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Abstract

Likelihood ratio (LR) tests for the cointegrating rank of a vector autoregressive (VAR)
process have been developed under different assumptions regarding deterministic terms. For
instance, nonzero mean terms and linear trends have been accounted for in some of the
tests. In this paper we provide a general framework for deriving the local power properties
of these tests. Thereby it is possible to assess the virtue of utilizing varying amounts of prior
information by making assumptions regarding the deterministic terms. One interesting result
from this analysis is that if no assumptions regarding the specific form of the mean term are
made while a linear trend is excluded then a test is available which has the same local power

as an LR test derived under a zero mean assumption.

*We thank Ralf Bruggemann for performing the computations and the Deutsche Forschungsgemeinschaft,

SFB 373, for financial support.



1 Introduction

Following the derivation of a full maximum likelihood (ML) analysis of cointegrated Gaussian
vector autoregressive (VAR) processes by Johansen (1988, 1991a), likelihood ratio (LR) tests
for the cointegrating rank have been developed under various sets of assumptions. The main
differences in these assumptions relate to the deterministic terms such as intercept and mean
terms as well as polynomial trends. In particular, LR tests for the cointegrating rank have
been derived under the following conditions: (1) there is no deterministic term at all, (2) an
intercept term is present only in the cointegration relations and there is no linear trend term,
(3) a linear trend may be in the variables but not in the cointegration relations, (4) a linear
trend is present in both the cointegration relations and in the variables, (5) an additive linear
trend without any restrictions is added to the zero mean cointegrated stochastic part of the
process. All these different assumptions result in different asymptotic null distributions of
the LR tests. In this study we will derive the corresponding local power properties of the
LR tests. These results enable us to assess the value of incorporating varying amounts of
prior information included in the different sets of assumptions. Moreover, it is seen which
factors are the crucial determinants of the local power of the tests. An important result
is also that if an intercept term is present only in the cointegration relations and no linear
trend is present in the process then a test can be constructed with identical local power to
a test derived under scenario (1) where no deterministic term is present at all.

For some of the scenarios considered in this study, Johansen (1991b, 1995), Rahbek
(1994) and Horvath & Watson (1995) have performed local power analyses. Our approach
differs from that used in these articles, however. We will develop a general framework first
in which the local power of the LR tests can be readily established.

This study is structured as follows. In the next section the model set-up is described
and the LR tests are considered in Section 3. Since all these tests may be viewed as being
obtained from a reduced rank (RR) regression a general result for such models is derived
in Section 4. In Section 5 this result is used to obtain the local power of the LR tests for
the cointegrating rank of a VAR process. Conclusions are given in Section 6 and proofs are
contained in the Appendix.

The following notation is used throughout. The vector y; = (y1¢,...,ynt)" denotes an

observable n-dimensional set of time series variables. The lag and differencing operators are



denoted by L and A, respectively, that is, Ly, = y;—1 and Ay; = y; — y,—1. The symbol
I(d) is used to denote a process which is integrated of order d, that is, it is stationary
after differencing d times while it is still nonstationary after differencing just d — 1 times.
The symbols 2 and B signify convergence in distribution and probability, respectively,
and a.s. is short for almost surely. O(-), o(-), O,(-) and o0,(-) are the usual symbols for
the order of convergence and convergence in probability, respectively, of a sequence. The
normal distribution with mean (vector) p and variance (covariance matrix) ¥ is denoted by
N(p,%). The symbols Au(A), tk(A) and tr(A) signify the maximal eigenvalue, the rank
and the trace of the matrix A, respectively. If A is an (n x m) matrix of full column rank
(n > m) we let A, stand for an (n x (n — m)) matrix of full column rank and such that
A’A; = 0. For an (m x n) matrix A and an (m x s) matrix B, [A: B] is the (m x (n 4 s))
matrix whose first n columns are the columns of A and whose last s columns are the columns
of B. For a symmetric matrix A we write A > 0 to indicate that A is positive definite. The
(n x n) identity matrix is denoted by [,,. LS is short for least squares and DGP abbreviates
data generation process. RR means reduced rank. As a general convention, a sum is defined

to be zero if the lower bound of the summation index exceeds the upper bound.

2 Preliminaries

Our point of departure is the DGP of an n-dimensional multiple time series y; = (Y1z, -+« Ynet)’

defined by
Yy = fo + pal + 4, t=1,2..., (2.1)

where po and gy are unknown, fixed (n x 1) parameter vectors and x; is an unobservable

error process with VAR(1) representation in error correction (EC) form
A(Et = th—l + Et, (22)

where ¢; ~ @td N(0,9Q), 9 = 0 and Il is an (n x n) matrix of reduced rank r (0 < r < n).
Of course, this model set-up is simpler than in most applied studies with respect to the
order of the process and the distribution of the residuals. The main reasons for choosing
this simple model are that considering higher order short term dynamics makes the notation
more complicated and has no impact on the results regarding the local power of those tests

which are of primary interest in the following. It is also the framework used in other power



studies to which we intend to compare our results (see Johansen (1995), Rahbek (1994)).
The same is true for the assumption of normally distributed residuals. It is made mainly for
convenience. Alternative distributional assumptions would have to be such that the same
local power results are obtained and are therefore not of great interest for our purposes.
The rank of the matrix II is the cointegrating rank of the variables x; or, equivalently, of
y¢. It is the focus of interest in the following. Suppose it is determined by testing the pair

of hypotheses
Ho(ro) ‘r=To VS. Hl(ro) tr > 7. (2-3)

It is also possible to consider the alternative hypothesis Hy : v = rq + 1. For simplicity we
will focus on Hy(ro) as given in (2.3) in this study. The local alternatives to be considered
are given by

Hr(rg) : 1 = af' +T a3, (2.4)

where o and /3 are fixed (n x rg) matrices of rank ro and ay and /3y are fixed (n x (r —rg))
matrices of rank r — rg and such that the matrices [« : a1] and [ : 1] have full column rank
r. We use the assumption from Johansen (1995) and Rahbek (1994) that the eigenvalues of
the matrix [, + #'« are less than 1 in modulus.

Depending on the assumptions regarding the deterministic terms po and gy there are
different likelihood ratio tests for the hypotheses in (2.3). These tests will be reviewed in

the next section.

