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HOW TO IMPROVE ACCURACY OF ESTIMATION�

LEPSKI O�V�

Humboldt Universit�at zu Berlin�
Spandauer str� �� ����� Berlin� Germany

Abstract� The new approach� allowed to take into account some additional in�
formation� coming from datas� is proposed� The main idea is to obtain from datas
some information about structure of the model in order to improve accuracy of
estimation� It seems to be important� since standard nonparametric accuracy of
estimation is usually very low� To improve one statisticians often impose some
additional structure on considerable model� that can lead to inadequate model�
To avoid both these disadvantages special form of estimation procedure� based on
some combination of adaptive technique and hypothesis testing� is applied� From
mathematical point of view it leads to the consideration of new kind of minimax
risks� From practical point of view it allows to improve accuracy of estimation
procedures even for the cases when guess on special structure of a model turns
out to be wrong�

�� Introduction

The paper deals with the approach� allowing to improve the quality of estimation
procedures� This approach is general and one can be applied to any statistical
model and to an arbitrary structural assumptions� By this reason� it is convenient
to present all general de	nitions and to explain approach itself in terms of abstract
statistical model� in other words� in terms of the sequence of statistical experiments�

see Ibragimov and Khasminskii 
������ Let
�
X ��B��P�

f � f
�� � 
�
be the statistical

experiment� generated by the observation X�� Here 
X ��B�� be some measurable
space� P�

f is the probability measure� de	ned on this space� � � 
�� �� is the small
parameter and later on the asymptotics will be studied w�r�t� � � �� The set  is
some given set of functions� determined on the Euclidean spaceRs � f
�� � Rs � R��
Here and later we assume that

 � s
L� �

�
f
�� � sup

t������s
jf
t�j � L ��

�
�

for some L � �� For �� � p � � denote

kf
��kp �
��
�
�R

�����s jf
t�jpdt
� �
p � � p ���

supt������s jf
t�j p ���

and consider the minimax risk on the set �
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R�

�
�f��� ��
�

�
� sup

f�����
E�
f

n
���� 
�k �f�
��	 f
��kp

oq
� 
����

where �f�
t� � �f�
t�X��� t � ��� ��s is some estimator� i�e� a function� de	ned on ��� ��s
and being measurable w�r�t� observation X� � E�

f is mathematical expectation
w�r�t� measure P�

f � q � � is some 	xed number� and ��
� � � is normalizing
factor 
n�f��� i�e� ��
�� � � as �� � �
Normalizing factor ��
� is called minimax rate of convergence 
MRC� if


 lim inf��� inf �f� R
�
�f��� ��
�

�
� ��


 lim sup���R
�
�f��� ��
�

�
��

for some estimator �f� � which is called asymptotically e�cient 
a�e�� in minimax
sense�
Along the paper� the set  is assumed to be such that MRC ��
� and a�e�

�f�
�� exist and they are known� Note� that MRC can be treated as an accuracy of
estimation� As it follows from the de	nition of MRC� this accuracy is attainable
and unimprovable in minimax sense� However� what should a statistician do in
the situation� when the accuracy of estimation is bad� say� ��
� tends to zero
too slowly� Can one be improved� The answer on last question is� of course�
negative under consideration of minimax risks of type 
����� On the other hand� the
consideration of other types of minimax risks would possibly lead to the positive
solution of this problem� Before than to answer this question� we should answer
another one� why do we hope that such improvement is possible on principle� One
of the answers� which seems to be reasonable� consists in the following� Let us
suppose we have strong suspicion 
hypothesis�

H� � f
�� � �� � � �

It is supposed to be known that there exist an estimator �f ���� and the n�f� �� 
�� �
being MRC on � � such that


 lim sup���R�

�
�f ���� ��� ��
��

�
���


 �����
����

� �� as �� ��

where for an arbitrary estimator �f�

R�

�
�f���� ��
��

�
� sup

f������

E�
f

n
���� 
��k �f�
��	 f
��kp

oq
� 
����

Thus� the hope on improvement of accuracy of estimation is based on the hypothesis
on belonging an estimated function to the set � � where more precise estimation
procedures are available� In this context there are� at least� two possibilities to give
the mathematical sense to the words �improvement of accuracy of estimation�� The
	rst one is to use so�called adaptive approach� This approach is very popular last
time and there exist a lot of publications on this topic� One could mention the
papers ��������� ���������� ���� and ���� among others�
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���� Adaptive approach� The setup of adaptive estimation� reduced to our pur�
poses� consists in the following� one needs to 	nd an estimator f �a�� 
�� such that

lim sup
���

R�

�
f �a�� �� ��
�

�
��� 
����

lim sup
���

R�

�
f �a�� ��� ��
��

�
���

Any estimator� satisfying 
����� is called adaptive� The de	nition of the adaptive
estimator can be done in the following� equivalent 
����� form� Put

���
f� �

��
��� 
�� f
�� � ��

�� 
� f
�� �  n ��

and consider the risk� which could be called adaptive�

R�a�
�

�
�f��

�
� sup

f�����
E�
f

n
����
f�k �f�
��	 f
��kp

oq
� 
����

Then adaptive estimator f �a�� 
�� is an estimator� providing the 	niteness of the risk

����� i�e�

lim sup
���

R�a�
�

�
f �a�� �

�
��� 
����

see Lepski and Spokoiny 
����a� for more details on risks of type 
����� Obviously�
conditions 
���� and 
���� are equivalent� Note also two important facts�
First� considering risks of type 
����� we leave the frameworks of standard minimax

approach� because now n�f� can depend on function to be estimated� However� any
estimator f �a�� � satisfying 
����� is a�e� estimator on the set  w�r�t� the minimax
risk 
����� It follows from the facts that ��
� is MRC on  � and ���
f� � ��
�
for �f
�� � �
Next� consider the set of pairs 
a�� b�� � where � � a� � b� � ��
� �
Denote by M� the set of n�f� ���
f�� f
�� �  � represented as

��
f� �

��
�a� f
�� � ��

b� f
�� �  n ��

����

For ���
�� � M� introduce the risk

R�a�
�

�
�f��� ��
��

�
� sup

f�����
E�
f

n
��
����k �f�
��	 f
��kp

oq
�

Note that ���
f� � M� and R�a�
�

�
�f��

�
� R�a�

�

�
�f��� ���
��

�
� The following two

statements are the simplest consequence of the fact that ��
� and ��
�� are
MRC on the sets  and � respectively�
For ���
�� � M� such that b����
�� � � as �� �

lim inf
���

inf
�f�
R�a�
�

�
�f��� ��
��

�
� ��
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For ���
�� � M� such that a����
��� � � as �� �

lim inf
���

inf
�f�
R�a�
�

�
�f��� ��
��

�
� ��

Two last results together with 
���� allow to make the conclusion� that n�f� ���
�� is
optimal among n�f��s of type 
�����
Unfortunately� even having constructed an adaptive estimator f �a�� 
�� � satisfying


����� one can say nothing on its accuracy of estimation� It is because� the n�f� ���
f� �
describing this accuracy� depends on an estimated function and� therefore� one is
unknown� More exactly� n�f� ���
�� depends on information whether function f
��
belongs to the set � or not� Since such sort of information can not be obtained
from noisy datas exactly� one can only state the �theoretical optimality� of the
estimator f �a�� 
�� � which follows from mentioned above optimality of n�f� ���
�� �
On the other hand� it seems reasonable to test the hypothesis H� 
hypothesis on
belonging of an estimated function to the set � � and then to use obtained results
for the construction of estimators and for study their properties� in particular� the
accuracy of estimation� It is evident� a result of a testing is random� one may be
true� may be not� but we might expect the receiving some additional information
the use of which would be natural�
These reasonings lead us to the following idea 
second possibility� how to improve

accuracy of estimation� This idea consists in the consideration of minimax risks
with random normalizing factors of special type�

���� Minimax risks with random normalizing factor� By analogy with 
�����
for �� � 
�� �� let us consider the family of bounded� measurable w�r�t� X� random
variables �� � taking two values f��
�g and fa�g � where � � a� � ��
� � For

every such �� and for every estimator �f�
�� introduce the risk
R�r�
�

�
�f��� ��

�
� sup

f�����
E�
f

n
��
��k �f�
��	 f
��kp

oq
� 
����

Note� that considering risks of type 
����� we understand an improvement of accuracy
of estimation as the ful	llment of the event f�� �� ��
�g � Since it is random event�
we have to be sure� that one holds in somehow sense� Otherwise� the following
arti	cial example

�� �

��
�� �
��
� otherwise

shows the formality of the notion �improvement�� We had no such di�culties un�
der consideration of the adaptive risk 
����� since ���
f� � ��
�� �� ��
� for
�f
�� � � � Remember� however� that theoretical possibility to improve the accu�
racy of estimation is connected with the acceptance of the hypothesis H� � So� let us
demand� that event f�� �� ��
�g holds for functions� belonging to the set � � In
order to give these words mathematical sense� introduce the following subfamily  �

of random normalizing factors 
r�n�f��� Let � � 	 � � be some given number and
let 
�� � � 
�� �� be some 	xed function such that � � 
� � � 	 	 for �� � 
�� �� �
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We will say that r�n�f� �� �  � if

lim sup
���


��� sup
f������

P�
ff�� � ��
�g � ��

Note� that we do not require 
� � � as � � � � in particular one can take 
� �

 � � for �� � 
�� �� � In fact  � �  � 

�� � but we will omit the dependence on

��� in the notation� because further all statements are formulated for an arbitrary
but 	xed 
��� � The sense of the condition �� �  � is rather natural� One means
that for �f
�� � � and for ��� �  �

P�
ff�� �� ��
�g  �	 
�  �	 	 � �

for all enough small � � 
�� �� � The last inequality means that the probability of
the �improvement of accuracy of estimation� is positive� at least� for each function�
belonging to the set � � On 	rst look� it seems reasonable to choose 
� � tending
to zero� �� �� as fast as possible� It would guarantee

P�
ff�� �� ��
�g � �� �� �� �f
�� � ��

However� as we will see later on� the choice of 
� is delicate problem� and at a
moment we require only � � 
� � � 	 	 � Note also� that the introduction of the
subfamily  � allows us to de	ne an optimal r�n�f� and asymptotically e�cient w�r�t�
risk 
���� estimator�
Let � � a� � ��
�� � � 
�� ��� be some 	xed function� Denote by F
a���� the

set of function b�� � � 
�� ��� such that

lim
���

b�
a�
� ��

and put

 �

�
a���
�
�
n
�� � 
f��
�g� fb�g� �  � � b��� � F
a����

o
�

Thus�  �

�
a���
�
consists of the r�n�f�� belonging to the family  � � and� having second

value� which is �better in order� than some given function a��� �

De�nition �� The r�n�f� ��� �
�
f��
�g �

n
��

�

���

�o�
�  � is called optimal

�asymptotically optimal� if
�� There exist an estimator f�� 
�� and a constant M� � � � independent on

� � 
�� �� and 
��� � such that

lim sup
���

R�r�
� 
f�� �� ���� �M�� 
����

�� For ��� �  �

�
��

�

���

��
lim inf
���

inf
�f�
R�r�
�

�
�f��� ��

�
� ��� 
����

where inf is taken over all possible estimators�

De�nition �� Let ��� be an optimal r�n�f� Then an estimator f�� 
�� � satisfying
������ is called 
��� 	adaptive�
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Remark �� As it follows from ���
�� the function ��

�

���

�
� being the second value

of optimal r�n�f� ��� can not be improved in order� The �rst value ��
� can not be
improved in order as well� because one is MRC� Both these facts together with �����
explain why ��� is called optimal�

Remark �� By de�nition ��� � ��
� for �� � 
�� �� and for any 
��� � Therefore�
from ������ any 
��� 	adaptive estimator is a�e� estimator on the set  w�r�t� the
risk ������ It means� that considering risks of type ������ we� in fact� do not leave
the frameworks of the standard minimax approach�

