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LARGE SAMPLE THEORY IN A
SEMIPARAMETRIC PARTIALLY LINEAR
ERRORS-IN-VARIABLES MODEL

Hua Liang, Wolfgang Hardle and Raymond J. Carroll *

April 4, 1997

Abstract

We consider the partially linear model relating a response Y to predictors (X, T') with mean
function X748 + ¢(T) when the X’s are measured with additive error. The semiparametric
likelihood estimate of Severini and Staniswalis (1994) leads to biased estimates of both the
parameter 3 and the function g(-) when measurement error is ignored. We derive a simple mod-
ification of their estimator which is a semiparametric version of the usual parametric correction
for attenuation. The resulting estimator of 3 is shown to be consistent and its asymptotic dis-
tribution theory is derived. Consistent standard error estimates using sandwich—type ideas are
also developed.
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1 INTRODUCTION AND BACKGROUND

Consider the semiparametric partially linear model based on a sample of size n,
Y= X5+ 9(T) + e, (1)

where X is a possibly vector-values covariate, 7T} is a scalar covariate, the function ¢(-) is unknown,
and the model errors ¢; are independent with conditional mean zero given the covariates. The
partially linear model was introduced by Engle, et al. (1986) to study the effect of weather on
electricity demand, and further studied by Heckman (1986), Chen (1988), Speckman (1988), Cuzick
(1992a,b), Hua & Hérdle (1997) and Severini & Staniswalis (1994).

We are interested in estimation of the unknown parameter 3 and unknown function g(-) in

model (1) when the covariates X are measured with error, and instead of observing X, we observe
Wi=Xi+ U, (2)

where the measurement errors U; are independent and identically distributed, independent of
(Y:, X;,T;), with mean zero and covariance matrix ¥,,. We will assume that 3, is known, taking
up the case that it is estimated in section 5. The measurement error literature has been surveyed
by Fuller (1987) and Carroll, et al. (1995).

If the X’s are observable, estimation of 5 at ordinary rates of convergence can be obtained by
a local-likelihood algorithm, as follows. For every fixed 3, let g(7', 3) be an estimator of ¢(7’). For
example, in the Severini and Staniswalis implementation, g(7, 5) maximizes a weighted likelihood
assuming that the model errors ¢; are homoscedastic and normally distributed, with the weights be-
ing kernel weights with symmetric kernel density function K (-) and bandwidth h. Having obtained
g(T,3), B is estimated by a least squares operation:

minimize Zn: {Y ~ x7Tp - §(1, ﬁ)}2 .
=1

In this particular case, the estimate for § can be determined explicitly by a projected least squares
algorithm. Let g, (-) and g, n(-) be the kernel regressions with bandwidth h of ¥ and X on T,

respectively. Then

ﬁx— Z{X gxh )}{Xz_gx,h(Tz)}T] Z{X gxh )}{Y g% ( )} (3)

One of the important features of the estimator (3) is that it does not require undersmoothing, so

that bandwidths of the usual order h ~ n'/5 lead to the result

1/2(ﬁ — ) = Normal(0, B~'C'B™1), (4)



where B is the covariance matrix of X — I(X|T") and C'is the covariance matrix of e{X — E/(X|T)}.

The least squares form of (3) can be used to show that if one ignores measurement error and

replaces X by W, the resulting estimate is inconsistent for 3. The form though suggests even

more. It is well-known that in linear regression, inconsistency caused by measurement error can

be overcome by applying the so—called “correction for attenuation”. In our context, this suggests

that we use the estimator

n

B = | AW: = Gun(T)} Wi = Gun(T)}F - nzuu] Z{W Guh (T} Y = Gy (T} . (5)
=1

The estimator (5) can be derived in much the same way as the Severini-Staniswalis estimator. For

every [3, let g(71', ) maximize the weighted likelihood ignoring measurement error, and then form

[ via a negatively penalized operation:
o - T ~ 2 T
minimize Z {YZ -Wip— g(Ti,ﬁ)} — ("X . (6)
=1

The negative sign in the second term in (6) looks odd until one remembers that the effect of
measurement error is attenuation, i.e., to underestimate 3 in absolute value when it is scalar, and
thus one must correct for attenuation by making 3 larger, not by shrinking it further towards zero.