3 Likelihood Ratio Tests

Most of the test statistics considered in this study may be obtained from reduced rank
regressions of the from

Ay;=v+aB'yl | + 2, (3.1)

where v is a fixed (n x 1) intercept vector, B is a suitable (m x rg) matrix with m > n,
y;_, 1s an m-dimensional vector and z; is an error term which contains all parts of the
process which are not accounted for by the other quantities. The assumptions underlying
the different tests amount to imposing restrictions on the intercept vector v and choosing B

and y; | appropriately. The following cases have been considered in the literature.



Case 1: po = g = 0, that is, the process has zero mean term and no linear trend. In

this case the LR test statistic is obtained from a reduced rank regression
Ay = affyi1 + 2,

that is, v =0, B = # and y;_; = y;—1 in (3.1). The resulting test statistic will be denoted
by LR°(rq). Critical values may be found in Johansen (1995, Table 15.1) or Reinsel & Ahn
(1992, Table 1) among others.

Case 2: po arbitrary, gy = 0, that is, there is no deterministic linear trend and this

information is available. The test statistic is obtained from
Ay, = a(ﬂlyt—l +6) + 2.

Hence, v = 0, B" = [ : é] and y;_; = [y;_; : 1]. The resulting test statistic will be
denoted by LR*(rg) and critical values may be found in Johansen (1995, Table 15.2). For
this case Saikkonen & Luukkonen (1997) consider an alternative to the LR test which is
based on constructing an estimator for pg first, mean adjusting the data by subtracting that
estimator and then applying an ‘LR’ test to the mean adjusted data. The resulting test
statistics will be denoted by LRY(ry). It has the same limiting null distribution as L R°(ro).

Case 3: o arbitrary, 'u; = 0, so that a linear trend may be present in the variables.

In this case the relevant EC model for determining the test statistic is
Ay =v+afyi_1 + 2.

Thus, there is a nonzero intercept term, B = 3 and y;_; = y;—1 in the framework of the
general model (3.1). The asymptotic distribution of the LR statistic under Hy(rq) depends
on whether or not gy = 0. Critical values for the case y; = 0 are given, e.g., in Johansen
& Juselius (1990, Table A.2) or Reinsel & Ahn (1992, Table I). The test statistics used in
conjunction with these critical values will be denoted by LR (rg). Critical values for the
situation where gy # 0 may be found, for example, in Johansen (1995, Table 15.3). The
corresponding test statistics will be denoted by LR (o).

Case 4: o and pq arbitrary, that is, 5'uq # 0 is possible. In that case a linear trend
may be present in both the variables and the cointegrating relations. The relevant estimation
equation is

Ay, =v+ oy +7(t—1)) + 2.
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Note that this model excludes quadratic trends without imposing restrictions on v and
7. In the framework of (3.1) there is again a nonzero intercept term, B’ = [’ : 7] and
yr_ 1 = [yi_; : t —1]'. The test statistics will be denoted as LR*(rq) and critical values may
be obtained from Johansen (1995, Table 15.4).

Case 5: pg,pp arbitrary and in estimating the trend parameters restrictions are not
imposed to guarantee a linear trend. The difference to Case 4 is that the estimation is based
on the equation

Ay =vo+ it + o yi1 + 2 (3.2)

which is not directly compatible with the model (3.1). It will be shown in the next section,
however, that it can be treated in a similar way as the other cases. Without restrictions on
1 a model of the type (3.2) can generate quadratic deterministic trends. The resulting test
was proposed by Perron & Campbell (1993) who derived the asymptotic properties of the
test statistics which will be denoted by LR'Y(rg). Critical values may be found in Rahbek
(1994) and Perron & Campbell (1993).

In the next section a general result will be given which allows to study the local power
properties for the tests summarized here. The local power properties of LR°(rq) are also given
in Johansen (1991b, 1995) and those of LRF%(ry) are derived in Rahbek (1994). Moreover,
LR'(ro) is known to have local power of a better order than the other tests (see again
Rahbek (1994)). Thus, based on a local power criterion one would always apply LR'(rq) if
the underlying assumptions for this test can be justified. Unfortunately, in practice this may
be difficult in many situations and one may consider using one of the other tests. Therefore

we will compare the local power of those other tests in the following.

4 A General Result

We shall now give a general result for LR tests based on reduced rank (RR) regression. The

following model will be considered:
E:AB/Xt—I—Zt, t= 1,...,T, (41)

where Y; and Z; are (n x 1) vectors, X; is an (m x 1) vector with m > n and A and B are

(n X rg) and (m X rg) matrices of full column rank, respectively. The error term Z; is of the



form

Zt - T_lAlB{Xt —|— gt7 (42)

where A; and By are (n x (r—rg)) and (m x (r —rg)) matrices, respectively, with r —rq > 0
and & is the error term under the null hypothesis that (4.1) is the correctly specified model.
The matrices [A : A;] and [B : By] are supposed to be of full column rank unless the null
hypothesis holds, in which case A; = 0 and B; may also be zero. It may be worth noting
that, in addition to the counterpart of the series Z;, also the counterparts of the series Y;,
X; and & may then depend on the sample size, as will be seen later. For ease of notation
and because it has no effect on the general treatment in the following, we have not indicated
the possible dependence of the quantities in (4.1) and (4.2) on the sample size.

Asis well known, the RR estimators of A and B can be obtained as follows. First consider

the generalized eigenvalues él >0 > én obtained as solutions of
det(MXyM;)I/MYX — KMXX) == 0, (43)
where
T T T
Mxx =TT Xo X[, Mxy =My =T XY/, Myy=T7") VY.
t=1 t=1 t=1
Let 131, ey b, be the eigenvectors corresponding to él, e ,Zn so that
(Mxy Myt Myx — (;Mxx)b; = 0. (4.4)

As usual, these eigenvectors are normalized as

1, if i=j

ZA);»MXX?)]‘: .
0, if i#j

(4.5)

Then we have B = [?)1, cen ?)T], while A is the LS estimator in a regression of Y; on B’Xt.
Note that the foregoing formulation corresponds to that used by Johansen (1995, Section
6.1). Our first main result is the consistency of the RR estimators normalized in a suitable

way. This result is obtained under the following general assumptions.

Assumption 1.

i) 7', BX,X/B % S >0



(i) 7 YL, BLXX(B = O,(1)

(i) T2 Ethl X X 4 G for some (generally) random (m x m) matrix G with B, GB >
0 and B'G'=0 (a.s.)

(iv) T7V2 Y &X/B = 0,(1)
(v) T1 Ethl EXIB, 4§ for some random (n x (m — rg)) matrix S
(vi) T71 Ethl EE = Yee + Op(T_l/Q) for some fixed matrix Yee > 0

Furthermore, the sequences in (iii) and (v) converge jointly in distribution.

