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ASYMPTOTIC PROPERTIES OF THE
NONPARAMETRIC PART IN PARTIAL
LINEAR HETEROSCEDASTIC
REGRESSION MODELS

Hua Liang, Wolfgang Hardle and Axel Werwatz *

Abstract

This paper considers estimation of the unknown function g(e) in the partial linear
regression model Y; = X1 8+ ¢g(T;) +¢; with heteroscedastic errors. We first construct
a class of estimates ¢, of ¢ and prove that, under appropriate conditions, ¢, is weak,
mean square error consistent. Rates of convergence and asymptotic normality for the
estimator g, are also established.

Key Words and Phrases:Key words and phrases: Asymptotic normality, consistency,
heteroscedasticity, kernel estimation, rates of convergence, partial linear model, semipara-
metric models.

1 INTRODUCTION

Semiparametric models combine the flexibility of nonparametric modeling with structural
parametric components. One such model that has received a lot of attention in the literature

is the semiparametric partial linear regression model

Yi= XT84 g(T) +2ni = 1o (1)
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where X and T are (possibly) multidimensional regressors, 3 a vector of unknown parame-
ters, g(®) an unknown smooth function and ¢ an error term with mean zero conditional on
X and T.

Well-known applications in the econometrics literature that can be put in the form of (1)
are the human capital earnings function (Willis (1986)) and the wage curve (Blanchflower
and Oswald (1994)). In both cases, log-earnings of an individual are related to personal
characteristics (sex, marital status) and measures of a person’s human capital like schooling
and labor market experience. Fconomic theory suggests a non-linear relationship between
log-earnings and labor market experience, which therefore plays the role of the variable 7" in
(1). The wage curve is obtained by including the local unemployment rate as an additional
regressor, with a possibly non-linear influence. Rendtel and Schwarze (1995), for instance,
estimate g(e) as a function of the local unemployment rate using smoothing-splines and find
a U-shaped relationship.

Under various assumptions, several authors have considered estimation of 3 in (1) at a
parametric rate. Chen (1988), Heckman (1986), Robinson (1988), Schick (1996) and Speck-
man (1988) constructed \/n—consistent estimators of 3. Cuzick (1992a) studied efficient
estimation of # when the error density is known. Efficient estimation when the error distri-
bution is of an unknown form is treated in Cuzick (1992b) and Schick (1993).

In this paper, we will instead focus on deriving the asymptotic properties of an esti-
mator of the unknown function g(e). We consider its consistency, weak convergence rate
and asymptotic normality. We will derive these results for a specific version of (1) with
nonstochastic regressors, heteroscedastic errors and T' univariate.

The remainder of this paper is organized as follows. In the following section we will
describe methods for estimating 3 and g(e). We prove consistency and asymptotic normality
of the estimator of g(e) in sections 3 and 4. We illustrate the usefulness of the estimator and
the relevance of the asymptotic distribution results for applied work by a small-scale Monte

Carlo study and an empirical illustration in the final section of the paper.

2 THE ESTIMATOR

Specifically, we consider estimation of g(e) (and ) in the following partial linear, semipara-

metric regression model:

Yi= XT84 g(T) +20i = 1o (2)



where 3 is an unknown p dimensional parameter vector, g(e) an unknown, smooth function
from [0,1] to R, (X1, T1), (X3, Ty) ... are known, nonrandom design points and &1, ..., &,
are independent mean zero random errors with nonconstant variance. We allow the variance
of € to depend on X and T in an arbitrary way.

Previous work in a heteroscedastic setting has focused on the nonparametric regression
model (i.e. § = 0). Miiller et al. (1987) proposed an estimate of the variance function by
using kernel smoother, and then proved that the estimate is uniformly consistent. Hall and
Carroll (1989) considered consistency of estimates of g(e). Eubank et al. (1990) proposed
trigonometric series type estimators ¢y of g. They investigated asymptotic approximations
of the integrated mean squared error and the partial integrated mean squared error of g,.
The heteroscedastic version of (1) with 3 # 0 has been considered in Schick (1996) but he
considers weighted least squares estimation of 3. We focus on nonparametric estimation of
g(e) as a function of T'.