In this paper, we analyze the estimate (5), showing that it is consistent, asymptotically normally
distributed with a variance different from (4). Just as in the Severini-Staniswalis algorithm, in
kernel weighting ordinary bandwidths of order A ~ n=/5 may be used.

The outline of the paper is as follows. In Section 2, we define the weighting scheme to be
used and hence the estimators of 3 and g(-). Section 3 is the statement of the main results for /3,
while the results for ¢g(-) are stated in Section 4. Section 5 states the corresponding results for the
measurement error variance >, estimated. Section 6 gives a numerical illustration. Final remarks

are given in Section 7. All proofs are delayed until the appendix.

2 DEFINITION OF THE ESTIMATORS

For technical convenience we will assume that the 7; are confined to the interval [0, 1]. Throughout,
we shall employ C'(0 < C' < o0) to denote some constant not depending on n but may assume
different values at each appearance. In our proofs and statement of results, we will let the X’s be
unknown fixed constants, a situation which is commonly called the functional relation, see Kendall
& Stuart (1992) and Anderson (1984). The results apply immediately to the case that the X'’s are

independent random variables, see Section 7.



Let wyi(t) = wyi(t; 71, ..., T,) be probability weight functions depending only on the design

points 14, ...,7T,. For example

1 /s t—
wm(t):h—/ K(hs)ds 1<i<n (7)
n v Si—1

where sg =0, s, =1 and s; = (1/2)(T; 4+ Ti41), 1 <i < n— 1. Here h,, is a sequence of bandwidth
parameters which tends to zero as n — oo and K(-) is a kernel function, which is supported to

have compact support and to satisfy
supp(K) = [-1,1],sup|K(z)| < C < oo,/K(u)du =1and K(u) = K(—u).

In the paper, for any a sequence of variables or functions (S1,...,.5,), we always denote ST =
(S1y---35), S; = S — > i1 wai(T3) S5, ST = (51, .. ,gn) For example, W = (Wl, .. .,Wn),
W, =W, — S wn (TOWis §i = 9(T3) = Yiey @k (T)9(Th), G = (G1, - -, G0) 7

The fact that g(t) = E(Y; — XIB|T =t) = E(Y; — WIB|T = t) suggests

) = X s ()0~ WI) (%)

as the estimator of ¢(¢).

In some cases, it may be reasonable to assume that the model errors ¢; are homoscedastic with
common variance 2. In this event, since E{Y; = X! 3 —g(T:)}? = o and E{Y; - W13 —g(T))}? =
E{Y; — XI'3 — g(T)}*+ BTS,.3, we define

on=n" Y (Y = WB.)? = Bl (9)
=1

as the estimator of 2.

3 MAIN RESULTS

We make the following assumptions.

Assumption 1.1. There exist functions h;(:) defined on [0, 1] such that the jth component of
X;, namely X;;, satisfies X;; = hj(T3) + Vi;, 1 < i < n, 1 < j < p, where V}; is a sequence of
real numbers which satisfy lim, .. n 3", V; = 0 and lim, ., n~ ! 3", VZ’VZ»T = B is a positive

definite matrix, where V; = (Vjq, ..., Vip)T.

Assumption 1.2. g¢(-) and h;(-) are Lipschitz continuous of order 1.



Assumption 1.3. Weight functions w,;(-) satisfy:

n

(i) lrgg;;wm(ﬂ) =0(1),
(12) (A% wn (T5) = O(br),
i) Y ey ()IIT =T > ) = Ofes),
where b, = n_4/5, Cp = n~1/5 log n.

Our two main results concern the limit distributions of the estimate of 3 and o2.

THEOREM 3.1. Suppose Assumptions 1.1-1.3 hold and E(c* + ||U||) < co. Then f, is an

asymptotically normal estimator, i.e.
n(3, — 8) = N(0, B~'TB™Y),
where
D= B (= UTB)*X - E(X|IT)HX - BX TN + B{UUT = $,,)88" (UUT = S,,)} + BUUTE).

Note that I' = E(e — UT3)2B 4+ E{(UUT — 2,,)38T(UUT — ¥,,)} + X0? if € is homoscedastic
and independent of (X, 7).
THEOREM 3.2. Suppose the condition of Theorem 3.1 hold, and that the €’s are homoscedastic

with variance o2, and independent of (X, T). Then
nt2(6% — %) = N(0,0?),

where 02 = E{(e — UT3)? — (BT3B + 0%)}2.

