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NONPARAMETRIC FUNCTION ESTIMATION OF

THE RELATIONSHIP BETWEEN TWO

REPEATEDLY MEASURED VARIABLES

A� Ruckstuhl� A� H� Welsh and R� J� Carroll �

January ��� ����

Abstract

We describe methods for estimating the regression function nonparametrically and for esti�

mating the variance components in a simple variance component model which is sometimes used

for repeated measures data or data with a simple clustered structure� We consider a number

of di�erent ways of estimating the regression function� The main results are that the simple

pooled estimator which treats the data as independent performs very well asymptotically but

that we can construct estimators which perform better asymptotically in some circumstances�
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� INTRODUCTION

In this paper� we consider the semiparametric model

Yij � �i � m�Xij� � �ij � i � 	� ���� n� j � 	� ����� J� �	� feq�qa�g

where �i and �ij are independent mean zero random variables with variances ��� � 
 and ��� � 
�

respectively� and m��� is an unknown smooth function� Let Yi � �Yi�� ���� YiJ�t� Xi � �Xi�� ���� XiJ�t�

andm�Xi� � fm�Xi��� ���� m�XiJ�gt� The model implies that the Yi are independent with E�YijXi�

� m�Xi� and� if eJ � �	� ���� 	�t is the J�vector of ones� cov�YijXi� � � � ���eJe
t
J � ��� I� We ad�

dress the general problem of how� when J is �xed and typically small� to estimate the function m���

nonparametrically and� at the same time� how to estimate the variances ��� and ��� �

We will show in Section  that the variance components ����� �
�
� � can be estimated at the para�

metric rate OP �n����� and thus can e�ectively be treated as known for the purpose of developing

and analysing estimators of m���� We therefore treat both variances as known for our theoretical

investigation in Sections � � �� For de�niteness� we focus on the use of local linear kernel smooth�

ing� Where local linear kernel smoothing yields surprising results �Section ��� we compare these

results with results obtained using kernel �local average kernel smoothing� and local quadratic

kernel smoothing�

In Section �� we investigate two simple approaches to the problem of estimating m�x�� at a

�xed point x�� The �rst� which we call pooled estimation� ignores the dependence structure in the

model �	� and simply �ts a single nonparametric regression model �with a bandwidth depending

on x� but not j� through all the data� The second approach� which we call component estimation�

involves �tting separate nonparametric regression models relating the jth component of Y to the

jth component of X �allowing di�erent local bandwidths at x� for each component� j � 	� ���� J�

and then combining these estimators to produce an overall estimator of the common regression

function m�x���

Pooled estimation has the advantage of simplicity� since only one regression �t is required�

Component estimation requires J regression �ts and may be adversely a�ected by boundary ef�

fects� if the support of the components of X depends on j� the components estimators may end up

combining estimators from components a�ected by boundary e�ects with estimators from compo�

nents una�ected by them� However� we show here that for local linear kernel estimation� pooled

estimation is asymptotically equivalent to the optimal linear combination of the component esti�

mators� The property on which this result depends is that for local polynomial kernel regression�

	



the estimators of the component functions are asymptotically independent� �The well�known corre�

spondence between local polynomial kernel regression with local bandwidths and local polynomial

nearest neighbor �loess� regression suggests that the same asymptotic independence results holds

for the latter��

Severini � Staniswalis �	���� introduced quasi�likelihood estimation for so�called partially linear

models� which consist of a linear parametric component� a nonparametric component� and a general

covariance structure� Hence model �	� is a simple special case of a partially linear model� We discuss

quasi�likelihood estimation in the context of model �	� in Section �� Severini and Staniswalis focus

their analysis on the problem of estimating and deriving asymptotic results for estimators of the

parameters of the parametric component of a partially linear model� while we derive asymptotic

results for the estimator of the nonparametric component based on local polynomial estimators

restricting� however� our attention to simpler models like �	�� Since the calculations yield a compli�

cated expression for the asymptotic variance� preventing direct comparisons of estimation methods�

we explore in detail the case of independent and identically distributed explanatory variables X �

In this case� the asymptotic variance of the locally linear quasi�likelihood estimator is larger than

that of the pooled estimator� We found this result surprising so explored the properties of kernel

and local quadratic kernel smoothing in quasi�likelihood estimation� We found that �i� the asymp�

totic variance of the locally linear quasi�likelihood estimator is even larger than that of a �locally

averaged� kernel quasi�likelihood estimator �without the bias necessarily being smaller� and �ii� the

asymptotic variance of a locally quadratic quasi�likelihood estimator is of a di�erent order than that

of the locally linear quasi�likelihood estimator� namely of order OP
�
�nh�����

�
� The increase in the

size of the variance of the locally linear quasi�likelihood estimator compared to that of the pooled

estimator is caused by the o��diagonal elements of the inverse covariance matrix� In Section � we

also show that a modi�ed version of the quasi�likelihood estimator in which the inverse covariance

matrix is replaced by the diagonal matrix with the diagonal of the inverse covariance matrix on its

diagonal� results in an estimator which is asymptotically equivalent to the pooled estimator�

Although the pooled estimator is the �asymptotically� best estimator we have considered so

far and is easy to apply� it makes no use of the covariance structure in the components of Y and

therefore ought to be capable of being improved upon� Because of the local nature of nonparametric

regression� constructing an estimator which accounts for the covariance structure and improves

upon the pooled estimator is a surprisingly di�cult task �cf� Section ��� In Section � we propose

a two�step estimator� The intuition for it is very simple� in model �	�� multiply both sides of

