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1 IntrodutionIn ontrast to the GARCH approah where volatility is modeled as a deterministi funtion of pastreturn innovations, the stohasti volatility (SV) model introdued by Taylor (1982, 1986) assumesvolatility to have its own stohasti proess. Kim et al. (1998) �nd that simple SV models typially�t the daily asset return data as well as more heavily parameterized GARCH models. Basi SVmodels are furthermore natural disrete-time versions of ontinuous-time models whih build thefoundation of modern �nanial theory inluding generalizations of the Blak-Sholes option priingformula (see e.g. Hull and White, 1987). However, developing �exible multivariate SV (MSV) spe-i�ations proved to be ompliated.1 Proposed MSV models, e.g. employed by Daníelsson (1998),Harvey et al. (1994) and Smith and Pitts (2006), typially feature vetors of log-volatilities inter-ating through a onstant orrelation struture. The assumption of onstant orrelation is generallyrejeted by the data. Yu and Meyer (2006) applied nine alternative MSV models to a bivariate ex-hange rate series and found that models that allow for time-varying orrelations o�er a better �t tothe data. Fator SV models e.g. applied by Chib et al. (2006), Doz and Renault (2006) and Pitt andShephard (1999b) aommodate time-varying orrelation patterns where the ovariane and orrela-tion dynamis are driven by time-variation in fator volatilities. This imposes restritions sine theovarianes are not allowed to move independently from the varianes. Asai and MAleer (2009) andPhilipov and Glikman (2006) introdued a new lass of MSV models whih assumes a onditionallyinverse Wishart distributed ovariane matrix. The Wishart distribution is a multivariate general-ization of the gamma distribution and is de�ned on the domain of positive-de�nite matries (see e.g.Bodnar and Okhrin, 2008, and Muirhead, 1982). The proposed model therefore naturally generalizesstohasti salar varianes to ovariane matries rather than vetors of log-varianes. Wishart SVmodels promise partiularly �exible (o)variane and orrelation dynamis sine the sale matrix ofthe Wishart distribution is modeled onditional on the history of the omplete ovariane matrix.The desirable properties of the Wishart distribution also ontribute to its inreasing popularity inthe literature on diret modeling of realized (o)variane measures (see e.g. Jin and Maheu, 2012,and Noureldin et al., 2011).1See the exellent overview on multivariate SV models of Asai et al., 2006.1



The present paper analyzes the stohasti properties of the basi Wishart MSV (WMSV) modeland proposes a new �exible Markov Swithing (MS) WMSV model. The MS WMSV model allowsfor state-dependent shifts in the unonditional means of (o)varianes and orrelations and state-dependent volatility transmission aross assets, so-alled volatility spillover e�ets (see e.g. Gallo andOtranto, 2008). It has long been argued that strong persistene in asset return volatilities may be dueto shifts in the unonditional mean of the volatility proess (see e.g. Diebold, 1986, and Lamoureuxand Lastrapes, 1990). A volatility proess featuring sudden shifts between various volatility levels isknown to generate long-memory like persistene patterns whih are typial for high-frequeny returnvolatilities. Lamoureux and Lastrapes (1990) suggest to apply Markov swithing models as a wayto model persistene within and swithes between regimes. The MS approah allows to apturehanges in the volatility level whih are due to eonomi fores like business yle downturns (seeHamilton and Susmel, 1994) as well as sudden hanges whih are due to unusual market events likethe Lehman Brothers bust in 2008 or the 1987 stok market rash (see So et al., 1998). The idea ofhanges in volatility regimes is supported by various tests indiating multiple strutural breaks for theonditional variane of asset return series spanning long time periods (see Andreou and Ghysels, 2002,for an overview). States of pani-like mood indue a higher volatility level ompared to �alm� periods.Lamoureux and Lastrapes (1990) argue that sudden shifts in the variane, if unaounted for, maybias upward persistene estimates. This has a lear pratial impliation: biased persistene estimatesnegatively a�et volatility foreasts. Fast traking of strutural hanges in the (o)variane struturehelps to avoid this bias. Gray (1996), Haas et al. (2004) and Hamilton and Susmel (1994) proposedunivariate ARCH and GARCH models with regime swithing. So et al. (1998) suggest to applyMarkov swithing volatility regimes to univariate SV models while Lopes and Carvalho (2007) extendthe univariate framework to multivariate MS SV modeling and propose a fator SV model featuringunivariate MS proesses for the ommon fators' variane dynamis. Limiting the MS proess to a fewommon fators imposes restritions in multivariate volatility modeling. The proposed MS WMSVmodel ontributes to the literature by allowing for sudden shifts in the (o)variane level a�eting alldistint elements of the ovariane matrix independently from one another. The model thereby o�erspartiularly �exible volatility and orrelation dynamis inluding long-memory type of persistene2