Remarks

e Asdescribed in the introduction, an important aspect of the results of Severini and Staniswalis
is that their methods lead to asymptotically normal parameter estimates in kernel regression
even with bandwidths of the usual order A, ~ n~1/%. The same holds for our estimators in
general. For example, suppose that the design points T; satisfy that there exist constants

My, M5 such that
Mi/n < Héin |T; — Ti—q| < m<aX|TZ' —Ti—q| < My /n.

Then Assumptions 1.3(i)-(iii) are satisfied by simple verification.



e It is relatively easy to estimate the covariance matrix of Bn Let dim(X) be the number of

components of X. A consistent estimate of B is just
{n —dim(X)}~ Z{W Gun (T Wi = Gu (T} = -

In the general case, one can use (30) to construct a consistent sandwich-type estimate of I',

namely
=1

In the homoscedastic case, namely that ¢ is independent of (X, T,U) with variance o2,

with U being normally distributed, a different formula can be used. Let C(8) = E{(UUT —
Yuu) 38T (UUT — $,.)}. Then a consistent estimate of T' is

and

(62 + BL S0 Bn) By + 520 + C(Ba).

o In the classical functional model, instead of obtaining an estimate of >, through replication,
it is instead assumed that the ratio of X, to 02 is known. Without loss of generality, we set
this ratio equal to the identity matrix. The resulting analogue of the parametric estimators

to the partially linear model is to solve the following minimization problem:

Z|Y W ﬁ|2—min!
V1I+[B[2
where here and in the sequel || - || denotes the Euclidean norm. One can use the techniques of

this paper to show that this estimator is consistent and asymptotically normally distributed.
The asymptotic variance of the estimate of § in this case when ¢ is independent of (X,7') can

be shown to equal
E{(c = UTB)*11IT}

B—l
L+ 1512

B (14 (18]1*)*0*B +

where 'y = (14 ||B||)U + (e — UT3)B.
4 ASYMPTOTIC RESULTS FOR THE NONPARAMETRIC PART

THEOREM 4.1. Suppose Assumptions 1.1-1.3 hold and w,;(¢) are Lipschitz continuous of order

Lforall i =1,...,n. If E(e* 4 ||U||*) < co. Then for fixed T}, the asymptotic bias and asymptotic
variance of g, (t) are respectively, 3% w,;: ()g(T;) — g(t) and 31, w2 () (BT S u B4 02). These are
all of order O(n~=%/%) for kernel estimators.

If the (X, T;) are random, then the bias and variance formulae are the usual ones for nonpara-

metric kernel regression.



5 ESTIMATED ERROR VARIANCE

Although in some cases the measurement error covariance matrix X, has been established by
independent experiments, in others it is unknown and must be estimated. The usual method of
doing so is by partial replication, so that we observe W;; = X; +U;;, j=1,..m,.

We consider here only the usual case that m; < 2, and assume that a fraction ¢ of the data has
such replicates. Let W; be the sample mean of the replicates. Then a consistent, unbiased method

of moments estimate for X, is
S > izt E;n:ll(wu - Wz)(WZJ - Wz’)T
izt (mi — 1)

The estimator changes only slightly to accommodate the replicates, becoming
n -1
~ L L T R
P = [Z {Wi - gw,h(Ti)} {Wi - gw,h(Ti)} —n(l - 5/2)Ew]
=1

X Zn: {Wz - %,h(Ti)} Yi—g,u(T0)}, (10)

where gy, 1 (+) is the kernel regression of the W;’s on T;.
Using the techniques in the appendix, one can show that the limit distribution of (10) is
Normal(0, B~'I'y B™!), with
o= (1= §F[(e— UTBHX - BXT)HX - B(X|T))7]
T

HOE [(e = T' B)H{X = B(X|T)HX — E(X|T)}7]

+(1 = 0B {UUT = (1= §/2) 8} BFT{UUT — (1= §/2)S0} + UUT

OB [{TT — (1= 8/2)0u 387 {TT — (1-6/2)8,} +TT ). (11)
In (11), U refers to the mean of two U’s. In the case that ¢ is independent of (X,T), the sum of

the first two terms simplifies to {o? + 87 (1 — §/2)%,.5) B.