The above formulation of the estimators enables us to mimic the consistency proof given
in Johansen’s (1995) Lemma 13.1. In the same way as in that lemma we also normalize the
estimators A and B in a particular (infeasible) fashion to prove consistency. Consistency
when other normalizations are used can then be obtained by the argument discussed in
Johansen (1995, p. 180). Once the consistency of A and B has been proved it is easy to
show that a consistent estimator of the matrix Y¢g is

T
See =171 (Vi — AB'X,)(Y; — AB'X,). (4.6)
t=1

The following lemma summarizes these results. It is shown in the Appendix.

Lemma 1

Consider the normalized estimators B% = B(V’B)_l and 1217 = AB~, where 4/ = (B'B)"'B'.

Then, if Assumption 1 holds, B, = B + O,(T™!), AW = A4 0,(T7"?) and See =
Yee + Op(T_l/z).

Let us now consider testing the null hypothesis that the RR regression equation (4.1)
is correctly specified so that the error term 7Z; equals &. If & ~ wid N(0,X¢¢) and X, is
strictly exogenous or predetermined one can obtain the LR test against the alternative that
the regression coefficient matrix is of full row rank. It can be shown that this test can be

based on the auxiliary regression model
ALY; = U, + RV, + N, (4.7)
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where U, = B’Xt, Vi = B’LXt and NV, = A’LZt — A’LA(B — B)'X;. Furthermore, ® = A’LA

and the true value of R is zero. The details are stated in the following lemma.

Lemma 2
The usual LR statistic for testing Hy : R = 0 versus Hy : R # 0 in the multivariate regression
model (4.7) is identical to the LR statistic for testing Hy : tk(¥) = rq versus Hy : tk(¥) > rq

in the Gaussian multivariate regression model Y; = VX, + &,.

Of course, asymptotically equivalent tests can be obtained by using the corresponding
Wald test or LM test. For convenience we will work with the LM version in the following.

Hence, we consider the test statistic
LR(ro) = tf{(AlissAL)_lf%Mv.Ué/}, (4.8)

where R is the LS estimator of R from (4.7) and
T T T -l
My =Y VWV, =Y Wil (Z UtUt’> AR (4.9)
=1 =1 =1 =1
Notice that here we have assumed that the estimators used to construct the test statistic
LR(rg) are obtained from the RR regression considered in Lemma 1. However, as far as
asymptotic results are concerned, 121, B and See can be any estimators for which the results

of Lemma 1 hold. For instance, the Wald statistic is obtained by replacing See in the

definition of LR(ro) by
~ T ~ ~
See =T (V= UX;)(Y; — WX, (4.10)

=1
where U is the full rank LS estimator of the product matrix AB’ in (4.1). Now we are ready

to state our main result.

Theorem 1
Suppose that Assumption 1 holds and 121, B and Sg¢ are any estimators satistfying the results

of Lemma 1. Then, as T" — oo,

LR(ro) 5 tr{(A| SeeAL) (A A\ BIGB, + A" S)(B.GBL) (A" A\ B,GBy + A, S)}

= tI’{(A/J_ZggAJ_)_l(FBiGBJ_ + A/J_S)(BS_GBJ_)_I(FBS_GBJ_ + A/J_S)/},
where F'= A, AyB{B, (B, B.)™".



Table 1. Relations of LR Test Statistics to RR Model (4.1).

Test

statistic Y: X & A A | By

LR%(ro) Ay Y1 €t a | B ay | B}

LR (ro) | Aw [yios 1) & o | 188 [ar | 181 =Bl

LR*E(rg) | Ay — Ay Yi—1 — io ét + o (fio = po) a | B o | B

+T~ a1 B (fio — pio)

LR®(ro) | Ay, —Ay Yi—1 — Y1 € —¢€ a | 3 ar | B

LR*(rg) Ay, — Ay [ Yot T Y ] g —¢ o [ P ] o [ A ]
t—1-3(T-1) T —ti B

LRPC(ro) | Alye — fio — jut) | yem1 — fro — fu(t = 1) | & a | B o | B

Note: The overbar denotes the arithmetic mean. fig is an estimator of po which is described in Saikkonen

& Luukkonen (1997). jip and fi; are LS estimators of the trend parameters obtained from regressing : on

1 and ¢.

The proof of this result is also given in the appendix. Note that the limiting null distri-

bution of the LR statistic is obtained by setting A; = 0. It may be worth noting that the

limiting distribution depends on the random matrix S only through the term A’ S. Thi

S

fact will be useful later when explicit expressions of the asymptotic distribution in Theorem

1 are derived for special cases.

5 Local Power of LR Tests

5.1 Theory

The general result in Theorem 1 can be used to derive the asymptotic distributions of the

LR statistics presented in Section 3 by writing the underlying model essentially in the form

4.1) and then showing that the relevant quantities Y;, X; and &; satisfy the conditions
g q ) y

summarized in Assumption 1. For the different test statistics the precise form of Y;, X;

and &; is given in Table 1. A specific form of each of the asymptotic distributions obtained

from Theorem 1 is then derived for the individual tests using known limiting results. The

following corollary gives the details. A full proof is given in the Appendix.

We use the following notation to state the results. The symbol W(u) is used to denote




a Brownian motion with covariance matrix  and K(¢) denotes the Ornstein-Uhlenbeck

process defined by the integral equation
K(u) = a,W(w) +\anfiu(al o) [ Kids 0<usy ()
0
or, equivalently, the stochastic differential equation
dK(u) = o dW(u) + o a1 3141 (e 1) K(u)du (0 <u <1)

(see, e.g., Johansen (1995, Chapter 14)). Furthermore, N(s) is the Ornstein-Uhlenbeck
process defined by

1
N(s) = (¢/,Qay ) V?K(s) and N(s)= N(s) —/ N(u)du. (5.2)
0
Note that it is straightforward to check that alternatively N(s) may be defined as
N(s) = B(s) + ab’/ K(u)du, (5.3)
0

where B(s) is an n — r dimensional standard Brownian motion and the quantities a and b

are given by
a = (Oé/J_QOéJ_)_l/zoé/J_Oél and b= (alQaL)l/Q(ﬂiaL)_lﬂiﬂl (5.4)

[cf. Johansen (1995, pp. 207-208)]. In the following the argument of the Ornstein-Uhlenbeck
processes is occasionally dropped when no confusion is possible. Now we can give the limit-

ing distributions of the LR statistics under local alternatives.