patterns, state-dependent (o)variane and orrelation levels and volatility transmission e�ets arossassets. Crisis-related strengthening of volatility spillovers and return orrelations indiates ontagione�ets (see e.g. Billio and Carporin, 2010, Chiang and Wang, 2011, and Forbes and Rigobon, 2002),whih are known to reinfore �nanial risis events (see e.g. Diebold and Yilmaz, 2009). The MSWMSV model allows to assess the presene of ontagion e�ets in returns and volatilities, whih isimportant in order to understand the international propagation of �nanial distress.The proposed MS WMSV model is applied to daily returns of �ve European stok indies. Modeldiagnosti tests are onduted in order to hek the model's ability in apturing (o)variane dy-namis and the distributional harateristis of the observed return data. The results show that theMS extension substantially improves the model �t of the basi WMSV approah. The estimatesfurthermore indiate intensifying return orrelation and volatility transmission in periods of �nan-ial turmoil. The models' out-of-sample performane is evaluated in a VaR foreasting appliation.The MS WMSV model outperforms a range of ompeting volatility models from the literature withrespet to unonditional overage of the 5% VaR level.The rest of the paper is organized as follows. Setion 2 illustrates the basi WMSV model and theMS WMSV model, the Bayesian simulation based estimation sheme and model diagnostis basedon standardized returns. Setion 3 presents estimation- and model diagnosti results and the VaRforeasting appliation. Setion 4 onludes.2. Model Spei�ation, Bayesian Inferene and Model Diagnostis2.1. The Basi WMSV ModelConsider the stohasti k-dimensional return vetor ξt and its stohasti k × k ovariane matrix
Σt = (σij,t) at time period t (t = 1, . . . , T ). The basi WMSV model is given by

ξt|Σt ∼ N(0,Σt), (1)
Σ−1
t |Σ−1

t−1 ∼ Wk(ν, St/ν), (2)
3



where the return vetor ξt is assumed to be mean-orreted. Wk denotes the law of a k-dimensionalentral Wishart distribution with ν > k degrees of freedom and a k × k symmetri and positivede�nite sale matrix St/ν, where St = (sij,t). By speifying a onditional Wishart distribution forthe preision matrix Σ−1
t instead of the ovariane matrix Σt the WMSV framework generalizes theunivariate inverse gamma SV model whih is e.g. disussed in Gander and Stephens (2007).Using the properties of the Wishart and inverse Wishart distribution of Σ−1

t and Σt, respetively,we obtain (see Muirhead, 1982)
E[Σ−1

t |Σ−1
t−1] = St, (3)

E[Σt|Σt−1] =
1

ν − k − 1
S−1
t−1. (4)In order to allow for serial and ross-orrelations aross the varianes and ovarianes the sale matrixin period t is assumed to depend on lagged (o)varianes:

St = Σ
−d/2
t−1 AΣ

−d/2
t−1 , (5)where A is a positive de�nite k×k parameter matrix and d is a salar persistene parameter.2 Basedon the spetral deomposition Σ−1

t = VtΛtV
′
t we obtain

Σ
−d/2
t = VtΛ

d
2

t V
′
t , (6)where Vt denotes the matrix of orthogonal eigenvetors of Σ−1

t and Λt denotes the orrespondingdiagonal matrix of eigenvalues. The power operator is de�ned to work element-wise. Note that
Σ
−d/2
t Σ

−d/2
t = Σ−d

t . The quadrati expression in Eq. (5) ensures a positive de�nite sale matrix.(Co)variane dynamis are governed by the parameter matrix A and the salar d, whih diretsthe persistene of the (o)variane proess. This an be seen by rewriting the WMSV model usingthe properties of the Wishart distribution: Denoting the k × k identity matrix by Ik and the lower2The assumed funtional form of the sale matrix St orresponds to the Wishart Inverse Covariane (WIC) modelof Asai and MAleer (2009). Philipov and Glikman (2006) assume a similar spei�ation: St = A1/2Σ−d
t−1