Standard error estimates can also be derived. A consistent estimate of B is
~ o —_ T ~
By = {n—dim(X)}7 Y AW = G (T) J{W: = Gun(T) } = (1= 5/2) S
=1

Estimates of I'y are also easily developed. In the homoscedastic case with normal errors, the sum
first two terms is estimated by (62 + (1 — 6/2)3L S0 Bn)Bs. The sum of the last two terms is a
deterministic function of (3,02, 3,,), and these estimates are simply substituted into the formula.

A general sandwich—type estimator is developed as follows. Define x = n=1>7 mi_l7 and

define

R =Wi(Yi - ﬁ?ﬁn) + Sl /mi + (5/8) (m — 1) {(1/2)(Wz' — Wia) (Wi = Wi)" = S,

6
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Figure 1: Estimate of the function g(T') in the Framingham data ignoring measurement error.

Then a consistent estimate of I'y is the sample covariance matrix of the R;’s.

6 NUMERICAL EXAMPLE

To illustrate the method, we consider data from the Framingham Heart Study. We considered
n = 1615 males with Y being their average blood pressure in a fix 2—year period, T" being their age
and W being the logarithm of the observed cholesterol level, for which there are two replicates.
We did two analyses. In the first, we used both cholesterol measurements, so that in the
notation of Section 5, § = 1. In this analysis, there is not a great deal of measurement error. Thus,
in our second analysis, which is given for illustrative purposes, we used only the first cholesterol
measurement, but fixed the measurement error variance at the value obtained in the first analysis,
in which case 6 = 0. For nonparametric fitting, we chose the bandwidth using crossvalidation to
predict the response. In precise, we compute the square error using a geometric sequence of 191
bandwidths ranging in [1,20]. The optimal bandwidth is selected to minimize the square error
among these 191 candidates. An analysis ignoring measurement error found some curvature in 7T,

see Figure 1 for the estimate of ¢(7').



As below mention, we will consider four case, using XploRe4 (See Hérdle, et al. (1995)) to
calculate each case. Our results are as follows. First consider the case that the measurement
error was estimated, and both cholesterol values were used to estimate ¥,,. The estimator of 3
ignoring measurement error was 9.438, with estimated standard error 0.187. When we accounted for
measurement error, the estimate increased slightly to B = 12.540, and the standard error increased
to 0.195.

In the second analysis, we fixed the measurement error variance and used only the first choles-
terol value. The estimator of 3 ignoring measurement error was 10.744, with estimated standard er-

ror 0.492. When we accounted for measurement error, the estimate increased slightly to 5 = 13.690,

and the standard error increased to 0.495.

7 DISCUSSION

Our results have been phrased as if the X’s were fixed constants. If they are random variables, the
proofs simplify and the same results are obtained, with now V; = X; — F(X;|T}).

The nonparametric regression estimator (8) is based on locally weighted averages. In the random
X context, the same results apply if (8) is replaced by a locally linear kernel regression estimator.

If we ignore measurement error, the estimator of 3 is given by (3) but with the unobserved
X replaced by the observed W. This differs from the correction for attenuation estimator (5) by
a simple factor which is the inverse of the reliability matrix (Gleser, 1992). In other words, the
estimator which ignores measurement error is multiplied by the inverse of the reliability matrix
to produce a consistent estimate of F. This same algorithm is widely employed in parametric
measurement error problems for generalized linear models, where it is often known as an example of
regression calibration (see Carroll, et al., 1995, for discussion and references). The use of regression
calibration in our semiparametric context thus appears to hold promise when (1) is replaced by a
semiparametric generalized linear model.

We have treated the case that the parametric part X of the model has measurement error and
the nonparametric part 7" is measured exactly. An interesting problem is to interchange the roles of
X and T, so that the parametric part is measured exactly and the nonparametric part is measured
with error, i.e., E(Y|X,T) = 07+ g(X). Fan and Truong (1993) have shown in this case that with
normally distributed measurement error, the nonparametric function ¢(-) can be estimated only at

—-2/5

logarithmic rates, and not with rate n . We conjecture even so that 6 is estimable at parametric

rates, but this remains an open problem.
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8 APPENDIX

In this appendix, we prove several lemmas required. Lemma A.1 provides bounds for h;(1;) —

b1 wnk (L) h; (Ty) and g(T3) — >p—q wnk (1) g(1%). The proof is immediate.