Corollary 1
Under the assumptions for the DGP stated in Section 2 the following limiting results hold:

LR(ro) 3 tr { (/01 NdN’)l (/01 NN’ds) B (/01 NdN’) } :
LR*(ro) 3 tr { (/01 N*dN’)l (/01 N*N*'ds) B (/01 N*dN’) } :

where N*(s) = [N(s)" : 1],

LR (r) % tr { (/01 NdN’)l (/01 NN’ds) ) (/01 NdN’> } ,

10



LR (ro) 3 tr { (/01 NdN’)l (/01 NN’ds) B (/01 NdN’) } :
LR*(ro) 5 tr { (/01 N*dN’)l (/01 N+N+'ds> B (/01 N+dN’> } :

where Nt(s) = [N(s)' : s — 1]’, and

2

1 / 1 -1 1
LRPC(rO)itr{< / NPCdN’> ( / NPONPO'ds> ( / NPCdN’>},
0 0 0

where N7(s) is a trend adjusted version of N(s), that is, N(s) is corrected for mean and

linear trend.

There are some interesting observations that can be made from this corollary. None of
the limiting distributions depends on the dimension and cointegrating rank of the process
directly but just on n — rg, the number of common trends under the null hypothesis. Of
course, this result is not surprising because it was also obtained for LR and LR'® by

Johansen (1995) and Rahbek (1994). Moreover, it follows from (5.3) and (5.4) that the
limiting distributions depend on «, 3, Q, oy and 3; only through a = (o, Qa;)~"?a/ oy and
b= (o Qa )V ar ) B 8. This implies, for instance, for the case r — ro = 1, where oy

and 31 are (n x 1) vectors, that the limiting distributions depend on two parameters only,

namely

f=Va and ¢*=dab’b— (a'b)? (5.5)

(see Johansen (1995, Corollary 14.5)). This fact is convenient in the simulations presented
later.

The local power of the test statistics LR*(ro), LR*Y(rq), LR®(ro), LR (1) and LR (ry),
which allow for a nonzero mean pg, do not depend on the actual value of this mean term.
Similarly the local power of none of the tests allowing for a linear trend depends on the
actual value of the slope parameter vector .

Moreover, note that the limiting distribution of LR*Y(r) is the same as that of LR(ro).
This result was obtained by Saikkonen & Luukkonen (1997) under Hy and is now seen to
be valid also under local alternatives. It means that prior knowledge that go = 0 is not
helpful for improving the asymptotic local power of the test for the cointegrating rank. In

other words, the same local power can be achieved with and without such prior knowledge.

11



For the univariate case, a similar result was also obtained by Elliott, Rothenberg & Stock

(1996).

5.2 Simulations

Since the local power functions in Corollary 1 involve nonstandard distributions the relative
efficiencies of the various tests are not obvious. Therefore, following Johansen (1995, Sec.
15.2), we have computed the local power for r = ro + 1 by simulating the discrete time
counterpart of the Ornstein-Uhlenbeck process N(s). Note that from (5.3) we get dN(u) =
dB(u) + ab/N(u)du. Hence, in the simulations we use

1
ANt = Talﬂ{Nt—l + €, t = 1, .. .,T == 1000,

with ¢; ~ iid N(0, I, ), No = 0,

1 for n—ro =1
Br=14 (1,0 for n —rg=2
(1,0,0) for n—ro=3
and
f for n—ro=1
oy =4 (f,g) for n—rg=2 .
(f,9,0) for n—rg=3

From these generated N; we have computed
I 1 o
Gr = Y FF and Sp= = > FAN;,
t=1 t=1

where the definitions of the F} for the different tests are given in Table 2. Finally, the values
of the asymptotic LR statistics are obtained as LR(ro) = tr(S5G7'St). This experiment is
repeated R = 1000 times and the resulting values of the test statistics are compared to the
corresponding 5 % critical values of the relevant asymptotic null distributions. The relative
rejection frequencies are depicted in Figures 1 - 4 for different values of f and ¢ and different
dimensions n — rq.

A few interesting features can be seen in these figures. A first impression is that in
general it pays to use as much prior information as possible. This result conforms with

the conclusions from Horvath & Watson (1995) who analyze local power of LR tests in

12



Table 2. Definitions of F} in Simulating Local Power

Test statistic | Fi

LR(ry) Ny

LR*(ro) [N,_, : 1)

LR (ry) Ny

LR (ro) N —T'S N,

LR*(ro) (N =T N ) it =1 = YT = 1)
LRPC (ro) N1 — fio — fir(t — 1)

Note: figp and fiy are LS estimators of the trend parameters obtained from regressing N; on 1 and ¢.

the situation where some of the cointegrating vectors may be known. They also find that
this kind of prior knowledge can result in substantial improvements in local power. Indeed,
using knowledge regarding the deterministic terms can result in substantially more powerful
tests in the present setting. For instance, LR (ry) which assumes no knowledge regarding
deterministic terms has much less power than LR°(r¢) which assumes knowledge that both
to and gy are zero. On the other hand, knowledge that the mean term is zero is not helpful
for improving local power because LR (rg) has the same local power as LR°(rq) without
using any knowledge on the mean term. It is striking, however, how much local power can
be gained from estimating the mean term in the “right way” relative to just including an
intercept term in the RR regression as in LR*(rg) and LR™(ry). For many combinations of
f and g the rejection probabilities of LR (ry) are seen to be about twice as large as those
of LR*(r) and LR®(rq). For instance, in Figure 1 for f = —12, the rejection frequency of
LR (rg) is 0.82 whereas LR*(rg) and LR™(rq) have local power 0.31 and 0.45, respectively.

It is also interesting to see that, for a large part of the parameter space considered in
our study, LR*(ry) has smaller local power than LR (rg), although both tests require the
assumption that there is no deterministic trend term. This knowledge is used in LR*(rq) to
restrict the mean term to the cointegration relations whereas such a restriction is not used
in LR®(ro). Obviously, in this case imposing the extra restriction in LR*(ro) may result in
a loss in asymptotic local power. This result is in line with the simulations of Horvath &

Watson (1995) who compare the local power of LR(rg) and LR*(ro) in a more restrictive
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setting and find the same result. In fact, in Horvath & Watson’s study LR*(ro) was always
inferior to LR (ry). In Figures 2 and 3 it is seen that in part of our parameter space the
opposite may be true. Of course, if gy = 0 is assumed so that there is no linear trend, then,
from the point of view of local power maximization, neither LR*(ro) nor LR (rq) should be
used. Clearly, LR (ry) is the better choice in this case.