A1/2′ .4



triangular Cholesky fator of A by L, i.e. A = LL′, we obtain
Σ−1
t =

1

ν
Σ
−d/2
t−1 L Wk(ν, Ik) L

′Σ
−d/2
t−1 , (7)whih yields an autoregressive representation for the logarithmi determinant of Σ−1

t

ln |Σ−1
t | = −k ln(ν) + ln |A|+ d ln |Σ−1

t−1|+ ln |Wk(ν, Ik)|. (8)The ondition for weak stationarity of the logarithmi determinant of the Wishart proess is there-fore given by |d| < 1. Philipov and Glikman (2006) aknowledge that deriving analytial onditionsfor weak stationarity of the (o)varianes themselves may not be possible. In pratie, d should beadditionally restrited to positivity to rule out stohasti proesses for Σ−1
t whih alternate betweenpowers of inverses. While d determines the strength of inter-temporal relationships, A an be in-terpreted as a measure of �inter-temporal sensitivity� (see Philipov and Glikman, 2006). Withoutrestritions on this matrix, all elements of Σt are allowed to depend on their own lag and the lags of allremaining (o)varianes. Restriting A to a diagonal matrix ompletely exludes volatility spillovere�ets. Eqs. (4) and (5) show that the interpretation of inter-temporal (o)variane transmission isatually based on A−1.Sine no losed form analytial expression an be derived, I simulate unonditional (o)varianemoments based on a two-dimensional WMSV model and a variety of parameter onstellations inorder to further analyze the in�uene of the model parameters A−1, ν and d on distributional anddynami harateristis. For eah strutural model parameter �ve parameter values are onsidered:The parameter sets for d and ν are {d1 = 0.2, d2 = 0.4, d3 = 0.6, d4 = 0.8, d5 = 0.9} and {ν1 =

20, ν2 = 40, ν3 = 60, ν4 = 80, ν5 = 90}. The matries A−1
i , i = 1, . . . , 5, are haraterized by overallinreasing matrix entries in i on eah single position in A−1

i . Let veh(·) denote the operator thatstaks the lower triangular portion, inluding the diagonal of a matrix into a vetor. In order to re�etrealisti (o)variane dynamis veh(A−1
1 ) is set to its point estimate veh(A−1

1 ) = (0.96, 0.02, 0.96)′obtained by �tting the basi WMSV model to a bivariate series of daily stok index returns forFrane and Germany (see the data desription in Setion 3 below). For i = 2, . . . , 5 we obtain5



veh(A−1
i ) = (1.2, 2, 1.2)′ ⊙ veh(A−1

i−1), where ⊙ denotes element-wise multipliation3 . Figure 1shows that inreasing the elements of A−1 has a signi�ant positive e�et on the overall (o)varianeand orrelation level. The e�ets of ν and d in ontrast appear omparatively minor. Figure 2(left panel) depits simulated autoorrelation funtions for the �rst asset's variane. The persisteneappears to be solely driven by d. Corresponding plots for the seond variane and the ovarianeare not presented here but on�rm that d drives serial orrelation for the whole (o)variane proess.Figure 2 (right panel) depits simulated ross-orrelation funtions for the varianes of the �rst andseond asset return. The funtions show that ross-asset volatility persistene is solely aptured by
A−1. Spillover e�ets inrease with inreasing matrix entries in A−1. Summarizing the results, while
d drives the overall (o)variane persistene, the volatility and orrelation level as well as the strengthof ross-asset volatility transmission e�ets are aptured by A−1. The role of the d.o.f. parameter νbeomes apparent by onsidering (o)varianes of the Σ−1

t elements based on the properties of theWishart distribution (see Muirhead, 1982):Cov(σ−1
ij,t, σ

−1
lm,t|Σ−1

t−1) =
1

ν
(sil,t · sjm,t + sim,t · sjl,t), (9)for i, j, l,m = 1, . . . , k, where σ−1

ij,t denotes the ij'th element of Σ−1
t . Hene ν diretly e�ets thedependene struture within the (o)variane proess.2.2. The Markov Swithing WMSV ModelThis setion desribes a new Markov swithing (MS) WMSV model, whih indues state-dependentovariane and orrelation levels and state-dependent volatility spillover e�ets. This is aomplishedby allowing the parameter matrix A of the basi WMSV model to swith between di�erent realiza-tions.Suppose that st ∈ {1, 2} is an unobserved two-state Markov proess with transition probability3The simulation results are found to be robust to variations in the parameter values.