�



the model by the square�root of the inverse covariance matrix and rearrange terms so that we

have �expression�� m�Xij� � �
ij

� where the �ij are now independent and identically distributed�

The �expression� depends on m�Xij� which we estimate by the pooled estimator� The two�step

estimator has a smaller asymptotic variance than the pooled estimator and an asymptotic bias

which can be smaller than the pooled estimator�

We require the following assumptions�

C�	 K��� is a symmetric� compactly supported� bounded kernel density function with unit

variance and de�ne Kh�v� � h��K�v	h�� with bandwidth h� Let 
�r� �
R
zrK�z�dz

and ��r� �
R
zrK��z�dz ��� r � 	� �� with � � ��
� � 
�

C�� h� 
 as n�� such that nh���

C�� m��� has continuous second derivatives�

C�� x� is an interior point of the support of the distribution of Xi� the density of Xij is twice

continuously di�erentiable� and fj���� the marginal density of Xij � satis�es fj�x�� � 
�

For local linear quasi�likelihood estimation we require longer expansions �and hence stronger con�

ditions� than for the other estimation methods� In this case� we replace conditions C��C� by the

following stronger conditions�

C� m��� has continuous �fth derivatives�

C�� x� is an interior point of the support of the distribution of Xi� the density of Xij is

continuously di�erentiable� the marginal density fj of Xij is twice continuously di�er�

entiable and satis�es fj�x�� � 
� and the bivariate joint density fjk of Xij is twice

continuously di�erentiable� Moreover� we requireZ
�xj � x��

�fj�k�xj � x��dxj � �Z
�xj � x��

r �

�x���
fj�k�xj � x��dxj � �� l � 	� �� r � 	� ��

It is sometimes helpful to frame results in the context of an arbitrary covariance matrix� When

this is the case� the covariance matrix of Y given X is denoted � � ��j�k�� the inverse covariance

matrix is denoted V � ��� � �vj�k�� and we set vk� �
PJ

j�� vk�j � Recall that under the variance

component model� the covariance matrix of Y given X is � � ��� I� ���eJe
t
J so

V � ��� � ����

n
I� �dJ	J�eJe

t
J

o
�

V��� � ����

�
I�

hn
	� �	� dJ����

o
	J
i
eJe

t
J

�
�

�



where dJ � J���	���� � J����� Under the variance component model� the diagonal and o��diagonal

elements of these matrices are constant so it is convenient to denote the diagonal elements �j�j

of � by ��d � the diagonal elements vj�j and o��diagonal elements vj�k of V � ��� as vd and vo

respectively� and the diagonal and o��diagonal elements of V ��� by �vd and �vo respectively� Finally�

under the variance component model� vk� is also constant so we write vk� � v��

� POOLED AND COMPONENT ESTIMATION
fsec�componentg

The pooled estimator bmpool�x�� h� of m�x�� is de�ned as the local linear kernel regression estimator

with kernel function K��� and bandwidth h when all the Y �s and X �s are combined into a single

data set of length nJ � That is

bmpool�x�� � �	� 
�

���n��
nX
i��

JX
j��

�
	

�Xij � x��	h

	�
	

�Xij � x��	h

	t
Kh�Xij � x��


��
��

�

���n��
nX
i��

JX
j��

�
	

�Xij � x��	h

	
YijKh�Xij � x��


�� �

The optimal pooled estimator minimizes the mean squared error of bmpool�x�� h� at x� over h�

To de�ne the components estimator bmW �x��h� c�� for j � 	� ���� J � let bmj�x�� h� be the local

linear kernel regression estimator of the �Yij� on the �Xij�� with bandwidth hj � That is

bmj�x�� hj� � �	� 
�


n��

nX
i��

�
	

�Xij � x��	hj

	�
	

�Xij � x��	hj

	t
Khj�Xij � x��

���

�


n��

nX
i��

�
	

�Xij � x��	hj

	
YijKhj�Xij � x��

�
�

Then if h � �h�� ���� hJ�t and c � �c�� ���� cJ�t� the components estimator is the weighted average of

the component estimators given by

bmW �x��h� c� �
JX
j��

cj bmj�x�� hj��
JX
j��

cj � 	� ��� feq�qc�g

The optimal components estimator minimizes the mean squared error at x� over both h and c�

The following result is proved in appendix A�	 and A���

Theorem � Suppose that conditions C	 � C� hold� De�ne s�x�� � J��
PJ

j�� fj�x��� For local

linear kernel regression� the optimal pooled estimator and the optimal components estimator are

asymptotically equivalent� The bias� variance� optimal bandwidth and mean squared error at this

�



optimal bandwidth for the former are given by

biasf bmpool�x�� h�g � �		��h�m����x��� ��� feq�qfg�g

varf bmpool�x�� h�g � ����� � ��� �fnhJs�x��g
��� ��� feq�qfg�g

h�opt�pool�local linear� �
����� � ��� �

nJs�x��fm����x��g�
� �� feq�qfg�g

mseopt�pool�local linear� � �	��fm����x��g
���

h
����� � ��� � fnJs�x��g

��
i���

� ��� feq�qfg�g

fth�pooledg

Theorem 	 shows that the pooled estimator has the same asymptotic properties under the model

�	� as it has under the nonparametric regression model in which the errors are independent and

identically distributed with variance ��� � ��� � Moreover� working componentwise as in the compo�

nents estimator does not enable us to make use of the known dependence structure in the model

