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Abstract

Cointegrated VARMA models can be parameterized by using the echelon form, which
is characterized by the Kronecker indices. Three different methods for estimating the
Kronecker indices of cointegrated echelon form VARMA models are discussed and com-
pared. They have the common feature of estimating the individual equations of the system
separately and using order selection criteria. The small sample performance of the meth-
ods is compared in a simulation study. It is found that the performance is better if all
echelon form restrictions implied by the Kronecker indices found in preceeding steps are

incorporated immediately.
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1 Introduction

In the multiple time series literature a number of books and articles deal with estimating, speci-
fying and analyzing vector autoregressive moving average (ARMA) models. In fact, Quenouille
(1957) in his early contribution to the subject presents them as a possible framework for mul-
tiple time series analysis. Hannan and Deistler (1988), Liitkepohl (1991), Reinsel (1993) and
Claessen (1995) are more recent books where some of the earlier literature is summarized and
the current state of the art of analyzing stationary vector ARMA processes is dicussed. Hannan
and Kavalieris (1984), Poskitt (1992), and Nsiri and Roy (1992) are, for example, important
contributions where practical specification and analysis tools for stationary processes are in-
troduced. In Liitkepohl and Poskitt (1996) several specification strategies are surveyed and
extensions to integrated and cointegrated processes are considered by Liitkepohl and Claessen
(1997), Claessen (1995) and Poskitt and Liitkepohl (1996).

Despite a considerable amount of theoretical work and despite the fact that strategies and
algorithms for specifying and estimating vector ARMA models are available, there are only
very few applied studies using the vector ARMA methodology. Clearly, one reason for this
state of affairs is that pure AR models, for instance, are more easily dealt with in practice and
a bit more is known about the small sample properties of inference methods for these models.
On the other hand, it has been pointed out that vector ARMA models have several advantages
over their AR competitors (e.g., Liitkepohl and Poskitt (1996)). Among these advantages is
the potential of greater parsimony and the implied increase in forecast precision. Therefore, in
this paper we will investigate the small sample properties of some specification strategies for
vector ARMA models that have been proposed in the recent literature. We will do so in the
framework of the echelon form because this form is fairly easy to deal with and at the same
time it has a good potential for describing even complicated autocovariance structures in a
parsimonious way.

Claessen (1995) reports the results of a simulation study comparing different strategies
mainly for stationary processes. Since in practice most macro variables are integrated we will
focus on integrated and potentially cointegrated processes in this study. Hence, we will concen-
trate on specification strategies which have, in particular, potential for such processes. We will
also suggest and explore the properties of a procedure inspired by Koreisha and Pukkila (1995)

who check the residuals of a univariate model for whiteness to decide on the ARMA orders of



the underlying data generation process (DGP). It will be shown how such a strategy can be
taylored to the case of specifying nonstationary echelon form ARMA (ARMAg) processes.
The structure of the paper is as follows. In the following section the general framework is
introduced. In particular, ARMEg structures are presented in such a form so as to allow for
nonstationary variables. In Section 3 some possible estimation procedures for the Kronecker
indices which define the precise structure of an ARMAg model are discussed. In Section 4

these procedures are compared in a simulation study. Conclusions follow in Section 5.

2 The ARMA; Form

In the following it is assumed that the data generating process (DGP) of the K-dimensional
multiple time series yy,...,yr with y: = (Y14, ..., yxe)" is from the VARMA (vector autoregres-

sive moving average) class,

A(L)y: = v+ M(L)uy, (2.1)

where u; is an unobservable white noise process with zero mean and nonsingular, time invariant

covariance matrix F(uu}) = ¥,
A(L)=Ag+ AL+ ---+ A LP

and

M(L)=My+ ML+ ---+ M,L?

are matrix polynomials in the lag or backshift operator L, which is defined as usual by Ly, =

Y;_1. The matrix polynomials are assumed to satisfy
det A(z) #£0, |z < 1,z# 1, and detM(z)#0, || < 1. (2.2)

The second part of this condition is the usual invertibility condition for the MA operator. The
possibility that the operator A(z) can have zeros for z = 1 as assumed in the first part of
(2.2) is of special interest since thereby the components of y; are allowed to be integrated,
nonstationary variables which become stationary upon differencing. We also assume that each
component series is stationary after differencing once. Our assumptions also allow for possible
cointegration between the variables (see Engle and Granger (1987)) so that linear combinations

of the levels variables may be stationary. The fact that we do not make assumptions regarding



the number of zeros at z = 1 in the autoregressive operator means that we leave open the
possibility that the process is stationary or that there are some integrated component series
which do not cointegrate with other variables. For a more complete discussion of the possibilities
covered here, see Liitkepohl (1991, Chapter 11).

In addition to the foregoing conditions it is assumed that [A(z) : M(2)] is (left) coprime and
in echelon canonical form. Denoting the klth elements of A(z) and M(z) by ag(z) and my(z),

respectively, the polynomial operators can be uniquely defined by the requirements that

Pk
mkk(L) =1 + Z mk;m[/', for k = 1, ce ,[X’, (23@)
=1
Pk
mkl(L) = Z mku[;i, for & 7£ l, (23[))
i=pr—prr+1
Pk
Oékl([/) = Z Oékl,i[/iy with aklo = MELo for k,l == 1, ce ,[X’ (230)
1=0

Here
min(py + 1,p) for k >1

Ppl = , ki =1,..., K.
min(pg, pr) for k <1
The row degrees py in this representation are the Kronecker indices (see Hannan and Deistler
(1988) and Liitkepohl (1991)). In (2.1) p = max(p,...,px), that is, p is the maximum row
degree or Kronecker index. We follow Poskitt (1992) and abbreviate this echelon representa-
tion of a VARMA process by ARMAg and ARMAE(p1,...,px) denotes an echelon form with
Kronecker indices py, ..., pxg.

Note that in the formulation of the echelon form in (2.3) the autoregressive operator is
unrestricted except for the constraints imposed by the maximum row degrees or Kronecker
indices and the zero order matrix (A9 = My) whereas zero restrictions are placed on the
moving average coefficient matrices attached to low lags of the u;. This representation of the
echelon form was introduced by Liitkepohl and Claessen (1997). It differs from the ARMAg
form usually found in the literature where the restrictions on low order lags are imposed on the
AR coefficient matrices. The form in (2.3) has the advantage of being conveniently combined
with the error correction (EC) form for specifying cointegrated processes. This form is useful in
analyzing integrated and cointegrated systems. Therefore we use it in the following although we

do not consider the EC form in the present paper because we are mainly interested in estimating

the Kronecker indices which may be specified in an initial stage of a more detailed ARMAE



cointegration analysis. It should be noted, however, that there is a relationship between the
Kronecker indices and the cointegration rank of a system (see Liitkepohl and Claessen (1997,
Sec. 3.3)).