6



matrix Pr(st|st−1) =







(1− e1) e1

e2 (1− e2)






, (10)where e1 denotes the probability of swithing from state 1 in period t− 1 to state 2 in period t and

e2 the probability of swithing from state 2 in period t − 1 to state 1 in period t. The latent statevariable st de�nes a partiular regime haraterized by a regime-spei� parameter matrix Ast . The2-regime MS model is then given by
ξt|Σt ∼ N

(

0,Σt

)

, (11)
Σ−1
t |Σ−1

t−1 ∼ Wk(ν, St/ν), St = Σ
−d/2
t−1 AstΣ

−d/2
t−1 , (12)together with Eq. (10). Aording to the simulation results of Setion 2.1 above the MS WMSVmodel allows for strutural hanges in the (o)variane/orrelation level and volatility transmissionintensity, where the timing of the shifts is aptured by the latent Markov proess.The MS WMSV model as spei�ed is unidenti�ed. A su�ient ondition for identi�ation isrestriting the �rst diagonal element of the matrix di�erene Ã = A2 − A1 to positivity. Note thatit is straightforward to also allow the parameters ν and d to hange aording to the same Markovproess. The goal is, however, to apture lusters of low and high risk in the market as apturedby small and large values in A. Also note that the model an easily be generalized to more thantwo volatility states. This would however signi�antly inrease the dimension of the parameter spaesine the number of parameters in A is proportional to the square of the number of assets. The resultsof Carvalho and Lopes (2007) and Lopes and Carvalho (2007) indiate the empirial su�ieny ofa 2-regime model, whih preserves parsimony in multivariate volatility modeling. Two states implytwo (o)variane and orrelation levels, whih orrespond to times of high and low risk in the market.
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2.3. Estimation and DiagnostisFollowing Asai and MAleer (2009) and Philipov and Glikman (2006) a Bayesian estimation ap-proah is applied for inferene on the (MS)WMSVmodel's parameter vetor θWMSV = (veh(A)′, ν, d)′or θMS WMSV = (veh(A1)
′, veh(A2)

′, ν, d, e1, e2)
′, respetively. Bayesian estimation is partiu-larly attrative for omplex multivariate models inluding a large number of parameters. High-dimensionality of the parameter vetor involves pratial problems of the lassial estimation shemedue to the numerial maximization of the likelihood funtion. These ompliations an be avoidedby making use of tratable Bayesian estimation tehniques. The objetive of primary interest is thejoint posterior distribution of the model parameters, whose moments an be used to generate pointestimates and to assess the aording parameter unertainty. The posterior distribution is propor-tional to the produt of the likelihood funtion and the parameters' joint prior distribution. Thelikelihood funtion of the basi WMSV model is a high-dimensional integral

L({ξt}Tt=1|θWMSV) = ∫ . . .

∫

Σ1,...,ΣT

T
∏

t

P (ξt|Σt)× P (Σt|Σt−1, θ
WMSV) dΣ1, . . . , dΣT . (13)This integral is analytially intratable and its evaluation requires simulation-based estimation teh-niques. The Monte Carlo Markov Chain (MCMC) approah beame inreasingly popular in thelast deades and an be readily applied for Bayesian inferene within the WMSV framework. TheMCMC sheme generates draws from the joint posterior distribution of the model parameters viasimulating an irreduible and aperiodi Markov hain. Under some mild regularity onditions thelatter onverges to the parameters' joint posterior distribution. The Markov hain is generatedby the Gibbs sampling algorithm, whih involves iterative drawing from the full onditional dis-tributions of the model parameters, where the parameter vetor is augmented by the set of latentvariables4. Bayesian point estimates are obtained by averaging the Gibbs draws after onvergeneof the Markov hain5. Estimation unertainty is aptured by the sample standard deviation of theGibbs draws. Following Lopes and Carvalho (2007) full onditional sampling of the state sequene4For details on the Gibbs sampling algorithm and Monte Carlo Markov Chain methods see e.g. Bauwens et al.(1999).5I.e. after a ertain number of burn-in iterations of the Gibbs sampler.8



