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Abstract

Consider the semiparametric regression model Yi � XT
i ��g�Ti�� �i �i � �� � � � � n��

where �Xi� Ti� are known and �xed design points� � is a p�dimensional unknown
parameter� g��� is an unknown function on 	
� ��� �i are i�i�d� random errors with mean

 and variance ��� In this paper we �rst construct bootstrap statistics ��n and ��

n
�
by

resampling� Then we prove that� for the estimators �n and ��
n of the parameters � and

���
p
n���n� �n� and

p
n��n� ���

p
n���

n
�� ��

n� and
p
n���

n � ��� have the same limit
distributions� respectively� The advantage of the bootstrap approximation is explain�
The feasibility of this approach we also show in a simulation study�
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� INTRODUCTION

Consider the model given by

Yi � XT
i � � g�Ti� � �i� i � 	� � � � � �	�

where Xi � �xi�� � � � � xip�T �p � 	� and Ti�Ti � ��� 	�� are known design points� � �

���� � � � � �p�T is an unknown parameter vector and g is an unknown function� and ��� � � � � �n

are i�i�d� random variables with mean � and unknown variance ���

This model is important because it can be used in applications where one can assume

that the responses Yi and predictors Xi is linear dependence� but nonlinearly related to the

independent variables Ti� Engle� et al� �	���� studied the e�ect of weather on electricity

demand� Liang� H�ardle and Werwatz �	���� used the model to investigate the relationship

between income and age from German data� From the point of theory� this model generalizes

the standard linear model� by restricts multivariate nonparametric regression which is subject

to �Curse of Dimensionality� and is hard to interpret� Therefore� there is a lot of literature

studied this model recently� Heckman �	����� Speckman �	����� Chen �	���� considered the

asymptotic normality of estimators of � and ��� Later Cuzick �	���a� b� and Schick �	��
�

discussed asymptotic properties and asymptotic e�ciency for these estimators� Liang and

Cheng �	��
� discussed the second order asymptotic e�ciency of LS estimator and MLE of

��

The technique of bootstrap is a useful tool for the approximation of an unknown prob�

ability distribution and therefore for its characteristics like moments or condence regions�

This approximation can be performed by di�erent estimators of the true underlying distribu�

tion that should be well adapted to the special situation� In this paper we use the empirical

distribution function which puts mass of 	�n at each residual in order to approximate the

underlying error distribution �for more details see section ��� This classical bootstrap tech�

nique was introduced by B� Efron �for a review see e�g� Efron � Tibshirani� 	��
�� Note

that for a hetereoscedastic error structure a wild bootstrap procedure �see e�g� Wu� 	��� or

H�ardle � Mammen� 	��
� would be more appropriate�

Hong and Cheng �	��
� considered bootstrap approximation of the estimators for the

parameters in the model �	� in the case where fXi� Ti� i � 	� � � � � ng are i�i�d� random

variables and g��� is estimated by a kernel smoother� The authors proved that their bootstrap

approximation is the same as the classic methods� but failed to explain the advantage of

�



the bootstrap method� which will be discussed in this paper� We will construct bootstrap

statistics of � and ��� and studies their asymptotic normality when �Xi� Ti� are known

design points and g��� is estimated by general nonparametric tting� Analytically as well

as numerically we will show that the bootstrap techniques provide a reliable method to

approximate the distributions of the estimates�

The e�ect of smoothing parameter is studied in a simulation study� Thereby it turns

out that the estimators of the parametric part are quite robust against the choice of the

smoothing parameter� More details can be found in section 
�

The paper is organized as follows� In the following we explain the basic idea for estimating

the parameters and give the assumptions on the Xi and Ti� Section � constructs bootstrap

statistics of � and ��� In section 
 we present a simulation study in order to complete

the asymptotic results� In section � some lemmas required later are proven� Section �

presents the proof of the main result� For the convenience and simplicity� we shall employ

C�� � C ��� to denote some constant not depending on n but may assume di�erent values

at each appearance�

Generally there are two methods� backtting and local likelihood ones� to estimate the

linear parameter� The asymptotic variance of the two estimates is the same� Here we adopt

local likelihood method� Specically� x � one estimates g��� as a function of � to obtain

bg���� which is a nonparametric estimation problem� Then letting g � bg���� one estimates

the parametric component� and this is a parametric problem� The detailed discussions can

be also found in Severini and Staniswalis �	�����

To estimate g for xed �� let 	ni�t� � 	ni�t�T�� � � � � Tn� be positive weight functions

depending only on the design points T�� � � � � Tn� Assume fXi � �xi�� � � � � xip�T � Ti� Yi� i �

	� � � � � n�g satisfy the model �	�� �g��t� �
Pn

j�� 	nj�t��Yj �XT
j �� is just the nonparametric

estimate of g�t� for xed �� Given the estimator �g��t�� an estimate of �� �n� is obtained

basing on Yi � XT
i � � �g��Ti� � �i for i � 	� � � � � n�

Denote fX � �fX�� � � � � fXn�
T � fXi � Xi �Pn

j�� 	nj�Ti�Xj � fY � � eY�� � � � � eYn�T � eYi � Yi �Pn
j�� 	nj �Ti�Yj � Then the estimate �n can be expressed as

�n � �fXTfX���fXTfY
In addition� the estimate of ��� ��

n is naturally dened as

��
n �

	

n

nX
i��

�Yi �XT
i �n � gn�Ti��

��






which is equal to �
n

Pn
i���

eYi�fXT
i �n�

�� Where gn�t� �
Pn

j�� 	nj�t��Yj�XT
j �n� is the estimate

of g�t��

In the following we list the su�cient conditions for our main result�

Condition �� There exist functions hj��� de�ned on ��� 	� such that

xij � hj�Ti� � uij 	 � i � n� 	 � j � p ���

where uij is a sequence of real numbers which satisfy limn��
�
n

Pn
i�� ui � � and

lim
n��

	

n

nX
i��

uiu
T
i � B �
�

is a positive de�nite matrix� and

lim sup
n��

	

an
max
��k�n

�����
kX

i��

ui

����� �� ���

holds� where ui � �ui�� � � � � uip�T and an � n��� log�� n�

Condition �� g��� and hj��� are Lipschitz continuous of order ��

Condition �� The weight functions 	ni��� satisfy the following�

�i� max
��i�n

nX
j��

	nj�Ti� � O�	��

�ii� max
��i�j�n

	ni�Tj� � O�bn��

�iii� max
��i�n

nX
j��

	nj�Ti�I�jTj�Tij�cn� � O�cn��

where bn � n����� cn � n���� log n�

These conditions are not more complicated than that given in related literature� They are

usually needed for establishing asymptotic normality for the estimators of the parameters�

Specically� imposing Condition 	 in that we can lead 	�nfXTfX converges to B� In fact� ���

of Condition 	 is parallel to the case

hj�Ti� � E�xijjTi� and uij � xij � E�xijjTi�

when �Xi� Ti� are random variables� �
� is similar to the result of the strong law of large

numbers for random errors� ��� is similar to the law of the iterated logarithm� More detailed

discussions may be found in Speckman �	���� and Gao et al� �	�����

The weight functions satised the above condition 
 are presented in Liang� H�ardle and

Werwatz �	����� Interested readers please nd them there�
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� BOOTSTRAP APPROXIMATIONS ANDMAINRE�

SULT

The statistics �n and ��
n have asymptotic standard normal distributions under mild assump�

tions� Our simulation studies indicate that the normal approximation does not work very

well for small samples� Therefore in this section we propose a bootstrap method as an

alternative to the normal asymptotic method�

In the semiparametric regression model the observable column n�vector 	� of residuals is

given by

	� � Y �Gn �XT�n

where Gn � fgn�T��� � � � � gn�Tn�gT � Denote 
n � �
n

Pn
i�� ��i� Let �Fn be the empirical dis�

tribution of 	�� centered at the mean� so �Fn puts mass 	�n at ��i � 
n and
R
xd �Fn�x� � ��

Given Y� let ���� � � � � �
�
n be conditional independent with common distribution �Fn� let �� be

the n�vector whose ith component is ��i � and let

Y� � XT�n �Gn � ���

Informally� 	�� is obtained by resampling the centered residuals� And Y� is generated from

the data� using the regression model with �n as the vector of parameters and �Fn as the

distribution of the disturbance terms ���

So we have reason to dene the estimates of � and �� as follows� respectively�

��n � �fXTfX���fXTfY� and ��
n
�
�

	

n

nX
i��

� eY �
i � fXT

i �
�
n�

��

where eY �
i � Y �

i �
Pn

j�� 	nj�Ti�Y �
j �
fY� � � eY �

� � � � � �
eY �
n �

T �

The bootstrap principle is that the distributions of
p
n���n��n� and

p
n���

n
����

n�� which

can be computed directly from the data� approximate the distributions of
p
n��n � �� and

p
n���

n � ���� respectively� As will be shown later� this approximation is likely to be very

good� provided n is large enough� This fact is stated as the following theorem�

Theorem �� Suppose conditions ��� hold� If E�	� � � and max��i�n kuik � C
 � ��

Then

supx
���P �fpn���n � �n� � xg � Pfpn��n � �� � xg

���� � ���

�



and

supx
���P �fpn���

n
� � ��

n� � xg � Pfpn���
n � ��� � xg

���� � ���

where and below P � and E� denote the conditional probability and conditional expection

given Y�

Now� we outline our proof of the theorem� First we decompose
p
n��n��� and

p
n���n�

�n� into three terms� and ��
n and ��

n
�
into ve terms� respectively� Then we will calculate

the tail probability value of each term� Some additional notations are introduced� � �

���� � � � � �n�T � e� � �e��� � � � � e�n�T � e�i � �i � Pn
j�� 	nj�Ti��j� egi � g�Ti� � Pn

k�� 	nk�Ti�g�Tk��fG � �eg�� � � � � egn�T � We have from the denitions of �n and ��n� and ��
n and ��

n
�

p
n��n � �� �

p
n�fXTfX����fXTfG�fXT e��

�
p
n�fXTfX���

h nX
i��

fXiegi � nX
i��

fXi

n nX
j��

	nj�Ti��j
o
�

nX
i��

fXi�i
i

def
� n�fXTfX����H� �H� �H���

p
n���n � �n� �

p
n�fXTfX����fXTfG�

n
�fXT e���

�
p
n�fXTfX���

h nX
i��

fXieg�ni � nX
i��

fXi

n nX
j��

	nj�Ti��j
�
o
�

nX
i��

fXi�i
�
i

def
� n�fXTfX����H�

� �H�
� �H�

� ��

Where fG�
n
� �eg�n�� � � � � eg�nn�T with eg�ni � gn�Ti��Pn

k�� 	nk�Ti�gn�Tk� for i � 	� � � � � n�

��
n �

	

n
fYTfI �fX�fXTfX���fXTgfY

�
	

n
�T�� 	

n
�TfX�fXTfX���fXT ��

	

n
fGTfI �fX�fXTfX���fXTgfG

��

n
fGTfX�fXTfX���fXT ��

�

n
fGT�

def
� I� � I� � I� � �I	 � �I��

��
n
�

�
	

n
fY�TfI �fX�fXTfX���fXTgfY�

�
	

n
��T�� � 	

n
��TfX�fXTfX���fXT �� �

	

n
fG�T
n
�I �fX�fXTfX���fXT �fG�

n

��

n
fG�T
n
fX�fXTfX���fXT �� �

�

n
fG�T
n
��

def
� I�� � I�� � I�� � �I�	 � �I�� �

�



Here I is the identity matrix of order p� The following sections will prove that H�j�H�j �

oP �	� and H�
�j�H

�
�j � oP ��	� and Ii � oP �n����� and I�i � oP ��n����� for j � 	 � � � � p and

i � �� 
� �� ��

We have up to now showed that the bootstrap method performs as least as well as the

normal approximation with the error rate of op�	� and o�	�� respectively� It is natural to

expect that the bootstrap method should perform better than this however� Indeed� our

numerical experience means that it is case� In fact� it is also true analytically as is shown in

the following theorem�

Theorem �� Let Mjn��� ������ and M�
jn��� ������ be the j�th moments of

p
n��n � ��

��
p
n���

n � ����� and
p
n���n � �n� ��

p
n���

n
� � ��

n���� respectively� Then under the conditions

��� and E��� �� and max��i�n kuik � C
 ���

M�
jn����Mjn��� � OP �n

���� log n� and M�
jn��

���Mjn��
�� � OP �n

���� log n�

for j � 	� �� 
� ��

The proof of theorem � can be completed by the arguments of Liang �	���� and similar

procedures behind� We omit the details�

Theorem � indicates that the bootstrap distributions have much better approximation for

the rst four moments for ��n and ��
n
�
� which are most important quantities in characterizing

distributions� Indeed� by Theorem 	 and Lemma 	 given later� one can only obtain that