Remark �� We know only that by de�nition ��

�

���

�
� ��
� � So� if ��

�

���

�
�

��
� � as �� �� then from ���
� any improvement of the accuracy of estimation is
impossible in this case� Such statistical setups exist� f�e�� it is typical for cases� when
minimax risk is described by uniform norm � p � �� � However� the study of such
kind of problems lies beyond the scope of the paper� We refer to the recent paper of
Low ��

�� where similar results for the case p �� were obtained� Certainly� the

case ��

�

���

�
� o 
��
�� � as � � �� is much more interesting for our purposes�

and only such setups are studied later on�

Another interesting question is� what is a connection between ��

�

���

�
and

��
�� � It is intuitively clear� that ��

�

���

�
can not be better in order than ��
���

The exact statement is given by the following Proposition ��

Proposition �� Let ��� �
�
f��
�g �

n
��

�

���

�o�
be some optimal r�n�f� Suppose�

there exist an estimator !f�
�� such that for some q� � q

lim sup
���

sup
f������

E�
f

n
���� 
��k !f�
��	 f
��kp

oq� � R ���

Then for �
��� such that � � 
� � 
�� � � 
�� �� �

lim inf
���

�
	��

�

���

�
��
��



A 

�
l�
�M�

� �
q

�

where

� � l� � lim inf
���

inf
�f�
R�

�
�f���� ��
��

�
� 
� �

�
���l�

� q�
q��q R

� q

q��q �

Remark �� The assumption of the proposition means that ��
�� is MRC on the
set � not only for the loss function j � jq � but for the loss function j � jq� as well�
It is typical for the asymptotical statistics� that one and the same function is MRC
for wide class of loss functions� see� f�e�� Ibragimov� Khasminskii ��
���� Note also
that l� � � by de�nition of MRC�

�� Application to the construction of con�dence sets

In this section we show how to apply the notions of optimal r�n�f� and 
��� �
adaptive estimator to the construction of con	dence sets� Fix some � � � � � and
let ��� and f�� 
�� be the optimal r�n�f� and 
��� �adaptive estimator respectively� The
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function 
��� is supposed to be chosen on an arbitrary way� Then� from 
���� and
Markov inequality� one obtains for all small enough � � �

sup
f�����

P�
f

�
����� kf�� 
��	 f
��kp � M�

�

�
� ��

This is equivalent

P�
f

�
kf�� 
��	 f
��kp � M�

�
���

�
 � 	 ��

uniformly w�r�t� f
�� �  � It means� that with given probability �	� an estimated
function lies inside the Lp �ball� with center in the �point� f�� 
�� and of the �radios�
M�

�
��� � By de	nition� pair 
f

�
� 
��� ���� is computable by observation X� 
measurable

w�r�t� X� �� and� therefore� if event
n
��� � ��

�

���

�o
holds� we guarantee essentially

more precise coverage of an estimated function�

�� Relations to the adaptive estimation and to the hypothesis testing

In this section we brie"y discuss the relations between the problem of 	nding of an
optimal r�n�f� and an 
��� �adaptive estimator and problems� arising in the adaptive
estimation and in the hypothesis testing�
Let �f�
�� and �f ���� 
�� be a�e� estimators on the sets  and � respectively�

Further we will see that 
��� �adaptive estimator f�� 
�� can be often represented as
follows�

f�� 
�� �
��
�
�f ���� 
�� ��� � ��

�

���

�
�f�
�� ��� � ��
�


����

Proposition �� Let 
� � O 
f��
��gq� � as � � � and let f�� 
�� be 
� 	adaptive
estimator� represented by ������
Then f�� 
�� is adaptive estimator� i�e risk ����� �or ������ of this estimator is

�nite�

As it follows from proposition �� if 
� tends to zero rather quickly� then 
��� �
adaptive estimator is� at the same time� adaptive estimator�
Let us now consider the relations to the hypotheses testing problems� The ful�

	llment of the event f��� � ��

�

���

�
g can be treated as the acceptance of the

hypothesis H� � f
�� � � � Then� the assumption ��� �  � means that 	rst type
error probability is bounded by 
��� �

Proposition �� Let ��� be optimal r�n�f� and let 
��� 	adaptive estimator f�� 
�� be

represented by ������ Suppose� also� that �f ���� 
�� � � for �� � 
�� ���
Then for � � � � � � � H� � � such that

lim sup
���

sup
f�������H��

P�
f

n
��� � ��

�

���

�o
� ��

where for �H � �

�
H� �

f
�� �  � inf

f����

kf
��	 f�
��kp  H��

�

���

��
�
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The statement of Proposition � means� that hypothesis H� can be tested versus
the family of local alternative H� � f
�� � �
H�� with prescribed ��st and ��d
type errors probabilities�

�� Examples of the statistical models and of the hypotheses�
corresponding to them

In this section we consider � particular models� white Gaussian noise model�
multivariate regression model and probability density model� For each model we
discuss several hypotheses H� � which is seemed naturally to investigate in context
of the problems� presented in the paper� All these hypotheses possess the following
property� more precise estimation procedures are available under them� We also
want to mention that all mathematical results� presented in the examples� are valid
under some additional assumptions� We will not describe and discuss them� because
it is not required for further consideration� and we give only references on the papers�
where exact results can be found�

���� White Gaussian Noise Model� Let statistical experiment be generated by
the observation X� � which is the sample path of the stochastic process X�
�� �
satisfying on the interval ��� �� the stochastic di#erential equation

dX�
t� � f
t�dt� �dw
t��

where w
t� is standard Wiener process� Thus� X� � 
X�
t�� � � t � �� � Remind�
that � is the small parameter� and the case �� � is of our interest� Let � � �� Q �
� be some given constants� and let � � m� � where m  � is integer and � �  �
�� Let H
��Q� be Holder space� i�e� the set of m �times continuously di#erentiable
functions f
�� whose m �th derivative� satis	es on ��� �� Holder condition with
exponent  and constant Q � i�e�

jf �m�
t��	 f �m�
t	�j � Qjt� 	 t	j� � � t�� t	 � ��� ���
Here f �m�
�� denotes m �th derivative of f
��� In this model we consider univariate
case� hence s � �� k � kp� � � p � � and k � k� are usual Lp �norm or C�norm
respectively� which are determined on the ��� �� �
Let  � H
��Q���
L� for some given ��Q and L� It is well�known 
Ibragimov

and Khasminskii 
������ that

��
� �

���
��
�

��
���� � � p ����
�
q
ln �

�

� ��
����

p ���

This rate is attained by linear estimators� f�e�� by kernel one with properly chosen
kernel and bandwidth� Other classes of smooth functions� such as Sobolev and Besov
ones� can be used for the description of the set  as well� Now let us consider some
possible hypotheses�



HOW TO IMPROVE ACCURACY OF ESTIMATION 


������ Hypothesis on parametric subfamily� Consider the following hypothesis

H� � f
�� � � � ff
t� � f�
t� ��� �t � ��� ��� � � $ � Rsg �
where function f�
�� �� � set $ and integer s  � are given� Under some regularity
assumptions� Ibragimov and Khasminskii 
����� ch��� the MRC on the set � is

��
�� � � and a�e� estimator can be constructed as �f ���� 
�� � f�
�� ���� � where ���

is the maximum likelihood estimator� Note that � � ��
�� �� ��
� � �
��

���� 
p �

�� or
�
�
q
ln �

�

� ��
����


p � �� for all � � 
����� One of the classical examples of
parametric subfamily is yielded polynomial regression� i�e�

f�
t� �� �
sX

i
�

�it
i��� 
��� ��� �s� � $ � Rs�

������ Hypothesis on smoothness� Let

H� � H
�� P � � �
where � � � and H
�� P �� P � �� is another Holder space� In this case the set �

consists of the functions� which are smoother than functions� belonging to the set
� The MRC ��
�� is given by formulae
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and we see that again ��
�� �� ��
��
For the sets � � described in examples ����� and ������ the method of the con�

struction of adaptive estimators is the simple application of the results� obtained in
Lepskii 
������ for all � � p ��� � � � � � �� and q � � �
In the section �� for hypotheses� presented in examples ����� and ������ we 	nd

optimal r�n�f� and construct 
��� �adaptive estimator�

���� Multivariate regression� Let statistical experiment be generated by the ob�
servation Xn 
here and in the next example �

n
plays role � �� obtained in the

multivariate regression model� i�e� Xn � f
y�� Z��� ��� 
yn� Zn�g� where
yi � f
Zi� � �i� i � �� � � � n�

Here Zi � 
z
���
i � ��� z

�s�
i �� i � �� � � � � n� are i�i�d random vectors with common prob�

ability density p
��� de	ned on the unit cube ��� ��s� �i� i � �� � � � � n� are i�i�d�
random variables� E�� � �� E�	� � �	 ���
Let Hs
��Q�� � � m � � Q � �� be isotropic Holder space on the unit cube

��� ��s � There are several equivalent de	nitions of isotropic 
anisotropic� Holder

or Sobolev and Besov� spaces� see� f�e�� Nikolskii 
������ We will use the follow�

ing one� Fix some i � f�� �� ��� sg and denote f
�m�
i 
Z� � �mf�Z�

�zmi
� Put Z�l� ��

z
�l�
� � � � � � z

�l�
i � � � � � z�l�s

�
� l � �� �� We say that function f
�� belongs to the Holder

space Hs
��Q� � if

sup
�z�����zi���zi������zs�������s��

���f �m�
i
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Z���
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�
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���� � Q
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for �i � �� � � � � s and �z���i � z
�	�
i � ��� ���

Roughly speaking� for each 	xed 
z�� ��� zi��zi��� ��� zs� � ��� ��s�� functions gif 
z� �
f
z�� ��� zi��� z� zi��� ��� zs� belong� as function of z � to the Holder space H
��Q� on
the interval ��� �� for �i � �� � � � � s� In other words� any function f
�� � Hs
��Q�
has one and the same smoothness � � m�  in each direction�
Let  � Hs
��Q� � s
L�� for some given �� Q� L and s� Put also p � �� i�e�

we will consider the losses� being L	 �norm on the unit cube ��� ��s� The MRC is

given by formulae �n
� � n�
�

���s � which is obtained by Nussbaum 
������
Now let us describe some possible hypotheses� Certainly� the hypothesis on para�

metric subfamily and the hypothesis on smoothness are of interest in this case as
well� However� as it seems to us� hypotheses� which could be called �hypotheses on
structure�� are more important under consideration of multidimensional statistical
models�

������ Dimensionality hypothesis� This hypothesis consists in the assumption that a
regression function actually depends on t � s signi	cant variables� Thus� formally�

H� � � � � t � s� i�� � � � � it� F � Rt � R� � f 
z�� � � � � zs� � F 
zi�� � � � � zit� �

Evidently� that the implication f
�� � Hs
��Q� �� F 
�� � Ht
��Q� takes place�

and� hence� �n 
o� � n�
�

���t � and we see that �n 
o� �� �n
�� for � � � t � s�

������ Hypothesis on additive structure� This hypothesis consists in the assumption�
that multivariate regression function can be represented as the sum of univariate
functions�

H� � � fk � R
� � R�� k � �� � � � � s � f
z�� � � � � zs� �

sX
k
�

fk 
zk� �

A lot of papers are devoted to the estimation problem under additivity hypothesis�
It is because� the MRC under this hypothesis coincides with MRC for univariate case�
i�e�

�n 
�� � n�
�

���� �� �
��

Apparently� the 	rst paper� where this result has been obtained� is Stone 
������
We also mention the paper of Linton and Nielsen 
������ where the same result has
been proved under rather mild assumptions�
It is also reasonable to combine the hypothesis on additive structure with the

hypothesis on smoothness�

	H� � �fk
�� � H
�� P �� k � �� � � � � s� � � � � f
z�� � � � � zs� �
sX

k
�

fk
zk��

By the same reasons� under this hypothesis

�n 
�� � n�
�

���� �
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������ Hypothesis on single index structure� This hypothesis consists in the assump�
tion that there exists some direction� where a multivariate function is an univariate
one�

H� � �� � Rs� k�k � �� and F � R� � R� � f
z�� � � � � zs� � F

�
sX

k
�

�kzk

�
�

As it follows� f�e�� from Speckman 
������ the MRC under this hypothesis is the
same as for the univariate case�

�n 
�� � n�
�

���� �

and we see� that �n 
�� �� �n
��
It is also possible to combine the hypothesis on single index structure with the

hypothesis on parametric subfamily� To do this� it is enough to suppose that func�
tion F 
�� is known� For example� putting F 
x� � x� �x � R�� we arrive to the
�linearity� hypothesis

	H� � f
�� � � � ff
�� � f
z� � ��z� � � � �� �szsg �
It is clear� that under this hypothesis

�n 
�� � n�
�
� �

���� Probability density estimation� Let statistical experiment be generated by

the observation Xn � 
X�� � � � �Xn� � where Xi �
�
X

���
i � � � � �X

�s�
i

�
� i � �� � � � � n�

are i�i�d� random vectors with common probability density f
x�� � � � � xs�� Let f
�� �
� where� as in example �����  � Hs
��Q� � s
L� for some 	xed �� Q� L and
s � Let again p � �� Then� Nussbaum 
������ the MRC on the set  is

�n 
� � n�
�

���s �

������ Hypothesis of independence� This hypothesis is classical in the theory of hy�
pothesis testing� One consists in the assumption that for �i � �� n the components

of the vector Xi �
�
X

���
i � � � � �X

�s�
i

�
are independent random variables�

H� � �fk
�� � R� � R��
Z �

��
fk
x�dx � �� k � �� s � f
x�� � � � � xs� �

sY
k
�

fk
xk��

Under this hypothesis� for �k � �� s each univariate density fk
�� can be esti�
mated separately� using only the corresponding observations X

�k�
� �X

�k�
	 � � � � �X�k�

n �

Let �fk
�� � �fk
�
� �X�k�

� �X
�k�
	 � � � � �X�k�

n

�
be� for example� Nadaraya�Watson estima�

tor� providing univariate MRC � n�
�

���� � Under hypothesis H�
�fk
�� are i�i�d� ran�

dom variables� and� therefore� the estimator �f ���
�� � Qs
k
�

�fk
�� provides univariate
MRC of estimation for f
x�� � � � � xs� �

Qs
k
� fk
xk�� Thus�

�n 
�� � n�
�

���� �

As regards to the problem of adaptive estimation for multivariate statistical mod�
els� there is much less known in comparison with univariate ones� In the case of
isotropic spaces� apparently the general theory� developed in Lepski 
���������a��
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could be applied� In the case of anisotropic spaces we know only recent papers of
Neumann
����� and Birge and Massart 
������ concerning with adaptive estimation
over scales of anisotropic Besov spaces and of anisotropic Holder spaces respectively�
The consideration of minimax risks with r�n�f� for multidimensional models is

the subject of a series of separated papers� Here we would like only to present one
conjecture in this direction�

Conjecture �� Let  � Hs
��Q� � s
L� and let we believe the hypothesis on
additive structure or the hypothesis on single index structure� Then the function

��

�

���

�
� being the second value of optimal r�n�f�� and which is understood as the

�improvement of accuracy of estimation�� is given by the following formulae�

�n 

n� �

�
n

s
ln
�


n

�� ��
���s

�

As we see� if our conjecture is true� then the �improvement� always exists� and for
the dimensionality s � � this �improvement� di#ers from MRC under hypothesis

only by factor
�
ln �

�n

� �
���� � In particular� if 
n � 
� then the function �n

�

���

�
coincide with MRC on hypothesis set� and� due to Proposition �� this is the best
possible improvement of the accuracy of estimation�

�� White Gaussian Noise Model

Let we observe the sample path of the stochastic process X�
�� � satisfying on the
interval ��� �� the stochastic di#erential equation

dX�
t� � f
t�dt� �dw
t�� 
����

where w
�� is standard Wiener process� �� � is the small parameter�
Let � � �� Q � � be some given constants� and let � � m �  � where m  �

is integer and � �  � �� Here and later we suppose that function f
�� � generated
the equation 
����� belongs to the space  � H
��Q� � �
L� �

���� Hypothesis on parametric subfamily� Let us suppose that we believe the
following hypothesis

H� � f
�� � � � ff
�� �  � f
�� � f�
t� ��� �t � ��� ��� � � $ � Rsg �
where function f�
�� �� � set $ and s  � are given�
For each integer l  � and for each vector z � Rl denote kzk �

�Pl
i
� z

	
i

� �
�

and we will omit the dependence of l in the notation of k � k� We suppose that the
following assumptions ful	ll�
A�� The set $ is bounded� closed subset in Rs� s  ��
A�� There exist � � � and L	 � � such that

sup
t������

jf
t� ���	 f
t� �	�j � L	k�� 	 �	k	� for ���� �	 � $�

A�� f�
�� �� � H
��Q� � �
L� for �� � $�
A����� � $ and �Q� � Q such that f�
�� ��� � H
��Q���
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Put ��
�� � �
��

���� and let kf
��k	 �
�R �

� f
	
t�dt

��
� be L	 �norm on the interval

��� �� � Remind that ��
�� is MRC on the set H
��Q� � in particular� when minimax
risk is described by L	 �losses�
Now let us introduce the minimax risk with r�n�f�� corresponding to the estimation

problem on the space  and to the hypothesis H��
Fix some � � 	 � � and let � � 
� � � 	 	� � � ��� ��� be some given function�

Denote by  � the family of measurable w�r�t� 
X�
t�� � � t � ��� random variables�
taking two values ��
�� and a� � where � � a� � ��
��� and satisfying the following
inequality

lim sup
���


�
�� sup


��
P
 f�� � ��
��g � �� 
����

Here P
 denotes the measure� generated by the process X�
t�� � � t � �� when
function f
�� in 
���� belongs to the set � � i�e� f
�� � f�
�� �� for some � � $�
For ��� �  � and for every an arbitrary estimator �f�
�� consider the risk

R�r�
�

�
�f��� ��

�
� sup

f�����
Ef

�
��
��k �f�
��	 f
��k	

�q
� 
����

where q � � is some 	xed constant�
Now let us construct the r�n�f� ��� �  � � being optimal� in accordance with the

de	nition �� and 
��� �adaptive estimator f�� 
���
Let % � %m � f�g

i�j
��m�� be the matrix with the elements �i�j � 
i� j 	 �����
Put for an arbitrary integer N and k � �� N� tk � tk
N� � k�N � &k � �tk��� tk��
Also� for �k � �� N introduce the vectors 
x�k��� �

�
x
�k�
� � � � � � x

�k�
m��

�
and 
y�k��� ��

y
�k�
� � � � � � y

�k�
m��

�
as

x
�k�
j � N j

Z
k


t	 tk�
j��dX�
t�� j � ��m� ��

y�k� � %�
�
�x�k��

Here sign � � � means transposition� The vectors y�k�� k � �� N� are well�de	ned�
since matrix % is strictly positively de	ned for �m  �� � For �k � �� N and �t �
&k put

�
d�k�
t�

��
� 
�� N
t	 tk���� � � � � 
N
t	 tk����m� � Denote for �t � ��� ��

fN 
t� �
NX
k
�


x�k���%��d�k�
t�Ift � &kg 
����

or in equivalent form

fN 
t� �
NX
k
�


y�k���%�
�
�d�k�
t�Ift � &kg� 
����
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Put

N�
��Q� �

�
�� ��Q

m'
p
m� �

� �
����

��
�

����

�
� �

N� � N�

�� �

�
�Z���

�
�� ln

�


�

�� �
����

�
� �

where constant Z� � Z�
��m�Q� will be presented below� De	ne for �t � ��� ��
�f�
t� ��Q� � fN����Q�
t�� �f�
t� � fN�
t��

As it will be shown later� �f�
�� ��Q� is the estimator of a function f
�� � H
��Q� �
constructed by method of piecewise polynomial approximation� and� providing the
MRC ��
���
For �� � $ and for �k � �� N� introduce the vectors 
x�k�
���� ��
x
�k�
� 
��� � � � � x

�k�
m��
��

�
and 
y�k�
���� �

�
y
�k�
� 
��� � � � � y

�k�
m��
��

�
as follows�

xj
�� � N j

Z
k


t	 tk���j��f�
t� ��dt� j � ��m� ��

y�k�
�� � %�
�
�x�k�
���

Put� also� for �� � $ and for �t � ��� ��

!f�
t� �� �
N�X
k
�


y�k�
����%�
�
�d�k�
t�Ift � &kg�

Denote for �� � $
d�
�� � k �f�
��	 !f�
�� ��k	� 
����

Simplest direct calculations show that

d�
�� �

�
�

N�

N�X
k
�

ky�k� 	 y�k�
��k	
� �
�

� 
����

As it follow from the assumption A�� there exists independent on � constant C �
C
�� L	 �m� such that

jd�
���	 d�
�	�j � Ck�� 	 �	k	 � ���� �	 � $� 
����

From here and assumption A� there exist� see� f�e� Jennrich 
������ ��� � $ �
being measurable w�r�t� X�
t�� � � t  �� and such that

��� � arginf

��

d�
��� 
����

Denote for �� � $
�d�
�� � d	�
��	 �	N�
m� ���

and let
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�� 

�� �
�
�� ln

�


�

� �
����

�

� � Z��� 
�
m� ���
�
� �

Introduce the random event A �
n
�d�
���� � 
��� 

���

	
o
� and put

��� �

��
��� 

�� A� holds�

��
�� Ac
� holds�

f�� 
�� �
��
�
�f ���� 
�� A� holds�
�f�
�� ��Q� Ac

� holds�

where Ac
� is the event� being complement to the event A� � and �f ���� 
�� � !f�
�� �����

For �z � 
����� �u � 
�� �� and �
 � ��� �� de	ne the function G�
u� z� as
follows�

G�
u� z� �
�X
k
�

�
BB	 
�
m� ���

�
�

z

�
	� �

vuut
k � �� ln �
u

ln �
�



A

�
�

�
Q

m'
z��



CCA
q

uk�

If 
 � � we understand 
ln �
�
��� as zero� Put

G� � inf
u������

inf
z������

G�
u� z��

It is evident� that G�
�� �� is the smooth function and for �
 �� � � G�
u� z�� �� �
if u � �� u � �� z � �� z � � � Therefore� there exist � � Z� � � and
� � u� � � such that

G� � G�
u�� Z���

If Z� is not unique� we take any Z� � satisfying the last expression� If 
 � �� then
u� � � and Z� can be calculated explicitly 
see remark after Theorem ��� Remind�
that Z� is included in the de	nition of the threshold � � describing the random
event A� � and in the de	nition of the variable N� � describing the estimator �f�
���
Theorem �� Let assumptions A�
A� hold and let ���  
�  �a for some �xed
a � � and for �� � 
�� �� � and let q  ��
Then ��� is optimal r�n�f� and f�� 
�� is 
� 	adaptive estimator� In particular�

putting lim inf��� 
� � 
  � � we have for �q � �

lim sup
���

R�r�
� 
f�� �� ���� �M�� 
�����

where

M� �

�
� �� � �

���

��
����

�

m� ���Q

m'

� �
����

�
�
q

�G��
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Remark �� First� let us notice� that if 
 � � � for example�
� � � as � �� then
Z� can be calculated explicitly� Indeed� by de�nition�

G�
u� z� �

�
	
�
m � ���

�
�

z
�

Q

m'
z��



A
q �X
k
�

uk �

�
	 
�
m� ���

�
�

z
�

Q

m'
z��



A
q

�

� 	 u
�

From here

Z� �

�
	
�
m� ���

�
�m'

��Q



A

�
����

�

G� �

�
� �� � �

���

��
����

�

�
m� ����Q

m'

� �
����

�
�
q

�

and constant M� has nice �symmetric� expression�

M� �

�
� �� � �

���

��
����

�

m� ���Q

m'

� �
����

�
�
q

�

�
� �� � �

���

��
����

�

�
m� ����Q

m'