Lemma A.1. Suppose that Assumptions 1.1 and 1.3 (iii) hold. Then

lrgzagjz |G Z wnk Tk)| - (Cn) fOI’ J= 07 Ry 2

where Go(-) = ¢(+) and Gi(-) = () for I =1,...,p
Lemma A.2. If Assumptions 1.1-1.3 hold. Then

lim n 'XYX =B

n—oo

Proof. Denote h,s(T;) = hs(T;) — S ¢ @uk (T;) Xgs. 1t follows from X ;s = hs(T;) + Vjs that the
(s, m) element of XTX (s,m=1,...,p)is

Z;)?jsffjm = 2 ViV Ll (T)Vim o+ 3 o (T3) Vi 3 o (7)o (T)
J= J= 7= i= j=1
n 3
Z ‘/]s‘/]m —I_ Z Rgiqs)m
J=1 g=1

The strong law of large number implies that lim, ., 1/n 3", V;V.l = B and Lemma A.l means
R%?;)m = o(n), which together with the Cauchy-Schwarz inequality show that R%ls)m = o(n) and
R%QS% = o(n). This completes the proof of the lemma.

Lemma A.3. (Bennett’s inequality) Let I'y,..., ', be independent random variables with zero

means and bounded ranges: |I';| < M. Then for each n > 0,

P{|Zn:Fi| >} < QGXP{—UQ/[Q{ZW +M77H}

=1
Denote ¢/ = ¢;1(|e;] < n'/*) and € =€ —¢€,j=1,...,n. We next establish several results for
nonparametric regression.

Lemma A.4. Assume that Assumption 1.3 holds and EFe = 0 and Ee! < oo, Then

n

_ —1/47 —1/2
lrg%llgwnk Ty)er| = Op(n™log™" 2 n).

Proof. Let M = Cb,n'/*. Lemma A.3 implies

—1/47,,-1/2
P (lrg%)%|2wn](Tz)(e; — E€)| > Cin 1og™t/ n)

<ZP{|Zwm (€: = Eei)| > Cyn~ Y og™ l/zn}

Cyn~Y2%log™tn
Y Wi (T Ee + 2b, log™ 12y
< 2nexp{—C?Clogn} — 0  for some large C; > 0,

< Qnexp{—

10



which implies that

On the other hand, we know that

n

" -1 4
2, 2o (IBG] < max mas bone (1] 2, w2 |
< Cn_2/3E|e|4 =0 %) = 0p(n~"*log="?n); (13)
dSE|| <t Y Bl = Be (14)
J=1 J=1

Moreover, the Hartman-Winter theorem entails that

" 1/2
ST - Bl = {ZE|6"| log log (ZE|6"| )} =Op(n'/*loglog'?n).  (15)

i=1

It follows from (14) and (15) that

Z |6;’| = OP(n1/4 log logl/2 n), (16)
7=1
and
128, | Zw”] (Ti)ef] < 12%‘“ |wni (T5)] Z €] = n="%loglog'/? n) = Op(n~"*log™"/% n)
<isn 7

Combining the results of (12), (13) with (15), we obtain

n

_ —1/41.4—1/2
ax | klenk Tj)ex| = Op(n™"/*log™"/ % n).
This completes the proof of Lemma A .4.
Lemma A.5. Assume that Assumptions 1.1-1.3 hold. If Ec¢ = 0 and Ee¢* < oo. Then I,, = op(n'/?),
where I, =3, Z#Z» Wy (TZ)(G; — Ee;)(e; — Fé).
Proof. Let j, = {nz/?’ log? n} , ( [a] denotes the integer portion of a.) A; = {{%ﬂ} +1,..
B—:} }, AS={1,2,...,n} — Aj and A;; = A; — {7}. Observe that

*

SO S ekl @ (€ - B - B+ 30 S w6 — B (e — Be)

J=li€A, keAj; J=14€A; kEAS

ZUn]‘I'ZV]d—ef Iln+12n7 (17)

11



Where

Z pm] E€ def Z un2]7 nj — Z Qnu E€ def Z Unijs

1EA; 1EA; 1EA; 1EA;