Suppose we knew 3. Then we may estimate g(e) by nonparametric regression of Y; — XT3
(the variation in Y; not accounted for by the linear component X! 3) on Ti.

In the literature one can find various methods for estimating g(e) nonparametrically, e.g.,
kernel, nearest neighbor, orthogonal series, piecewise polynomial and smoothing splines. See
Hérdle (1990) for an extensive discussion of their statistical properties. All these estimators
may be written as weighted local averages of the observed values of the dependent variable
with the weights depending on the values of the explanatory variables. In our case, we can

write (still assuming that (3 is known):
() =D wnu(®)(Yi = X[ 8), (3)
=1

where wyi(t) = wpi(t;Th, Ty, ..., T,) are weight functions that depend on the observations
... T,

For instance, a Gasser-Miller-type kernel estimator takes
1 s _ t—s .
wni(t) = N\&L N»A I v&m 1<:<n
1

for so =0, s, =1, s; = 5(T(iy + T(i11))- Here T(yy, ..., T{,) are sample order statistics, K (o)

is the kernel function and A denotes the bandwidth. See Remark 5 below for details.

Given the estimator §(t) as defined in (3) we may estimate 3 by the least squares regres-

sion of

Yi = X[B8+4(T) +¢



n n NJ
=S wn(1)Y; = {Xi =Y wi(T)X,} B+«
7=1 7=1
Vi = X8+ (4)
That is, we estimate 3 by the generalized least squares estimator

Brs = (XTX) !XTy (5)

where X = C)NT LX) and Y o= (V... V)T are the presmoothed design and response
variables.
In the final step we obtain the feasible estimator of g(e) by substituting Brs for the

unknown (3 in (3):
MUE§ )Y — X BLs), (6)

Further motivation for the estimators defined in (5) and (6) is given in Speckman (1988)
and Gao, et al. (1995). Note though that 85 is not an efficient estimator in the sense of
asymptotic normality.

In the following section we state and prove the weak, mean square error consistency and

give the rates of convergence of ¢, (t) under various assumptions.

3 CONSISTENCY RESULTS

All technical preliminaries needed in the proofs of the following results are collected in
Appendix 6 as lemmas. For convenience and simplicity, we always let C' denote some positive
constant not depending on n. We will use the following assumptions.

Assumption 1. There exist continuous functions hj(e) defined on [0,1] such that each
element of X; satisfies

tij=hy(T;) +u; 1<i<n, 1<5<p (7)

where w;; is a sequence of real numbers which satisfy lim,,_ WMUM.@HH u; = 0 and

H_r n
lim — MU:EW =B (8)
is a positive definite matriz, and
ercw|Bm§ MU:%S <oo  form=1,...,p (9)

n—oo Uy 1<k<n =1



holds for all permutations (i, ..., J.) of (1,2,...,n) where u; = (wi1, . .., uip)", an, = n'/?logn.

Assumption 2.
(a) Yo wni(t) = 1 as n — oo
(b) Y7 |wni(t)| < C for all ¢ and some constant C';
(¢) Xr lwui()I(Jt = T;| > a) = 0 as n — oo for all a > 0;
(d) supig, |wni(t)] = O{(logn)~'}.

Denote n; = AMUM.@HH Ewsﬁvwl.

Assumption 3.
(a) 5upy (m0) SUPs i eni(8)] < 50, and m = ofn);
(b) VI sup i |ewni (1)| = ©A3|Q\wv for some 1 > o > 0;
(¢) Y wi(t)Ee? = o5 /ns + o(1/ny) for some o§ > 0.

Remark 1. Assumption 1 is a common requirement for proving consistency of 3 in the

partial linear model (1). In fact, (7) of Assumption 1 is parallel to the case
b%mmﬁv = @A&i_mﬁv and Uiy = Xy — @A&i_mﬁv

when (X;,T;) are random variables. (8) is similar to the result of the strong law of large
numbers for random errors. (9) is similar to law of the iterated logarithm. More detailed
discussions may be found in Speckman (1988) and Gao et al. (1995).