At this point it may be useful to remind readers of the advantages of the echelon form which
have been pointed out by many authors before (e.g., Liitkepohl and Poskitt (1996), Liitkepohl
and Claessen (1997)). First, every rational matrix operator has a unique echelon form repre-
sentation. Hence, the ARMAg form is a canonical form. Akaike (1974) introduced it to the
statistics literature by setting up a minimal predictor representation which leads to a further
advantage of this form, namely its parsimony in terms of the number of parameters involved.
This is not to say that it is always the most parsimonious representation. In general, however,
the number of free parameters in the ARMAE form is relatively small compared to other rep-
resentations. The Kronecker indices specify the maximum row degrees and imply a number of
zero restrictions which are sufficient for identifying the VARMA operators. Of course, there
may be further overidentifying restrictions. In particular, the AR and MA operators need not
necessarily have identical orders although they are identified (unique) even with identical orders.
Overidentifying restrictions may be imposed once the Kronecker indices have been specified. In
the following we will focus on this first step of the specification procedure namely the determi-
nation of the Kronecker indices. The simplicity of the identification restrictions imposed on the
ARMAE form turns out to be a further important advantage over other representations which
require cross-equation and/or nonlinear restrictions for identification whereas the constraints

on the echelon form are simple linear zero/one restrictions.

3 Strategies for Estimating the Kronecker Indices

In this section we summarize the specification procedures for Kronecker indices which will be
considered in the simulations in Sec. 4. There are many other procedures which have been
proposed for stationary processes (see, e.g., Claessen (1995)) and which are partly not suitable
for nonstationary processes. Since the latter are of primary interest to us, we only consider
procedures which are potentially suitable for that case. The first stage is the same in all the
procedures. It consists of fitting a long autoregression by least squares in order to provide

estimates of the unobservable innovations w,, t =1,...,T.



Stage I:
Use multivariate least squares (LS) estimation (i.e., use LS for each equation separately) to fit

a long VAR(h7p) process

hr
Ye = v+ Z s ppye—i + we(hr) (3.1)
=1
to the data to obtain residuals @ (hy). O

The order h7 has to be chosen as a function of the sample size T' in order to obtain favourable
asymptotic properties of the procedures discussed next. More precisely, if Ay approaches infinity
at a suitable rate as T' goes to infinity, Poskitt and Liitkepohl (1995), Guo, Huang and Hannan
(1990) and Huang and Guo (1990) show that the estimation residuals ;(hr) are “good” esti-
mates of the true residuals (see Lemma 3.1 of Poskitt and Liitkepohl (1995) for details). These
residuals are then used in estimating different structures which are compared to make a choice
of the Kronecker indices based on a prespecified criterion.

The methods to be compared in the following differ in the way they choose the Kronecker
indices in the next step. The first variant of Step Il was proposed by Poskitt and Lutkepohl
(1995). It uses linear regressions to estimate the individual equations separately for different
lag lengths. A choice of the optimal lag length is then based on some prespecified criterion
which includes the residual variance as a measure of goodness of fit. Formally this procedure

can be described as follows.
Stage II(PL1):
Proceed in the following steps.

(ia) For n = 0 set T} 7(n) equal to the residual sum of squares from the regression of yy,

on a constant and (y;: — tj¢), 7 =1,...,K, j # k. Forn =1,..., Pr, Pr < hy regress

Ykt on a constant, (y;; — uj4), 7 = 1,..., K, j # k, and y;_s and Gy, s = 1,...,n, and
determine the residual sums of squares, T&éT(n), fork=1,..., K.
(ib) For k =1,..., K, compute a selection criterion of the form

Apr(n) =log &,iT(n) +Cm/T, n=0,1,...,Pp,

where C'r is a function of T" which will be specified later.



(ii) Set the estimate of the kth Kronecker index equal to

I
—

ﬁk:argomin Apr(n), k LK. O

<n<Pr

In the regressions in Step (ia) the echelon structure is not explicitly estimated, because for
each value of n the algorithm is implicitly assuming that the current index under consideration
is the smallest and thus no restrictions are imported from other equations. Still, it is clear that
the kth equation will be misspecified whenever n is less than the true Kronecker index since
one or more lagged values required for a correct specification will be omitted. On the other
hand, if n is greater than the true Kronecker index, the kth equation will be correctly specified
but may include redundant parameters and variables. Therefore the criterion function Ay r(n)
asymptotically will possess a global minimum when n is equal to the true Kronecker index if C'p
is specified appropriately. In practice possible choices of this function of T" are Cr = hylogT
or Cr = hZ.

Poskitt and Liitkepohl (1995) also propose a modification of Stage II which permits to
take into account coefficient restrictions derived from those equations in the system that have
smaller Kronecker indices. In that modification, after running through Stage II for the first
time we fix the smallest Kronecker index and repeat Stage II, but search only those equations
found to have indices larger than the smallest. In this second application of Stage Il the restric-
tions implied by the smallest Kronecker index found in the first round are taken into account
when the second smallest index is determined. We proceed in this way by fixing the smallest
Kronecker index found in each successive round until all the Kronecker indices have been spec-

ified. The following formal description of this stage is taken from Poskitt and Liitkepohl (1995).

Stage II(PL2):

Complete the following steps.

(i) Set Bl = min(e),  K(K) = arg ming(je)

-

(ila) For some ¢, assume that ﬁz(q-u) > > }52(1{) are given. For k & {k(qg+1),...,k(K)},
regress yj, on a constant and (y; —tj), j # k,j & {k(g+1),..., k(K)}, plus Uy —s), 5 =
n—ﬁz(j)—l—l,...,n, J=q+1,... K, and y,_; and Uju_s), 7 & {k(qg+1),... k(K)}, s =

... Pp

1,...,n, and compute the residual sum of squares T&éT(n) forn = ﬁz(q-u)



(iib) Determine the values of the selection criterion
Arr(n) =logépp(n) + Crn/T, n= P41y -+ Prs
for those k & {k(¢g+1),...,k(K)}.
(iii) Set the estimate of the k(¢)th Kronecker index equal to
ﬁ%(q) = mkiﬂ{afg H}jﬂ Agr(n)}
where k(q) = arg ming{arg min, Ay r(n)}.
(iv) Repeat Steps (ii) and (iii) for ¢ = K —1,..., 1. 0

Poskitt and Liitkepohl (1995) show that for a suitable choice of Cr the procedure results in
consistent estimators of the Kronecker indices. In this version of Stage II the coefficient restric-
tions derived from the echelon canonical form are directly incorporated into the identification
stage which may result in a superior performance of the selection procedure. On the other
hand, the computational burden is increased substantially which may be problematic for high
dimensional systems.

In Stages I1I(PL1) and (PL2) we have to assign values for Ay, Pr and Cp. The theoretical
consistency results are quite general and provide an asymptotic justification for many different

values of these quantities. Poskitt and Liitkepohl (1995) propose the following choices:
(1) Choose hy by AIC or use hy = max{(logT)* h(AIC)} where a > 1.
(2) Choose Pr = %hT.
(3) Choose Cr = hylogT or Cr = h.

We will explore different combinations of these rules in the simulation study reported in the
next section.