�	� in the sense that we can do no better than using the pooled estimator�

� QUASI�LIKELIHOOD ESTIMATION
fsec�qleg

In this section we apply Severini � Staniswalis� �	���� proposal to model �	�� Because of its

undesirable asymptotic properties we modify the quasi�likelihood estimator in the second part

of this section� The modi�cation yields an estimator asymptotically equivalent to the pooled

estimator�

��� Ordinary Quasi�likelihood Estimator
fsubsec�sev�stang

Recall that V � ���� Then bmp�qle�x�� h�� the intercept in the solution of

nX
i��

����
	 ��� 	
� ��� �
� ��� �

�Xi� � x��
p ��� �XiJ � x��

p

����V
����
Kh�Xi� � x��fYi� �

Pp
k��

b�k�Xi� � x��
kg

�
�

Kh�XiJ � x��fYiJ �
Pp

k��
b�k�XiJ � x��

kg

���� � �� ��� feq�qleg

is the local polynomial version of the quasi�likelihood estimator in Severini � Staniswalis �	����

Equation �	��� for model �	�� The local linear quasi�likelihood estimator which we consider �rst

has p � 	�

In Appendix A��� we prove the following asymptotic results�

Theorem � Suppose that conditions C	� C� and C� C� hold� Let bmp�qle�x�� h� be the solution

of �	
� Then

biasf bm��qle�x�� h�g � h�m����x��	��





varf bm��qle�x�� h�g � OP

n
�nh����

o
�

For the variance component model ��
� where the Xk�s are independent and identically distributed

with marginal distribution f��� and variance ��X � the asymptotic variance reduces to

varf bm��qle�x�� h�g �
��
� ���� � ��� �

nhJf�x��

���	 �

�
�

J � �

f ����x��

f�x��

��

�J � 	���X


�� �

where � � J���	�J��� � ��� �� fth�qleg

Note� that the local linear quasi�likelihood estimator has the same asymptotic bias but a larger

asymptotic variance than that of the pooled estimator in the variance component model with inde�

pendent and identically distributed Xj �s� In view of this result �and the lack of results on estimating

the nonparametric component of the model referred to in the introduction�� we also obtained re�

sults for kernel and local quadratic quasi�likelihood estimators �p � 
 and p � � respectively� of

the regression function�

Under similar conditions to those in Theorem �� we show in Appendix A�� that the kernel

estimator has

biasf bm��qle�x�� h�g � h�

m����x��

PJ
k�� vk�f

���
k �x��PJ

k�� vk�fk�x��
� m����x��	�

�
�

varf bm��qle�x�� h�g �
��
�

nPJ
k���vk��

��k�kfk�x��
o

nh
�PJ

k�� vk�fk�x��
�� �

where vk� �
PJ

j�� vk�j with vj�k the elements of V� For a variance component model �	�� where the

Xk�s are independent and identically distributed with marginal distribution f��� and variance ��X �

the asymptotic variances reduce to

varf bm��qle�x�� h�g �
��
����� � ��� �

nh J f�x��
�

The kernel quasi�likelihood estimator has the same asymptotic variance as the pooled estimator�

However� as it is generally dependent on the design� its bias also depends on the design�

For the local quadratic quasi�likelihood estimator� we show that

biasf bm��qle�x�� h�g � h�

���� 
����


���� 	


m�	��x��

��

SN
SD

�
m����x��

��

�
�

where SD and SN are given in ���� and ����� respectively� and for the variance component model

�	�� where the Xk�s are independent and identically distributed with marginal distribution f��� and

variance ��X � the asymptotic variance is

varf bm��qle�x�� h�g �
��
� ���� � ��� �

nh�Jf�x��

�
�

J � �

	� �J � 	�

f
���� 	g�

�Z
�x� x��

�f�x� dx�
�
��X

���
�

�



where � � J���	�J��� � ��� �� The asymptotic variance of the local quadratic estimator is of higher

order OP �n��h��� than OP �n��h��� obtained by the pooled estimator�

��� Modi�ed Quasi�likelihood Estimator
fsubsec�mqleg

Analysing the proof of the asymptotic results for the quasi�likelihood estimator� the slow rate of

convergence of the asymptotic variance is caused by the o��diagonal elements of V � ���� This

suggests that we modify the quasi�likelihood estimator by replacing V � ��� by V � diag������

Theorem � Suppose the conditions of Theorem  hold� Let bm��mqle�x�� h� be the solution of �	


for p � 	� where V � ��� � �vj�k� is replaced by V � diag������ Then

biasf bm��mqle�x�� h�g � h�m����x��	��

varf bm��mqle�x�� h�g �
	

nh

PJ
j�� v

�
j�j�j�jfj�x��nPJ

j�� vj�jfj�x��
o� ��
��

where � � ��j�k�� For the variance component model ��
� the asymptotic variances reduce to

varf bm��mqle�x�� h�g �
	

nh

���� � ��� �PJ
j�� fj�x��

��
�

and hence the local linear modi�ed quasi�likelihood estimator is asymptotically equivalent to the

pooled estimator� fth�mqleg

For the kernel and local quadratic modi�ed quasi�likelihood estimators� we obtain

biasf bm��mqle�x�� h�g � h�

���m����x��

PJ
j�� vj�jf

���
j �x��PJ

j�� vj�jfj�x��
� m����x��	�


�� �

biasf bm��mqle�x�� h�g � h�

����� 
���


���� 	

���m�	��x��

��

PJ
j�� vj�jf

���
j �x��PJ

j�� vj�jfj�x��
�
m����x��

��


�� �

and

varf bmp�mqle�x�� h�g �
	

nh

PJ
j�� v

�
j�j�j�jfj�x��nPJ

j�� vj�jfj�x��
o� Fp�

where � � ��j�k� and

Fp � ��
� for p � 
�

Fp � ��
�
�
���f��
�� ����g� ����� ��
�

f
���� 	g�
for p � ��

�



For the variance component model �	�� the asymptotic variances reduce to

varf bmp�mqle�x�� h�g �
	

nh

���� � ��� �PJ
j�� fj�x��

Fp�

For p � �� the modi�ed quasi�likelihood estimator is asymptotically better than the quasi�

likelihood estimator because its variance converges at a faster rate� For p � 
� it is easy to see

that a su�cient condition for asymptotic equivalence is vj�	vj�j � constant which is� for example�

satis�ed by the variance component model �	��

Note that both the asymptotic bias and the asymptotic variance are invariant to multiplying V

by a constant� i�e�� the matrix V has to be determined only up to a multiplicative factor�

� TWO�STEP ESTIMATION
fsec�combineg

In this section� we propose a two�step estimator which exhibits some asymptotic improvement over

the pooled and modi�ed quasi�likelihood estimators�

Again let V � ��� and let V��� be its symmetric square root� Let L � �V��� and let bm��pool���

be the pooled estimator of Section �� Write

Z � LY� �L� I�cm��pool�X��

We propose to estimate m�x�� by bmC�x��� the local linear kernel regression estimator of the re�

gression of the Z�s on the X �s� That is� by solving

bmC�x�� � �	� 
�

���n��
nX
i��

JX
j��

�
	

�Xij � x��	h

	�
	

�Xij � x��	h

	t
Kh�Xij � x��


��
��

�

���n��
nX
i��

JX
j��

�
	

�Xij � x��	h

	
ZijKh�Xij � x��


�� �

The intuition for this estimator is very simple� write Y � m�X� � �� multiply both sides by �����

and rearrange terms so that we have �expression� � m�X� � �� where the �i are now independent

and identically distributed� The �expression� we obtain equals Z�

In the appendix� we prove the following result�

Theorem � Suppose the conditions of Theorem � hold� De�ne dJ � J���	���� � J����� Then� for

� � 
�

biasf bmc�x�� h�g � �		�h�m����x��� �vd

�



��		��h�� �vo

PJ
j�� fj�x��

P
k ��j Efm

����X�k�jX�j � x�gPJ
j�� fj�x��

� ��� feq�qd�g

varf bmc�x�� h�g � �nh������

���
JX
j��

fj�x��


��
��

� ��� feq�qd�g

where �vd and �vo are the diagonal and the o��diagonal elements of V ���� respectively� fth�combg

An optimal � can be determined by minimizing the asymptotic mean squared error� The

minimization problem results in a cubic equation in � � Note that since the bias is design dependent

�because of the structure of Z�� so also is the optimal � �

If we choose � equal to ���� then the asymptotic variance of the two�step estimator is smaller

than that of the pooled estimator� If we wish to treat Z � m�X� � � in the same scale as the

original data �	�� we should set � equal to �v��d � In this case�

�� � ���

h
	�

n
	� �	� dJ����

o
	J
i��

�

where dJ � J���	���� � J����� Thus the asymptotic variance is

varf bmc�x�� h�g �
�nh�������PJ

j�� fj�x��
�
	�

�
	� �	� dJ����

�
	J
�� �

Now

��� � ��� �	� f	� �	� dJ����g	J  �� � ��� � ���

so the two�step estimator with � � �v��o has larger asymptotic variance than the two�step estimator

with � � ���� but still has smaller asymptotic variance than the pooled estimator� In either case�

the asymptotic biases of the two estimators are di�cult to compare but note that the asymptotic

bias of the two�step estimator can be smaller than that of the pooled estimator because �vo is

negative� allowing the possibility of cancellation to occur�

� ESTIMATION OF THE VARIANCE COMPONENTS
fsec�varcompg

Let Y � �Yt
�� ����Y

t
n�t be the vector of pooled responses and let E be the deviations of Y from the

regression line fmt�X��� ����m
t�Xn�gt� For all estimators used in this paper� there is an �nJ���nJ�

matrix S with the property that the vector of predicted values equals SY� and hence the vector of

residuals is �I� S�Y � D�� explicit formulae in special cases are given in the appendix�

The simplest approach to estimating the variance components is to pretend that the residuals

have mean zero and covariance matrix the same as if m��� were known� For example� the Gaussian

�



�likelihood� for �� � ��� and �� � ��� � J��� can be written as

�n�J � 	� log �� � n log �� �
	

��

nX
i��

JX
j��

n
Yij �m�Xij�� �Y i �mi�

o�
�

J

��

nX
i��

�Y i �mi�
��

where Y i � n��
PJ

j�� Yij and mi � n��
PJ

j��m�Xij�� This �likelihood� is maximized at

b�� �
J

n

nX
i��

�Y i �mi�
��

b�� �
	

n�J � 	�

nX
i��

JX
j��

n
Yij �m�Xij�� �Y i �mi�

o�
�

when b�� � b�� and at

b�� � b�� �
	

nJ

nX
i��

JX
j��

fYij �m�Xij�g
� �

otherwise� Substituting a consistent estimator of m��� yields consistent estimates of ����� �
�
� �� and

from results of Gutierrez � Carroll �	���� combined with �	
�� it can be shown that the resulting

estimators have the same limit distribution as if m��� actually were known�

However� as described below the covariance matrix of the residuals is not the same as if m���

were known� and following the procedure used in many venues �e�g�� Chambers � Hastie� 	���� pp�

��������� we can adjust for the loss of degrees of freedom due to estimating m���� In practice� we

center the residuals at their mean� using D � D��e
t
nJD	�nJ�� which has approximately mean zero

and the covariance matrix C����� �
�
� � � ���C� � ���C�� where C� and C� are the known �nJ���nJ�

matrices

C� � �I� S�diag�eJ e
t
J��I� S�t�

C� � �I� S��I� S�t�

In principle� we can still use normal�theory maximum likelihood �with covariance C����� �
�
� � � ���C�

� ���C�� to estimate ����� �
�
� �� However� the di�culty with maximum likelihood in this context is

that the �nJ�� �nJ� matrix C��� is impractical to invert� We consider two alternative methods of

adjustment�

One approach is to make a restricted maximum likelihood �REML� style adjustment by substi�

tuting the estimate of m��� into the estimating equations� taking their �approximate� expectations�

subtracting these expectations from the original estimating equations and then solving the resulting