It is also interesting to compare the performance of LR¥ (ry) and LRYY(rg). The former
test imposes the restriction that the estimated trend is at most linear whereas Perron &
Campbell (1993) assume a linear trend in the DGP but do not impose this restriction in
computing the test statistic LR (rg). As a result the local power of the two tests differs.
It can be seen in the figures, however, that LR*(rg) is not always superior to LR (rg) (see
in particular Figure 1).

Another issue of practical importance is the dependence of the power on n — rq, the
number of stochastic trends under Hy(rg). In Figure 4 it is seen that increasing n — rg
results in a loss of power for all the tests. This behaviour is not surprising. It was also
observed by Johansen (1995) in studying the local power of LR%(ro). He states that “the
power decreases ... if there are many dimensions [for the additional cointegration vector| to

hide in” (Johansen (1995, p. 213)).

5.3 Extensions

Notice that the test statistic LR*(r¢) can also be used for testing the joint hypothesis that
II = af’ and the intercept term v = 6. In this set-up it may happen that the null hypothesis
IT = af’ holds whereas v # «6. In this case the intercept term in the model is unrestricted.
This possibility was ruled out in Case 2 by assuming g = 0. If v = b were part of the null
hypothesis it would be reasonable to consider also local alternatives of this part of the null
hypothesis. Because these local alternatives would be of order O(T~'/2) while those specified
in Hr(ro) in (2.4) are of order O(T~'), this case does not fit into our present framework. A

similar comment applies with respect to the test statistic LRT (r).
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6 Conclusions

We have investigated the asymptotic local power of LR tests for the cointegrating rank of a
VAR process under various different assumptions regarding the properties of the determin-
istic terms. For this purpose a general framework for deriving the asymptotic distribution
of LR tests under local alternatives has been presented. A number of LR tests for the
cointegrating rank were then shown to fit into this framework and thus their local power
properties could be established. The following main results have been obtained. (1) If the
DGP is known to have no deterministic linear trend then the test suggested by Saikkonen
& Luukkonen (1997) which is based on LRF(rg) is optimal from a local power point of
view. It achieves the same power against local alternatives as the LR test which is based
on the assumption that the DGP is known to have mean zero. (2) Not knowing whether
there is possibly a linear trend and hence using LR"% (7o) to be on the save side, results in a
substantial loss of power in comparison with tests which are based on the assumption that
no linear trend term is present. (3) The actual values of the trend and mean parameters
do not enter the asymptotic distributions of the LR test statistics under local alternatives.
Thus the actual magnitude of these parameters is of no relevance for the local power of these
tests.

From a practical point of view it should perhaps be pointed out, however, that superior
local power of a test does not necessarily imply superior power in small samples. Local
power analysis is perhaps best thought of as an analysis of the power against alternatives
close to the null hypothesis. Of course, achieving good power against such alternatives may
be more important than good power against alternatives far away from the null for which
it is relatively easy to determine that the null hypothesis is wrong anyway. In conclusion,
while optimal local power is not a guarantee for optimal performance in all situations, tests
with the former property are particularly useful in difficult situations where it is necessary
to discriminate between nearby models. Hence, the local power properties should be a
major factor in making a choice among different tests which may be available in a particular

situation.
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Appendix. Proofs

The notation from the previous sections of this paper is used here.

A.l Proof of Lemma 1

First note that from (4.1), (4.2) and Assumption 1 one readily obtains

T
MYY == AB/MXXBA/ + T_l Z gtgé + 0p(1) == AZBBA/ + Zgg + 0p(1)

t=1

and

MYXB = AB/MXXB + 0p(1) = AZBB + 0p(1).
Next, define Dy = [B : T='/2B, ] and notice that (4.3) is equivalent to
det(D&wMXyM;)I/MYXDT — KD%MXXDT) =0. (Al)

This equation has the same eigenvalues as (4.3) and eigenvectors D}li)j (j=1,...,n). As

T — o0, the eigenvalues of (A.1) converge weakly to those of the equation
det(SpyS7t Sy — (Spp) det((B GBL) =0,

where we have used the notation Yyy = A¥ppA’ + Yee and Yyp = Yy = A¥pp. Thus,
the situation is entirely analogous to that in the proof of Lemma 13.1 of Johansen (1995)
and proceeding in the same way as there we can conclude that B% = B + 0,(T~'?) and,
furthermore, that 1217 = A+ o0,(1) and See = Ve + 0,(1).

The next step is to establish the stated orders of consistency of B%, 1217 and See. To this
end, we write the first order conditions for AW and B% by modifying the analogs of Johansen’s
(1995) equations (13.8) and (13.9) in an obvious way after which the proof proceeds in the
same way as in Johansen (1995, pp. 182-183) except that the relevant convergence results
are obtained from Assumption 1 and the first part of the present proof. The last result of the
lemma is not explicitly given by Johansen (1995) but it can be obtained in a straightforward

manner from the order results for 1217 and B%.

A.2 Proof of Lemma 2
Estimating the parameters of model (4.1) unrestrictedly by multivariate LS yields
V,=UX, +&, t=1,...,T. (A.2)
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Let igg be the corresponding estimator of the error covariance matrix Ygg as in (4.10). Then

the LR test statistic for Hy : tk(¥) = ro can be written as

LR(ro) =T Y  log(1+4;), (A.3)
Jj=ro+1
where 5\1 >0 > j\n are the ordered generalized eigenvalues obtained as solutions of
det(\i/MXX\i// — )\igg) =0 (A4)

with Mxx as defined in Section 4. Let 191 > > 1§n be the eigenvectors corresponding to

5\1,...,)\n so that
(U My x V' — X;See)d; = 0. (A.5)

These eigenvectors are normalized as

o T
ViYect); = : (A.6)
0, if i4j
The Gaussian ML estimator of B = [by,...,b,] is given by B = [by, ..., b,], where
b= AP (=1,...,n). (A7)

Note that r = ro under the null hypothesis. It follows from (A.5) — (A.7) that we have the
usual normalization B'Myx B = I, as in Section 4 (see Anderson (1958, pp. 300 - 301)).