Another variant of Stage II is inspired by results of Koreisha and Pukkila (1993, 1995),
Koreisha and Yoshimoto (1991) and Pukkila, Koreisha and Kallinin (1990) who propose to fit
a model and then check, via some model selection criterion, whether the residuals are white
noise. Such a procedure can also be used in the present context. Hence, we suggest to fit
models of increasing degrees to each equation of our system and for each degree the residu-

als are checked for being white noise. If they are found to be white the Kronecker index of

7



that equation is fixed and the corresponding dependent variable is placed last in the vector of
variables. In the next steps its Kronecker index remains fixed and its implied restrictions are
observed in the remaining equations for which the row degrees are increased one by one until the
residuals are white noise. Whenever a residual series is found to be white the variable is placed
last in the list of remaining variables, its Kronecker index is fixed and the implied restrictions
are taken into account in the further steps. In this way we end up with a set of nonincreas-

ing Kronecker indices p; > py > -+ > px. Formally this procedure may be described as follows:
g p p p y P y

Stage II(WN):
Set n =0 and [ = 0.
(*) If n = P estimate py = Py for k=1,..., K — [ and stop.

It n < Pr perform the next steps for £ =1,..., K — [. Fit the following models by LS:

Ve = v+ ZEI arjolyie — Gje) + Sy S Qi
J

K- n ~ K n ~
D Doy Ml ey D icnmpy 1 Mkgitl—i + Uk
Denote the residuals by iy, and compute the residual variance 57 (n) = 77! Ethl ui,. Fit AR(q)

models for ¢ =1,...,Q7,
Upt = AUk g—1 + -+ QgUpi—q + gt
by LS, determine the residual variances &zﬁ(q) and compute the values of the criterion

or,r(q) = T'log 52,5(9) + qer

where ¢ is a suitable function of the sample size T" which will be specified below.
If for some k, &p7(q) > Tlogai(n) for all ¢ = 1,...,Qr, replace yx_;; with yx,, choose
Pr-1 = n, increase [ by one and return to (*). Note that &7(n) = &7 (0).

Ifforall k=1,..., K —1, ér1r(q) < T'logci(n) for some ¢, increase n by one and return to

(*)- O

Two possible choices of er are ¢ = log T which corresponds to the Schwarz Criterion (SC')
and er = 2 which corresponds to Akaikes Information Criterion (AIC'). The maximum order
of the Kronecker indices for Stage II(WN) is again proposed to be Pp = £hy. The maximum
order of the AR process fitted to the estimated residuals g, is given by Qr = hy — Pr — 1 in

order to guarantee Py 4+ Qr < hy.



These different variants of Stage Il will be compared in a Monte Carlo experiment in the

following section.

4 Monte Carlo Comparison

4.1 Data Generation Processes

Eight different data generating processes are used in the Monte Carlo study. They are presented
in Table 1. All processes have dimension K = 3 and the error covariance matrix is ¥, = [x.
The error distribution is normal N(0,%,). p = (p1,...,pK) denotes the Kronecker indices
and p is the cointegrating rank. The first DGP is a white noise process with p = (0,0,0),
0=3, v=0,and Ag = I5. The second process consists of independent random walks. Hence,
p=(1,1,1), 0=0, v=0, Ag=15, Ay =—1I3 and M; =0.

The remaining DGPs 3 to 8 all have Kronecker indices p = (2,1,1) and cointegrating rank
o = 1. Their intercept vector is v = 0 except for DGP 4. In order for the DGPs to have a realistic
structure a process estimated by Liitkepohl and Claessen (1997) was taken as a basis and their
estimated coefficient matrices were modified to obtain simple DGPs. The process considered
in their study is based on a four dimensional system of U.S. economic variables. They use
time series consisting of 136 quarterly observations for the years 1954/1 to 1987/4 to fit a
cointegrated VARMA model. The variables are real money stock M1, Gross National Product
(GNP) in billions of 1982 dollars, the discount interest rate on new issues of 91-day treasury
bills (r*), and the yield on long term (20 years) treasury bonds (r'). Liitkepohl and Claessen
(1997) found an estimate p = (2,1,1,1) of the Kronecker indices and determined a cointegrating
rank ¢ = 1. Using roughly the coefficients corresponding to the three variables GNP, M1 and
r® results in the following coefficient matrices of the VARMA model Apy; + A1yi—1 + A2ys_o =
v+ Agus + Miue_1 + Mous_s -

r - - 0.8 0.0 0.8
Ag=My= | 05 1 — |, A= — - — |, A =BC—-Ay— A,
0.0 -—

—
|
|
|



Table 1: Data Generation Processes Used in the Simulations

Data Kronecker | cointegration

generation indices rank

process P 0 other characteristics
DGP 1 (0,0,0) 3 v=20

(white noise)

DGP 2 (1,1,1) 0 v=20

(independent random walks)

DGP 3 (2,1,1) 1 v=20

(medium eigenvalues) AT =10.7,A§" =04

A = 0.6, A7 = —0.5

DGP 4 (2,1,1) 1 v = (0.1,0.2,0.2)
(medium eigenvalues, AT =0.7,A§" =04
nonzero intercept) AT = 0.6, A" = —0.5
DGP 5 (2,1,1) 1 v =10
(large negative MA eigenvalues) AT =10.7,A§" =04

AT — (.95, A0 = —0.7
DGP 6 (2,1,1) 1 v =10
(large positive MA eigenvalues) AT =0.7,A§" =04

AT = .95, AT = 0.7
DGP 7 (2,1,1) 1 v =10
(large negative AR eigenvalues) AT = —0.95, \§" = —0.7

A = 0.6, A7 = —0.5

DGP 8 (2,1,1) 1 v =10
(large positive AR eigenvalues) AP =0.95, A\§" = 0.7

AT = 0.6, AP0 = —0.5
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where

by
B=|b1|, C=|1 —06 03
by
and
—06 — — = mg 0.0 mo
[My:My]=1| 00 00 00 : — — ~—

my 00 mqy : — — =

where some of the parameters are left unspecified to gain flexibility. The coefficients by, m; and
mo appear twice in the coefficient matrices and thereby imply some coefficients to be equal.
The corresponding coefficients of the original restricted coefficient matrices from Litkepohl and
Claessen (1997) are similar in size, too. The echelon form zero restrictions given by (2.3) are
denoted by a bar in order to distinguish them from the freely varying coefficients which have
been set to zero and which are denoted by 0.0 in contrast. The restriction Ag = M, is also part
of the echelon form restrictions.

Note that the cointegrating rank p is the rank of the matrix BC' = Ay + A; + Ay. Hence,
choosing A; = BC — Ay — Aj ensures a cointegrating rank of o = 1. Such a cointegrating rank
in a system of dimension K = 3 requires to have two unit roots in the autoregressive part.
That is, the polynomial det(A(z)) must have two roots at unity. Generally this polynomial
has degree 6(det(A(z))) = Ele pr =: m, see Poskitt (1996), where m is called the McMillan
degree. For the present case we have 6(det(A(z))) =m =2+1+1 =4. Dividing det(A(z)) by
the two unit roots (z — 1) and (z — 1) using polynomial division, gives a polynomial of order
two, the roots of which can be computed easily. Since the eigenvalues \{", ¢ = 1,...,m, of
the autoregressive part are the reciprocals of the roots of the reverse characteristic polynomial
det(A(z)) = det(Ag + Ayz + Az2?), see Liitkepohl (1991, pp. 12 and 455), the resulting scalar

polynomial of order 2, z? + ¢,z + ¢, say, may be written as

(=)= T) = P+ =)t
=: 22—|—012—|—02,

if it is assumed that two real valued zeros of the polynomial exist. Thus, equating ¢; =

(—% — %) and ¢y = W and solving for the variables b; and by of the autoregressive part
1 2 1 1
we obtaln

b= B R(-AT Y+ 2

11



and
by = —1+ %A?U%T .