	




�approximately� unbiased estimating equations� For the case that b�� � b��� after some considerable

algebra� we obtain the approximately unbiased estimating equations


 � DtUUtD� ��w� �
��
J
u��


 � DtD� ��w� �
��
J
u��

where

wr � trace�Wr �
	

J
UUtWr��

ur � trace�UUtWr��

U �

�BB�
eJ � � � � �

� eJ � � � �
� ��� � �

� ��� � eJ

�CCA �

W� � �I� S�tUUt�I� S��

W� � �I� S�t�I� S��

Solving these two equations� we obtain

b�� �
u�D

tUUtD� u�D
tD

w�u� � w�u�
�

b�� � J
w�D

tD � w�D
tUUtD

w�u� � w�u�
�

Alternatively� we can abandon the �likelihood� and employ a method of moments device� Let

otrace��� be the sum of the o��diagonal elements of a matrix� Then we can solve the two equations

trace�DDt� � ���trace�C�� � ��� trace�C���

otrace�DDt� � ���otrace�C�� � ��� otrace�C���

so that

b��� �
otrace�C��trace�D Dt�� trace�C��otrace�D Dt�

otrace�C��trace�C��� trace�C��otrace�C��

b��� �
otrace�C��trace�D Dt�� trace�C��otrace�D Dt�

otrace�C��trace�C��� trace�C��otrace�C��
�

These estimators can be shown to have the same limiting distribution as the method of moments

estimators for known m���� namely

b���fm��� knowng � otrace�E Et�	fnJ�nJ � 	�g�

b��� fm��� knowng � ftrace�E Et�	�nJ�g � b����
		



� DISCUSSION
fsec�discussg

We have considered a number of di�erent approaches �more than we have reported on here� to

estimating the regression function when we have a simple dependence structure between obser�

vations� The simple pooled estimator which ignores the dependence structure performs very well

asymptotically� Intuitively� this is because dependence is a global property of the error structure

which �at least in the form we have examined� is not important to methods which act locally in

the covariate space� Speci�cally� in the limit� local estimation methods are e�ectively dealing only

with independent observations�

The performance of the pooled estimator raises the question of whether there is some method of

local estimation which nonetheless exploits the dependence structure in such a way that it performs

better than the pooled estimator� The quasi�likelihood estimator is very appealing for estimating

the parametric component in a partially linear model and the general approach for estimating

nonparametric components described by Carroll� Ruppert and Welsh �	���� suggests that the

extension we have considered in this paper is well worth considering� We were surprised to �nd

that quasi�likelihood estimation is asymptotically no better than pooled estimation� After trying a

number of alternative approaches� we discovered that the two�step method has smaller asymptotic

variance than the pooled estimator but does not necessarily have a lower asymptotic bias� The

question of whether it is possible to construct an estimator with uniformly smaller asymptotic mean

squared error than the pooled estimator remains open�

It is interesting to note that even if we were to assume a parametric form for the regression

function� we would gain con!icting intuition into the problem of estimating the regression function

in our problem� First notice that if we were to assume a constant regression function� then the

maximum likelihood estimator �under Gaussianity� of the constant regression function is the sample

mean which is� in this context� the pooled estimator� On the other hand� if we assume a linear

regression function� the maximum likelihood estimator �under Gaussianity� of the linear regression

function is the weighted least squares estimator which performs better than the least squares

estimator which is� in this context� the pooled estimator� Thus the intuition we gain depends on

which parametric model we consider�
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Appendix A PROOFS OF THEOREMS
fsec�appg

A�� Proof of Theorem �
fpr�pooledg

We �rst derive the results for the component estimator� From Fan �	����� Ruppert � Wand �	����

and Carroll� Ruppert � Welsh �	����� we have the results�

biasf bmp�j�x�� h�g � �		��h�m����x���

varf bmp�j�x�� h�g � ����� � ��� � fnhfj�x��g
�� �

bmp�j�x�� h��m�x�� h�� �h�	��m����x�� � fnfj�x��g
��

nX
i��

fYij �m�Xij�gKh�Xij � x����	
� feq�qc�g

The last step is implicit in the �rst two papers and explicit in the third� It is easily seen from �	
�

that for j �� k� covf bmp�j�x�� h�� bmp�k�x�� h�g � O�n���� and hence for asymptotics arguments� the

component estimators bmp�j�x�� h� are independent�

It thus follows that

biasf bmW �x��h� c�g � �		��m����x��
JX
j��

cjh
�
j �

JX
j��

cjbj�x�� hj��

varf bmW �x��h� c�g � ����� � ��� �n
��

JX
j��

c�j fhjfj�x��g
�� �

JX
j��

c�jvj�x�� hj��

The individual component bias functions are bj�x�� hj� and the individual component variance

functions are vj�x�� hj�� The problem becomes to minimize �in h and c� the function

mseW �x��h� c� �

���
JX
j��

cjbj�x�� hj�


��
�

�
JX

j��

c�jvj�x�� hj�

	�



subject to etJc � 	� As shown in Appendix A��� the minimization problem is solved by choosing a

common bandwidth

hopt �

�
����� � ��� �

fm����x��g�n
PJ

j�� fj�x��

����

and weights

copt�j � fj�x��


JX

k��

fk�x��

���
for j � 	� � � � � J�

The asymptotic mean squared error at this optimal solution is

mseopt�W � 	�
n
m����x��

o��� ����� � ��� �

n
PJ

j�� fj�x��

����

which is ����

We now turn to the pooled estimator� We proceed more generally than for local linear regression�

obtaining results for local polynomial regression of order p with p odd� Let �j � hjm�j��x��	j��

and de�ne B � ���� ���� �p�
t� Let Gp�v� � �	� v� v�� ���� vp�t� Then�

bB � B � A���n� J� h� x��B�n� J� h� x���

where

A�n� J� h� x�� � �nJ���
nX
i��

JX
j��

Kh�Xij � x��Gpf�Xij � x��	hgG
t
pf�Xij � x��	hg�

B�n� J� h� x�� � �nJ���
nX
i��

JX
j��

Kh�Xij � x��Gpf�Xij � x��	hg


Yij �

pX
k��

m�k��x���Xij � x��
k	k�

�
�

Let 
��� �
R
z�K�z�dz and Dp�
� be the �p� 	�� �p� 	� matrix with �j� k�th element 
�j�k� ���

Let ���� �
R
z�K��z�dz so that � � ��
�� and let Dp��� be the �p�	�� �p�	� matrix with �j� k�th

element ��j � k � ��� Direct calculations �keeping in mind that p is odd� show that

A�n� J� h� x�� � f	 � op�	�gs�x��Dp�
��

covfB�n� J� h� x��g � �nhJ���s�x����
�
� � ��� �Dp����

EfB�n� J� h� x��g � fs�x��m
�p
���x��h

p
�	�p� 	��g f
�p � 	�� ���� 
��p� 	�gt �

Thus� for p odd we have

bias f bmp�pool�x�� h�g �
n
m�p
���x��h

p
�	�p� 	��
o

�	� 
� ���� 
�D��
p �
� f
�p � 	�� ���� 
��p� 	�gt �

var f bmp�pool�x�� h�g � fnhJs�x��g ���� � ��� ��	� 
� ���� 
�Dp���D��
p �
�D��

p �
��	� 
� ���� 
�t�

In the special case p � 	� these results reduce to �������� thus completing the proof�

	�



A�� Optimal Bandwidths and Weights for the Component Estimator
fpr�optbwg

To determine the optimal bandwidths and weights for the component estimator we have to minimize

�in h� c� and �� ���
JX
j��

cjbj�x�� hj�


��
�

�
JX

j��

c�jvj�x�� hj� � �etJc �

where � is the Lagrange multiplier� To simplify the notation� de�ne the matrix H � diag�h� and

the vector f�x�� � ff��x��� � � � � fJ�x��g
t� Taking partial derivatives� the optimal parameters satisfy

the implicit equations

fm����x��g
�ctH�eJ H

	f�x��� ����� � ��� �n
��c � 
 �		� feq�pd�g

���fm����x��g
�ctH�eJ H

	f�x�� � ������ � ��� �n��c� �Hf�x�� � 
 �	�� feq�pd�g

cteJ � 	 � 
� �	�� feq�pd�g

The di�erence between �		� and two times �	�� results in

����� � ��� �n
��c� ��Hf�x�� � 
� �	�� feq�pdd��g

Multiplying this equation by etJ and using �	��� we obtain

� � ������ � ��� �
n

�netJHf�x��
o��

� �	� feq�lambdag

and thus by substituting � in �	�� by the previous expression we obtain

c � Hf�x��
n
etJHf�x��

o��
� �	�� feq�solcg

We now turn to determining the optimal bandwidths h� Substitute � and c in �	�� by �	� and

�	��� This results inh
fm����x��g

�f�x��
tH	eJH

� � ����� � ��� �n��I
i
Hf�x�� � 
�

which is satis�ed if

fm����x��g
�f�x��

tH	eJ H
� � ����� � ��� �n��I � 
�

We can conclude from this equation that hj is constant for all j � 	� � � � � J � and thus

h�opt �
����� � ��� �

fm����x��g� n
PJ

j�� fj�x��
�

Consequently we obtain an optimal cj of

copt�j � fj�x��


JX

k��

fk�x��

���
�

as claimed�

	



A�� Proof of Theorem �
fpr�qleg

Here we give a brief derivation of the asymptotic bias and variance formulae for the quasi�likelihood

estimator� We start by obtaining some general results for the local polynomial estimator� Then we

obtain results for the kernel �local average�� local linear� and local quadratic estimator�

A useful simpli�cation is to let the unknown parameters be �q � hqm�q��x��	q�� Thus� m�X�

is approximated by fGp�h�X � x�eJ �gt �� where Gp�h�X � x�eJ� is the �p � 	� � J matrix with

�k � 	�th row �f�X� � x��	hg
k� f�X�� x��	hg

k� � � � � f�XJ � x��	hg
k � De�ne

Ln��� � n��
nX
i��

Gp�h�Xi � x�eJ�VKh�Xi � x�eJ�

�
Yi �

n
Gp�h�Xi � x�eJ�

ot
�

�
�

where Kh�Xi�x�eJ� � diagfKh�Xi��x��� � � � � Kh�XiJ�x��g� Then the quasi�likelihood estimator