Prij = Z wnk(Ti)( Eék) ni; = Z Wnk (6 — EG)

keAy, 1€AT
Notice that {v,;;,t € A;} are conditionally independent random variables given F,,; = {¢, k € A%}
given I (vy;;|En;) = 0 E(v m]|En]) < o? maxi<i<y |qm]| Lef 52 qm fori € A;, and maxy<i<y |vnij| <
2711/4(]71]‘7 where ¢,; = maxi<i<p |¢nij]-

On the other hand, by the same reason as (12),

. _ -1/4 -1/2
=, bl =25, | 2 en ({6 = B = Oplr o™ 0

Denote the numbers of the elements in A; by #A;. By applying Lemma A.3, we have, for j =
17 ctt jn?

Cn'/? Cn(log™ n)j 2
P|Vinj| > ———=—|E,; ¢ <C — " <Cn?
{' > o ]}_ eXP{ CREA; + g, [ =

It follows by the bounded convergence theorem, the above and #A; < g that

Cnl/? Cj2
PV, > <C - n
{' 1> Jogn } = exp{ o2q2ngn + jiinifq,

<Cn72, forj=1,...5,

This implies that
I, = op(n'/?). (18)

Now we consider [y,. Note that {¢z,1 < k < n} are i.i.d. random variables, and the definition of

U,;, we know that, for any ¢ > 0,

. 2 . .
In Jn In
(nT'E (Z Um) =( 07! (Z EUZ+ Y. EUmlEUm)
7=1

J=1 J1F52

P{|I1,| > ¢n'/?}

IN

< /o) -0 [ B - B+ {E( — BV
< (*ntog™?n. (19)

Hence I, = op(n'/?). Combining (17), (18) with (19), we complete the proof of Lemma A.5.
Lemma A.6. Assume Assumption 1.3 holds. If E(|e[*+ ||U]|*) < co. Then

_liei{i“m(ﬂ)éj} = op(n™/?),

=1

nt i Uss {iwm (Ti)Ujm} = op(n~?), (20)
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hold for 1 < s,m < p.
Proof. We only prove the first part. The second item is proved similarly. We omit the details.
Using the Hartman-Winter law of the iterated logarithm on Y"7_, (€2 — E?), we know that

Zwm(Tk)ez =o(n') for0<l<1/6 as. (21)
Observe that

|Zzwnz Tk 626k| < |Zzwnk ezek I |‘|’In d—ef Jln‘|‘I

1=1 k#1 1=1 k#:¢

It follows from Lemma A.4, (12), (14) and (16) that

Jin < max |anj(Ti)€i|Z<|€;’/|‘|’E|€i|">
=1

1<5<n P
_ 1/2
+ max | ;wm D= IS (614 Bl = ofot). (22)

Therefore, it follows from Lemma A.4 and 21)-(22) that

n_l Zn:ei {Zn:wnj(Ti)ej} =n -1 Zwm Tk €k ‘|‘ n_l ZZwm Tk €z€k = 0( _1/2)_
=1 7=1

1=1 k#q

This completes the proof of (20).
Lemma A.7. Assume that Assumptions 1.1-1.3 holds and F(e* + ||U]|*) < co. Then

lim n '"WIW = B+ %, (23)
lim n'WTY = Bj (24)
lim n 'YTY = 3TBg + o? (25)

hold in probability.
Proof. Since W, = X; + U; and WZ = )~(2 + (72 We get

(WTW)ST)’L = (XTX)sm + (ﬁTX)sm + (XTﬁ)sm + (ﬁTﬁ)sm (26)
It follows from law of the strong large number and Lemma A.2 that

nt ZXJSU]m -0  as. (27)

Observe that

7=1 7=1 7=1 \k=1
_Z ank(T])Ukm}st—l_Z{ank st}{zwnk Ukm}}
7=1 \k=1 7=1 \k=1



In a fashion similar to Lemma A.4, sup;, > g—; wnk (1) Ugm = op(1), which together with (27)
and Assumption 1.3 (ii) entail that the above each term tends to zero. The same reason means
that n=1(ULX),,, also tends to zero.

