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LARGE SAMPLE THEORY IN A

SEMIPARAMETRIC PARTIALLY LINEAR

ERRORS�IN�VARIABLES MODEL

Hua Liang� Wolfgang H�ardle and Raymond J� Carroll �

April �� ����

Abstract

We consider the partially linear model relating a response Y to predictors �X�T � with mean
function XT � � g�T � when the X�s are measured with additive error� The semiparametric
likelihood estimate of Severini and Staniswalis ����	� leads to biased estimates of both the
parameter � and the function g��� when measurement error is ignored� We derive a simple mod

i�cation of their estimator which is a semiparametric version of the usual parametric correction
for attenuation� The resulting estimator of � is shown to be consistent and its asymptotic dis

tribution theory is derived� Consistent standard error estimates using sandwich�type ideas are
also developed�
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� INTRODUCTION AND BACKGROUND

Consider the semiparametric partially linear model based on a sample of size n	

Yi 
 XT
i � � g�Ti� � �i� �
�

where Xi is a possibly vector�values covariate	 Ti is a scalar covariate	 the function g��� is unknown	
and the model errors �i are independent with conditional mean zero given the covariates� The

partially linear model was introduced by Engle	 et al� �
���� to study the e�ect of weather on

electricity demand	 and further studied by Heckman �
����	 Chen �
����	 Speckman �
����	 Cuzick

�
���a	b�	 Hua � H�ardle �
���� and Severini � Staniswalis �
�����

We are interested in estimation of the unknown parameter � and unknown function g��� in
model �
� when the covariates X are measured with error	 and instead of observing X 	 we observe

Wi 
 Xi � Ui� ���

where the measurement errors Ui are independent and identically distributed	 independent of

�Yi� Xi� Ti�	 with mean zero and covariance matrix �uu� We will assume that �uu is known	 taking

up the case that it is estimated in section �� The measurement error literature has been surveyed

by Fuller �
���� and Carroll	 et al� �
�����

If the X �s are observable	 estimation of � at ordinary rates of convergence can be obtained by

a local�likelihood algorithm	 as follows� For every �xed �	 let bg�T� �� be an estimator of g�T �� For
example	 in the Severini and Staniswalis implementation	 bg�T� �� maximizes a weighted likelihood
assuming that the model errors �i are homoscedastic and normally distributed	 with the weights be�

ing kernel weights with symmetric kernel density function K��� and bandwidth h� Having obtained
bg�T� ��	 � is estimated by a least squares operation�

minimize
nX
i��

n
Yi �XT

i � � bg�Ti� ��o� �
In this particular case	 the estimate for � can be determined explicitly by a projected least squares

algorithm� Let bgy�h��� and bgx�h��� be the kernel regressions with bandwidth h of Y and X on T 	

respectively� Then

b�x 

�

nX
i��

fXi � bgx�h�Ti�g fXi � bgx�h�Ti�gT
��� nX

i��

fXi � bgx�h�Ti�g fYi � bgy�h�Ti�g � ���

One of the important features of the estimator ��� is that it does not require undersmoothing	 so

that bandwidths of the usual order h � n��� lead to the result

n����b�n � ��� Normal��� B��CB���� ���






where B is the covariance matrix of X�E�X jT � and C is the covariance matrix of �fX�E�X jT �g�
The least squares form of ��� can be used to show that if one ignores measurement error and

replaces X by W 	 the resulting estimate is inconsistent for �� The form though suggests even

more� It is well�known that in linear regression	 inconsistency caused by measurement error can

be overcome by applying the so�called �correction for attenuation�� In our context	 this suggests

that we use the estimator

b�n 

�

nX
i��

fWi � bgw�h�Ti�g fWi � bgw�h�Ti�gT � n�uu

��� nX
i��

fWi � bgw�h�Ti�g fYi � bgy�h�Ti�g � ���

The estimator ��� can be derived in much the same way as the Severini�Staniswalis estimator� For

every �	 let bg�T� �� maximize the weighted likelihood ignoring measurement error	 and then form

� via a negatively penalized operation�

minimize
nX
i��

n
Yi �WT

i � � bg�Ti� ��o� � �T�uu�� ���

The negative sign in the second term in ��� looks odd until one remembers that the e�ect of

measurement error is attenuation	 i�e�	 to underestimate � in absolute value when it is scalar	 and

thus one must correct for attenuation by making � larger	 not by shrinking it further towards zero�

In this paper	 we analyze the estimate ���	 showing that it is consistent	 asymptotically normally

distributed with a variance di�erent from ���� Just as in the Severini�Staniswalis algorithm	 in

kernel weighting ordinary bandwidths of order h � n���� may be used�

The outline of the paper is as follows� In Section �	 we de�ne the weighting scheme to be

used and hence the estimators of � and g���� Section � is the statement of the main results for �	
while the results for g��� are stated in Section �� Section � states the corresponding results for the
measurement error variance �uu estimated� Section � gives a numerical illustration� Final remarks

are given in Section �� All proofs are delayed until the appendix�

� DEFINITION OF THE ESTIMATORS

For technical convenience we will assume that the Ti are con�ned to the interval ��� 
�� Throughout	

we shall employ C�� � C � �� to denote some constant not depending on n but may assume

di�erent values at each appearance� In our proofs and statement of results	 we will let the X �s be

unknown �xed constants	 a situation which is commonly called the functional relation	 see Kendall

� Stuart �
���� and Anderson �
����� The results apply immediately to the case that the X �s are

independent random variables	 see Section ��

�



Let �ni�t� 
 �ni�t�T�� � � � � Tn� be probability weight functions depending only on the design

points T�� � � � � Tn� For example

�ni�t� 




hn

Z si

si��

K

�
t� s

hn

�
ds 
 � i � n ���

where s� 
 �� sn 
 
 and si 
 �
����Ti� Ti���� 
 � i � n� 
� Here hn is a sequence of bandwidth

parameters which tends to zero as n � � and K��� is a kernel function	 which is supported to

have compact support and to satisfy

supp�K� 
 ��
� 
�� sup jK�x�j � C ���

Z
K�u�du 
 
 and K�u� 
 K��u��

In the paper	 for any a sequence of variables or functions �S�� � � � � Sn�	 we always denote S
T 


�S�� � � � � Sn�� eSi 
 Si � Pn
j�� �nj�Ti�Sj �

eST 
 � eS�� � � � � eSn�� For example	 fWT 
 �fW�� � � � �fWn��fWi 
 Wi �Pn
j�� �nj�Ti�Wj � egi 
 g�Ti��Pn

k�� �nk�Ti�g�Tk��
eG 
 �eg�� � � � � egn�T �

The fact that g�t� 
 E�Yi �XT
i �jT 
 t� 
 E�Yi �WT

i �jT 
 t� suggests

bgn�t� 
 nX
j��

�nj�t��Yj �WT
j
b�n� ���

as the estimator of g�t��

In some cases	 it may be reasonable to assume that the model errors �i are homoscedastic with

common variance 	�� In this event	 since EfYi�XT
i ��g�Ti�g� 
 	� and EfYi�WT

i ��g�Ti�g� 

EfYi �XT

i � � g�Ti�g� � �T�uu�	 we de�ne

b	�n 
 n��
nX
i��

� eYi � fWT
i
b�n�� � b�Tn�uu

b�n� ���

as the estimator of 	��

� MAIN RESULTS

We make the following assumptions�

Assumption ���� There exist functions hj��� de�ned on ��� 
� such that the jth component of

Xi	 namely Xij 	 satis�es Xij 
 hj�Ti� � Vij	 
 � i � n	 
 � j � p	 where Vij is a sequence of

real numbers which satisfy limn�� n��
Pn

i�� Vi 
 � and limn�� n��
Pn

i�� ViV
T
i 
 B is a positive

de�nite matrix	 where Vi 
 �Vi�� ���� Vip�
T �

Assumption ���� g��� and hj��� are Lipschitz continuous of order 
�

�



Assumption ���� Weight functions �ni��� satisfy�

�i� max
��i�n

nX
j��

�ni�Tj� 
 O�
��

�ii� max
��i�j�n

�ni�Tj� 
 O�bn��

�iii� max
��i�n

nX
j��

�nj�Ti�I�jTj � Tij 
 cn� 
 O�cn��

where bn 
 n����� cn 
 n���� logn�

Our two main results concern the limit distributions of the estimate of � and 	��

THEOREM ���� Suppose Assumptions 
�
�
�� hold and E��� � kUk�� � �� Then b�n is an

asymptotically normal estimator	 i�e�

n����b�n � ��� N��� B�� B����

where

 
 E
h
�� � UT���fX � E�X jT �gfX �E�X jT �gT

i
� Ef�UUT � �uu���

T �UUT � �uu�g�E�UUT����

Note that  
 E��� UT���B �Ef�UUT � �uu���
T �UUT � �uu�g� �uu	

� if � is homoscedastic

and independent of �X� T ��

THEOREM ���� Suppose the condition of Theorem ��
 hold	 and that the ��s are homoscedastic

with variance 	�	 and independent of �X� T �� Then

n����b	�n � 	��� N��� 	����

where 	�� 
 Ef��� UT��� � ��T�uu� � 	��g��
Remarks

� As described in the introduction	 an important aspect of the results of Severini and Staniswalis

is that their methods lead to asymptotically normal parameter estimates in kernel regression

even with bandwidths of the usual order hn 	 n����� The same holds for our estimators in

general� For example	 suppose that the design points Ti satisfy that there exist constants