Let 0 = [191,---,197«], D, = [@T+1,...,1§n] and B, = [?77«4-17---7?%] with » = rq if the null
hypothesis is assumed. Then multiplying (A.2) by [19 : 19*]’ gives

19/1/15 - Al/zélXt —|— lglgt (AS)

DY, = AV2B X, + 08, (A.9)

where A = diag[j\l, cee S\T], A, = diag[j\H_l, ce j\n] and, by (A.6), the residuals are uncor-
related (within the sample) with identity covariance matrix. The LR test statistic (A.3)
can clearly be obtained from ALY in (A.9) without using the part of the model given in
(A.8). This shows that we may obtain the LR test statistic from a model which results from
premultiplying (A.2) by a suitable matrix.

r_

To make this even more apparent, define [ : 4, = [J : 4,]7! and note that (A.8) and
(A.9) imply

}/t = ﬁAI/zélXt —|— ﬁ*Ai/QBiXt —|— gNt
— AB/Xt —|— A*BiXt —|— gt,
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where A = ﬁf\l/z and A, = ﬁ*f\i/z. Thus, since AL € span(lg*) it follows that the LR test
statistic can also be obtained as follows. First the LS regression (A.2) is premultiplied by
the estimator A’L and the regressor X; is replaced by BiXt. Then the significance of the
coefficient estimator of B! X, is tested in the resulting (reduced) model (of n — ro equations)

by using the conventional LR test of the multivariate linear model. Hence Lemma 2 is

established.

A.3 Proof of Theorem 1

First note that the test statistic LR(ro) is invariant to normalizations of 121, B, AL and BL
so that we can assume that these estimators have been made unique by appropriate normal-
izations [cf. Lemma 1, Johansen (1995, Chapter 13) and Paruolo (1997)]. This implies also
that the estimators AL and BL are consistent and their orders of consistency are Op(T_l/z)
and O,(T~"), respectively. Next consider the estimator R and use standard LS theory to

write
T

TR=T"Y NV/(TMyy)™".
=1
From Assumption 1 and the above mentioned consistency of B and B, it readily follows
that
T
T2 My = T72Y ViV + 0,(1) > B GBL. (A.10)
=1

Similar arguments and the definitions of N; and Z; give

TS NV =T (AL Z,— A A(B — BY X))V,
= TV AL ZV + 0,(1)
= A BT XV 4+ A TS 6V + 0,(1)
= A ABT?YL X, X!B, + AT 'S & XIB, +0,(1).

Thus, from Assumption 1(iii) and (v) we can conclude that

T
TN NV S A A BIGBY + ALS. (A.11)

t=1

Furthermore, (A.10) and (A.11) in conjunction with the continuous mapping theorem yield

TR (A A B.GB, + A" S)(B' . GB.)™". (A.12)
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Thus, since we obviously have A/J_i]ggzzh_ = A YesAL + 0,(1) the first form of the limiting
distribution stated in Theorem 1 follows from (A.11), (A.12) and the continuous mapping
theorem. The second form is obtained by using that B, (B} B.)™'B|+B(B'B)™'B’ = I, and
noting that BiGB, = B[BL(B,BL.)"'B| + B(B'B)"'B|GB', = B{B.(B|B.)'B GB,

by Assumption 1(iii).

A.4 Proof of Corollary 1

As mentioned in Section 5, the limiting distributions given in Corollary 1 may be derived
from Theorem 1 by writing the underlying model in the form (4.1) and then showing that
Assumption 1 is satisfied. Finally, it is checked that the specific asymptotic distributions
result from the general forms given in Theorem 1. Because the asymptotic distributions
of LR®(ro) and LRTY(ry) have been derived by Johansen (1995, Chapter 14) and Rahbek
(1994, Theorem 4.1) using a different approach we will not give detailed proofs of these
results here to save space. Instead we begin by establishing the asymptotic distribution of

LRiO(To).

A.4.1 Limiting Distribution of LR

This test is obtained by a RR regression of the form
Ay, =afja+e, t=1,....T, (A.13)

where the overbar signifies ordinary mean correction and the error term €; has the represen-
tation

e =T oy Bly—1 + & (A.14)

Thus, we have a special case of (4.1) and (4.2) where the counterparts of Y, X; and &
(Ay,, y:—1 and &) depend on the sample size. To obtain the limiting distribution of the
test statistic LR®(ro) from Theorem 1 it therefore suffices to check that Assumption 1 is
satisfied.

Note that, since y;_1 = z;_1 and Ay, = Az;, we may assume that po = 0. Let y_; and
Z_1 be the sample means of y;_1 and x4, respectively (t = 1,...,T). By Theorem 14.1 of
Johansen (1995) #'y_1 behaves asymptotically in the same way as under the null hypothesis
Ho(ro). Thus, we have 3'5_; = O,(T~"/?) and the validity of Assumption 1(i) follows from
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the second result of Johansen’s (1995) Lemma 14.3. By Theorem 14.1 of Johansen (1995)

and a standard application of the continuous mapping theorem we have
Lo
TV g4 5 / K(u)du
0

and, since we may assume that oy = ¢ + 1 (see below), it follows that here oy can be
replaced by 3,. Thus, we have 3| 5_; = O,(T"/?) and, by the argument given for Assumption
1(i), B'y_1 = O,(T~/?). These facts and the sixth result in Johansen’s (1995) Lemma 14.3
imply that Assumption 1(ii) holds. Moreover, the following result is obtained from the fourth
result of Johansen’s (1995) Lemma 14.3:

T 1
T2 Z By P N / K(s)K(s)'ds, (A.15)
t=1 0

where K(s) = K(s) — fl

0

holds with B’ GB, given by the right hand side of (A.15).

K(u)du. From this result it readily follows that Assumption 1(iii)

As to Assumptions 1(iv) and (v), note first that they are known to hold under the
null hypothesis Hy(ro). After this it is straightforward to conclude from Theorem 14.1 of
Johansen (1995) and well-known properties of stationary and integrated processes that the

same is true under Hr(rg). Next notice that

T T
T ey =T ewi oL =TT 1oy +0,(1).

t=1 t=1
The fifth result of Johansen’s (1995) Lemma 14.3, the central limit theorem applied to & and

the limiting distribution of 7='/2y_; obtained above now show that

T 1
Ty g B / AW (s)K (s, (A.16)

which means that Assumption 1(v) holds with S given by the right hand side of (A.16).
Finally, since the counterpart of & is &; the law of large numbers implies that Assumption
1(vi) holds with ¥¢e = .