Theorem 1. Under Assumptions 1 and 2

FE{g.(t)} = ¢(t) as n — oo at every continuity point of the function g.

Proof. Decompose the difference g,(t) — g(t) as follows by direct calculation.

(1) = 9(0) = S (0){g(T2) + & = XT(XTX) 7 X7G(1) = XT(XTX) K78 = g(0)

where §(T) = {g(Th),...,g(T,)}* and §(T;) = g(T;) — iy wni(T)g(T};) and & just like X,
It follows that

B0} = o0) = { (Do) = o()} = SO X (XTI XTG(1) (10



The first term tends to zero by Lemma A.1 (i). By lemmas A.2 and A.1 (i) and Cauchy-
Schwarz inequality, we know that every element of C)Nﬂwm(vlwm(ﬂwmj is o(n=1%), i.e.,

{(XTX)'XTG1)} =o(n™?) forj=1,....p (11)

J

It suffices to show that every element of Y7 w,; (1) X, is Qﬁzy\wv. Observe that
> wai(t)ziy = Y wai(){hi(17) + uij}
=1 =1

Since h;(e) is continuous, Y1 wn(1)h;(T;) converges to h(t) on the continuity point of h(t)
by the same proof as one for Lemma A.1 (i). Moreover, by Abel’s inequality and Assumption

2 (d),

- : | < — 1/2
mas@:z < 3p feoni(1)] max SM|U§ O(n'?)
Thus
MUEQS.QV.&& = QASH\MV AHMV
=1
and we complete the proof of Theorem 1. #

Theorem 1 shows that g¢,(t) is an asymptotically unbiased estimator of g(?) at every
continuity point of g(¢). The next result, Theorem 2, will demonstrate that g,(¢) is also
mean square-error consistent.

Theorem 2 Assume the conditions of Theorem 1 hold except Assumption 2 (d) which is
replaced by sup;, lwni(t)| = o{(logn)~"}. Then E{g,(t) — g(t)}* = 0 as n — oo,
Proof. It follows from the C.—inequality with r = 2 that

Plan(h) — g0} < E%is@Aiﬁﬁ%i

n QﬂMUes JXTX) X (1) +Q£MU§ (X7 (XTX)' X7e3)

In the proof of Theorem 1 we obtained that the first and third terms of (13) converge to
zero as n tends to infinity. The second can be shown to be order o(1) by direct calculation.

We shall now prove the fourth term also converges to zero. Denote Awm(ﬂwm(vlu)mﬂ =

(15i ) pxn-

n

@7MUE§ kﬂmkﬂkv Hwﬂmiw = @ﬁMUEﬁX&AMWUMU&%JEWNvWM
= MUAMUMUEg ;sszqw

=1 =1k=1



It follows from the arguments for (12) that this equals to O(n) Y[, 3. Since Y1, i, and
the elements of the k—th row of (X7 X)~! have the same order O(n™"). Tt follows that

B[S w0 ) XI(XTX) X = of1). (14)
=1
Furthermore, we can easily show that
ﬂMUas HXT(XTX)™ MuklMuea Toef|” = o(1). (15)

Combining (14) and (15) ensures that the fourth term of (13) is o(1), and thus completes
the proof of Theorem 2. #

The following result gives the weak convergence rate of g, under stronger assumptions
on {wy;(t)} than those given in Assumption 2. Here we list these assumptions.

Assumption 2’. The weight functions w,;(t) satisfy:
(a) sup, | Sy wai(t) — 1 = Op(n'/log n);
(b) sup, >r Jwni(O) (|t = T;| > ¢,) = O(d,,), where d,, and ¢, are n="3log n;
(¢) sup, maxicicn [wai(t)] = Op(n=?7%).

Theorem 3. Assume g(e) and h;(e) are Lipschitz continuous of order 1 and Assumptions

1 and 2" hold. Then
gu(t) = g(t) = Op(n~logn).
Proof. By Lemma A.1 (ii),
> clt)a(T;) = o(t) = Op(n™logn).
Using Assumption 2’ (¢) and Chebyshev’s inequality we have
.M&es@@ = Op(n~Y3logn).
The similar arguments as that for (11) and (12) yield

Meg (OXIXTX)IXTHT) = Op(n~ Y2 logn).