We may choose A" and A" to take any real value strictly between 1 and —1. The other roots are
given by A" = A}" = 1. The corresponding values of b; and by then lead to the autoregressive
part used in the simulations.

A similar computation is done for the moving average part. The polynomial det(M(z))
= det(Ag + Myz 4+ Myz?) in this special case is of order 2 which is due to the additional zero
restrictions of the moving average coefficient matrices. The resulting expressions for the moving

average parameters my and my are
m _ 3 \me _ \ma
1 — 5 1 2
and

me = 32 AT AP £ ATAL

Again we may choose AT** and A\J** to take any real value between 1 and —1. The corresponding
values of my and my then lead to the desired moving average part.

The eigenvalues of the DGPs 3 to 8 which are not unity have the following characteristics:
DGP 3 : medium AR and medium MA eigenvalues.
DGP 4 : medium AR and medium MA eigenvalues, nonzero v = (0.1,0.2,0.2)".
DGP 5 : medium AR and large negative MA eigenvalues.
DGP 6 : medium AR and large positive MA eigenvalues.
DGP 7 : large negative AR and medium MA eigenvalues.
DGP 8 : large positive AR and medium MA eigenvalues.

These processes which are characterized by the magnitude of their eigenvalues have the follow-
ing real eigenvalues and corresponding coefficients by, by and my, my of the autoregressive and

moving average part.

AR part:

Large positive AR eigenvalues: A{" = 0.95, A" = 0.7 = by = 155 ~ 0.14, by = —% ~0.17.

12



Medium AR eigenvalues: \{" = 0.7, A\{" = 0.4 = b, = 12 ~ (.72, by = — 22 = 0.65.

140 20
Large negative AR eigenvalues: \{" = —0.95, A" = —0.7T = b, = % ~ 4.86, by = —% ~
0.17.
MA part:
Large positive MA eigenvalues: A7"* = 0.95, A\** = 0.7 = m, = —% = 1.05, mqy = % ~ 0.04.
Medium MA eigenvalues: \[** = 0.6, \J** = —0.) = my = % = 0.5, my =0.
Large negative MA eigenvalues: A\["* = —0.95, \J* = —0.7 = mq = 2 = 2.25, my = 32 ~

2.02.

The intercept term v = (0.1,0.2,0.2)" has roughly the same size of the original estimation by
Liitkepohl and Claessen (1997) with one element deleted and the remaining elements rounded
to one digit precision. As will be seen in the simulation study, this intercept of DGP 4 has only

little influence on the estimation of the Kronecker indices.

4.2 Simulation Design

In the following Monte Carlo simulation Stage I is combined with Stages II(PL1), II(PL2), and
II(WN), respectively. These three methods all have in common that they do not condition on
the cointegrating rank p which would have to be estimated in advance otherwise. The methods
PL1, PL2 and WN estimate the individual equations of the system separately and they use
order selection criteria. Since the methods require estimation of the individual equations only,
the computational burden of the order search procedures is reduced dramatically relative to
procedures working on the full system simultaneously. The reason is that the multidimensional
search problem is split into K separate one dimensional search procedures.

In Stage I a choice of the order iz of the long VAR process fitted to the VARMA realizations
has to be made. Moreover, in the different versions of Stage II the weighting functions C'r or
er must be chosen. For Cr the proposals of Poskitt and Liitkepohl (1995) mentioned earlier
will be used. In total the 6 combinations of different long VAR orders hr and penalty terms
C7 and er given in Table 2 are considered.

Strictly speaking for consistency results to hold, a has to be greater than one in (log 7).

Nevertheless it is of interest to check the borderline case ¢ = 1 in Simulation Designs 3 and 4.
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Table 2: Design Characteristics of the Simulations

Design hr Cr cr
1 h(AIC) hrlogT | 2 (WN-AIC)
2 h(AIC) h3. log T' (WN-SC)
3 max{log T, h(AIC)} | hplogT | 2 (WN-AIC)
4 max{log T, h(AIC)} h3. log T' (WN-SC)
5 max{(log T)** h(AIC)} | hrlogT | 2 (WN-AIC)
6 max{(log T)"*, h(AIC)} h log T' (WN-SC)

Of course, hy = max{(logT)*, h(AIC)} with a = 1.5 is greater or equal to hy = max{(log T")*,
h(AIC)} with @ = 1. So the former has a tendancy to fit higher order VARs to the data. It
can be seen in Table 3 that the latter quantity in most cases is strictly greater than the order
chosen by AIC. Exceptions are the DGPs 5 and 6, where the moving average part takes on
extreme (negative or positive) eigenvalues.

The results of methods PL1 and PL2 are influenced by the choice of the penalty function
Cr. For Designs 3 and 4 we have hrlogT < h3 so that in the former there is a tendency to
choose higher row orders and, hence, Kronecker indices than in Design 4. For Designs 5 and 6
the strict inequality hrlogT < h3 holds, whereas for Designs 1 and 2 we have hylog T > h3.
in more than 80 percent of all cases except for DGPs 5 and 6, where hrlog T < k% in more
than 85 percent of all cases (see Table 3). Method WN on the other hand is influenced by the
specific form of the penalty function ¢r. The term ¢y = 2 corresponds to Akaikes Information
Criterion AIC and chooses at least as large orders as ¢y = logT which corresponds to the
penalty term of the Schwarz Criterion SC'. Depending on the penalty function ¢z chosen, the
white noise procedures are denoted by WN-AIC or WN-SC, respectively.

For PL1 and PL2 the maximum Kronecker index was chosen to be Pr = ceﬂ(%hT), where
ceil is the ceiling function which rounds up to the nearest larger integer. Poskitt and Litkepohl
(1995) note that equating the number of freely varying coefficients in each equation of the
ARMAPE system obtained when p, = Pr, &k = 1,..., K, with that in the autoregressive ap-
proximation gives the rule that Pr = %hT should not be exceeded. The value Q7 which is

the maximum order of the autoregressive process fitted to the residuals in Stage II(WN) is

determined by Qv = hy — Pr — 1. Thus, the condition Pr + Qr < hy is fulfilled which is
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Table 3: Percentage of Cases in Designs 1 and 2 where h(AIC) is Greater or equal to the
Deterministic Criterion (log T)*%: P*(h(AIC) > (log T)'°).