{st}Tt=1 is ahieved by Forward Filtering Bakward Sampling (FFBS) using the Hamilton �lter (seeHamilton and Susmel, 1994). All derivations of full onditional distributions are given in the ap-pendix. If spei� distributions are not available in losed form, but known up to an integratingonstant, the Metropolis-Hastings algorithm is applied for simulation purposes.After a model has been �tted to the data, diagnostis are applied in order to hek the model'sability to re�et (o)variane dynamis and distributional harateristis of the observed return series.Diagnosti tests on (o)variane dynamis are onduted from the vetor of standardized Pearsonresiduals
e∗t = Var[ξt|Ft−1]

− 1

2 ξt = E[Σt|Ft−1]
− 1

2 ξt, (14)where Ft−1 = {ξt}t−1
t=1 and E[Σt|Ft−1]

− 1

2 denotes the inverse Cholesky fator of E[Σt|Ft−1]. The�ltered ovariane estimate E[Σt|Ft−1] onstitutes a high-dimensional integral, whih an be approx-imated by the sample mean over draws from the respetive onditional distribution:
e∗t = E[Σt|Ft−1]

− 1

2 ξt ∼=
(

1

M

M
∑

j=1

Σ
(j)
t

)− 1

2

ξt, (15)where Σ
(j)
t denotes a draw from f(Σt|Ft−1), whih is obtained by applying the standard partile�lter algorithm illustrated by Pitt and Shephard (1999), and M is the simulation sample size. Fora orretly spei�ed model, the standardized residuals e∗i,t in the vetor e∗t are serially unorrelatedin levels, squares and ross-produts. The series an therefore be used for diagnosti heking of theassumed dynami struture, e.g. using the Ljung-Box test on serial orrelation.The model's ability in re�eting the distributional harateristis of the underlying return data isheked following Kim et al. (1998) and Liesenfeld and Rihard (2003). The approah requires theomputation of the onditional probability that the i'th return yi,t is less than the atually observedreturn yoi,t, i.e. Pr(yi,t ≤ yoi,t|Ft−1). Again applying standard partile �ltering this probability an

9



be approximated by
Pr(yi,t ≤ yoi,t|Ft−1) ∼= uMi,t =

1

M

M
∑

j=1

Pr(yi,t ≤ yoi,t|σ(j)ii,t), (16)where σ(j)ii,t denotes the i'th diagonal element of Σ(j)
t , drawn from f(Σt|Ft−1), j = 1, . . . ,M . Underthe null of a orretly spei�ed model the {uMi,t}Tt=1 sequene is iid uniform distributed on [0, 1]for all i = 1, . . . , k and an be mapped into the standard normal distribution via the inverse of theaording df: eMi,t = F−1

N (uMi,t). Statistial tests for normality of eMi,t an be based on the Jarque-Beratest statisti.3. Empirial Appliation3.1 DataThe (MS) WMSV models are applied to daily AR(p) pre-�ltered stok index log-returns6 for Frane,Germany, Italy, Switzerland and the UK from January 2, 2003 to Deember 31, 2008, leaving asample of 1565 observations.7 The return series are illustrated in Figure 3 and desriptive statistisare given in Table 1. All series feature exess kurtosis, insigni�ant autoorrelation in levels andsigni�ant autoorrelation in squared returns. The reported sample orrelations indiate a hugedegree of o-movement for all �ve stok indies.3.2 Estimation Results3.2.1 Basi WMSV ModelTable 2 presents the estimation results for the basi WMSV model. The hosen prior distributions areoverall uninformative and reported in the table. The estimation is based on 50, 000 Gibbs iterationsand a burn-in of 15,000 iterations. The onvergene of the generated Markov hains is heked usingonvergene diagrams (not presented here) as e.g. applied by Liesenfeld and Rihard (2008) and6Datastream DS market indies.7The daily pries pt are transformed into ontinuously ompounded rates rt = 100 × ln(pt/pt−1) whih are then�ltered for AR(p) proesses aording to the Akaike information riterium.10