Finally, observe that Y7 ; w,i(t)u;; = O(1) and then ¥7" ; wyi(t)x; = O(1) for y =1,...,p.
Thus, by the arguments for (14) and (15),

2

E[Y wut) X (XTX)7'X"E = 0(n). (16)
=1
which entails
S wni (XTI (XTX) I XTE = Op(n~" P logn).
=1

This completes the proof of Theorem 3. #

Remark 2. We can conclude from the above arguments that

lim mcwﬁzw\w womb n) o {g,(t) — Qﬁ_ﬁvw < 00.

n—oo

Theorem 4 gives the asymptotic variance of g, ().
Theorem 4. Under Assumptions 1, 2" and 3, n;Var{g.(t)} — o2 as n — co.
Proof.

nVar{g.(t)) = 52%&33@%+52%es@?ﬁwﬂwiwﬁw
|M§EMU§.@§ : Mueiirwﬂwiwﬁ

The first term converges to oa. The second term tends to zero by (16), and then the third
term also tends to zero by the Cauchy-Schwarz inequality. #

4 ASYMPTOTIC NORMALITY

In the nonparametric regression model, Liang (1995) proved asymptotic normality for in-
dependent ¢;’s under the mild conditions. In this section, we shall consider the asymptotic
normality of ¢, under the Assumptions 1, 2’ and 3.

Theorem 5. Assume that €1,¢5,...,¢&, are independent random variables with Fe; =0 and

inf; 62 > ¢, > 0 for some ¢,. There exists a function G(u) satisfying
\ G (w)du < oo (17)
0

such that

P(le;| > u) < G(u), fori=1,...,n and large enough u. (18)



If
max<i<n Wh, (1)

> it Ems.ﬁv

—0 as n — 0o. (19)

Then

erQv - @r@zﬁv
Var{g.(t)}

—% N(0,1) as n — oo.

Remark 3. The condition [;° uG(u)du < co is to guarantee sup; o? < oo.

The proof of Theorem 5. At first from the proof of Theorem 4, we obtain that
Var{gn(1)} = w1102 + o (1)o7}
i=1 i=1
Furthermore
9u(t) = Egu(t) = Y wa)es = 3w (X7 (XTX) X2 = 0p(n112)
i=1 i=1

which yields
Sl wni(DXT (XTX)IXTE
Var{g.(t)}

= Op(n™"*n}"?) = op(1)

It follows that

erQv — @Qsﬁv — Lizt Ei.ﬁvms. + SUAC “ .Msung.ms. + SUAC“

Var{gn(t)} Yicy wni(t)o? i=1

wn; (1)

where «; = . Let an; = a;04, obviously sup; o; < oo due to [~ vH (v)dv < oc.

The proof of the theorem immediately follows from the conditions (17)-(19) and Lemma
A4 #
Remark 4. Ifsy,...,&, are independent identically distributed, then Elei|* < oo and the

condition (19) of Theorem 5 can yield the result of Theorem 5.
Assumption 2”. The weight functions w,;(t) satisfy:

(a) Yy was(t) = 1 = o(n;*);

(8) S (O (1t = T > ) = o(d,), where ¢, and d;, are ofn; ')



Theorem 6. Suppose that g(t) is Lipschitz continuous of order 1. Assume the conditions
of Theorem 5 hold with the previous Assumption 27 replacing Assumption 2°. Then
n(t) —9(t)

—% N(0,1) as n — oo.
Var{g.(t)}

Proof. In fact, recall the conclusion of Theorem 5, it suffices to show that

Ega(l) — g(1)

= /n{ Eqg,(t) — gt o(l) = o(1).
Ver(a. 0] Viu{ Ega(t) — g(t)} + o(1) = o(1)

For ¢ = QASMH\NV. Note that
Egu(t) g0 < 3 kona(T) — gOIIT — > &)+ (1T~ ] < )
HoOI[S ) ~ 1]

Y

< 3g,¢,) - BH20 Y fwaII(Ti = 1] > &) + C[Ywalt) — 1
; =1

=1

where ' = supepoq119(t)| and 6(g,¢;,) = supy_y<o |9(t) — g(t')]. Assumption 27 and the
previous arguments yield the conclusion of Theorem 6. #
Remark 5. [In this remark, we shall give concrete weight functions {wy;(t),1 = 1,...,n}
which satisfy the assumptions given in the former context, in order to explain the reasonability
of the results established in previous sections carefully.