DGP T =150 T =500
1 0.05 0.01
2 0.05 0.00
3 0.12 0.04
4 0.16 0.03
3 1.00 1.00
6 0.87 1.00
7 0.14 0.05
8 0.16 0.05

The maximum order for the search by AIC was set to hAIC = 1.5(logT)'° for Designs 1 to 4. This

maximum has not been chosen in any of the replications of Designs 1 and 2. Each percentage tabulated

here has been calculated using all 2 - 200 = 400 replications from Designs 1 and 2.

necessary to avoid zero residual variances &2,5(9)-

For some replications, choosing hr by AIC results in a numerical collinearity problem for
DGP 2 which consists of independet random walks. To overcome this problem a lower bound
ht > 2 should be introduced for methods PLL1 and PL2. This excludes the case Pr = At when
using Pr = ceﬂ(%hT). Thus near collinearity is avoided which occurs between the colums of the
LS regressor matrix if the DGP consits of random walks as in DGP 2. In this simulation study
an even larger lower bound hr > 4 was chosen in order to guarantee )7 = hy — Pr — 1 > 1.
The restriction hy > 4 is acceptable since in practice a long VAR approximation would have
at least this order.

In Stage I an upper bound, AAIC say, for the order of the fitted long VAR process has to
be specified. In Designs 1, 2, 3 and 4 the AIC criterion searches up to a maximum order of
RAIC — 1.5(log T)', whereas the maximum order for AIC in Simulation Designs 5 and 6 is

maxr

RAIC — 1.5(log T)*. That is, AIC is computed for orders which are up to 50 percent higher

maxr

than the values of the deterministic order criteria (log7")* with @ = 1 and a = 1.5 respectively.

hAIC

- was never chosen this bound for the order of the

Since in Designs 1 and 2 the maximum

long VAR process seems to be sensible.
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In Stages II(PL2) and II(WN) it is important to avoid a bias introduced by introducing
an a proiri ordering of the variables. Therefore, from all variables not yet fixed which have
the same smallest estimated Kronecker index one variable is chosen randomly and fixed for the
following steps. Another rule to be checked in future simulations is, of course, to choose among
all variables with the same smallest estimated Kronecker index the one which has the smallest
value of the order selection criterion. This alternative rule also avoids an influence of a specific
given order of the variables.

In the simulation study the number of replications was set to 200. When a new time series is
generated its presample values are set to zero and 50 observations are discarded at the beginning

of the time series. Only the last 77 = 150 or T3 = 500 observations are kept.

4.3 Simulation Results

In Tables 4 to 9 all sets of estimated Kronecker indices and their relative frequencies are
presented. A set p of Kronecker indices is listed if it has been chosen by at least one of the three
procedures PL1, PL2 or WN in more than 10 percent of the replications. For each DGP the
rows are sorted by the mean percentage. The true set p of Kronecker indices is always presented
even if it has been chosen in less than 10 percent of the replications by all the procedures. The
true set of Kronecker indices is marked by an asterisk. Figures 1 to 3 show an extract of the
information from Tables 4 to 9 to provide a quick overview of some important results. For
each of the three methods, PL1, PL2 and WN, the relative frequency of replications is shown
for estimating the Kronecker indices correctly. These three figures give a good impression of
the performace of the three methods since the true set of Kronecker indices is often identified
in more than 50 percent of the replications and so the majority of replications is included in
Figures 1 to 3. Before interpreting the results, it should be mentioned that the methods PL1
and PL2 are consistent under suitable conditions as shown in Poskitt and Liitkepohl (1995),
whereas no such results exist for the WN method.

When looking at Figures 1 to 3 it becomes evident that the WN method cannot be recom-
mended because, for instance, the processes DGP 3 and DGP 4 are identified correctly in less
than 20 percent of the replications irrespective of the choice of hr or er. However, it must be
admitted that the method WN is not working terribly bad, since in the case of medium moving

average eigenvalues as for example in DGPs 3 and 4 we have my = 0 and therefore M; = 0.
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Thus the maximum moving average order is only 1. So it is not surprising that the Kronecker
indices are often estimated to be p = (1,1,1). This is exactly what we can see from Table 9,
for example, where for DGPs 3 and 4 the Kronecker indices p = (1,1,1) have been estimated
with relative frequencies ranging from 71 up to 91 percent. However, as can be seen there as
well, these estimates are also found frequently by the PL.1 and PL2 methods. Overall, based on
the frequency of correctly estimating the Kronecker indices the result is that the WN method
cannot compete with the PL1 and PL2 methods.

It can be seen in Tables 4 to 9 that the estimated Kronecker indices presented, in some
cases sum up to less than 70 percent in total for the WN method. This is because there is a
relatively high dispersion over the whole range of orders up to the maximum order Pr even for
the large sample size Ty = 500. Of course, the dispersion of WN is reduced a bit in Designs 1
and 2 where hy = h(AIC) often is relatively small and therefore Pr = Ceﬂ(%hT) is relatively
small, too. But even in these cases the performance of WN is not improved. It is still not quite
clear why WN does not work well given that it was found to perform well in other studies.
One possible explanation is that the residual white noise test is applied here to residuals from
a nonstationary time series whereas Koreisha and Pukkila proved a good performance only for
multivariate stationary series (Koreisha and Pukkila (1993)) or for univariate series which have
been made stationary by differencing (Koreisha and Pukkila (1995)). If WN is used at all, the
method WN-SC, see Designs 2, 4 and 6, should be used since it has a better performance than
WN-AIC which is used in Simulation Designs 1, 3 and 5. This result is in line with Koreisha
and Pukkila (1993, 1995) who found that their residual white noise test in conjunction with
the AIC penalty function often overestimates the true orders.

When comparing Figures 1 and 2 it can be seen that the method PL2 is always more
successful in finding the true model structure than PL1. The corresponding figures from Table 7,
e.g., show that there is an increase of approximately 20 percentage points for estimating the true
Kronecker indices when using PL2. Thus, incorporating the echelon form restrictions already
during the sequential specification procedure as in PL2 helps in estimating the Kronecker indices
correctly. The method PL2 is the best of all three methods compared within this study. The
percentage of correctly estimated Kronecker indices is quite high given that each single index
has to be specified correctly to be counted here. The performace of PL2 in Simulation Designs

1 to 4 is very similar. Using the penalty function C'r = h3 as in Designs 2 and 4 is slightly
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preferable.

In Stage I the long VAR order should be chosen as hr = max{(log T)*, h(AIC)} with a = 1
when used in conjunction with PL2 since this Ay leads to a performance similar to that in
Simulation Designs 1 and 2 and it also satisfies the requirement that Az should increase at
least with rate log T'. This requirement is used for deriving asymptotic results as pointed out
by Poskitt and Liitkepohl (1995, p. 13). For DGP 5 the choice hy = max{(logT)*, h(AIC)}
with @ = 1.5 is preferable, however. In summary, we have a recommendation for all pro-
cesses except for processes with strongly negative eigenvalues of the moving average part
(DGP 5): it is recommended to use the method PL2 in conjunction with long VAR order
hr = max{(logT)*, h(AIC)} and @ = 1 for Stage I and penalty function C7 = A3 for Stage II,
as in Simulation Design 4. Of course, an argument in favor of C'r = h3. is parameter parsimony
since this choice of Cr has a tendancy to result in lower orders. As can be seen from Table 7 if
the set of Kronecker indices is not estimated exactly correct the deviations are only small ones.
In the majority of these cases only one Kronecker index differs slightly from the true one. In
this sense the PL2 method provides reliable estimates of the Kronecker indices.

