B� and �S� with matrices RB and RS
 respec�

tively� A direct application to the pro�le likelihood algorithm �P� is not possible because
of the more involved estimation of the nonparametric function m���� However a workable
approximation can be obtained by using the degrees of freedom from

RP  fXffX TWfXg��fX TW�I � SP � � S� ����

where fX denotes �I � SP �X �

��� Modi�ed likelihood ratio test

A direct comparison of the semiparametric estimates b�i and the parametric estimates e�i
can be misleading because cm��� has a non	negligible smoothing bias
 even under linear�
ity hypothesis� Hence
 H�ardle et al� ������ propose to use a bias	corrected parametric
estimate m�tj� instead of t

T
j
e�� e
�� This estimate can be obtained from the updating pro�

cedure for mj on the parametric estimate� Note that here the second argument of L��� ��
should be the parametric estimate of E�yijxi� ti� instead of yi which means to apply the
smoothing step according to ��� to the arti�cial data set fG�xT

i
e�� tTi e� � e
���xi� tig� i 

�� � � � � n�
Using this bias	corrected parametric estimate m���
 H�ardle et al� ������ propose the

test statistic

R�  �
nX
i��

L�b�i� b�i�� L��i� b�i�� ����

where �i  GfxT
i
e� �m�ti�g is the bias corrected GLM �t and b�i is the semiparametric

GPLM �t to the observations� Asymptotically
 this test statistic is equivalent to

eR� 
nX
i��

wi

n
xT
i �
b� � e�� �cm�ti��m�ti�

o�
����

with

wi 
�G�fxT

i
b� �cm�ti�g��

V �GfxT
i
b� �cm�ti�g� �

Hence the resulting test statistic can be interpreted as a weighted quadratic di�erence of
the �bias corrected� parametric predictor xT

i
e� �m�ti� and the semiparametric predictor

xT
i
b� �cm�ti��
Both test statistics R� and eR� have the same asymptotic normal distribution if the

pro�le likelihood algorithm �P� is used� �A �� approximation does not hold in this case
since kernel smoother matrices are not projection operators�� It has been pointed out in
H�ardle et al� ������ that the normal approximation does not work well� Therefore
 for
the calculation of quantiles
 it is recommended to use a bootstrap approximation of the
quantiles of the test statistic�

�



�� Generate samples y��� � � � � y
�

n with

E��y�i �  G�xT
i
e� � tTi e� � 
��

Var ��y�i �  b�� V fG�xT
i
e� � tTi e� � 
��g�

�� Calculate estimates based on the bootstrap samples and �nally the test statistics
R�� The quantiles of the distribution of R are estimated by the quantiles of the
conditional distributions of R��

There are several possibilities for the choice of the conditional distribution of the y�i �s� In
a binary response model
 the distribution of yi is completely speci�ed by �i  G�xT

i � �
tTi ��
��� If the distribution of yi cannot be speci�ed �apart from the �rst two moments�
one should use wild bootstrap
 see H�ardle � Mammen �������

� Simulations

To compare the competing estimators and test statistics some simulations have been
performed� A logit model was used to simulate data�

E�Y jX� T �  P �Y  �jX� T �  FfXT� �m�T �g
with F ��� denoting the cumulative distribution function of the �standard� logistic distri�
bution� The simulations were run

under the hypothesis� m�t� 
�

�
t�

under the alternative� m�t� 
�

�
cos��t��

with �  ���� ���
T  ������T in both cases� For the design of the explanatory variables

two patterns are used� In both design patterns T and X� are independent and uniform
on ���� ��� The variable X� is de�ned by an discretization of cosf��T ���� �Ug where
U is independent from T and X� and uniform on ���� �� as well� We use

independent design�   ��

dependent design�   ����

Throughout all computations in the Quartic kernel K�u�  ��
��
�� � u���I�juj � �� was

used for the kernel weights�
First
 we compare the �ts obtained by the di�erent algorithms �P�
 �S�
 �B� and �MB�

�modi�ed back�tting�� Tables � and � show the mean average squared errors �ASE�s�
as well as mean deviances and degrees of freedom in the independence and dependence
design
 respectively� By ASE for � we mean

�

n

nX
i��

�b�i � �i�
��

ASE for m is de�ned accordingly� ASE for �  ���� ���
T is the sum of the ASE�s for

both components �� and ��� The mean ASE�s in Tables � and � are averaged over all
simulations�

��



b� cm b� D df err

GPLM �P� ����� ����� ����� ������� �����
GPLM �S� ����� ����� ����� ������� �����
GPLM �B� ����� ����� ����� ������� �����
GPLM �MB� ����� ����� ����� ������� �����

n  ���
 h  ���

GPLM �P� ����� ����� ����� ������� ������
GPLM �S� ����� ����� ����� ������� ������
GPLM �B� ����� ����� ����� ������� ������
GPLM �MB� ����� ����� ����� ������� ������

n  ���
 h  ���

GPLM �P� ����� ����� ����� ������� ������
GPLM �S� ����� ����� ����� ������� ������
GPLM �B� ����� ����� ����� ������� ������
GPLM �MB� ����� ����� ����� ������� ������

n  ���
 h  ���

Table �� Mean ASE�s for � ������
 m and �
 mean deviances and mean
degrees of freedom� Model under alternative
 independent design
 ���
Monte	Carlo replications�

b� cm b� D df err

GPLM �P� ����� ����� ����� ������� �����
GPLM �S� ����� ����� ����� ������� �����
GPLM �B� ����� ����� ����� ������� �����
GPLM �MB� ����� ����� ����� ������� �����

n  ���
 h  ���

GPLM �P� ����� ����� ����� ������� ������
GPLM �S� ����� ����� ����� ������� ������
GPLM �B� ����� ����� ����� ������� ������
GPLM �MB� ����� ����� ����� ������� ������

n  ���
 h  ���

GPLM �P� ����� ����� ����� ������� ������
GPLM �S� ����� ����� ����� ������� ������
GPLM �B� ����� ����� ����� ������� ������
GPLM �MB� ����� ����� ����� ������� ������

n  ���
 h  ���

Table �� Mean ASE�s for � ������
 m and �
 mean deviances and mean
degrees of freedom� Model under alternative
 dependent design
 ���
Monte	Carlo replications�
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� ���� ���� ���� ����

R parametric ����� ����� ����� �����
R �P� ����� ����� ����� �����
R �S� ����� ����� ����� �����
R �B� ����� ����� ����� �����
R �MB� ����� ����� ����� �����
R� �P� bootstrap ����� ����� ����� �����

n  ���
 h  ���

R parametric ����� ����� ����� �����
R �P� ����� ����� ����� �����
R �S� ����� ����� ����� �����
R �B� ����� ����� ����� �����
R �MB� ����� ����� ����� �����
R� �P� bootstrap ����� ����� ����� �����

n  ���
 h  ���

Table �� Percentage of rejections� Model under hypothesis
 dependent
design
 ��� Monte	Carlo replications�

� ���� ���� ���� ����

R parametric ����� ����� ����� �����
R �P� ����� ����� ����� �����
R �S� ����� ����� ����� �����
R �B� ����� ����� ����� �����
R �MB� ����� ����� ����� �����
R� �P� bootstrap ����� ����� ����� �����

n  ���
 h  ���

R parametric ����� ����� ����� �����
R �P� ����� ����� ����� �����
R �S� ����� ����� ����� �����
R �B� ����� ����� ����� �����
R �MB� ����� ����� ����� �����
R� �P� bootstrap ����� ����� ����� �����

n  ���
 h  ���

Table �� Percentage of rejections� Model under alternative
 dependent
design
 ��� Monte	Carlo replications�

The mean values can of course only give a rough impression� A closer inspection of
the simulation results reveals
 that indeed the deviance is almost always minimized by
the pro�le likelihood method �P�� Looking at the averaged squared errors
 back�tting
algorithms usually perform better for independent design and smaller sample size� This
changes signi�cantly
 when dependences among the explanatory variables are present and

��



the sample size grows� Here
 the averaged squared errors become typically lowest for
algorithm �S�� As Tables � and � indicate
 both pro�le likelihood estimates �P� and �S�
and both back�tting procedures �B� and �MB� get close when n increases and h decreases�

alpha= 0.10, n=100, h=0.6
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Figure �� Power of likelihood ratio statistics R �P�
 R� �P� and R para�
metric �grey
 black and dashed�� n  ���
 dependent design
 ��� Monte	
Carlo replications�

alpha= 0.10, n=250, h=0.5
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Figure �� Power of likelihood ratio statistics R �P�
 R� �P� and R para�
metric �grey
 black and dashed�� n  ���
 dependent design
 ��� Monte	
Carlo replications�
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Next
 we compare all algorithms with respect to testing� As a parametric reference
test we use the likelihood ratio test that tests the hypothesis m�t�  
�t� 
� against the
alternative m�t�  
� cos��t��
�t�
�� Tables � and � summarize the results for the true
hypothesis m�t�  	