Assume

H 3. N|
es@n\ﬂ\w (= Vds 1<i<n (20)

where sg =0, s, =1 and s; = WA%E + Tit1y), 1 <@ <n—1. hy is a sequence of bandwidth
parameters which tends to zero as n — oo and K(e) is a kernel function, which is supported

to have compact support and to satisfy
supp(K) = [—1,1],sup |K(2)]| < C < OOQ\N»A:E: =1 and K(u) = K(—u)

Obviously Assumptions 2(a), (b) and (d) are satisfied for the weight functions given in (20).
If

10



Then Assumption 2 (¢) hold also. In fact

Meg (T =t > a) = M\ TJ%;EL_XV

t— s
hy,

K(u)du = o(1)

IA

NA v%

IA

1

hn
1

hn \_ﬂ?%_w?sﬁ |Ts—Ti_1|
1

hn

n \_:_inﬂH (a—max |T;=T;-1])

Now let us take h, = Cn='"* for some C >0 and suppose

K(u)du = O(n™"*1
[y K = O(n™ tog )

There exist constants Cy,Cy > 0 such that

C C
L < min [T, = Tiy] < max |1y — Tiq| < =
n 1<i<n 1<i<n n

Then we can take ny = nh,, and Assumptions 3 and 27 hold. Theorems 5 and 6 imply that

Vo {ga(t) = g(t)} —© N(0,62) as n — cc.

This is just the classical conclusion in nonparametric regression estimation.

5 NUMERICAL EXAMPLES

In this section we will illustrate the finite-sample behaviour of the estimator by applying it
to real data and by performing a small simulation study.

In the introduction we already mentioned the human-capital earnings function as a well-
known econometric application that can be put into the form of a partial linear model. It
typically relates the logarithm of earnings to a set of explanatory variables describing an
individual’s skills, personal characteristics and labour market conditions. Specifically, we

estimate J and g(e) in the model

InY; = X/ B+ g(T}) + =i, (21)

where X contains two dummy variables indicating the level of secondary schooling a person
has completed and T, is a measure of labour market experience (defined as the number of
years spent in the labour market and approximated by subtracting (years of schooling + 6)

from a person’s age).

11



Partia linear fit

estimate of g(T)

2.799992.899999 3 3.099999 3.2

10 20 30 40
T

Figure 1: Relationship of log-earnings and labour-market experience

Under certain assumptions, the estimate of § can be interpreted as the rate of return
from obtaining the respective level of secondary schooling. Regarding ¢(7'), human capital
theory suggests a concave form: rapid human capital accumulation in the early stage of one’s
labor market carrer are associated with rising earnings that peak somewhere during midlife
and decline thereafter as hours worked and the incentive to invest in human capital decrease.
To allow for concavity, parametric specifications of the earnings-function typically include T
and 7% in the model and obtain a positive estimate for the coefficent of 17" and a negative
estimate for the coefficient of 1.

For nonparametric fitting, we use a Nadaraya-Watson weight function with quartic kernel
(15/16)(1 — w1 (Ju] < 1)

and chose the bandwidth using cross-validation. The estimate of g(7T') is depicted in Figure
1. In a sample size that is lower than in most empirical investigations of the human capital
earnings function we obtain an estimate that nicely agrees with the concave relationship
envisioned by economic theory and often confirmed by parametric model fitting.