M�
jn����Mjn��� � oP �	� and M�

jn��
���Mjn��

�� � OP �	�

for j � 	� �� 
� �� in contrast to Theorem ��

� NUMERICAL RESULTS

In this section we present a small simulation study in order to illustrate the nite sample

behavior of the estimator� We investigate the model

Yi � Xi� � g�Ti� � �i ���

where g�Ti� � sin�Ti�� � � �	� ��� and �i � Uniform����
� ��
�� The independent variables

Xi � �X���
i �X

���
i � and Ti are realizations of a Uniform��� 	� distributed random variable� We

analyze sample sizes of 
�� ��� 	�� and 
��� For nonparametric tting� we use a Nadaraya�

Watson kernel weight function with Epanechnikov kernel� We performed the smoothing with

�



sample size n=30
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Figure � � Plot of of the smoothed bootstrap density �lines�� the normal ap�
proximation �stars� and the smoothed true density �vertical lines��

di�erent bandwidths using some grid search� Thereby it turned out that the results for the

parametric part are quite robust against the bandwidth chosen in the nonparametric part�

In the following we present only the simulation results for the parameter ��� those fore ��

are similar�

In gures 	 to � we plotted the smoothed densities of the estimated true distribution of
p
n� b�� � ����b� with b�� � �

n

Pn
i���  Yi �  XT

i �n�
� for sample sizes 
�� ��� 	��� 
��� Addition�

ally we added to these plots the corresponding bootstrap distributions and the asymptotic

normal distributions� where we estimated the asymptotic variance ��B�� by b�� bB�� withbB � �
n

Pn
i��

 XT
i
 Xi and bsigma� dened above� It turns out that the bootstrap distribution

and the asymptotic normal distribution well approximates the true one even for moderate

sample sizes of n � 
��

� SOME LEMMAS

Under the conditions of Theorem 	� Gao et al��	���� obtained asymptotic normalities of �n

and ��
n and convergence rate of gn� which are given in Lemma 	� Lemma � presents the

limit of 	�nfXTfX� Its proof is referred to Chen �	���� and Speckman �	����� Lemma 


provides the boundedness for g�Ti��Pn
k�� 	nk�Ti�g�Tk� and eg�ni�Ti� �Pn

k�� 	nk�Ti�eg�nk�Tk��
whose proof is immediate� Lemma � shows that

p
nH�j and

p
nH�

�j are O�n��� log n� in

di�erent probability senses� Lemma � gives a general result for nonparametric regression�
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sample size n=300
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Figure 
 � Plot of of the smoothed bootstrap density �lines�� the normal ap�
proximation �stars� and the smoothed true density �vertical lines��

whose proof is strongly based on an exponential inequality for bounded independent random

variables� that is� Bernstein!s inequality� It will be used in the remainder of this section�

Lemma �� Suppose the conditions of Theorem � hold� Then

p
n��n � ��� N��� ��B���� sup

t��
���
jgn�t�� g�t�j � Op�n

���� log n�� ���

and

p
n���

n � ���� N��� V ar������ ���

Lemma �� If conditions ��� hold� Then

lim
n��

	

n
fXTfX � B

Lemma �� Suppose that conditions 	 and � 
iii� hold� Then

max
��i�n

���g�Ti�� nX
k��

	nk�Ti�g�Tk�
��� � O�n���� log n�

max
��i�n

���eg�ni�Ti�� nX
k��

	nk�Ti�eg�nk�Tk���� � OP �n
���� log n�

The same conclusion as the rst part holds for hj�Ti��Pn
k�� 	nk�Ti�hj�Tk� for j � 	� � � � � p�

Lemma 
� Suppose conditions ��� hold and Ej��j� ��� Then

p
nH�j � O�n��� log���� n� and

p
nH�

�j � O�n��� log���� n� for j � 	� � � � � p �	��

	�



Proof� Their proofs can be completed by the same methods for Lemmas ��� and ��� of