There are some observations which can be made throughout Simulation Designs 1 to 6. If
the eigenvalues of the MA part are strongly negative (DGP 5) none of the procedures is working
well. As can be seen from Table 9, for example, there is a strong tendency to overestimate the
third Kronecker index. This is plausible because in Stage I the autoregressive order hr of the
VAR process presumably is not high enough in order to approximate a moving average part
with large negative eigenvalues. As can be seen from Figure 2, Simulation Design 6 with a
large value of hy = max{(log7)*, h(AIC)} with @ = 1.5 is most succesful in estimating the
true Kronecker indices of DGP 5. For DGP 5 and DGP 6 with extreme (positive or negative)
moving average eigenvalues increasing the sample size from T} = 150 to Ty = 500 does not help
in estimating the true Kronecker indices with a higher probability. For the DGPs 3 and 4 all
three methods lead to very similar estimated Kronecker indices. Obviously the chosen intercept
term v has no substantial impact on the results.

A property all methods have in common is that they are able to estimate the very simple
processes DGP 1 (white noise) and DGP 2 (independent random walks) reliably. Of course when
the structures become more complicated the method PL2 dominated as already mentioned.

In summary, the PL2 method is preferred over PL.L1 and WN. It should be used together
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with Ay = max{(log T)*, h(AIC)} and « = 1 and Cp = h%. Although the methods PL1 and
PL2 often behave similarly, PL2 is usually more successful in finding the true Kronecker indices.
Hence, the additional computational burden for PL2 seems to be justified at least for processes

of moderate dimension.

5 Conclusions

The echelon form can be used to parameterize cointegrated VARMA models. The main ad-
vantage of cointegrated VARMA models against standard cointegrated VAR models is their
parameter parsimony together with the implied potential improvement in forecast precision.
The Kronecker indices which characterize the echelon form have to be estimated at the speci-
fication stage before conducting a detailed VARMA cointegration analysis. In this paper two
stage procedures are investigated. In Stage I, a long VAR(hr) approximation is fitted to the
data. Stage I is followed by one of three alternative versions of Stage II. These three different
methods for estimating the Kronecker indices of cointegrated echelon form VARMA models are
discussed and compared in a simulation study.

The methods discussed here estimate the equations of the system separately and selection
criteria are applied to these equations or to their residuals as in the case of the method WN.
Due to this setup, the computer intensive multidimensional full search procedures (see e.g.
Liitkepohl (1991, section 8.3.2)) known from the stationary case are split into one dimensional
search procedures. The computational complexity is very moderate because all necessary cal-
culations are exclusively based on linear least squares methods.

The Monte Carlo simulations show that a reliable estimate of the Kronecker indices is
possible with a sample size of T" = 150. It is suggested that the method PL2 should be
preferred over PL1 and WN. PL2 should be used in combination with a long VAR order
hr = max{(logT)*, h(AIC)} with a« = 1 and penalty function C7 = h3.. Although PL1 and
PL2 often behave similarily, PL.2 is more successful in finding the true Kronecker indices since
the echelon restrictions found in preceeding steps of the sequential specification procedure are
immediately incorporated into the estimation process. The additional computational burden of
PL2 seems to be justified at least for processes of moderate dimension since the probability of
estimating the Kronecker indices correctly increases a bit when using PL2 instead of PL1. The

method WN cannot be recommended for at least two reasons. First, in some cases it estimates
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the true Kronecker indices much less frequently than the other methods. Second, for most cases
considered here, its performance does not improve much when the sample size increases and,
thus, more sample information becomes available.

An interesting extension of this simulation study might be to include a procedure proposed
by Poskitt (1996). This method fits into the framework considered here because the equations
are estimated separately and a selection criterion is used as well. This method is similar to
Stage II(PL2) but the time series is not analyzed in levels but the error correction form of the
ARMAE system is used. This, of course, requires the estimation of the cointegrating rank and

the cointegrating basis in a prior step.
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Table 4: Relative Frequencies of Estimated Kronecker Indices. Design 1: hg chosen by AIC,
Cr =hrlogT, ey =2 (WN-AIC). The true indices are marked by an asterisk.

T=150 T=500
(P1, P2.Ps) PL1 | PL2 | WN (P1, P2.Ps) PL1 | PL2 WN
DGP 1 p=(0,0,0)
(0,0,0)" 0.99 1.00 0.55 (0,0,0)" 1.00 1.00 0.54
(1,0,0) 0.00 0.00 0.13 (1,0,0) 0.00 0.00 0.14
(0,0,1) 0.01 0.00 0.12 (0,0,1) 0.00 0.00 0.12
DGP 2 p=(1,1,1)
(1,L,L)* | 099 0.99 073 | (@11 | roo | 100 0.80
DGP 3 p=(2,1,1)
(1,L1,1) 0.55 0.31 0.69 (1,L1,1) 0.59 0.10 0.66
(2.1,1)" 0.40 0.63 0.10 (2.1,1)" 0.41 0.70 0.14
(1,2,1) 0.00 0.20 0.07
DGP 4 p=(2,1,1)
(1,L1,1) 0.57 0.30 0.69 (1,L1,1) 0.61 0.07 0.67
(2.1,1)" 0.33 0.59 0.07 (2.1,1)" 0.37 0.69 0.12
(1,2,1) 0.00 0.23 0.09
DGP 5 p=(2,1,1)
(2,1,3) 0.37 0.62 0.09 (2,1,2) 0.55 0.23 0.13
(2,1,2) 0.47 0.17 0.14 (2,1,3) 0.20 0.56 0.11
(2,1,4) 0.05 0.13 0.20 (2,1,4) 0.01 0.04 0.14
(2.1,1)" 0.01 0.03 0.10 (1,1,2) 0.14 0.00 0.00
(2.1,1)" 0.01 0.04 0.05
DGP 6 p=(21,1)
(2.1,1)" 0.61 0.76 0.24 (2.1,1)" 0.57 0.74 0.20
(2,1,2) 0.15 0.15 0.16 (2,1,2) 0.12 0.10 0.16
(1,L,1) 0.17 0.04 0.09 (1,L,1) 0.29 0.00 0.01
(1,2,1) 0.00 0.15 0.03
(2,1,3) 0.00 0.00 0.14
DGP 7 p=(2,1,1)
(2.1,1)" 0.53 0.72 0.33 (2.1,1)" 0.56 0.72 0.36
(1,2,1) 0.00 0.23 0.40 (1,2,1) 0.00 0.27 0.29
(1,L1,1) 0.41 0.00 0.01 (1,L1,1) 0.42 0.00 0.00
DGP 8 p=(2,1,1)
(2.1,1)" 0.6 0.83 0.38 (2.1,1)" 0.61 0.80 0.39
(1,L1,1) 0.26 0.01 0.17 (1,2,1) 0.00 0.20 0.41
(1,2,1) 0.00 0.10 0.23 (1,L1,1) 0.39 0.00 0.01
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Table 5: Relative Frequencies of Estimated Kronecker Indices. Design 2: hy chosen by AIC,
CT = h%«, cT = 10gT (WN*SC)