�
t �Table �� and the true alternative m�t�  	

�
cos��t� �Table �� for

di�erent nominal signi�cance levels � and di�erent sample sizes n� It is clear to recognize

that all tests based on the approximate degrees of freedom have very similar power but
are too rejective on the hypothesis� The bootstrapped R� for algorithm �P� follows the
given nominal level under the hypothesis quite well and does not loose power under the
alternative compared to the other test procedures�
This can also be seen from Figures � and �
 where power functions for R �P�
 boot�

strapped R� �P� in comparison with the fully parametric likelihood ratio test are shown�
The signi�cance level � is �xed to ���� here� The true underlying function m��� is a con�
vex combination of 	

�
t and 	

�
cos��t� such that increasing nonlinearity means more weight

is given to the cosine term�

� Example� Migration

We illustrate the semiparametric estimation and the test procedure with an real data
example on East	West German migration� The sample consists of East Germans
 which
have been surveyed in ���� in the German Socio�Economic Panel
 see GSOEP �������
Among other questions the East German participants have been asked
 if they can imagine
to move to the western part of Germany or West Berlin� We give the value yi  � to
those who responded positive and � if not�

Yes No �in  �
Y migration ���� ����
X� family�friends ���� ����
X� unemployed ���� ����
X	 city size ���� ����
X
 female ���� ����

Min Max Mean S�D�
X� age �years� �� �� ����� �����
T income �DM� ��� ���� ������� ������

Table �� Descriptive statistics for migration data� Sample from
Mecklenburg	Vorpommern
 n  ����

In the following
 we present the estimation results for Mecklenburg	Vorpommern �a
state in the very North of Eastern Germany
 n  ����� Some descriptive statistics is
summarized in Table �� Table � shows on the left the results of the parametric logit �t
for Mecklenburg	Vorpommern� For simplicity both continuous variables �age
 household
income� have been linearly transformed to ��� ���
The migration intention is de�nitely determined by age �X��� However
 also the un�

employment �X��
 city size �X	�and household income �T � variables are signi�cant� A
further analysis of this data set by a generalized additive model showed that age has a

��



Logit �t value� �P� �S� �B� �MB�
const� ������ ������� 	 	 	 	
X� ����� � ����� ����� ����� ����� �����
X� ����� � ����� ����� ����� ����� �����
X	 ����� � ����� ����� ����� ����� �����
X
 ������ ������� ������ ������ ������ ������
X� ������ ������� ������ ������ ������ �����
T ����� � ����� 	 	 	 	

Linear �GLM� Part� Linear �GPLM�

Table �� Logit coe�cients and coe�cients in GPLM for migration data�
Sample from Mecklenburg	Vorpommern� n  ���
 h  ��� for the
GPLM�

Migration <-- Income
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Figure �� GPLM logit �t for migration data� Pro�le likelihood estimator
�P� for m
 with h  ��� �thick curve�
 h  ���
 h  ����
 h  ����

h  ��� �thin curves� and parametric logit �t �medium line��

nearly perfect linear in�uence� Because of this relation
 we use a generalized partial linear
model with a logistic link function and only the in�uence of household income modeled
as a nonparametric function� The coe�cients for the parametric covariates are given on
the right side of Table ��
The nonparametric estimate cm��� in this example seems to be an obvious nonlinear

function
 see Figure �� As already observed in the simulations
 both pro�le likelihood
methods �P� and �S� give very similar results �Figure ��� Also the estimation from modi�
�ed back�tting �MB� does not di�er much� The back�tting estimator �B� however di�ers

depending on the size of h� For smaller h
 the estimates from all algorithms �P�
 �S�
 �B�
and �MB� are very near� This is caused by the kernel weights
 which mainly use the
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Figure �� GPLM logit �t for migration data� Pro�le likelihood �P�
and �S�
 modi�ed back�tting �lower curves�
 back�tting �upper curve�

h  ����

observation i itself to estimate m�ti��
Going back to Table �
 one sees a di�erence in the coe�cients for the parametric part

as well� Both �negative in�uence� variables X

 X� get more weight by algorithm �B�

the other variables get less which implies a positive vertical shift in the estimate for m���
see upper curve in Figure �� The shape of the back�tted cm��� is very similar though

which is to be explained by the identical smoothing step form in algorithms �B� and �S��
The obvious di�erence between back�tting �B� and the other procedures is an inter�

esting observation� It is most likely due to the multivariate dependence structure within
of the explanatory variables
 an e�ect which is not easily re�ected in simulations� The
pro�le likelihood methods �P� and �S� have by construction a similar correction ability
for concurvity as the modi�ed back�tting �MB� has�
Finally consider the testing problem for this example� By Figures � and � it is di��

cult to judge signi�cance of the nonlinearity� For this real data example
 it cannot be
excluded that the di�erence between the nonparametric and the linear �t may be caused
by boundary and bias problems of cm���� Additionally
 the covariable �age� �included in
a linear way� has dominant in�uence in the model�
Table � shows the results of the application of the di�erent test statistics for di�erent

choices of the bandwidth h� As we have seen in the simulations
 the likelihood ratio
test statistic R and the modi�ed test statistic R� in combination with bootstrap give
very similar results� The number of bootstrap simulations has been chosen as n�  ����
Linearity is clearly rejected �at �� level� for all bandwidths from ��� to ����
The di�erent behavior of the tests for di�erent h give some indication on possible

deviance of m��� from linear functions� The appearance of small wiggles of small length
seems not signi�cant for the bootstrap �h  ����� Also
 the bootstrapped R� still rejects
for h  ���� This is due to the comparison of the semiparametric estimator with a bias
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h ���� ���� ���� ���� ����
R �P� ����� ����� ����� ����� �����
R �S� ����� ����� ����� ����� �����
R �B� ����� ����� ����� ����� �����
R �MB� ����� ����� ����� ����� �����
R� �P� bootstrap ����� ����� ����� ����� �����

Table �� Observed signi�cance levels for linearity test for migration data

n  ���� ��� bootstrap replications�

corrected parametric one
 yielding more independence of the bandwidth�

� Computational Issues

Generalizing the generalized linear model causes increasing complexity and thus demands
for an e�cient computational implementation� XploRe is a �exible and extensible envi�
ronment that has been designed for a large scale of statistical tasks ranging from data
analysis to complex smoothing algorithms� We want to stress that user	extensible func�
tions also provide transparency of the implemented procedures�
Generalized partial linear models in XploRe are available from the library gplm
 see

M�uller
 R�onz � H�ardle ������� The algorithm for GPLM requires �rst an initialization
step
 this is done by default by a parametric GLM �t with the same link function� Next

the smoothing step for the nonparametric function m��� has to be carried out� Consider
the pro�le likelihood estimator �rst� The updating step for mj  m��tj� requires a ratio
with numerator and denominator of convolution type

nX
i��

�ijKH�ti � tj�� ����

where �ij is a derivative of the log	likelihood� Note
 that this has to be done at least
for all tj �j  �� � � � � n� since the updated values of m��� at all observation points are
required in the updating step for �� Thus O�n�� operations are necessary and in each of
this operations
 the kernel function KH�ti � tj� and both likelihood derivatives need to
be evaluated�
As a consequence
 this GPLM estimator in XploRe is implemented in a hybrid fashion�

To estimate a logit GPLM
 the user calls a macro written in XploRe� This macro itself
calls two compiled functions which perform the update of m�t� and calculate fX in an
e�cient way� Both functions are written in C and available from a shared library
 which
is dynamically linked to XploRe at runtime� The speed of operations in such compiled
functions is comparable to that of XploRe internal commands�
In contrast to internal commands
 however
 experienced users can modify the supplied

C source code or add own extensions� This allows the required �exibility
 extensibility
and transparency for the implementation�
Note that the evaluation of ���� is a standard procedure if �ij would be only dependent

on i �e�g� in Nadaraya	Watson kernel regression�� This is the case for algorithms �S�

��



and �B�� Here
 XploRe�s prede�ned kernel convolution can be used� In di�erence to
the pro�le likelihood estimation �P�
 the derivatives �i can be stored and need to be
computed only once in each iteration step� Still
 O�n�� operations are necessary
 the
practical computation of algorithms �S� and �B� is three to four times faster though�
Also
 algorithms �S� and �B� often need less iterations and seems to be more stable
for outliers in the design� Hence
 algorithm �S�
 which seems to be a nice compromise
between accuracy and computational e�ciency is used as the default estimation method
for a GPLM in XploRe�

	 Summary and Conclusions

The paper compares three estimation methods for generalized partial linear models �GPLM��
The estimators are investigated for their small sample properties by means of simulated
and real data�

� Back�tting outperforms pro�le likelihood estimation for a GPLM under independent
design� However
 if the explanatory variables are dependent
 a variant of the pro�le
likelihood method �simple pro�le likelihood method� seems to work best�

� When testing the parametric versus the semiparametric speci�cation is concerned

the investigated pro�le likelihood variants perform similar� A likelihood ratio test
with an approximate number of degrees of freedom seems to work reasonably well�
A bootstrap modi�cation of the likelihood ratio statistic enhance accuracy of the
test results and makes results more independent of the bandwidth�

� The simple pro�le likelihood method can be considered as a good compromise be�
tween accuracy and computational e�ciency in estimation and speci�cation testing�
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