�at x�� solves � � Ln�b��� and hence

b� � � � �B�
n��� Ln����

where B�
n is the �p � 	�� �p � 	� matrix

B�
n � n��

nX
i��

Gp�h�Xi � x�eJ�VKh�Xi � x�eJ � fGp�h�Xi � x�eJ �gt�

Let vj�k be the elements of V� Then the elements of the matrix B�
n are

�B�
n�r�s �

JX
k��

JX
j��

vj�kAn�j�k�r� 	� s� 	��

where

An�j�k�r� s� � n��
nX
i��

�
Xij � x�

h

	r
Kh�Xik � x��

�
Xik � x�

h

	s
�

It is easily seen that

An�k�k�r� s� 	
Z
zr
sK�z�fk�x� � z h�dz

and

An�j�k�r� s� 	 h�r
Z Z

�xj � x��
rzsK�z�fj�k�xj � x� � zh�dxjdz

for j �� k� Thus� the elements of B�� the limit of B�
n as n��� are

�B��r�s �
mX
���

n
h�
��r
�� � s � 	�B�r � 	� ��

o
� 
�m � s�OP �hm
��r�� �	�� feq�asBg

	�



where

B�
� �� �
JX

k��

���f
���
k �x��

��

JX
j��

vj�k


��
B�r� �� �

JX
k��

JX
j ��k

vj�k
��

Z
�xj � x��

r �

�x���
fj�k�xj � x��dxj � 	���r�

JX
k��

vk�kf
���r�
k �x��

��� r��

for r � 
 and for � 
 
�

Furthermore� note that since EfY�m�X�jXg � 
�

EfLn���g � EX

�
Gp�h�X� x�eJ �VKh�X� x�eJ�

�
m�X��

n
Gp�h�X� x�eJ �

ot
�

�	
�

But Taylor�s theorem implies

m�X��
n
Gp�h�X� x�eJ�

ot
� � �p
�f�X� x�eJ �	hgp
� � �p
�f�X� x�eJ �	hgp
� �h

O�hp
	f�X� � x�eJ �	hgp
	�� � � � �O�hp
	f�X� � x�eJ�	hgp
	�
it

and thush
EfLn���g

i
r
�

hp
�m�p
���x��

�p � 	��
�B��r�p
� �

hp
�m�p
���x��

�p � ���
�B��r�p
	

�
hp
�m�p
���x��

�p � 	��

n
h��r
�p � 	�B�r � 	� 
� � h��r
�p � ��B�r � 	� 	�

o
�

hp
�m�p
���x��

�p� ���
h��r
�p � ��B�r � 	� 
�� �	�� feq�gELg

for r � 	� �� � � � � p � 	� The asymptotic bias is then

bias � bm��qle�x�� h�� � �	� 
� 
� � � �� �B����EfLn���g �	�� feq�gbiasg

The covariance matrix of Y given X is ����j�k�� Thus the covariance of Ln��� is CLn � with

elements given by

�CLn�r�s �
	

n
EX

���
JX
j��

JX
k��

JX
���

JX
m��

v��j�j�kvk�m

� Kh�X�j � x��Kh�X�k � x��

�
X�� � x�

h

	r���X�m � x�
h

	s���
�

Let vk� �
PJ

j�� vk�j � Then direct� but lengthy� calculations show that

�CLn���� � ��
�n��h��
JX

k��

�vk��
��k�kfk�x�� ��
� feq�cov��g

�CLn���s � ��
�n��h�s
JX

k��

���vk��k�k
JX

m��k

vk�m

Z
�xm � x��

s��fk�m�x�� xm�dxm


�� ��	� feq�cov��g

	�



�CLn�r�s � ��
�n��h�r�s
�
JX

k��

����k�k
JX
���k

JX
m��k

v��kvk�m

�

Z
�x� � x��

r���xm � x��
s��fk���m�x�� x�� xm�dx�dxm

�
���� feq�covrsg

for r 
 s and for s � 	 and thus� because the covariance matrix is symmetric� we have a �rst order

approximation of the asymptotic covariance matrix� The variance of the quasi�likelihood estimator

is then

varf bm��qle�x�� h�g � �	� 
� 
� � � ���B����CLn

n
�B����

ot
�	� 
� 
� � � ��t�

A���� Kernel �Local Average	 Estimation

#From the previous calculation it is easy to determine the bias and variance of the kernel estimator

�p � 
�� Using �	��� �	��� �	� and ��
�� respectively� the bias is

f�B�����g
��EfLn���g � B�
� 
���

n
hm����x��hB�
� 	� � h�m����x��	�B�
� 
�

o
� h�


m����x��

PJ
k�� vk�f

���
k �x��PJ

k�� vk�fk�x��
� m����x��	�

�
�

and the asymptotic variance is

varf bm��qleg �
�CLn����

�B������
�

��
�
nPJ

k���vk��
��k�kfk�x��

o
nh
�PJ

k�� vk�fk�x��
��

as claimed� The bias and variance for the variance component model are easily determined from

the above results since vk� and �k�k are constant �in k��

A���� Local Linear Estimation

For the local linear estimator �p � 	�� the calculation of B� results in

B� �

�
B�
� 
� hB�
� 	�

h��B�	� 
� B�	� 	�

�
since K��� is symmetric �
�r� � 
 if r is odd� and 
�r� � 	 for r � 
� �� Note that �B����� tends to

in�nity as h goes to zero� Therefore the limit� h� 
� is taken after �B����Y� has been calculated�

The determinant of B� is

det�B�� � B�
� 
�B�	� 	�� B�
� 	�B�	� 
��

A direct calculation of EfLn���g for p � 	 yields

EfLn���g � h�m����x��	�

�
B�
� 
�

h��B�	� 
�

�

	�



using �	��� Thus� the bias �	�� is

biasf bm��qle�x�� h�g � �		��h�m����x��

as claimed�

The variance is

varf bm��qle�x�� h�g � �	� 
� �B����CLn

n
�B����

ot
�	� 
�t

�
B�	� 	���CLn���� � �hB�
� 	�B�	� 	��CLn���� � h�B�
� 	���CLn����

fB�
� 
�B�	� 	��B�
� 	�B�	� 
�g�

This expression is of order ��
�	�nh� times a quantity which is nonzero in general�

For the variance component model the o��diagonal elements of V � ���� the diagonal elements

of V and of �� and vk� are constant called vo� vd� �
�
d� and v�� respectively� To simplify the calculation

further� we assume the Xj �s are independent with a common marginal density function f � Then

the key quantities reduce to

B�
� �� � v�J f
����x��	����

B�r� �� � voJ�J � 	�f ����x��	����E f�X � x��
rg� 	���r�vdJ f

���r��x��	f��� r��g

�CLn���� � ��
�n��h��v�� �
�
dJ f�x��

�CLn���s � ��
�n��h�sv�vo�
�
dJ�J � 	� f�x��E f�X � x��

sg

�CLn�r�s � ��
�n��h�r�s
�v�o�
�
dJ�J � 	� f�x��

h
E
n

�X � x��
r
s��

o
� �J � ��E

n
�X � x��

r��
o
E
n

�X � x��
s��

oi
�

Thus the determinant of B� is det�B�� � v�vdfJ f�x��g
� and the above expression of the variance

results in

varf bm��qle�x�� h�g �
�

nh

��d
Jf�x��

���	 �

�
vo
vd

f ����x��

f�x��

��

�J � 	���X


�� �

where ��X is the variance of X � Remembering that ��d � ��� � ��� � vd � �	 � �	J�	��� and vd �

��	�J��� � yields vo	vd � ��	�J � ��� This completes the proof�

A���� Local Quadratic Estimation

For the local quadratic estimation �p � ��� the �rst two nonzero terms of the approximation of B�

are
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Matrix algebra shows that the determinant of this sum of singular matrices is

� h�f
���� 	g det
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� 
� hB�
� 	� � h	
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� �� 
���B�
� ��

h��B�	� 
� B�	� 	� � h�
���B�	� �� h��
���B�	� ��
h��B��� 
� h��B��� 	� � h�
���B��� �� h��
���B��� ��


��
h��
�� f
���� 	gSD�

where

SD � B�
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�B�	� 	�B��� ���B�
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�B�
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� ��� B��� 
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� ��B�	� 	�� ���� feq�SDg

assuming 
��� �� 	 and SD �� 
� �Otherwise the determinant is of order h���

To calculate �	�� we again need the �rst two terms of the approximation of B� since using only

the �rst terms in the multiplication results in all terms cancelling out� However� even this is not

enough� we also need terms of order hp
� in the approximation of Ln��� in �	��� Note that because

the �rst terms in the approximation of �B��r� �for m���� and �B��r�� �for m���� are proportional to

the �rst terms in �B��r�� �for m�	�� and �B��r�� �for m����� respectively� these terms cancel out as

the latter have done� Then direct calculations show that the asymptotic bias is

biasf bm��qle�x�� h�g � h�
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where
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The �rst nonzero orders of the elements of CLn are

	

n

��O�h��� O�h��� O�h�	�
O�h��� O�h�	� O�h���
O�h�	� O�h��� O�h���

�� �
The order of the terms in the �rst row of �B���� is fO�h����O�h����O�	�g� Thus the leading order

of the variance is

varf bm��qle�x�� h�g � �	� 
� 
� covf�B����Y�g �	� 
� 
�t � OP �n��h���

For the variance component model with common marginal distribution� a direct calculation

results in
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Replacing ��d � vd� and vo by their actual values yields the result in the theorem�

�




A�� Proof of Theorem �
fpr�mqleg

If we set the o��diagonal elements of V to zero �vj�k � 
 for j �� k�� then the key quantities reduce

to
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Direct calculations then yield the results given in the theorem ��

A�� Proof of Theorem �
fpr�combg

The two�step estimator is just
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Now K��� is a symmetric density function with unit variance� and it is easily shown that the term

inside the inverse in ��� converges to
P

j fj�x�� times the identity matrix� we have that
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Let �ij � Yij �m�Xij�� �i � ��i�� ���� �iJ�t� and de�ne the nJ � 	 vectors

Th�x� �
h
fKh�Xij � x�gJj��

in
i��

���
JX
j��

fj�x�


��
��

�

� �
h
f�ijg

J
j��

in
i��

�

#From the the proof of Theorem 	 �cf� Appendix A�	�� we have the expansion
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It then follows that

bmC�x�� h� � m�x�� � �		��h�m����x�� � �nJ���Tt
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and hence that

Zi � LYi � �L� I�cm��pool�Xi�
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It is easily seen that the �rst two terms in ���� contribute only to the variance� while the last two

terms contribute only to the bias�

If we write L � ��jk�� then the common diagonal elements are �jj � �d and the common o��

diagonal elements are �jk � �o� Then we �nd that the components of the last two terms in ����

are

Zij� � m�Xij�� �		��h���d � 	�m����Xij�� �		��h��o
X
k ��j

m����Xik��

Apply the Zij� to ���� and take expectations to prove ����

We now turn to ���� Split the �rst two terms in ���� into two parts� say Zij�� and Zij��� We

�rst note that ���� when applied to Zij�� algebraically equals���n
JX

j��

fj�x��
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��

nX
i��

fKh�Xi� � x��� ���� Kh�XiJ � x��gL�i� ���� feq�qapp�g

Since Lcov��
i
�Lt � ��I� we easily �nd that ���� has mean zero and approximate variance
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���nh
JX
j��
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as claimed in ����

To complete the argument we must show that ���� when applied to Zij�� is of order opf�nh�����g�

The individual terms are

Zij�� � ��nJ�����d � 	�Th�Xij�� � �nJ����o
X
k ��j

Tt
h�Xik���

In fact� terms such as �nJ���Tt
h�x�� are very nearly kernel regressions of the ��s on the X �s

evaluated at x� and in ���� these $nearly zero� functions are then averaged via a second kernel

operation� Such $double smoothing� has been investigated in other contexts� e�g�� Carroll � Wand

�	��	�� and by direct calculation one can show that indeed ���� when applied to Zij�� is of order

opf�nh�����g� This completes the proof�
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