Ross (2002). All parameter estimates are signi�ant at the 5% level.The estimated persistene parameter d = 0.95 implies strong persistene of the (o)varianeproess and the signi�ant o�-diagonal elements in A−1 indiate the presene of volatility spillovere�ets. Figures 4 and 5 depit smoothed estimates of dynami standard deviations and orrelations.The results imply strong volatility lustering and aentuated volatility peaks at the beginning of2003 and in 2006, and a large volatility luster slowly building up from the middle of 2007. Thelatter is aused by the �nanial risis originating in the US subprime market. Figure 5 shows strongo-movement and signi�ant dynamis in the orrelation series.Table 3 shows diagnostis for the series of Pearson residual ross-produts. The Ljung-Box test at50 lags indiates signi�ant preditability of 14 out of 15 series. This implies onsiderable problemsof the baseline WMSV model in aommodating the strong serial and ross-setional orrelation ofdaily asset return (o)varianes. Figure 6 (left panel) shows sample autoorrelation funtions forthe squared residual series whih support the Ljung-Box results. The plots show signi�ant serialorrelation for up to 50 lags. Yet the model suessfully aounts for a major portion of the highlypersistent (o)variane dynamis. Table 4 shows diagnosti results on distributional harateristis.The Jarque-Bera test indiates signi�ant deviations from normality for all residual series. This�nding is mainly due to unexplained exess kurtosis of the return distribution. The basi WMSVmodel has problems in apturing the fat tails of daily asset return data. The residuals are furthermoreskewed to the left, whih suggests the presene of asymmetri e�ets, e.g. the leverage e�et of Blak(1976) and Christie (1982). The previous �ndings are supported by QQ-plots depited in Figure 7(left panel). The plots show severe deviations from normality in the tails of the residual distribution.3.2.2 MS WMSV ModelTable 2 shows estimation results and prior distributions for the two-state Markov swithing WMSVmodel. 14 out of 15 estimates in A−1
2 signi�antly exeed their orresponding estimates in A−1

1 . Thissuggests an overall higher volatility and orrelation level in the seond state, whih is supported bynumerial approximations of unonditional means of volatility and orrelation presented in Table 5.A higher orrelation level under turbulent market onditions is a ommonly observed phenomenon11



(see e.g. Solnik et al., 1996) and an be interpreted as ontagion in the lines of Forbes and Rigobon(2002), i.e. risis-related inreases in return dependenies. Inreasing asset orrelation in periodsof turmoil indiates that diversi�ation opportunities tend to vanish when they are needed most.Figure 8 depits smoothed state and volatility estimates for Frane and Germany obtained under thebasi WMSV and the MS WMSV model. The �gure illustrates the link of the seond volatility stateto periods of high market volatility, where MS WMSV implied volatility signi�antly exeeds basiWMSV implied volatility. In partiular, assuming that a volatility state has been realized if the or-responding smoothed state probability exeeds 0.5, the seond volatility state overs two pronounedlusters of exeedingly high market volatility: the period of Iraq war in Marh 2003 and preeding oilprie �utuations as well as the subprime risis period slowly building up from the midst of 2007 and�nally ulminating in a huge volatility luster initiated by the Lehman Brothers bust on September15, 2008. The high-volatility state additionally overs partiular events like the terrorist attaks inMadrid and London on Marh 11, 2004, and July 7, 2005, respetively, whih had pronouned e�etson international stok markets. State-dependent regime swithing allows for a fast traking of stru-tural hanges like risis-related inreases in volatility levels. This helps to avoid an overestimation ofthe model-implied volatility persistene whih is likely to our if strutural hanges in the volatilityproess are not taken into aount: The estimate of the persistene parameter d obtained under theMS WMSV model is signi�antly lower ompared to the orresponding estimate obtained under thebasi WMSV model (see Table 2). The estimated diagonal elements of the transition probabilitymatrix Pr(st = 1|st−1 = 1) = 0.92 and Pr(st = 2|st−1 = 2) = 0.60 imply long duration in eahregime with a predominane of the low volatility regime. The estimated unonditional probabilityfor state 2 is 0.17.8 The estimates of A−1
1 and A−1