T=150 T=500
(p1, P2s p3) PL1 | PL2 | WN (p1, P2s p3) PL1 | PL2 | WN
DGP 1 p=(0,0,0)
(0,00 | 097 [ 099 [ 08 || (000 | 093 | 098 | 09
DGP 2 p=(1,1,1)
Ly | 097 [ 097 [ o097 | iy | o097 | 100 | 097
DGP 3 p=(2,1,1)
(1,1,1) 0.49 0.31 0.93 (2.1,1)" 0.63 0.84 0.03
(2,1,1)" 0.39 0.59 0.01 (1,1,1) 0.33 0.04 0.95
DGP 4 p=(2,1,1)
(1,1,1) 0.49 0.26 0.97 (1,1,1) 0.41 0.04 0.95
(2,1,1)" 0.39 0.59 0.01 (2,1,1)" 0.53 0.77 0.03
(1,2,1) 0.00 0.14 0.01
DGP 5 p=(2,1,1)
(2,1.,2) 0.42 0.25 0.12 (2,1.,2) 0.30 0.24 0.15
(2,1.,3) 0.14 0.38 0.12 (2,1.,3) 0.10 0.32 0.06
(2,1,1)" 0.10 0.20 0.23 (1,1,2) 0.41 0.00 0.00
(1,2,1) 0.00 0.09 0.23 (1,2,1) 0.00 0.20 0.21
(1,1,2) 0.20 0.00 0.00 (2,1,1)" 0.04 0.12 0.21
(1,2,2) 0.00 0.00 0.16 (1,2,2) 0.00 0.00 0.21
DGP 6 p=(2,1,1)
(2,1,1)" 0.39 0.62 0.42 (2,1,1)" 0.37 0.66 0.52
(1,1,1) 0.47 0.25 0.38 (1,1,1) 0.61 0.07 0.23
(1,2,1) 0.00 0.26 0.04
DGP 7 p=(2,1,1)
(2,1,1)" 0.62 0.81 0.42 (2,1,1)" 0.68 0.84 0.40
(1,2,1) 0.00 0.12 0.42 (1,2,1) 0.00 0.12 0.43
(1,1,1) 0.25 0.00 0.03 (1,1,1) 0.23 0.00 0.00
DGP 8 p=(2,1,1)
(2,1,1)" 0.57 0.72 0.51 (2,1,1)" 0.69 0.85 0.49
(1,1,1) 0.28 0.07 0.39 (1,2,1) 0.00 0.10 0.41
(1,1,1) 0.23 0.00 0.07
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Table 6: Relative Frequencies of Estimated Kronecker Indices. Design 3: hy = max{(log T")*,
h(AIC)} where a = 1.0, Cr = hrlogT, cp =2 (WN-AIC).

T=150 T=500
(p1, P2s p3) PL1 PL2 WN (p1, P2s p3) PL1 | PL2 | WN
DGP 1 5= (0,0,0)
(0,0,0)* 0.99 1.00 0.51 (0,0,0)* 1.00 1.00 0.34
(0,1,0) 0.00 0.00 0.13 (0,0,1) 0.00 0.00 0.14
(0,0,1) 0.01 0.00 0.11
DGP 2 p=(1,1,1)
(1,1,1)* 0.99 1.00 0.73 | (@11 | roo | 100 0.65
DGP 3 p=(2,1,1)
(1,1,1) 0.56 0.35 0.69 (2,1,1)" 0.45 0.73 0.18
(2,1,1)" 0.39 0.60 0.10 (1,1,1) 0.55 0.13 0.40
(1,2,1) 0.00 0.14 0.15
DGP 4 p=(2,1,1)
(1,1,1) 0.57 0.29 0.77 (2,1,1)" 0.39 0.69 0.17
(2,1,1)" 0.34 0.63 0.04 (1,1,1) 0.61 0.16 0.42
(1,2,1) 0.00 0.14 0.13
DGP 5 p=(2,1,1)
(2,1,3) 0.36 0.51 0.09 (2,1,3) 0.32 0.59 0.09
(2,1,2) 0.42 0.22 0.14 (2,1,2) 0.48 0.20 0.08
(2,1,4) 0.07 0.16 0.16 (2,1,1)" 0.01 0.05 0.07
(2,1,1)" 0.01 0.03 0.07
DGP 6 p=(2,1,1)
(2,1,1)" 0.53 0.71 0.23 (2,1,1)" 0.58 0.75 0.18
(2,1,2) 0.14 0.14 0.18 (1,1,1) 0.33 0.01 0.01
(1,1,1) 0.26 0.10 0.07 (1,2,1) 0.00 0.19 0.04
(2,1,2) 0.04 0.06 0.11
(2,1,3) 0.00 0.00 0.15
DGP 7 p=(2,1,1)
(2,1,1)" 0.68 0.85 0.41 (2,1,1)" 0.58 0.79 0.39
(1,2,1) 0.00 0.10 0.32 (1,2,1) 0.00 0.21 0.27
(1,1,1) 0.24 0.00 0.00 (1,1,1) 0.41 0.00 0.00
DGP 8 p=(2,1,1)
(2,1,1)" 0.71 0.89 0.46 (2,1,1)" 0.56 0.80 0.38
(1,1,1) 0.24 0.04 0.17 (1,1,1) 0.44 0.00 0.01
(1,2,1) 0.00 0.04 0.17 (1,2,1) 0.00 0.20 0.21
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Table 7: Relative Frequencies of Estimated Kronecker Indices. Design 4: hy = max{(log T")*,
Rh(AIC)} where a = 1.0, Cr = h%, cr =logT (WN-SC).

T=150 T=500
(p1, P2s p3) PL1 | PL2 | WN (p1, P2s p3) PL1 | PL2 | WN
DGP 1 p=(0,0,0)
(0,0,0)" 099 | 100 | 089 [ (000 | 100 | 100 | 092
DGP 2 p=(1,1,1)
(1,1.1)" 099 | oo | 096 | (i1 | roo | 100 | 097
DGP 3 p=(2,1,1)
(1,1,1) 0.62 0.44 0.93 (1,1,1) 0.56 0.22 0.97
(2,1,1)" 0.33 0.55 0.02 (2,1,1)" 0.44 0.73 0.01
DGP 4 p=(2,1,1)
(1,1,1) 0.60 0.33 0.93 (1,1,1) 0.51 0.14 0.94
(2,1,1)" 0.36 0.61 0.01 (2,1,1)" 0.48 0.76 0.02
DGP 5 p=(2,1,1)
(2,1.,2) 0.41 0.26 0.14 (2,1.,2) 0.35 0.23 0.18
(2,1.,3) 0.12 0.34 0.04 (2,1,1)" 0.08 0.17 0.27
(2,1,1)" 0.08 0.15 0.26 (2,1.,3) 0.06 0.30 0.07
(1,2,1) 0.00 0.14 0.22 (1,1,2) 0.34 0.00 0.00
(1,1,2) 0.24 0.00 0.01 (1,2,1) 0.00 0.14 0.18
(1,2,2) 0.00 0.00 0.20 (1,2,2) 0.00 0.00 0.21
(1,2,3) 0.00 0.14 0.05
DGP 6 p=(2,1,1)
(2,1,1)" 0.43 0.68 0.51 (2,1,1)" 0.29 0.66 0.52
(1,1,1) 0.45 0.17 0.30 (1,1,1) 0.69 0.07 0.28
(1,2,1) 0.00 0.27 0.04
DGP 7 p=(2,1,1)
(2,1,1)" 0.63 0.76 0.41 (2,1,1)" 0.59 0.84 0.58
(1,2,1) 0.00 0.21 0.37 (1,2,1) 0.00 0.16 0.40
(1,1,1) 0.34 0.00 0.02 (1,1,1) 0.41 0.00 0.00
DGP 8 p=(2,1,1)
(2,1,1)" 0.67 0.87 0.53 (2,1,1)" 0.62 0.78 0.48
(1,1,1) 0.28 0.03 0.33 (2,2,1) 0.01 0.21 0.46
(1,1,1) 0.37 0.00 0.01
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Table 8: Relative Frequencies of Estimated Kronecker Indices. Design 5: hy = max{(log T")*,
h(AIC)} where a = 1.5, Cr = hrlogT, er =2 (WN-AIC).