We also conducted a small simulation study to get fiurther insights into the small-sample

12



Simulation comparation

g(T) and its estimate values
05

Figure 2: Fstimates of the function g(T)

performance of the estimator of g(e). We consider the model
Y = X! B +sin(nTy) +sin(X! B4+ To)e;,  i=1,...,n =300

where ¢; is standard normally distributed and X; and 7} are sampled from a uniform distri-
bution on [0, 1]. We set 8 = (1,0.75)7 and performed 100 replications of generating samples

of size n = 300 and estimating g(e). Figure 2 depicts the "true” curve ¢g(T') = sin(nT)

(solid-line) and an average of the 100 estimates of g(e) (dashed-line). The average estimate

nicely captures the shape of g(e).

6 APPENDIX

In this appendix we state some useful lemmas.

Lemma A.1. Suppose that Assumption 2 (a)-(c) hold and g(e) and h;(e) are continuous.
Then

(i) max

G (1) = S T)G(11)| = of1)

13



Furthermore, if g(8) and h;(e®) are Lipschitz continuous of order 1 and Assumption 27 (a)-(c)
and 2 (b) hold. Then

(17) mMWmM

Gi(Ti) — Muasiﬁv@ﬁi = O(cn + dy)

for 3 =0,....p. Where Go(e) = g(e) and G(e) = hy(e) for=1,...,p.

Proof. We only present the proof of (ii) for g(e). The proofs of other cases and (i) are

similar. Observe that
S DT ~ a0} = S nlHo() — 01} + {3t~ 1ol
= CenlOlolT) =g HT = 1] >
Y enHa(T) — gOHIT =1 < )+ (Y aa(t) = a0

By Assumption 2’(b) and Lipschitz continuity of g(e)

S {9l — (T~ 1 > ) = O(d,), 22)
and
S et a(T) — o(H(IT: ~ ] < ) = Ofes). (23)

(22)-(23) and Assumption 2 (a) complete the proof of Lemma A.1.
Lemma A.2. Under Assumptions 1 and 2.

|
lim - XX =8B
n—00 3

Proof. Denote h,s(T;) = hs(T;) — Xr_; wak(T3)xks. It follows from a5 = hs(T}) + w;s that
the (s, m) element of XTX (s,m=1,...,p)is

n n no
=1 =1 =1
n

> B (T s + Msu Pns (T ) (T7)

=1
def n 3
e
= MU UjsUim + MU mmmvg
=1 q=1

The strong law of large number implies that lim, ., 1/n ¥, :EW = B and Lemma A.l

means R(®) = o(n), which and Cauchy-Schwarz inequality show that R() = o(n) and

nsm nsm

R?) = o(n). This completes the proof of the lemma.

nsm

14



The following Lemma is a slight version of Theorem 9.1.1 of Chow and Teicher (1988).
We therefore do not give a proof.
Lemma A.3. Let &k = 1,...,k,, be independent random variables with E&,. = 0,
aﬁi@mm»HQm»AOO.bmm:SQN\SNﬁleS MMWH QM»HHSSN Bmvﬁm»m? Qm»io.ﬂ\@mﬁ@

S Er =5 N(0,1) in distribution if and only if

kn
S EE (] >8) =0 forany§ >0 asn — oo.
k=1

Lemma A.4. Let Vi,...,V, be independent random variables with EV; = 0 and inf; EV? >
C > 0 for some constant number C. The function H(v) satisfying [;° vH(v)dv < oo such
that

P{|Vk| > v} < H(v) for large enough v >0 and k=1,..., n. (24)

Also assume that {a,;,i =1,...,n,n > 1} is a sequence real numbers satisfying > a?, = 1.

If
maxi<i<n |ani| — 0, then for al; = ani/oi(V),

> odl Vv —“ N(0,1) as n — oo.

ni
=1

Proof. Denote {.x = al, Vi, k=1,...,n. We have }}_, F¢2, = 1. Moreover, it follows that

SOEC (6] > 8) = Y al EVII(JawVil > 6)
k=1 k=1
n @w
MU F%@SNNA max |anVi| > §)

=1 Ok 1<k<n

Qwﬁ o) sup E{VZI( max |a,zVi| > )}
k

1<k<n

IA

IA

It follows from the condition (24) that
sup E{V?I( max |a,xVi| > &)} =0 asn — oo.
k

1<k<n

Lemma A.4 is therefore derived from Lemma A.3.
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