M��M� such that

M��n � min
i�n

jTi � Ti��j � max
i�n

jTi � Ti��j �M��n�

Then Assumptions 
���i���iii� are satis�ed by simple veri�cation�

�



� It is relatively easy to estimate the covariance matrix of b�n� Let dim�X� be the number of

components of X � A consistent estimate of B is just

fn� dim�X�g��
nX
i��

fWi � bgw�h�Ti�g fWi � bgw�h�Ti�gT � �uu�

In the general case	 one can use ���� to construct a consistent sandwich�type estimate of  	

namely

n��
nX
i��

nfWi� eYi � fWT
i
b�n� � �uu

b�nonfWi� eYi � fWT
i
b�n� � �uu

b�noT �
In the homoscedastic case	 namely that � is independent of �X� T� U� with variance 	�	 and

with U being normally distributed	 a di�erent formula can be used� Let C��� 
 Ef�UUT �
�uu���T �UUT � �uu�g� Then a consistent estimate of  is

�b	�n � b�Tn�uu
b�n� bBn � b	�n�uu � C�b�n��

� In the classical functional model	 instead of obtaining an estimate of �uu through replication	

it is instead assumed that the ratio of �uu to 	
� is known� Without loss of generality	 we set

this ratio equal to the identity matrix� The resulting analogue of the parametric estimators

to the partially linear model is to solve the following minimization problem�

nX
i��

j
eYi � fWT

i �p

 � k�k� j

� 
 min!

where here and in the sequel k � k denotes the Euclidean norm� One can use the techniques of
this paper to show that this estimator is consistent and asymptotically normally distributed�

The asymptotic variance of the estimate of � in this case when � is independent of �X� T � can

be shown to equal

B��
�
�
 � k�k���	�B �

Ef��� UT��� � 
T
� g


 � k�k�
�
B��

where  � 
 �
 � k�k��U � �� � UT����

� ASYMPTOTICRESULTS FOR THENONPARAMETRICPART

THEOREM 	��� Suppose Assumptions 
�
�
�� hold and �ni�t� are Lipschitz continuous of order


 for all i 
 
� � � � � n� If E��� � kUk�� ��� Then for �xed Ti	 the asymptotic bias and asymptotic

variance of bgn�t� are respectively	 Pn
i�� �ni�t�g�Ti��g�t� and

Pn
i�� �

�
ni�t���

T�uu��	��� These are

all of order O�n����� for kernel estimators�

If the �Xi� Ti� are random	 then the bias and variance formulae are the usual ones for nonpara�

metric kernel regression�

�



� ESTIMATED ERROR VARIANCE

Although in some cases the measurement error covariance matrix �uu has been established by

independent experiments	 in others it is unknown and must be estimated� The usual method of

doing so is by partial replication	 so that we observe Wij 
 Xi � Uij � j 
 
� ���mi�

We consider here only the usual case that mi � �	 and assume that a fraction � of the data has

such replicates� Let W i be the sample mean of the replicates� Then a consistent	 unbiased method

of moments estimate for �uu is

b�uu 


Pn
i��

Pmi
j���Wij �W i��Wij �W i�

TPn
i���mi � 
�

�

The estimator changes only slightly to accommodate the replicates	 becoming

b�n 


�
nX
i��

n
W i � bgw�h�Ti�onW i � bgw�h�Ti�oT � n�
� ����b�uu

���



nX
i��

n
W i � bgw�h�Ti�o fYi � bgy�h�Ti�g � �
��

where bgw�h��� is the kernel regression of the W i�s on Ti�

Using the techniques in the appendix	 one can show that the limit distribution of �
�� is

Normal��� B�� �B
���	 with

 � 
 �
� ��E
h
��� UT���fX � E�X jT �gfX�E�X jT �gT

i
��E

h
�� � U

T
���fX � E�X jT �gfX �E�X jT �gT

i
��
� ��E

h
fUUT � �
� �����uug��TfUUT � �
� �����uug� UUT ��

i
��E

h
fUUT � �
� �����uug��TfUUT � �
� �����uug� UU

T
��
i
� �

�

In �

�	 U refers to the mean of two U �s� In the case that � is independent of �X� T �	 the sum of

the �rst two terms simpli�es to f	� � �T �
� �����uu�gB�
Standard error estimates can also be derived� A consistent estimate of B is

bBn 
 fn� dim�X�g��
nX
i��

n
W i � bgw�h�Ti�onW i � bgw�h�Ti�oT � �
� ����b�uu�

Estimates of  � are also easily developed� In the homoscedastic case with normal errors	 the sum

�rst two terms is estimated by �b	�n � �
 � ����b�Tn b�uu
b�n� bBn� The sum of the last two terms is a

deterministic function of ��� 	���uu�	 and these estimates are simply substituted into the formula�

A general sandwich�type estimator is developed as follows� De�ne � 
 n��
Pn

i��m
��
i 	 and

de�ne

Ri 

fW i� eYi � fWT

i
b�n� � b�uu

b�n�mi � ������mi � 
�
n
�
����Wi��Wi���Wi� �Wi��

T � b�uu

o
�

�
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Figure 
� Estimate of the function g�T � in the Framingham data ignoring measurement error�

Then a consistent estimate of  � is the sample covariance matrix of the Ri�s�

� NUMERICAL EXAMPLE

To illustrate the method	 we consider data from the Framingham Heart Study� We considered

n 
 
�
� males with Y being their average blood pressure in a �x ��year period	 T being their age

and W being the logarithm of the observed cholesterol level	 for which there are two replicates�

We did two analyses� In the �rst	 we used both cholesterol measurements	 so that in the

notation of Section �	 � 
 
� In this analysis	 there is not a great deal of measurement error� Thus	

in our second analysis	 which is given for illustrative purposes	 we used only the �rst cholesterol

measurement	 but �xed the measurement error variance at the value obtained in the �rst analysis	

in which case � 
 �� For nonparametric �tting	 we chose the bandwidth using crossvalidation to

predict the response� In precise	 we compute the square error using a geometric sequence of 
�


bandwidths ranging in �
� ���� The optimal bandwidth is selected to minimize the square error

among these 
�
 candidates� An analysis ignoring measurement error found some curvature in T 	

see Figure 
 for the estimate of g�T ��

�



As below mention	 we will consider four case	 using XploRe� �See H�ardle	 et al� �
����� to

calculate each case� Our results are as follows� First consider the case that the measurement

error was estimated	 and both cholesterol values were used to estimate �uu� The estimator of �

ignoring measurement error was �����	 with estimated standard error ��
��� When we accounted for

measurement error	 the estimate increased slightly to b� 
 
�����	 and the standard error increased

to ��
���

In the second analysis	 we �xed the measurement error variance and used only the �rst choles�

terol value� The estimator of � ignoring measurement error was 
�����	 with estimated standard er�

ror ������ When we accounted for measurement error	 the estimate increased slightly to b� 
 
�����	

and the standard error increased to ������

� DISCUSSION

Our results have been phrased as if the X �s were �xed constants� If they are random variables	 the

proofs simplify and the same results are obtained	 with now Vi 
 Xi �E�XijTi��
The nonparametric regression estimator ��� is based on locally weighted averages� In the random

X context	 the same results apply if ��� is replaced by a locally linear kernel regression estimator�

If we ignore measurement error	 the estimator of � is given by ��� but with the unobserved

X replaced by the observed W � This di�ers from the correction for attenuation estimator ��� by

a simple factor which is the inverse of the reliability matrix �Gleser	 
����� In other words	 the

estimator which ignores measurement error is multiplied by the inverse of the reliability matrix

to produce a consistent estimate of �� This same algorithm is widely employed in parametric

measurement error problems for generalized linear models	 where it is often known as an example of

regression calibration �see Carroll	 et al�	 
���	 for discussion and references�� The use of regression

calibration in our semiparametric context thus appears to hold promise when �
� is replaced by a

semiparametric generalized linear model�

We have treated the case that the parametric part X of the model has measurement error and

the nonparametric part T is measured exactly� An interesting problem is to interchange the roles of

X and T 	 so that the parametric part is measured exactly and the nonparametric part is measured

with error	 i�e�	 E�Y jX� T � 
 
T � g�X�� Fan and Truong �
���� have shown in this case that with

normally distributed measurement error	 the nonparametric function g��� can be estimated only at
logarithmic rates	 and not with rate n����� We conjecture even so that 
 is estimable at parametric

rates	 but this remains an open problem�

�
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� APPENDIX

In this appendix	 we prove several lemmas required� Lemma A�
 provides bounds for hj�Ti� �Pn
k�� �nk�Ti�hj�Tk� and g�Ti��

Pn
k�� �nk�Ti�g�Tk�� The proof is immediate�
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Lemma A��� Suppose that Assumptions 
�
 and 
�� �iii� hold� Then

max
��i�n

jGj�Ti��
nX

k��

�nk�Ti�Gj�Tk�j 
 O�cn� for j 
 �� � � � � p�

where G���� 
 g��� and Gl��� 
 hl��� for l 
 
� � � � � p�

Lemma A��� If Assumptions 
�
�
�� hold� Then

lim
n��

n�� eXT eX 
 B

Proof� Denote hns�Ti� 
 hs�Ti� �Pn
k�� �nk�Ti�Xks� It follows from Xjs 
 hs�Tj� � Vjs that the
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hold for 
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Proof� We only prove the �rst part� The second item is proved similarly� We omit the details�
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