T=150 T=500

(p1, P2s p3) PL1 | PL2 | WN (p1, P2s p3) PL1 | PL2 | WN
DGP 1 5= (0,0,0)

(000 | roo | oo | o020 | (000 | 100 | 100 | 018
DGP 2 p=(1,1,1)

(L, | roo | roo | o038 | oy | 100 | 100 | 041
DGP 3 p=(2,1,1)

(1,1,1) 0.89 0.84 0.20 (1,1,1) 0.86 0.48 0.10

(2,1,1)" 0.11 0.16 0.07 (2,1,1)" 0.14 0.52 0.14
DGP 4 p=(2,1,1)

(1,1,1) 0.93 0.84 0.11 (1,1,1) 0.83 0.45 0.17

(2,1,1)" 0.07 0.15 0.04 (2,1,1)" 0.17 0.56 0.14
DGP 5 p=(2,1,1)

(2,1,3) 0.47 0.72 0.02 (2,1,3) 0.43 0.79 0.07

(2,1,2) 0.45 0.15 0.10 (2,1,2) 0.51 0.15 0.04

(2,1,5) 0.00 0.00 0.14 (2,1,4) 0.00 0.01 0.17

(2,1,1)" 0.04 0.07 0.01 (2,1,5) 0.00 0.00 0.13

(2,1,1)" 0.00 0.02 0.01
DGP 6 p=(2,1,1)

(0,1,1) 0.46 0.45 0.00 (2,1,1)" 0.68 0.83 0.12

(2,1,1)" 0.28 0.40 0.11 (1,1,1) 0.33 0.09 0.00

(1,1,1) 0.24 0.13 0.00
(2,1,2) 0.01 0.01 0.14

DGP 7 p=(2,1,1)

(2,1,1)" 0.85 0.94 0.12 (2,1,1)" 0.88 0.95 0.18

(1,1,1) 0.14 0.00 0.00 (1,1,1) 0.12 0.00 0.00

(2,1,2) 0.00 0.00 0.14 (2,1,2) 0.00 0.00 0.11
DGP 8 p=(2,1,1)

(2,1,1)" 0.57 0.76 0.12 (2,1,1)" 0.80 0.89 0.24

(1,1,1) 0.42 0.23 0.01 (1,1,1) 0.20 0.00 0.00

(1,2,1) 0.00 0.11 0.04
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Table 9: Relative Frequencies of Estimated Kronecker Indices. Simulation 6: Ay = max{(log 7%,

R(AIC)} where a = 1.5, Cr = h%, cr =logT (WN-SC).

T=150 T=500
(p1, P2s p3) PL1 | PL2 | WN (p1, P2s p3) PL1 | PL2 | WN
DGP 1 p=(0,0,0)
(0,0,0)" 100 | 100 | 080 | (0,00) 100 | 100 | 094
DGP 2 p=(1,1,1)
(1,1.1)" 079 | 070 | 091 | (111 100 | 100 | 0.98
DGP 3 p=(2,1,1)
(1,1,1) 0.64 0.64 0.73 (1,1,1) 1.00 1.00 0.88
(0,1,1) 0.33 0.34 0.00 (2,1,1)" 0.00 0.00 0.05
(1,1,2) 0.00 0.00 0.12
(2,1,1)" 0.00 0.00 0.04
DGP 4 p=(2,1,1)
(1,1,1) 0.61 0.61 0.71 (1,1,1) 1.00 1.00 0.91
(0,1,1) 0.36 0.38 0.00 (2,1,1)" 0.00 0.00 0.04
(1,1,2) 0.00 0.00 0.13
(2,1,1)" 0.00 0.00 0.03
DGP 5 p=(2,1,1)
(1,1,1) 0.79 0.26 0.01 (1,1,1) 0.89 0.00 0.00
(2,1,1)" 0.03 0.42 0.16 (2,1,1)" 0.01 0.54 0.26
(1,2,1) 0.00 0.16 0.14 (1,2,1) 0.00 0.45 0.10
(1,1,0) 0.14 0.12 0.00 (2,1.,2) 0.01 0.01 0.14
(2,1.,2) 0.01 0.02 0.21 (1,2,2) 0.00 0.00 0.15
(1,2,2) 0.00 0.00 0.17 (2,1.,3) 0.00 0.01 0.12
(2,1.4) 0.00 0.00 0.12
DGP 6 p=(2,1,1)
(0,1,1) 0.55 0.69 0.00 (1,1,1) 0.76 0.35 0.05
(0,0,1) 0.26 0.14 0.00 (2,1,1)" 0.00 0.40 0.69
(2,1,1)" 0.00 0.00 0.40 (0,0,1) 0.24 0.24 0.00
(2,1.,2) 0.00 0.00 0.20
(1,1,1) 0.00 0.00 0.20
(0,0,0) 0.18 0.00 0.00
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Table 9 (continued): Relative Frequencies of Estimated Kronecker Indices. Design 6: hy =
max{(log T')*, h(AIC)} where a = 1.5, Crp = h%, cr =logT (WN-SC).
T=150 T=500
(prpps) | PLL | PL2 | WN [ (jjops) | PLL | PL2 | WN
DGP 7 p=(2,1,1)
(1,1,1) 0.96 0.37 0.02 (2,1,1)* 0.00 0.53 0.61
(2,1,1)* 0.02 0.43 0.45 (1,1,1) 1.00 0.00 0.00
(1,2,1) 0.00 0.20 0.20 (1,2,1) 0.00 0.47 0.34
(2,1,2) 0.00 0.00 0.14
DGP 8 p=(2,1,1)
(1,1,1) 0.98 0.86 0.12 (1,1,1) 1.00 0.47 0.01
(2,1,1)* 0.00 0.12 0.47 (2,1,1)* 0.00 0.54 0.58
(1,2,1) 0.00 0.00 0.15 (1,2,1) 0.00 0.00 0.36
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Figure 1: Method PL1. Relative Frequencies for Estimating the True Set of Kronecker Indices
Correctly.
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Figure 2: Method PL2. Relative Frequencies for Estimating the True Set of Kronecker Indices
Correctly.
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Figure 3: Method WN. Relative Frequencies for Estimating the True Set of Kronecker Indices

Correctly.
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