� �
����

�
�
q

�

Next� if q � �� then expression for G� and for Z� can be simpli�ed�

Z� �

�
	
�
m� ���

�
�m' �G�

��Q



A �

G� �
�� � �


���
��

����

�

�
m� ����Q

m'

� �
���� �

�G�

� ��
���� �

where

�G� � inf
u������

�X
k
�

�
	� �

vuut
k � �� ln �
u

ln �
�



A

�
�

uk�

Corollary �� Note that all assumptions of Proposition � ful�ll� Therefore� if A�

A� hold� using the decision rule� based on the event A� � namely IfA�g � we are
able to test hypothesis H� against the following set of local alternatives

H� � f
�� �  � inf

��

kf�
�� ��	 f
��k	  H
�
�� ln

�


�

� �

����

�

where H � � is some given constant�

Remark �� If 
� � 
 � 
�� �� for �� � � � then the impossibility to construct
more sensitive test follows from general lower bounds� obtained by Ingster ��

���
In particular� it follows from the lower bound� proved in Theorem � for the risk
R�r�
� 
�� �� �� under assumption A�� In the case 
� � �� � � �� this lower bound is

new in the theory of hypothesis testing�

Let us brie"y discuss the construction of the optimal r�n�f� ��� and 
��� �adaptive
estimator f�� � For each function f
�� �  let us de	ne the following functional

d
f� � inf

��

kf
��	 f�
�� ��k	�
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As it will follow from the further considerations� j �d�
����j �� is the estimator of d
f� �
providing �� 

�� as the accuracy of estimation on the space � If 
� � 
 � �

or inf��� 
� � ��� then �� 

�� coincides with MRC of functional d
f� on space

 � and j �d�
����j �� is the rate optimal estimator� If 
� � �� � � �� then �� 

��

di#ers from MRC of d
f� by the factor
�
ln �

��

� �

���� � In some sense this factor is a

payment for the following property of r�n�f� ��� �

inf
f������

Pf f��� � �� 

��g  �	 
� � �� �� ��

Remind� that by de	nition of optimal r�n�f� this payment is unavoidable� It is also
evident� that d
f� � � for �f
�� � � � So� if �d�
���� exceeds some threshold� it
means � that d
f� is also not small� in other words� the hypothesis H� is not true� In

this case usual nonparametric estimator �f 
�� ��Q� is applied� and one can guarantee
only MRC ��
�� � If �d�
���� is less than �� 

�� � hence� estimated function lies not

far from the set � as well� In this case� it makes sense to apply estimator �f ���� 
�� �
which has nice behavior� if estimated function belongs to some neighborhood of the
set �� In order to explain last words� let us consider the simple example� in which
the estimator �f ���� 
�� can be found explicitly�
Suppose� that $ � R� and f�
t� �� � ���t � ��� ��� It is easily to see that

!f�
�� �� � � and� therefore �f ���� 
�� � ���� In this case the minimization problem 
����
has explicit solution

��� �
�
v�%��v

��� �

N�

N�X
k
�

�
xk
��
%��v�

where v� � 
�� �	 � � � � � 
m������� Note that the vector v is the 	rst vector�column
of the matrix %� Hence� %��v � e�� where e�� � 
�� �� � � � � ��� From here v�%��v �

��
�
xk
��
%��v � x

�k�
� � Hence�

��� �
�

N�

N�X
k
�

x
�k�
� �

N�X
k
�

Z
k

dX�
t� � X�
��	X�
���

Thus� ��� � X�
�� 	 X�
��� If the hypothesis H� is really true� then ��� is � �

consistent� asymptotically e�cient estimator� Now let us look at how ��� behaves
�near� hypothesis set � �
Let U����
C� � ff
�� �  � d
f� � C�� 

��g � where C � � is some 	xed con�

stant� Note that in this case d
f� � kf
�� 	 R �
� f
s�dsk	� Therefore� for each

f
�� � U����
C�

k��� 	 f
��k	 � k
Z �

�
f
s�ds 	 f
�� � �
w
��	 w
���k	 � C�� 

�� � �jw
��	 w
��j�
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In particular� from here

sup
f����U�����C�

Ef

�
���� 

��k��� 	 f
��k	

�q �
�
	C � �

�� 

��

s
�

�



Aq

� Cq� �� ��

sup
f����U�����C�

Pf

n
���� 

��k��� 	 f
��k	  C � 	

o
� exp

��
�
�
	�� 

��

�

�	
		

�

��
� �

�	 � �� as � � �� Last two lines show optimal� in some sense� behavior of the
estimator ��� �near� hypothesis set ��

���� Hypothesis on smoothness� In this section we consider the hypothesis� de�
scribed in the example ������

H� � f
�� � � � H
�� P � � � � � � ��� P � ��

where H
�� P � is Holder space� Thus� the hypothesis set � consists of the func�
tions� which are smoother than functions� belonging to the set � Here the constants
� � l� � 
 l  � is integer� � � � � � � and P are supposed to be known�
Let us 	x some function � � 
� � �	 	� � � 	 � �� � � 
�� ��� and let again  �

be the family of r�n�f� �� � satisfying the inequality

lim sup
���

sup
f������


�
��Pff�� � ��
��g � �� 
�����

We keep some notations from the previous section� In particular� for ��� �  �

and for an arbitrary estimator �f�
��� R�r�
� 
 �f��� ��� is the minimax risk� de	ned

by formulae 
����� ��
�� � �
��

���� � Also� for �N  �� tk � tk
N� � k�N� &k �

�tk��� tk�� fN 
�� is de	ned by 
���� and 
����� N�
��Q� and �f�
�� ��Q� remain the
same as before�
Put for �z � 
����� �u � 
���� and � 
 � ��� ��

G�
z� � sup
u��

�
	 
�
l � ��� ��

z

�
� �

s
u

ln �
a

� �
�

�
Q

m'
z��



A
q

expf	ug�

Z� � arginf
z��

G�
z��

It is obvious� that such � � Z� � � exist� 
If Z� is not unique� let us take any
Z� � satisfying the last equation�� Denote

N� �

�
�Z���

�
�� ln

�


�

�� �
����

�
� �

�f�
t� � fN�
t� �
N�X
k
�

�
y�k�

��
%
� �

�
l d�k�
t�Ift � &kg�

where the vectors y�k�� k � �� N�� are the same as in previous section� and %l is
the 
l���x
l����matrix with elements �i�j � 
i� j	 ����� i� j � �� l � �� Thus� in
comparison with the de	nition of the estimator �f�
�� in the previous section only
the following changes were made� we replaced the constant Z� by the constant
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Z� for the de	nition of N� and replaced the matrix %m by the matrix %l in the
formulae 
����� Put

K� � Z���

�p
l � �l'

�P�

� �
���� �

ln
�


�

�� �
����

�
��������

������������ �

Without loss of generality K� is assumed to be integer� For � k � �� � � � � �N� put
�tk � tkK� and �&k � ��tk��� �tk�� where

�N� �
�
N�

K�

�
�

�
�� �P�p

l � �l'

� �
����

��
�

����

�
� �

Introduce the vectors
�
	x�k�

��
�
�
�x�k�� � � � � � �x�k�l��

�
and

�
	y�k�

��
�
�
�y�k�� � � � � � �y�k�l��

�
as

�x�k�j � �N j
�

Z
�k


t	 �tk���dX�
t�� j � �� l � ��

	y�k� � %
� �

�
l �x�k��

Put also for � k � �� �N� and �t � ��� ���
�
	d�k�
t�

��
��

�� �N�
t	 �tk���� � � � � 
 �N�
t	 �tk����l
�
and denote

�f�
t� �

�N�X
k
�

�
	y�k�

��
%
� �

�
l
	d�k�
t�Ift � �&kg�

Note that �f�
�� is the estimator� which attains the MRC ��
�� � �
��

���� on the
space H
�� P ��
Now let us construct the optimal r�n�f� ��� �  � and 
��� �adaptive estimator� Put

�d� � k �f�
��	 �f�
��k		 � �	
l � ��
 �N� 	N���

��

�� �
�
�� ln

�


�

� �

����

� ��
�� � �
��

���� � � � �
��

���� �

and introduce the random event

A� �
n
�d� � 
���

���

	 � 
����
�� � �	��
	
o
�

where

� �

�
l � ���

�
�

Z�
� �� �

�
P

l'

� �
����

�p
l � �

��

� ��
����

� �	 �
P

l'
Z��
� �

Denote

�� 

�� �

��
�
�
�� ln �

��

� �

���� �  ���
��
�� � � � � ���
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and put

��� �

��
��� 

�� A� holds�

��
�� Ac
� holds�

f�� 
�� �
��
�
�f�
�� A� holds�
�f�
�� ��Q� Ac

� holds�

Theorem �� Let q  � and let ���  
�  �a� for � � � �� for some a � ��
Then ��� is optimal r�n�f� and f�� 
�� is 
��� 	adaptive estimator� In particular�

putting lim inf��� 
� � 
 � � � one can state for � q � �

lim sup
���

R�r�
� 
f

�
� �� ���� �M�� 
�����

where for � � � � ��

M� �

�
� �� � �

���

��
����

�

m� ���Q

m'

� �
����

�
�
q

�

�
� �� � �

���

��
����

�

l � ���P

l'

� �
����

�
�
q

�

and for � � ��

M� �

�
� �� � �

���

��
����

�

m� ���Q

m'

� �
����

�
�
q

�G�
Z���

Remark � For the case � � �� the constant M� can be written explicitly as well�
but the expression is too cumbersome� except the case 
 � �� see next remark�

Remark �� If 
� � �� as � � �� �
 � � � then the constants G�
z� � G�
z� �
Z� and� therefore� M� can be calculated explicitly for the case �  �� as well�

M� �

�
� �� � �

���

��
����

�

m� ���Q

m'

� �
����

�
�
q

�

�
� �� � �

���

��
����

�

�
l � ����Q

m'

� �
����

�
�
q

�

Corollary �� Note� that all assumptions of Proposition � ful�ll� Hence� if we choose


� � �
�q�
���� � then the estimator f�� 
�� is the adaptive estimator�

Remark �� As we see� for � � � � �� the function ��

�

���

�
coincides with

MRC ��
�� and� due to Proposition �� this is the best possible improvement of the
accuracy of estimation� There is no any payment for the property ��� �  � � since

�� 

�� � ��
�� for � 
��� � and it makes sense always to take 
� � �
�q�
���� in view

of Corollary �� If �� � � the improvement is worse than MRC� but one still exists�
because �� 

�� � o
��
��� �

�� Proofs of Theorem � and �

���� Proof of Theorem �� First� let us formulate several auxiliary lemmas� Put
for � N  �� for � k � �� N and for � f
�� � 

b
�k�
j 
f� � N j

Z
k


t	 tk���
j���f
t�dt� j � ��m� ��

�
b�k�
f�

��
�
�
b
�k�
� 
f�� � � � � b

�k�
m��
f�

�
� c�k�
f� � %�

�
�b�k�
f��
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Denote for � t � ��� ��

bN
t� f� �
NX
k
�

�
b�k�
f�

��
%��d�k�
t�Ift � &kg 
����

or in equivalent form

bN
t� f� �
NX
k
�

�
c�k�
f�

��
%�

�
�d�k�
t�Ift � &kg 
����

Lemma �� For � N  � and � f
�� � 

kbN
�� f�	 f
��k	 � Q

m'
N�� �

The lemma deals with the upper bound for the bias of the estimator� obtained by
the method of piecewise polynomials� Such type of upper bounds are well�known�
see� f�e�� Korostelev and Tsybakov 
������ but for further purposes it is convenient
for us to give very short� simple and self�contained proof of Lemma ��

Let for � N  �� for � k � �� N and � j � ��m� � � u�k�j be i�i�d� random

variables and u
���
� � N 
�� ��� Put

SN �
NX
k
�

m��X
j
�

�

u�k�j �

	 	 �
�
�

Lemma �� For � N � �� for � CN � 
���� and for � x � ��� NCN 
m� ���

PfSN  xg � exp

�
	 x	

�
m� ��N
� � CN�

�
�

PfSN � 	xg � exp

�
	 x	

�
m� ��N
� � CN�

�
�

If CN � o
N� �
	 �� N � �� � the statement of the lemma remains true� if we

replace right sides of the both inequalities by

exp

�
	 x	

�
m� ��N

�

� � o
����

where �
��� �� N ��� uniformly w�r�t x � ��� NCN 
m� ��� �

Lemma �� For � 	 � � �v� � �� v	 � � such that for all small enough � � � the
following inequality holds�

sup
f����H���Q�

Pf

n
��
��

��k �f�
�� ��Q�	 f
��k	  C � 	
o
� v� exp

n
	v	��

�
����

o
�

where

C �
�� � �


���
��

����

�

m� ���Q

m'

� �
����

�
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Such kind of exponential inequalities for the distributions of the normalized Lp �
losses of linear nonparametric estimators were found in Lepski 
����� for an arbitrary
� � p � �� Here we only precise the constant C for the case p � � and so� the
proof of Lemma � can be omitted�

For � k � �� N� introduce the vectors
�
��k�
��

��
�
�
�
�k�
� 
��� � � � � ��k�m��
��

�
and�

��k�
��
��
�
�
�
�k�
� 
��� � � � � ��k�m��
��

�
as follows�

�
�k�
j 
�� � N j� �

�

Z
k


t	 tk���dw
t�� j � ��m� � 
����

��k�
�� � %�
�
� ��k�
��� 
����

Denote for � f
�� � 

&	
�
f� �

�

N�

N�X
k
�

kc�k�
f�	 y�k�
����k	�

z�
f� �
��p
N�

N�X
k
�

�
c�k�
f�	 y�k�
����

��
��k�
���

Lemma �� Fix arbitrary � � 	� � �
	 and 		 � �� There exist constants v� �

�� v� � � and � � � such that

sup
f�����

P
n
jz�
f�j � 	�&

	
�
f�� &

	
�
f�  
		�� 

���

	
o
� v� expf	v���g�

for all small enough � � ��

������ Proof of Theorem �� We divide the proof of the theorem on two steps� First�
we prove upper bound� i�e� inequality 
���� of De	nition �� To do this� it is enough
to show that ��� �  � and to obtain the inequality 
������ Next� we 	nd the lower
bound� i�e� prove that r�n�f� ��� can not be improved in the sense of the statement

���� of De	nition ��
I
Upper bound�� �� Let us prove� that ��� �  � � By de	nition� it is required

to show that

lim sup
���


�
�� sup


��
P
 f�� � ��
��g � �� 
����

It is obvious� that � � � $
P
f��� � ��
��g � P
f �d�
����  
��� 

���

	g
� P



inf

��

�d�
��  
��� 

���
	
�
� P
f �d�
��  
��� 

���

	g� 
����

As it follows from 
����� in order to prove 
����� it is enough to show that

lim sup
���


�
�� sup


��
P


n
�d�
��  
��� 

���

	
o
� �� 
����

Note� that for � � � � � providing N�  �� the vectors ��k�
��� k � �� N�� de	ned in


����� are i�i�d� Gaussian random vectors and E��k�
�� � �� E��k�
��
�
��k�
��

��
� %�

Therefore� for all small enough � � � the vectors ��k�
��� k � �� N�� de	ned in
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����� are i�i�d� Gaussian vectors and E��k�
�� � �� E��k�
��
�
��k�
��

��
� Im� where

Im is 
m � ��x
m � �� unit matrix� From this observation� for � k � �� N� and

� j � ��m� �� �
�k�
j 
�� are i�i�d random variables and

�
�k�
j 
�� � N 
�� ��� 
����

For � � � $
�d�
�� � d	�
��	 �	N�
m� �� �

�
�

N�

N�X
k
�

ky�k� 	 y�k�
��k	
�
	 �	N�
m� ���


����

Here we used 
����� Note� that for �f
�� and for � k � �� N�

y�k� � c�k�
f� � �
q
N��

�k�
��� 
�����

and� moreover� for �� � $
c�k� 
f�
�� ��� � y�k�
��� 
�����

Hence� from 
�����
����� and 
������ for �� � $ one has

P


n
�d�
��  
��� 

���

	
o
� P


��
�

N�X
k
�

�
k��k�
��k	 	 
m� ��

�

�
��� 

��

�

�	
��
�

� P


��
�

N�X
k
�

m��X
j
�

��
�
�k�
j 
��

�	 	 �� 
�
��� 

��

�

�	
��
�

� P


��
�S 
N�� 

�
��� 

��

�

�	
��
� � 
�����

where

S 
N�� �
N�X
k
�

m��X
j
�

��
�
�k�
j 
��

�	 	 �� � 
�����

Due to 
����� for each 	xed � � � such that N�  � � for � k � �� N� and � j �

��m� � the distribution of the random variable �
�k�
j 
�� does not depend on � and

�� Therefore� we can apply Lemma � to the sum S 
N�� � where one needs to put

x � x� �
�
�������

�

�	
and to choose CN � CN�� Since

x� � 
�
m� ���
�
�N

�
�
�

s
ln
�


�
� 
�
m� ���

�
�N

�
�
�

s
a ln

�

�

�����


here we used� that 
�  �a by the assumption of the theorem� we can choose C�

on such a way� that C� � o
N
� �

	
� � as � � �� and � � x� � N�C�
m � �� � for

�� � � � which is small enough� Thus� one can apply Lemma �� It yields together
with 
�����

P


n
�d�
��  
��� 

���

	
o
� exp

��
�	

�
��� 

��

�

��
�

�N�
m� ��

��
� 
� � o
����


�����
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as� �� �� uniformly w�r�t� � � $� Since�
��� 

��

�

��
�

�N�
m� ��
� ln

�


�
�

	nally we get from 
�����

sup

��

P


n
�d�
��  
��� 

���

	
o
� 
�
� � o
���� 
�����

as �� �� This completes the prof of 
���� and� therefore� 
�����
�� Now let us prove the inequality 
������ Put for �f
�� � 

R���
� 
f� � Ef

n
����� kf�� 
��	 f
��k	

oq
IfA�g

� Ef

n
���� 

��k �f ���� 
��	 f
��k	

oq
IfA�g� 
�����

R�	�
� 
f� � Ef

n
����� kf�� 
��	 f
��k	

oq
IfAc

�g
� Ef

n
���� 
��k �f�
�� ��Q�	 f
��k	

oq
IfAc

�g� 
�����

It is evident� that

R�r�
� 
f�� �� ���� � sup

f�����
R���
� 
f� � sup

f�����
R�	�
� 
f�� 
�����

and� hence� it is enough to obtain upper estimates for R���
� 
�� and for R�	�

� 
�� � First�
let us estimate R�	�

� 
��� Clearly� that
R�	�
� � sup

f�����
R�	�
� 
f�

� sup
f�����

Ef

n
���� 
��k �f�
�� ��Q�	 f
��k	

oq
� 
�����

From Lemma � one immediately has

sup
f�����

Ef

n
���� 
��k �f�
�� ��Q�	 f
��k	

oq � 
C � 	�q
� � o
����

�����

as �� � for �	 � �� From 
����� and 
�����

lim sup
���

R�	�
� � 
C � 	�q�

Since 	 is an arbitrary number� tending 	 to zero� 	nally we get

lim sup
���

sup
f�����

R�	�
� 
f� �

�
	�� � �
��

��
����

�

m� ���Q

m'

� �
����



A
q

� 
�����

Let us now start with estimation of R���
� 
�� � Fix some � � 	� �

�
	� � � u � ��

and put for � k � �� k
��� k
�� � q ln
��� ln
u�

Tk �

�
	
vuutk ln
u�

ln

��
� �



A 
��� 

���

	�
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Introduce the family of the random events (k� k � �� k
��	 � as follows�
(� �

n

� 	 	��&

	
�
f� � T�

o
� (k��� �

n

� 	 	��&

	
�
f�  Tk���

o
�

(k �
n
Tk � 
�	 	��&

	
�
f� � Tk��

o
�

Note� that

(c� �
k����
k
�

(k� (k � (l � �� � k� l � �� k
��� k �� l� 
�����

Denote also

D� �
n
jz�
f�j � 	�&

	
�
f�

o
�

We have by the triangle inequality

���� 

��k �f ���� 
��	 f
��k	 � ���� 

��k !f �� �� ����	 f
��k	
� ���� 

��k !f �� �� ����	 bN�
�� f�k	 � ���� 

��kbN�
�� f�	 f
��k	� 
�����

Here bN�
�� f� is de	ned by formulae 
���� or 
����� where one needs to put N � N� �
Then� from Lemma � for � f
�� �  one obtains

���� 

��kbN�
�� f�	 f
��k	 � A� �
Q

m'

�
N�
� �� 

��

���
� A�� 
�����

where A� �
Q

m�
Z�
� � Note also that

kbN�
�� f�	 !f 
�� ����k	 � &	
�
f�� 
�����

and 
����� together with 
����� yields

���� 

��k �f ���� 
��	 f
��k	 � ���� 

��&�
f� �A�� 
�����

Put

R�����
� 
f� � Ef

�
���� 

��&�
f� �A�

�q
IfA� � (�g�

R���	�
� 
f� �

k�����X
k
�

Ef

�
���� 

��&�
f� �A�

�q
IfA� � (k �D�g�

R�����
� 
f� � Ef

�
���� 

��&�
f� �A�

�q
IfA� � (k��� �D�g�

R�����
� 
f� � Ef

�
���� 

��&�
f� �A�

�q
IfA� � (c� �Dc

�g�
Due to 
�����

IfA�g � IfA� � (�g� IfA� � (c�g
� IfA� � (�g� IfA� � (c� �Dc

�g� IfA� � (c� �D�g
� IfA� � (�g� IfA� � (c� �Dc

�g� IfA� � (k��� �D�g

�
k�����X
k
�

IfA� � (k �D�g�
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From here and 
����� for � f
�� � 

R���
� 
f� �

�X
i
�

R���i�
� 
f�� 
�����

Let us estimate R�����
� 
��� Remind that we consider the functions f
�� � �
L� and it

is easily to check� there exists some constant L� � L�
��L� such that j&�
f�j � L�

for � � � �� Hence�

R�����
� 
f� �

�
L��

��
� 

�� �A�

�q
Pf fA� � (c� �Dc

�g
�

�
L��

��
� 

�� �A�

�q
Pf f(c� �Dc

�g

�
�
L��

��
� 

�� �A�

�q
Pf


jz�
f�j  	�&

	
�
f�� &

	
�
f� 

T�
� 	 	�

�

�
�
L��

��
� 

�� �A�

�q
Pf

��
�jz�
f�j  	�&

	
�
f�� &

	
�
f� 

�
�p
� 	 	�

�� 

��

�	
��
� �

Putting 		 �
�p
���� � we have in view of Lemma �

sup
f�����

R�����
� 
f� �

�
L��

��
� 

�� �A�

�q
v� expf	v���g�

and� therefore�

lim sup
���

sup
f�����

R�����
� 
f� � �� 
�����

Let us estimate R�����
� 
��� Quite analogously�

R�����
� 
f� �

�
L��

��
� 

�� �A�

�q
Pf

n
A� � (k��� �D�

o
� 
�����

Note that by de	nition

�d
���� � &
	
�
f�	 z�
f� � �	S
N���

where S
N�� is de	ned in 
������ Therefore�

fA� � (k��� � D�g �
n
�d�
���� � 
��� 

���

	
o
�
n
(k���

o
� fD�g

�
n
&	

�
f� 	 z�
f� � �	S
N�� � 
��� 

���
	
o

�
n
jz�
f�j � 	�&

	
�
f�

o
�
n

�	 	��&

	
�
f�  Tk���

o

�
n
�	S
N�� � 	Tk��� � 
��� 

���

	
o
�

��
�S
N�� � 	

�
��� 

��

�

�	s
q ln �

ln
�

��
� �

From here and 
����� one has for � f
�� � 

R�����
� 
f� � 
L��

��
� 

�� �A��

qPf

��
�S
N�� � 	

�
��� 

��

�

�	s
q ln �

ln
�

��
� �


�����
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As it has been already mentioned above� the distribution of the addends in S
N��
does not depend on f
�� and � � Hence� we can apply again Lemma � with

x � x� �

�
��� 

��

�

�	
s
q ln �

ln
�

and properly chosen CN � CN�� It yields

Pf

��
�S
N�� � 	

�
��� 

��

�

�	s
q ln �

ln
�

��
�

� exp

��
�	

�
��� 

��

�

��
q ln �

�N�
m� �� ln
�

��
� 
� � o
���

� expfq ln �g
� � o
��� � �q
� � o
����

as �� �� Continuing 
������ we arrive

sup
f�����

R�����
� 
f� � 
L��

��
� 

�� �A��

q�q
� � o
����

Since �� 

�� �
�
�� ln �

��

� �
���� �

�
��a ln �

�

� �
���� � 	nally we have

lim sup
���

sup
f�����

R�����
� 
f� � �� 
�����

Now� let us estimate R�����
� 
��� By de	nition

R�����
� 
f� � Ef

�
���� 

��&�
f� �A�

�q
I

A� � &

	
�
f� �
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�

�
�
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s
T�
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�

�
B	�

�
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s
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A

�
�
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�	 	�
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q

�

From here� tending 	rst � to zero and then 	� to zero� one has

lim sup
���

sup
f�����

R�����
� 
f� �

�
B	�

�
	� �

s
lnu

ln
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�
�

�A�
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q

� 
�����

for � u � 
�� ��� where� remind� � � 
 � lim inf��� 
�� At last� let us estimate
R���	�
� 
��� For � k � �� k
�� 	 �

fA� � (k �D�g
�

n
&	

�
f� 	 z�
f� � �	S
N�� � 
��� 

���
	
o

�
n
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�
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o
�
n
jz�
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�
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o
�

n
�	S
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���

	
o
�
n
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�
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o

�
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�
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�
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�
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n
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From here

R���	�
� 
f� �

k�����X
k
�

Ef

�
���� 

��&�
f� �A�

�q
I
n
B�k�
� � 
�	 	��&

	
�
f� � Tk��

o

�
k�����X
k
�

�
���� 

��

s
Tk��
�	 	�

�A�

�q
Pf

n
B�k�
�

o
� 
�����

where B�k�
� �


S
N�� � 	

�
�������

�

�	q
k lnu
ln��

�
� As before� Lemma � can be applied

for � k � �� k
��	 �� It yields

PffB�k�
� g � exp

��
�	

�
��� 

��

�

��
k lnu

�N�
m� �� ln
�

��
� 
� � o
���

� uk
� � o
���� 
�����

uniformly w�r�t k � �� k
��	 �� We have from 
����� and 
�����
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� 
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�
B	k�����X

k
�

�
B	�

�
	� �

s
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�p
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�
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�
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q
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Since the series in the right side of 
����� is absolutely converging for � u � 
�� ��
and for � � � �� we have

lim sup
���

sup
f�����

R���	�
� 
f� �

�X
k
�

�
B	�

�
	� �

s

k � �� ln u
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�
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Here we took into account that 	� � � is an arbitrary number� Combining 
������

������ 
����� and 
������ from 
����� we get

lim sup
���

sup
f�����

R���
� 
f� � G�
Z�� u�� 
�����

Taking into account� that left side in 
����� does not depend on u � 
�� ��� 	nally
we have

lim sup
���

sup
f�����

R���
� 
f� � G�
Z�� u�� � G�� 
�����

Putting together 
����� and 
������ we arrive to the inequality 
������
II�Lower bound�� Let �� be an arbitrary r�n�f�� taking two values f��
��g

and fa�g � �� �  � � and suppose that

lim
���

a�
�� 

��

� �� 
�����
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In accordance with De	nition � one needs to prove that for � �� �  � � satisfying

������

lim inf
���

inf
�f�
R�r�
� 
 �f��� ��� � ��� 
�����

where in	mum is taken over all possible estimators�
Let F 
x�� x � R� � be the function� satisfying the following conditions

F 
x� � �� � x � R� n �	�� ���
F 
x� � H
�� ��� x � �	�� ��� 
�����

�	 �
Z �

��
F 	
x�dx � ��

Put 	� �
�

 !Q������ ln �

��

� �
���� � k
�� � ��	� 
without loss of generality k
�� is

assumed to be integer�� where !Q � Q	 Q� � Q� is de	ned in the assumption A��
Let �v be the vector 
v�� � � � � vk���� with coordinates� taking two values �� and ���

Denote by V the collection of vectors �v � Obvious� jV j � �k��� � Consider the family
of functions !f
�� �v�� �v � V� de	ned on the interval ��� �� �

!f 
t� �v� �
k���X
i
�

viFi
t��

where Fi
t� � !Q	��F
�
t�ti
��

�
� ti � i	�� i � �� k
��� Set also f�
�� � f�
�� ����

f
�� �v� � f�
�� ��� � !f
�� �v�� �v � V� and introduce the following notation�

P� � Pf� � P�v � Pf����v�� �v � V �

V
���
j � f�v � V � vj � �g� V ����

j � f�v � V � vj � 	�g�
V

���
j � f�v � vi � 	����� �i �� j� vj � �g� � j � �� k
���

Note that in view of 
����� and assumption A�

f
�� �v� � � � �v � V� 
�����

Fix some r�n�f� �� �  � � satisfying 
������ and denote by B� the random event
f�� � a�g � Let us formulate the important auxiliary statement�
There exists p� � � such that for � j � �� k
��

�

�k�����
X

�v�V ���
j

P�vfB�g  p� 
�����

for all small enough � � ��
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First� let us show that 
����� follows from 
������ Fix some an arbitrary estimator
�f�
��� Then� due to 
�����

R�r�
� 
 �f��� ���  sup

f�����
Ef

�
��
��k �f�
��	 f
��k	

�q
IfB�g

 sup
f����v�� �v�V

Ef����v�
�
a��� k �f�
��	 f
�� �v�k	

�q
IfB�g

 �
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X
�v�V

E�v

�
a��� k �f�
��	 f
�� �v�k	

�q
IfB�g


�
	 �

�k���
X
�v�V

E�v

�
a�	� k �f�
��	 f
�� �v�k		

�
IfB�g



A

q

�


�
�
R�

�
�f�
�� q

� � 
�����

where E�v is mathematical expectation w�r�t� measure P�v � Here we used that
q  �� Ej�js  
Ej�j�s �� s  �� and the fact that

�

�k���
X
�v�V

� E�v� 
�����

where �v is the random vector with independent coordinates� taking two values ��
and �� with probabilities �

	 � Denote for � j � �� k
�� � &j � �tj 	 	�� tj � 	���

Z
���
j �

dP�v

dP�vj��v�

X�
t�� � � t � �� � �v � V

���
j �

Z
����
j �

dP�v

dP�vj��v�

X�
t�� � � t � �� � �v � V

����
j �

where for � �v � 
v�� � � � � vk���� � V the vector �vj
�v� � V
���
j is de	ned as �vj
�v� �


v�� � � � � vj��� �� vj��� � � � � vk����� Due to Girsanov�s formulae

Z
���
j � exp


�

�	

Z �

�

f
t��v�	 f
t��vj
�v���dX�
t�	 �

��	
kf
�� �v�k		 �

�

��	
kf
�� �vj
�v��k		

�
�

Therefore� w�r�t� measure P�vj��v�� Z
���
j can be represented as

Z
���
j � exp

�
	��
�

Z
j

Fj
t�dw
t�	 		��
��	

Z
j

F 	
j 
t�dt

�
�

Putting�

�j �

R
j
Fj
t�dw
t�qR
j
F 	
j 
t�dt

one has

Z
���
j � exp


���j 	 �

�
�	
�

�
� 
�����

where �� � y�
�

����

�
ln �

��

� ����
���� � y � 
� !Q�


���
���� � Note

L
n
�j
���P�vj��v�

o
� N 
�� ��� � j � �� k
��� 
�����
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Analogously�

Z
����
j � exp


	���j 	 �

�
�	
�

�
� 
�����

From 
����� we conclude that the distribution of Z���
j and Z

����
j does not depend

on v�� � � � � vj��� vj��� � � � � vk��� and j � Moreover� �� � y�
�

����

�
a ln �

�

� ����
���� � �� as

� � � � Hence� for all small enough � � � � for � �v � V
���
j and � � � 	 � p��� we

have

P�v

�n
Z

���
j � � 	 	

o
�
n
Z

����
j � �	 	
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�����

Put T�
�� � �f�
�� 	 f�
�� and Dj �
n
Z
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o
�
n
Z
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o
� Continuing
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X
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Z
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E�vj��v�IfB� �Djg
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n
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	 � 
T�
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o
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Here we used that �a	��b	  
a	 b�	� Since
R
j
F 	
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t�dt � !Q	�			���� � continuing


������ we get
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Due to 
����� and 
�����

�

�k�����
X

�v�V ���
j

P�vfB�g  p�� �j � �� k
���

P�vfDc
jg � 	 �

p�
�
� �j � �� k
��� ��v � V

���
j �

and we 	nally arrive

R�
 �f��  
�	 	�
�
!Q�	

�� �
�

� a���
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k
��

p�
�

� const
�
	
�� �

�
� a���

�	
� const

�
�� 

��a

��
�

�	
� 
�����

Noting� that the right side of 
����� does not depend on the estimator �f�
�� � we
have

lim inf
���

inf
�f�
R�
 �f��  const lim inf

���

�
�� 

��a

��
�

�	
� ��

in view of 
������ From here and 
����� we obtain the statement of the theorem�
Thus� it remains to prove 
������

Fix some j � �� k
�� and put

Z� �
�

�k�����
X

�v�V ���
j

dP�v

dP�

X�
t�� � � t � �� �

Since �� �  �� by de	nition� for � 	 � �


�
��P�fBc

�g � � � 	�

for all small enough � � �� From here
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j
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�
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�
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where the constant c will be chosen below� It is clear that
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�
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�
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From here� continuing 
������ one has
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Since� Z�  � � one can apply Markov inequality� It yields
P�vfZ�  c
�

��g � 
�c
��E�vZ��

From here
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Let us now calculate E�Z
	
� � Applying again Girsanov�s formulae� we have in view
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�����
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�
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�

� �
� 
� �

o
���� From here and 
�����

P�  �	 c
� � 	�	 
p
�c���
� � o
����

If 
� � � � as �� �� then P� � p� for � p� � �� because c and 	 can be chosen
arbitrary small numbers� If lim inf��� 
� � � � then remember that by assumption
of the theorem 
� � ���� �� � �� In this case� choosing c � �

	 � we obtain P�  �
���

if � and 	 are small enough� This proves 
����� and completes the proof of the
theorem�
Theorem is proved�

������ Proof of Lemma �� For � N  � and � k � �� N denote by Pk
N the set of

polynomials� de	ned on interval &k� of the form

Pk
N �

��
�pN 
t�� t � &k � pN 
t� �

NX
j
�

aj
N
t	 tk����
j��� aj � R�� j � ��m� �

��
� �
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Fix some function f
�� �  and consider the following minimization problem��
�
R
k

pN 
t�	 f
t��	dt� inf

pN 
�� � Pk
N


�����

Put !a�k� � %��b�k�
f�� It is easily to see that the polynomial

!p
�k�
N 
t� �

NX
j
�

!a
�k�
j 
N
t	 tk����

j���

is the solution of the problem 
������ i�eZ
k


!p
�k�
N 
t�	 f
t��	dt � inf

pN ����Pk
N

Z
k


pN 
t�	 f
t��	dt� 
�����

On the interval &k let us de	ne the polynomial �p
�k�
N 
�� as follows�

�p
�k�
N 
t� �

m��X
j
�

f �j���
tk���

j 	 ��'N j�� 
N
t	 tk����

j���

Since f
�� �  we have due to Taylor expansionZ
k


�p�k�N 
t�	 f
t��	dt �
�
Q

m'
N��

�	 Z
k

dt �
�

N

�
Q

m'
N��

�	
�


�����

Since �p
�k�
N 
�� � Pk

N from 
����� and 
����� we 	nally get

kbN
�� f�	 f
��k		 �
NX
k
�

Z
k


!p�k�N 
t�	 f
t��	dt �
�
Q

m'
N��

�	
�

Lemma is proved�

������ Proof of Lemma �� Put T � CN
��	CN

and A � 
� �CN�
m� ��� To state the

lemma it is su�cient to show that � k � �� N and for � jtj � T

E expft��g � expf�
�
At	g� 
�����

Then the 	rst two inequalities of the lemma follow from Petrov 
����� ch��� ��
theorem ���� Moreover�

x	

�N
m� ��
� � CN�
�

x	

�N
m� ��
	 x	CN

�N
m � ��
� � CN �
�

x	

�N
m � ��
	 o
���

uniformly w�r�t x � ��� NCN
m���� � if CN � o
N� �
	 �� as N �� that proves the

third statement of the lemma� Thus� one needs to state 
������ Indeed� for t � �
	

E expft��g �
�
expftgp�	 �t

���m���
�

Simplest direct calculations show that for �jtj � T


�	 �t�� �m���
� expf	
m� ��t	 �

�
At	g � ��

that proves 
������
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Lemma is proved�

������ Proof of Lemma �� Due to assumption A�� the set $ is bounded and� there�
fore� there exists P � � such that $ � �	P�P �s� Fix some b � � 
the 	nal
choice of b will be done below�� Put pi � i�b� i � ����� � � � ��I
��� where
I
�� � �P��b�� and let S� be the �b �net in the interval �	P�P �� i�e� S� � fpi� i �
��� � � � ��I
��g� Let S�s�

� � S� � � � � � S� and denote $� � $ � S�s�
� � $� is the

net in the set $ and� obviously� j$�j � 
�P��b�s� For � x � �	P�P � de	ne the
transformation u
x� � x � S� as follows� u
x� � x � u
x� � �b� For �� � $
put u�s�
�� � 
u
���� � � � � u
�s��� Clearly that u�s�
�� � $� for � � � $ � u�s�
��
is uniquely de	ned� and

ku�s�
��	 �k � �b
p
s� 
�����

Put� at last� !�� � u�s�
���� and note that !�� is measurable w�r�t� the observation

X�
t�� � � t � �� in view of the de	nition of u�s�
�� � Denote for � � � $

&	
�
f� �� �

�

N�

N�X
k
�

kc�k�
f�	 y�k�
��k	�

z�
f� �� �
��p
N�

N�X
k
�

�
c�k�
f�	 y�k�
��

��
��k�
���

Later on we will use the standard trick� We show that the statement of the lemma
holds� if to replace ��� by !��� In other words� we prove required inequality on the
net $� and then show that the di#erences between &	

�
f� � &	
�
f�

����� z�
f� �

z�
f� ����� and &	
�
f� !��� z�
f� !�� are negligible� First� let us suppose that

sup
f�����

Pf

��
�jz�
f� !��j  	�

�
&	

�
f�
!�� � &	

�
f�
!�� 

�
		
�
�� 

��

�	
��
�

� v� exp
n
	v���

o

�����

and conclude from here the statement of the lemma� We will use the notation
L�� L	� � � � for the absolute constants� Indeed� since we consider the functions f
�� �
�
L� � then

kc�k�
f�k � L�� ky�k�
��k � L�� 
�����

From 
�����

j&	
�
f�	&	

�
f� !���j � L	
�

N�

N�X
k
�

ky�k�
����	 y�k�
!��k	

� L�k��� 	 !��k	 � L�s
�
� �b	� 
�����

Choosing b� � � � we get from 
����� for all small enough � � � the following
inclusion

n
&	

�
f�  
		�� 

���
	
o
�
��
�&	

�
f� !��� 
�
		
�
�� 

��

�	
��
� � 
�����
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Quite similarly

jz�
f�	 z�
f� !���j � L�

q
N��

b	��

����� �N�

N�X
k
�

j��k
��j
����� � 
�����

where ��k
�� �
Pm��

j
� j��k�j 
��j � Taking into account� that �
�k�
j 
��� k � �� N�� j �

��m� �� are i�i� normally distributed random variables� from 
����� with b� � �
one has

sup
f�����

Pf

n
jz�
f� 	 z�
f� !���j  �	

o
� L� expf	L��

�	g�

The last expression together with 
����� and 
����� leads to the statement of the
lemma� Thus� it remains to prove 
������
Denote $�

� 
f� � f� � $� � &�
f� ��  �
	
�� 

��g and set for � f
�� �  and for

� � � $�
� 
f�

�z�
f� �� �
z�
f� ��

��&�
f� ��
�

Note that �z�
f� �� � N 
�� �� for � � � $ and for � f
�� �  � From here we get
� f
�� � 

Pf

��
�jz�
f� !���j  	�

�
&	

�
f� !��� � &
	
�
f� !��� �

�
		
�
�� 

��

�	
��
�

�
X


���
� �f�

Pf

�
jz�
f� ��j  	�

�
&	

�
f� �� � !�� � �

�

� X

���

� �f�

Pf

�
j�z�
f� ��j  	�		

��
�� 

��

�

�
���$�

� 
f�
��� exp

��
�	L�

�
�� 

��

�

�	
��
� � j$�j exp

��
�	L�

�
�� 

��

�

�	
��
�

� L��
� �s

� exp

��
�	L�

�
ln
�


�

� �
����

��
�

����

��
� �

This proves 
����� with any � � 	
���� and� therefore� completes the proof of the

lemma�
Lemma is proved�
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���� Proof of Theorem �� Put for � k � �� N�� k � �� �N� and for � f
�� � 

b
�k�
j 
f� � N j

�

Z
k


t	 tk���
j��f
t�dt� j � �� l � ��

�
b�k�
f�

��
�
�
b
�k�
� 
f�� � � � � b

�k�
l��
f�

�
� c�k�
f� � %

� �
�

l b�k�
f��

b�
t� f� �
N�X
k
�

�
c�k�
f�

��
%
� �

�
l d�k�
t�Ift � &kg�

�b�k�j 
f� � �N j
�

Z
�k


t	 �tk���j��f
t�dt� j � �� l � ��

�
�b�k�
f�

��
�
�
�b�k�� 
f�� � � � ��b

�k�
l��
f�

�
� �c�k�
f� � %

� �
�

l
�b�k�
f��

�b�
t� f� �

�N�X
k
�

�
�c�k�
f�

��
%
� �

�
l
�d�k�
t�Ift � �&kg

�
�k�
j 
�� � N

j� �
�

�

Z
k


t	 tk���j��dw
t�� j � �� l � ��

�
��k�
��

��
�
�
�
�k�
� 
��� � � � � ��k�l��
��

�
� ��k�
�� � %

� �
�

l ��k�
���

��
t� �
N�X
k
�

�
��k�
��

��
%
� �

�
l d�k�
t�Ift � &kg�

��
�k�
j 
�� � �N

j� �
�

�

Z
�k


t	 �tk���j��dw
t�� j � �� l � ��

�
��
�k�

��
��
�
�
���k�� 
��� � � � � ���k�l��
��

�
� ���k�
�� � %

� �
�

l
��
�k�

���

���
t� �
�N�X

k
�

�
���k�
��

��
%
� �

�
l
�d�k�
t�Ift � �&kg�

Note that by de	nition �f�
�� � b�
�� f� � �
p
N���
��� �f�
�� � �b�
�� f� � �

q
�N����
��

and this is the standard decomposition of linear estimators onto �smoother� and
�stochastic term��

Lemma �� For � f
�� �  and for � � � 
�� �� such that �N�  �� N�  � the
following decomposition holds�

�d� � kb�
�� f�	 �b�
�� f�k		 � ��
q
N�h

�
b�
�� f�	 �b�
�� f�

�
� ��
��i� �	
S� 	 �S���

where

h
�
b�
�� f�	 �b�
�� f�

�
� ��
��i �

Z �

�

�
b�
t� f�	 �b�
t� f�

�
��
t�dt�

S� �
N�X
k
�

l��X
j
�

��
�
�k�
j 
��

�	 	 �� � �S� �

�N�X
k
�

l��X
j
�

��
���k�j 
��

�	 	 �� �
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������ Proof of Theorem �� I�Upper bound�� �� Set �� � 
����

���	�
����
���
�	��	� Let us 	rst prove that ��� �  � � By de	nition� it is required to show that

lim sup
���


�
�� sup

f������

Pff��� � ��
��g �

lim sup
���


�
�� sup

f������

Pff �d� � ��g� 
�����

Fix some function f
�� � �� Since f
�� � H
�� P �� the statement of Lemma �
remains valid� if to replace �� m� Q by �� l� P respectively� Then �f
�� � � we
have by triangle inequality and Lemma �

kb�
�� f�	 �b�
�� f�k	 � kb�
�� f�	 f
��k	 � k�b�
�� f�	 f
��k	
� P

l'

�
N��
� � �N��

�

�
� ����
�� � �	�� 
�����

Set �f
�� � 
��
f� � ��

q
N�h

�
b�
�� f�	 �b�
�� f�

�
� ��
��i� 
�����

It is easily to check that for each function f
�� and �� � �

��
f� � N
�
�� ��	kb�
�� f�	 �b�
�� f�k		

�
� 
�����

From 
����� �f
�� � �

E�	� 
f� � ��	
����
�� � �	��
	

and we see that acrossing term ��
f� is negligibly small in comparison with threshold
��� as �� �� Note also that sum �	 �S� satis	es the assumptions of Lemma �� and
we can state the following inequality�

sup
f�����

Pf

n
�	 �S� � ��

o
� exp

n
	���

o

� � o
���� 
�����

as �� � � where the constants �� � � and �	 � � depend only on � and � � Here
we used the fact that the distribution of the random variable �	 �S� does not depend
on f
�� � Thus� we get from 
������ 
������ 
����� and Lemma �

Pff �d�  ��g � Pf

��
�S� 

�
��

��

�

�	
��
� 
� � o
���

uniformly w�r�t� f
�� � �� as �� �� Noting again� that distribution of the random

variable S� does not depend on f
�� � and applying Lemma � with x �
�
������

�

�	
to

the sum S� � we arrive to the required inequality 
������ because�
���

��

�

��
�

�N�
l � ��
� ln

�


�
�

�� Now let us prove the inequality 
������ We will apply the similar approach�
which we used to prove 
����� in Theorem ��
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Set �f
�� � 
R���
� 
f� � Ef

�
���� 

��k �f�
��	 f
��k	

�q
IfA�g� 
�����

R�	�
� 
f� � Ef

�
���� 
��k �f�
�� ��Q�	 f
��k	

�q
IfAc

�g� 
�����

As it follows from 
����� in order to obtain 
����� it is enough to 	nd uniform upper
estimates for R���

� 
�� and R�	�
� 
��� Since

sup
f�����

R�	�
� 
f� � sup

f����
Ef

�
���� 
��k �f�
�� ��Q�	 f
��k	

�q
�

set  and the estimator �f�
�� ��Q� are the same as in Theorem �� we have from

�����

lim sup
���

sup
f�����

R�	�
� 
f� �

�
	�� � �
��

��
����

�

m� ���Q

m'

� �
����



A
q

� 
�����

Let us now start with the estimation of R���
� 
��� First� note that

k �f�
��	 f
��k	 � k�b�
�� f� � ������	 f
��k	
� k�b�
�� f�	 b�
�� f�k	 � kb�
�� f�	 f
��k	 � k���
��k	
� B�
f� � kb�
�� f�	 f
��k	 � �

�
�S� � �N�
l � ��

� �
�

� B�
f� �
Q

m'
N��
� � �

�
�S� � �N�
l� ��

� �
� � 
�����

where B�
f� � k�b�
�� f�	 b�
�� f�k	 � Here we used Lemma �� Denote !d� � B	
� 
f� �

��
f� � �	S� � As it follows from Lemma � �d� � !d� 	 �	 �S� � Putting �f
�� � 
!R���
� 
f� �

�
���� 

��

�
B�
f� �

Q

m'
N��
� � �

q
�N�
l � ��

��q
Pff !d� � ��g�

we can state in view 
����� and 
����� that

lim sup
���

sup
f�����

R���
� 
f� � lim sup

���
sup
f�����

!R���
� 
f��

Thus� it is enough to estimate !R���
� 
�� � Fix some small 	 � � 
later on 	 � � � and

denote

���
� �

��
�f
�� �  � B�
f� �

vuut��

�
� � 	

�	 	

���
� �

Then

!R�����
�


� sup

f��������
�

!R���
� 
f�

�
�
	���� 

��

�
	
vuut��

�
� � 	

�	 	

�
�

Q

m'
N��
� � �

q
�N�
l � ��



A


A
q

� 
�����
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Set �	�
� �  n ���

� � Due to 
����� there exist some constant �� � � such that

sup
f��������

�

Pfj��
f�j  	B	
�
f�g � exp

n
	��	

o

� � o
����

Hence� for all small enough � � � and �f
�� � �	�
�

!R���
� 
f� �

�
���� 

��

�
B�
f� �

Q

m'
N��
� � �

q
�N�
l� ��

��q

� Pf

n
B	
� 
f�
� 	 	� � �	S� � ��

o
� 
�����

Now let us consider � cases�
a� � � � � ��� In this case �� 

�� � ��
�� and �� � 
����
���	
�� o
��� � We

have from 
�����

lim sup
���

!R�����
� � lim

���

�
	
s
� � 	

� 	 	
�� �

�
�P�p
l� �l'

� �
���� p

l � �



A
q

�

�
	 �� � �


���
��

����

�

l � ���P

l'

� �
����



A
q

� 
�����

For all f
�� � �	�
�

PffB	
� 
f�
� 	 	� � �	S� � ��g � Pff�	S� � 		��g�

In view of Lemma �

sup
f��������

�

Pff�	S� � 		��g

is exponentially small for all 	 � �� as �� �� and� therefore�

lim sup
���

sup
f��������

�

!R���
� 
f� � �� 
�����

Here we also used that jB�
f�j � L���f
�� � � � for some � � L� ��� It remains
to note that

sup
f�����

!R���
� 
f� � max

��
� sup
f��������

�

!R���
� 
f�� sup

f��������
�

!R���
� 
f�

��
�

and we have from 
����� and 
�����

lim sup
���

sup
f�����

!R���
� 
f� �

�
	 �� � �


���
��

����

�

l � ���P

l'

� �
����



A
q

�

Last expression together with 
����� completes the proof of 
����� for the case � �
� � �� �
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b� � � ��� In this case �� 

�� � ��

�� and �� � 
���

���	
� � o
���� Set
c� � 	q ln � and denote for every c � �		 ln
�� c��

�
c� �

��
�f
�� �  � B	

� 
f� �

�
	� �

q
c

ln �
��

� 	 	



A��

��
� �

���
� �

��
�f
�� �  � B	

� 
f� �

�
	� �

q
c�

ln �
��

� 	 	



A��

��
� �

Then� due to Lemma �� quite similarly 
����� and 
�����

lim sup
���

sup
f������	�

�

!R���
� 
f� � �� 
�����

We also obtain from Lemma �

!R���
� 
f� �

�
BB	
�
BB	
�
	� �

q
c

ln �
��

�	 	



A

�
�

��
Q

m'
Z��
�



CCA
q

expf	cg



CCA 
� � o
���

uniformly w�r�t� f
�� � �
c� and c � �		 ln
�� c�� � Therefore�
sup

c���� ln���c��
sup

f�������c�

!R���
� 
f�

�

�
BBBB	 sup
c������

�
BBBB	
�
BB	
� �

r

 c

ln �
��

� 	 	



CCA

�
�

��
Q

m'
Z��
�



CCCCA

q

expf	cg



CCCCA 
� � o
���� 
�����

We also have from 
�����

sup
f��������

�

!R���
� 
f� �

�
	
s
� � 	

�	 	
��

Q

m'
Z��
�



Aq


� � o
���� 
�����

Tending� 	rst� � to zero� and� then 	 to zero� we obtain from 
������ 
����� and

�����

lim sup
���

sup
f�����

!R���
� 
f�

� sup
c������

�
	 
�
l � ��� ��

Z�

�
� �

s
c

ln �
�

� �
�

�
Q

m'
Z��
�



A
q

expf	cg � G�
Z���

This� together with 
������ completes the proof of 
����� for the case � � ���
c� � � ���We omit the proof of 
����� for � � �� � because it is just the repetition

of the proof for the previous case� Moreover� the constant� which bounds the risk�
is rather cumbersome�
II�Lower bound�� We do not need to prove the lower bound� because� if �  ��

the proof for this case coincides with proof of the lower bound in Theorem �� where
one needs to take f�
�� � � instead of f�
�� � f�
�� ��� � In the case � � � � �� �
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the function �� 

�� coincides with ��
�� � being MRC on the hypothesis set � �
Then� required lower bound follows from Proposition ��
Theorem is proved�

������ Proof of Lemma �� By de	nition

�d� � B	
� 
f� � ��h

�
b�
�� f�	 �b�
�� f�

�
�
�q

N���
��	
q
�N����
��

�
i

� �	N�k��
��k		 	 ��	
q
N�

�N�h��
��� ���
��i
� �	 �N�k���
��k		 � �	
l� ��
 �N� 	N���

Hence� in order to prove the statement of the lemma it is enough to show that

hb�
�� f�� ���
��i � h�b�
�� f�� ���
��i� 
�����q
N�h��
��� ���
��i �

q
�N�k���
��k		� 
�����

Let us show� for example� 
������ 
����� is obtained by the same calculations�

Fix some k � �� �N� and consider

Zk �
q
N�

Z
�k

��
t����
t�dt �
q
N�

�k���K�X
i
kK�

Z
i

��
t����
t�dt�

Denote by Vi� i � kK�� 
k � ��K�� 
l � �� � 
l � �� �matrix� which is de	ned as
follows�

Vi �
Z
i

d�i�
t�
�
�d�k�
t�

��
dt�

Then

Zk �
q
N�

�k���K�X
i
kK�

�
��i�
��

��
%��l Vi%

��
l

�
���k�
��

�
�

Let vi
p� q�� p� q � �� l � �� is 
p� q� �element of the matrix Vi� Direct calculations
show that

vi
p� q� � �N q��
�

q��X
r
�

�
q 	 �
r

��
ti�� 	 �tk��

�q���r
N��r���
�

�

p � r
�

Let ui
p� q�� p� q � �� l � �� is 
p� q� �element of the matrix Ui � %
��
l Vi� Again the

simplest algebra yields

ui
p� q� �

��
�
�N q��
�

�
q��
p��
� �

ti�� 	 �tk��
�q�p

N�p
� q  p�

� q � p�
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Introduce the vector
�
 �i�
��
�
�

�i�
� � � � � � 

�i�
l��

�
�
�
��i�
��

��
Ui� Then �j � �� l � �

we have


�i�
j �

l��X
p
�

��i�p 
��ui
p� j� �
jX

p
�

��i�p 
��ui
p� j�

� �N j��
� N

� �
�

�

Z
i

dw
t�

�
	 jX
p
�

�
j 	 �
p 	 �

�

t	 ti���

p��
ti�� 	 �tk���j�p


A

� �N j��
� N

� �
�

�

Z
i


t	 �tk���j��dw
t��
Hence� we have

! �k�

�

�k���K�X
i
kK�

 �i� � �N
� �

�
� N

� �
�

�
���k�
���

By de	nition

Zk �
q
N�

�
! �k�

��
%��l ���k�
�� � �N

� �
�

�

�
���k�
��

��
%��l ���k�
��

� �N
� �

�
� k���k�� k	�

It remains to note that

N
� �

�
� h��
��� ���
��i �

�N�X
k
�

Zk � �N
� �

�
�

�N�X
k
�

k���k�� k	

� �N
�
�
� k���
��k		�

Lemma is proved�

�� Appendix� Proofs of Propositions �
�

���� Proof of Proposition �� Fix an arbitrary 
��� and let f�� 
�� be some 
��� �
adaptive estimator� Introduce the following estimator

�f�
�� �
��
�f

�
� 
�� ��� � ��

�

���

�
�

!f�
�� ��� � ��
��

Fix some 	 � �� Since ��� is optimal r�n�f� and � �  � for all small enough � � �
one has

M� � 	  sup
f������

Ef

�
����� kf�� 
��	 f
��kp

�q

 sup
f������

E
���
f

�
���� 

��kf�� 
��	 f
��kp

�q
If��� � ��

�

���

�
g

� sup
f������

E
���
f

�
���� 

��k �f�
��	 f
��kp

�q
If��� � ��

�

���

�
g

� �� sup
f������

E
���
f

�
���� 
��k !f�
��	 f
��kp

�q

	 �� sup
f������

E
���
f

�
���� 
��k !f�
��	 f
��kp

�q
If��� � ��
�g� 
����
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where �� � 
��
������ 

���
q
� By Cauchy�Schwartz inequality� for all small enough

� � � we get

E
���
f

�
���� 
��k !f�
��	 f
��kp

�q
If��� � ��
�g�

�
n
E

���
f

�
���� 
��k !f�
��	 f
��kp

�q�o q
q�
n
P

���
f f��� � ��
�g

o q��q
q�

� 
R � 	�
q

q�

�
sup

f������

P
���
f f��� � ��
�g

� q��q
q�

� 
R � 	�
q
q� 

� � 	�

q��q
q� � 
����

Here we used that ��� �  � and the assumption of the proposition� From 
�����
continuing 
����� we have

M� � 	  �� inf
f�

sup
f������

R
f���� ��
���

	 
R� 	�
q

q�


� � 	�

q��q
q� �

Hence

lim inf
���

���� 
�

M� � 	���

�
l� 	 
R� 	�

q

q�


� � 	�

q��q
q�

�� �
q

�

Tending 	 to zero we arrive at the statement of the proposition�
Proposition is proved�

������ Proof of Proposition �� Since an estimated function is supposed to be bounded
by some constant L � without loss of generality one can assume that k �f�
��kp � �L �
As it has been already mention� each 
��� �adaptive estimator is a�e� estimator on
the set  
see Remark ��� Therefore� in order to establish the statement of the
proposition� it is enough to show that

lim sup
���

R� 
f
�
� ��� ��
��� � ��

Indeed� due to the representation 
����

R� 
f
�
� ��� ��
���

� sup
f������

E
���
f

�
���� 
��k �f ���� 
��	 f
��kp

�q
If��� � �� 

��g

� sup
f������

E
���
f

�
���� 
��k �f�
��	 f
��kp

�q
If��� � ��
�g

� R�

�
�f ���� ��� ��
��

�
� 
�L�q��q� 
�� sup

f������

P
���
f f��� � ��
�g� 
����

Since �f ���� 
�� is a�e� estimator on the set �

R�

�
�f ���� ��� ��
��

�
� ���

Since ��� �  �

lim sup
���


�
��P���

f f��� � ��
�g � ��
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Moreover� by assumption of the proposition 
��
�q
� 
�� � O
�� � From these three

facts and 
���� we obtain the statement of the proposition�
Proposition is proved�

������ Proof of Proposition �� Putting H� �
�
M�

�

� �
q � we have from the de	nition of

the optimal r�n�f� and from the representation 
����

M�  lim sup
���

R
f�� �� ���� 
����

 lim sup
���

sup
f�������H��

E
���
f

�
���� 

��k �f ���� 
��	 f
��kp

�q
If��� � �� 

��g�

Note that k �f ���� 
�� 	 f
��kp  H��� 

�� for all f
�� � �
H��� that follows from
�f ���� 
�� � � and from the de	nition of the set �
H�� � Thus� continuing 
�����

M�  Hq
� lim sup

���
sup

f�������H��
P

���
f f��� � �� 

��g�

�
M�

�
lim sup

���
sup

f�������H��
P

���
f f��� � �� 

��g�

Proposition is proved�
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