Liang �	����� We omit the details�

�Bernstein�s Inequality� Let V�� � � � � Vn be independent random variables with zero means

and bounded ranges� jVij �M� Then for each � � ��

Pfj
nX
i��

Vij � �g � � exp
n
�������

nX
i��

varVi �M���
o
�

Lemma �� Assume that condition � holds� Let Vi be independent with mean zero and

EV 	
� ��� Then

max
��i�n

��� nX
k��

	nk�Ti�Vk
��� � OP �n

���	 log���� n��

Proof� Denote V �
j � VjI�jVjj�n���� and V ��

j � Vj � V �
j for j � 	� � � � � n� Let M � Cbnn

��	�

From Bernstein!s inequality

P
n
max
��i�n

��� nX
j��

	nj�Ti��V
�
j � EV �

j �
��� � C�n

���	 log���� n
o

�
nX
i��

P
n��� nX
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Combining the results of �		� to �	��� we obtain
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This completes the proof of Lemma ��

Lemma � Suppose conditions ��� hold and Ej��j� ��� Then
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Using conditions 
 �i� and �ii� and the remark in Lemma 
� we can deal with each term

as �	
� by letting Vi � �i in Lemma �� The above each item can be proved to be oP �n����

by using Lemma � and the argument for proving Lemma �� The same technique is also
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Notice that fvnij � i � Ajg are conditionally independent random variables given Enj �

fVk� k � Ac
jg with E�vnijjEnj� � � and E�v�nij jEnj� � ���max��i�n jqnijj�� def

� ��q�nj for

i � Aj� and satisfy max��i�n jvnijj � �n��	qnj for qnj � max��i�n jqnijj�
On the other hand� by the same reason as that for Lemma ��

qn � max
��j�jn

jqnjj � max
��j�jn

max
��i�n

j X
k�Ac

j

	nk�Ti��V
�
k � EV �

k�j

� OP �n
���	 log���� n��
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n�� Combining �	��� �	�� with �	��� we complete the proof of Lemma ��

� PROOF OF THEOREM �

In this section we present the proof of Theorem 	� First� we prove ���� From �	�� and

Lemma �� we only need to prove
p
n�fXTfX���fXT �� converges in distribution to a k�variate

normal random variate with mean � and covariance matrix ��B���
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 of Wu �	��	� that maxi qii � �� This completes the proof of ����
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Lemma �� letting Vi be ��i � E and P be E� and P �� then we have

max
��i�n

��� nX
k��

	nk�Ti��
�
k

��� � OP ��n���	 log���� n��

This and Lemma 
 and the fact

jpnI�� j � C
p
n max

��i�n

n���gn�Ti�� nX
k��

	nk�Ti�gn�Tk�
���� � ��� nX

k��

	nk�Ti��k
�
����o

lead that jpnI�� j � oP ��	��

Using the similar arguments as for proving
p
n�fXTfX���fXT �� � N��� ��B���� one can

conclude that

p
nI�� � oP ��	��

p
nI�	 � oP ��	��

Now� we consider I�� � We decompose I�� into three terms� and prove each term tends to zero�

More precisely�

I�� �
	

n

n nX
i��

eg�ni�i� � nX
k��

	ni�Tk��
�
k
� �

nX
i��

nX
k ��i

	ni�Tk��i
��k

�
o

	�



def
� I��� � I��� � I���� �	��

From Lemma 
� using the strong law of large number to ��i � we have

p
nI��� � oP ��	�� �	��

and

p
nI��� � bn

p
n

nX
i��

��i
� � OP ��log�� n� � oP ��	�� �	��

Let I�n �
Pn

i��

P
j ��i 	nj�Ti���

�
j
� � E��j

�����i
� � E��i

��� Observe

p
njI���j �

	p
n

��� nX
i��

X
k ��i

	nk�Ti��i
��k

� � I�n

���� I�n
def
�

	p
n
�J��n � I�n��

Simple calculations show that

J��n � max
��j�n

��� nX
i��

	nj�Ti��
�
i

���� nX
i��

j��i ��j� Ej��i ��j
�

� max
��j�n

��� nX
i��

	nj�Ti���
�
i
� � E��i

��
���� nX

i��

j��i ��j� Ej��i ��j
�

� oP ��	�

By letting ��i be Vi� E
� and P � be E and P in Lemma � respectively� we have I�n � OP ��

p
n��

It follows that

	p
n
I��� � oP ��	�� ����

A combination �	������� leads that
p
nI�� � oP ��	��

From the above arguments and the third result of Lemma 	� the proof of ��� is equivalent
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which can be veried by the central limit theorem� Thus we complete the proof of Theorem
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