Now, using these results the limiting distribution of the test statistic LR®(rg) under
the local alternatives (2.4) can be deduced from Theorem 1, where the latter form of the
limiting distribution is more convenient for our purposes. To be able to present the result
in a convenient form we first note that the matrix 8| 5, can be replaced by | a,. To see

this, write ooy = ey 4+ fLcp and recall that the matrix 4 oy is nonsingular by assumption.
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This implies that the matrix ¢y is nonsingular and, since the limiting distribution of the
test statistic LRiO(ro) 1s invariant to the transformation o} — ochz_l, we can assume that
¢z = I,,—,. Thus, we can write 3| oy = 3 S so that the counterpart of the term (F B GB, +

A’ S) in Theorem 1 becomes

/OK(S)dW(S)O/J_—I-/O K(S)K(S)’ds(ﬂiaL)_lﬁiﬁlo/lozL:/0 K(s)dK(s), (A.17)

where the equality follows from the definition of the process K(s) [cf. Johansen (1995, p.
208)]. From this and our earlier discussion we can now conclude that LR (ry) has the

limiting distribution given in Corollary 1.

A.4.2 Limiting Distribution of LR*

Now we turn to the proof of the limiting distribution of LR*(r¢). This test assumes that
w1 = 0 and it is based on the RR regression

Ay, = ozﬂ*/yt*_l + €], t=1,...,T, (A.18)
where y¥ = [y} = 1], B* = [# : 6]’ with 6 = —B'uo and e = & + T oy 37y}, with
By =By : 61] and 61 = — P po. For our purposes it will be convenient to reparameterize this

model and consider instead the infeasible RR regression model
Az, = afy'z; | +ef, t=1,...,T, (A.19)

where 27 = [¢) : TY?)" and 85 = [B' : &) with &g = T7V2(B'uo + &) = 0. Of course, the
error term €} can be written accordingly as e = ¢, + T~ oy B5yz7_,, where 87, = [8] : 610
and 6,9 = T_l/z(ﬂ{,uo + 61) = 0. Since Ay; = Az, it readily follows that the eigenvalues
which appear in the test statistic LR*(r¢) can also be obtained from the infeasible model
(A.19). This model can therefore be used in theoretical considerations instead of (A.18).
Note that the square root of the sample size is used in a7, éy and 610 to standardize the
moment matrices in such a way that the RR regression in (A.19) becomes conformable to
what is required in Assumption 1. Clearly (A.19) is a special case of (4.1) so that, to be able
to apply Theorem 1, we have to verify Assumption 1. To this end, note that the counterparts
of Xy, &, B and By are x_y,&4, 85 and f3},, respectively. Since here 35 and 7, should be

interpreted as “true” parameter values we have 6o = 0 and 619 = 0 so that we may choose
B, = diag[BL : 1] .
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Since 35 x_, = f'wi_1, Assumption 1(i) holds by the second result of Johansen’s (1995)
Lemma 14.3, while Assumption 1(ii) follows from the sixth result of that lemma and the
fact that the sample mean of the series T'/23'z,_y (t = 1,...,T) is of order O,(1) by well-
known properties of stationary processes. Next define & = 35 a7_, = [2/_,L : T'/?" and
conclude from Theorem 14.1 of Johansen (1995) that T‘l/zf[*Ts] N K™ (s), where [T's] denotes
the integer part of T's and K*(s) = [K(s)' : 1]’. Note that here we can replace 3, on the
r.h.s. by a in the same way as in Section A.4.1. A standard application of the continuous

mapping theorem now shows that
T 1
- ! % *! « d * *
13 et g [ KK (s ds (420
=1 0

by the fourth result of Johansen’s (1995) Lemma 14.3 and by the result T-'/2¢/ 7_, 2
fol K(u)du justified in Section A.4.1. The r.h.s. of (A.20) corresponds to B, GB, in As-
sumption 1(iii) and, thus, it follows that this part of Assumption 1 holds.

Assumption 1(iv) is again well-known under the null hypothesis and its validity under
local alternatives can be obtained from Theorem 14.1 of Johansen (1995), (A.20) and well-
known properties of stationary and integrated processes.

Furthermore,

T 1
o T Zet:pf_lﬂ& KR O/J_/ dW(s)K*(s), (A.21)

t=1 0

where the r.h.s. is the counterpart of o/, S. To see this result and, hence, Assumption 1(v),
just recall that l’f_lﬂ&_ = [2!_,B1 : TY?, where 3, can be replaced by ay, and apply the
fifth result of Johansen’s (1995) Lemma 14.3 augmented to include a constant. The validity
of Assumption 1(vi) with Ye¢ replaced by € is obvious because in place of & we have ;.

Using similar arguments as abvove, we can write ﬂglﬂ& = diag[#| a, : 1] and, since
now 37, = [B1 : 0] we have 3 37, = [#.4.L : 0. Thus, the counterpart of the term
(FB|GBL + A S) in Theorem 1 becomes

/OK*(S)dW(S)’ozL—I—/O K*(S)K(S)'ds(ﬁiaL)_lﬂiﬁlo/lozL:/0 K*(s)dK(s)', (A.22)

where the equality again follows from the definition of the process K(s). Hence, in the same
way as in the case of test statistic LR (ry) we can conclude that LR*(rq) converges to the

distribution given in the corollary.
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A.4.3 Limiting Distribution of LR*

Now consider the test statistic LR (rg) which is based on the RR regression model
Ny, =aftyb +ef,  t=1,....T, (A.23)

where yf = [gl_, : (t = 1)), Bt = [#': 7] with 7 = =’y and ef = & 4+ T 'y 51y, with
B = [8] : i) and 71 = —fuy. It is again convenient to reparameterize (A.23) and use

instead the infeasible RR regression model
Az, = aff ot | + ¢, t=1,...,T, (A.24)

where o, = [#/_, : T2t =1)], 8 = [# : ] with 7 = TY*(B'yus + 7) = 0 and
Az, = Ay,. The error term can correspondingly be rewritten as ef = & + T 'y Sz,
with 8% = [B) : 710)’ and 710 = TY*(#' iy + 1) = 0. In the same way as in the case of (A.18)
and (A.19) the eigenvalues in (A.23) and (A.24) are identical so that the latter model, which
is obviously a special case of (4.1), can be used to study theoretical properties of the test
statistic LR*(rg). Again we verify Assumption 1 and apply Theorem 1. For this purpose
we define 3 = [ : 0]" and 3, = [B] : 0]. Thus, we may again take 3f, = diag[3, :1].
Since BF ), = pla_y = a7, the validity of Assumption 1(i) and (ii) follow in the
same way as in the case of test the statistic LR*(r¢). Furthermore, in the same way as in