Now we prove
“H(UT0),,, — o? (28)

sm

here o2 is the (s, m)—th element of 3,,. Now

n~ Y (UTU),, = [zn: UjsUjp, Z {Z Wik (T Uks} Ujm

g (S (g o)

Obviously n~™' 37, U;sUjm — o?,,. Thus from Lemmas A.4, and A.6, (28) holds. Recall (26),
(28) and the arguments for 1/n(U7X),,, — 0 and 1/n(X7U),, — 0, we complete the proof of
(23).

Next we prove (24). Note that W'Y = WT(X3 + G + ¢). This follows because

n n n 1/2 . 1/2
3 Xl < (z XﬁZﬁ?) <t (z Xzs) e
=1 Jj=1 Jj=1 i=1
and

(WTG)S = Z Jng‘|’ZUJng

7=1 =
= Z{ ank st}g]+ZU]sg]
J=1 k=1 7=1

Obviously 1/n 3774 ﬁjsﬁj tends to zero. Therefore 1/n(WTé)S tends to zero.
The proof of 1/n(WT€), tends to zero is similar that of 1/n(WTU), — 0. Combining the above
arguments and (23), we complete the proof (24). The proof of (25) can be completed by the above

similar arguments. The details are omitted.

Proof of Theorem 3.1. Denote A, = (WTVV —nYy,)/n. By Lemma A.7 and direct calculation,
W23, —B8) = nVPATYWIY - WIW S + 05, 0)
= 07 PANUXTG + XTe+ UTG + UTe - XTUS — UTUB + nZuuf3).

By Lemmas A.2, A.4-A.6, we conclude that

W2, = 8) = nTPATYY (Vie = VIUT B+ User = UiUT B+ SuuB) + 0p(1)  (29)
=1
L1237 ¢, + op(1). (30)
=1
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Although the {V;} are nonrandom variables, because
Jim a”' Y Vi=0; lim 27ty ViV =B (31)
=1 =1
and F(e*+||U|*) < oo, it follows that the sequence of k—th elements {Cz(j)} of {Cin} (k=1,...,p)
2
satisfy, for any given ¢ > 0, n=t 37, E{Cz(j) I(|CZ(£)| > (n'/?)} = 0 as n — oo. This means that
Lindeberg’s condition for the central limit theorem holds. Moreover, note that
Cov(C) = E{Vilei = U3V} + E{UUT = 30867 (UUTF = S0) } + EUUE )
HViEUT 88T UUT) + E(UUT 55UV

which and (31) entail that

lim n™! znjcov(cm) = E(e—UTB)’B+E{U-UT —=2,,)88 (U -UT —2,.)} + E(UUTE).

n—00 .
=1

Theorem 3.1 now follows.

Proof of Theorem 3.2. Denote

Y'Yy Y'w

o _ (BB +o*  pTB 7.

A = 07 Fry wiw A= Bj B+2w]’
g__wqpﬂ4wﬂ@+um @+U@WU+VW
n U+We+Up) WU+VTWU+V)]"

According to the definition of 52, direct calculation using Lemma A.6 yields that

1
nl/2

w26 — 0%y = 0230 Sim) +

J=1

(e~ UB)T (e~ UB) — n' /2 (BT84 02) + op(1),
where
Stn = (1,=BD)(A, - A (1, =80T
SQn = (17_37{)(‘1n_A)(07ﬁT_37{)T
SBn = (07ﬁT_B7{)A(O7ﬁT_B7{)T
Sin = (0,87 = BIY(A, — A)(1, -pT)T
Ssn = —(8—Ba)T (B~ B).

It follows from Theorem 2.1 and Lemma A.7, n'/? Z?:l S;n — 01in probability, and nl/z(@% —0?) =
nllT > it {(62 ~UI3)? - (BTS B+ 02)} + op(1). Theorem 3.2 now follows immediately.
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Proof of Theorem 4.1. Since Bn is a consistent estimator of 3, its asymptotic bias and variance

equal the relative ones of 3771 w,; (£)(Y; — I/VjTﬁ)7 which is denoted by g7 (¢). By simple calculation,
Eg,(t) —g(t) = D wailt)g(T) —g(t),
=1
g = Egi(t) = Y wn®(TSwp + o).
=1

Both of them are order O(n=1/5) by Lemma A.1 and Assumption 1.3 (iii). Theorem 4.1 is imme-
diately proved.
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