(A.15) and (A.20), we have

T Zﬂ Lot e lﬁmﬁ/ K*(s)K* (s ds—/ K*(s)[K(s) : s]ds, (A.25)

where K¥(s) = [K(s)' : s — 1], The r.h.s. is the counterpart of the matrix B/ GB, in
Assumption 1(iii). This result follows by defining & = 83 2F, = [2/_, 8L : T~Y2(1 —1)]".
Then, using Theorem 14.1 of Johansen (1995), it is straightforward to show that T‘l/zf[‘;u] 2
K™ (u) and (A.25) follows from a standard application of the continuous mapping theorem.
As before we can thus conclude that Assumption 1(iii) holds. Assumption 1(iv) can again be
justified by observing first that it is known to hold under the null hypothesis and then apply-
ing Johansen’s (1995) Theorem 14.1 and well-known properties of stationary and integrated

processes. Further notice that

T

T T
—1227 +’+_—1§: +’+_—1§: + !
gxy_ 18y, =T gixy 1By, =T g6y -

t=1

23



Using the fifth result of Johansen’s (1995) Lemma 14.3 and standard manipulations it can

now be seen that .
1
1Y et [ AWK ) (4.26)
t=1 0

and hence Assumption 1(v) holds. Finally Assumption 1(vi) is again obvious because in
place of & we have &,.
Since 3f, = B;, we can repeat the arguments below (A.21) and conclude that the

counterpart of the term (FB|GB, + A’ S) in Theorem 1 becomes

/OK"'dW(S)'ozL—I—/O K"’(S)K(S)’ds(ﬂiog)_lﬁiﬂlo/log:/0 K*(s)dK(s)'. (A.27)

Thus, in the same way as in the case of the test statistics LR"(ro) and LR*(rg) we can

conclude that LR*(rq) has the limiting distribution stated in Corollary 1.

A.4.4 Limiting Distribution of LR°"

Now consider the test statistic LRSL(TO) which assumes that gy = 0 a priori and is based on
the RR regression
A =af# ) +9 =1, T, (A.28)

where & =y, — fig, &”) = & + aff'(fio — po) + T an 81 (fio — po) + T o B3 and o

is a GLS estimator of the level parameter yo described in Saikkonen & Luukkonen (1997).
We will not give a detailed discussion of the estimator figp here but only concentrate on its
main properties. The estimator fip is obtained in two steps of which the first one consists of
computing the LS estimator of the parameter matrix Il in the EC model Ay, = v+ 1ly;_1+e;.
This means running an LS regression of Ay; on ¢;_;. The RR version of this LS regression
was considered in Section A.4.1 (see Equation (A.13)) and Assumption 1 was verified for this
case. Thus, it is straightforward to check that II, the above mentioned LS estimator of II,
satisfies (f[ — 1B = 0,(T~"/?) and (f[ — 103 = 0,(T™"). These orders of consistency are
exactly the same as under the null hypothesis so that following the arguments in the proof
of Lemma 3.1 of Saikkonen & Luukkonen (1997) it can be shown that the GLS estimator
fio has the properties 3'(jio — po) = O (T~"?) and B (jio — po) = Op(1). These results
for the estimator fig are sufficient to obtain the limiting distribution of the test statistic
LR (ry) in the present context. Since (A.28) is clearly a special case of (4.1) it suffices
to verify Assumption 1 and apply Theorem 1. The counterparts of X;,&;, B and B; are
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obviously :Jcl(5 )1, e+ af’(jto — o) + T e 3 (f1o — po), Sand By, respectively. Recall that
" = 2, = (jio — o) and that §(jio — p1o) = O,(T12) and B (jio — pto) = Oy(1). Using
these facts and results of the first and second sample moments of f'z;_y and ) 2, already
used in previous proofs it is straightforward to check that Assumption 1(i) and (ii) hold and
also establish

T 1
T3 505, L / K (5)K(s)ds (4.29)
t=1 0

which is the counterpart of the matrix B, GBy in Theorem 1. Thereby Assumption 1(iii) is
shown to hold.
The verification of Assumption 1(iv) and (v) proceeds along similar lines. Therefore we

consider the latter. We have to analyze

T T
r- thl}s \BL+af MO—MOTIZ 15L+04151M0—M0T22 e
t=1 t=1

=1

T T T
= T7' Y ey B — T3 eelfio — po) B+ aff (fio — po) T > @)y B1
t=1 t=1

t=1

T
— af'(fio — po)(fro — po)' Br + arBi(fro — po) T > i1 B

t=1

T~ o f1 (o — pro)(fro — pro) L
T T
= T7'Y s} B+ TV 2B (fio — po)T 723" @)1 B + 0,(1).
t=1

t=1

The first term in the last expression converges weakly by the fifth result of Johansen’s
(1995) Lemma 14.3 while the (standardized) sum in the second term converges weakly by
the argument given for the test statistic LR"(rq). From the proof of Lemma 3.1 of Saikkonen
& Luukkonen (1997) it can be seen that T'/23'(jip — po) converges weakly and, since it is
not difficult to check that all these weak convergencies hold jointly, we can conclude that
Assumption 1(v) holds. Finally, since the counterpart of & is now e, + of'(fio — po) +
T~ o B (flo—p0) and o (fio—po)+ T ey B (flo— o) = Op(T_l/z) the validity of Assumption
1(vi) is immediate.

As for the counterpart of the matrix S, we will here concentrate on the transformed

matrix A’ S which is obtained from

o T~ thxt B -5 o /01 AW (s)K(s)". (A.30)
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In the same way as in (A.17) the counterpart of the term (F B, GB + A’ S) in Theorem 1

becomes

/OK(S)dW(S)’ozL—I—/O K(S)K(S)’ds(ﬂiaL)_lﬁiﬁlo/lozL:/0 K(s)dK(s)". (A.31)

Combining these results, the limiting distribution of the test statistic LR (ry) is seen to be

the same as that of the test statistic LR"(rq). Hence, the corollary is established.
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Figure 1. Local power of LR tests for n —rg = 1.

Figure 2. Local power of LR tests for n —ro = 2.

Figure 3. Local power of LR tests for n — ro = 3.

Figure 4. Local power of LR tests for ¢ = 0 and varying f and n — ro.
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