2 suggest intensifying volatility transmission e�etsin periods of high market volatility. Table 5 shows that model-implied one-period ahead volatilityross-orrelations inrease signi�antly by swithing from state 1 to state 2. This indiates intensi�edvolatility spillovers in periods of turmoil and implies ontagion in volatilities (see e.g. Chiang andWang, 2011, and Diebold and Yilmaz, 2009). The presene of ontagion stimulates internationalpropagation of risis e�ets as e.g. observed for the U.S. subprime risis, whih spread out aroundthe world through various eonomi and �nanial links. A potential soure of suh hanges in mar-8See Hamilton, 1994, p. 683, for the omputation of unonditional state probabilities.12



ket dependenies ould be the boost of intensity at whih news hits international �nanial marketswhen entering a turbulent risis period. This prompts investors to strengthen their monitoring of�nanial market transations in order to gather new ritial information about their investments andfundamentally reassess the vulnerability of other �nanial markets (see e.g. Bekaert et al., 2011).Table 3 shows Ljung-Box diagnosti test results for the series of Pearson residual ross-produts.13 out of 15 series are unpreditable at the 1% level. This �nding is supported by sample ACFs ofsquared residual series depited in Figure 6 (right panel). Compared to the basi WMSV approah theMS framework o�ers enhaned �exibility in apturing strong persistene of asset return (o)varianes.The MS WMSV model aptures long-memory like persistene patterns by ombining strutural shiftsin the mean of the volatility proess with volatility persistene in eah regime. Table 4 showsdiagnostis on distributional harateristis. Compared to the basi WMSV model the results showremarkable improvements in apturing the exess kurtosis of the return distribution. Aording tothe Jarque-Bera test results we annot rejet the null of normality for two out of �ve series at the1% signi�ane level. Figure 7 (right panel) depits QQ-plots whih on�rm the Jarque-Bera testresults. Sine it is a widely aepted fat that onditional normality in standard SV and GARCHmodels does not apture the exess kurtosis of �nanial return series, fat-tailed onditional returndistributions, like the multivariate Student-t distribution, represent an alternative popular way ofaounting for exess kurtosis. For an initial investigation I �tted a WMSV model with onditionallymultivariate Student-t distributed returns to the European asset return data. In ontrast to theMS WMSV model the respetive residual series still implied onsiderable problems in apturing theexess kurtosis of the return data.3.3 Value-at-Risk Foreasting AppliationThis setion assesses the out-of-sample performane of the WMSV model in a Value-at-Risk (VaR)foreasting experiment. VaR measures indiate the portfolio value that ould be lost over a giventime-period with a spei�ed on�dene level α. Given a k-dimensional vetor of portfolio weights wthe level α VaR foreast of a portfolio return ξp,t at time t given return information up to period
13



t− 1 is omputed as VaRp,t|t−1(α) =
√

σ̂p,t|t−1 F
−1(α), (17)where F−1(α) denotes the α-perentile of the umulative one-step-ahead distribution assumed forportfolio returns and σ̂p,t|t−1 denotes the model-based portfolio variane foreast using return infor-mation up to period t − 1. The VaR framework is of partiular importane for �nanial managerssine, for example, regulatory apital requirements for the market risk exposure of ommerial banksare now expliitly based on VaR estimates and inlude a penalty for model inauray (see Lopezand Walter, 2001).Aording to ommon pratie (see e.g. Chib et al., 2006, and Lopez and Walter, 2001) I ondut5% VaR foreasts for an equally weighted portfolio of the onsidered �ve European stok indies.The out-of-sample window overs 262 trading days from January 2, 2008 through Deember 31, 2008.All models are re-estimated daily and new foreasts are generated based on the updated parameterestimates. I onsider a range of prominent ompeting foreasting models, where the hoies aremotivated by the popularity of the models in the aademi literature. The following spei�ationsare used:1. The BEKK-GARCH(p,q) model of Engle and Kroner (1995) assumes ξt = H

1/2
t υt, where

υt ∼ N (0, Ik) and H1/2
t is the lower triangular Cholesky fator of the onditional ovarianematrix Ht, whih is spei�ed as
Ht = D0D

′
0 +

p
∑

i=1

DiHt−iD
′
i +

q
∑

j=1

Gj [ξt−jξ
′
t−j]G

′
j , (18)where D0 is a lower triangular k× k matrix. Di, Gj are k× k matries whih may be restritedto diagonality to redue the dimension of the parameter spae (Diagonal BEKK-GARCH(p,q)model).2. The Dynami Conditional Correlation (DCC)-GARCH(p,q) model of Engle (2002) assumesonditional normality for the return vetor ξt and salar GARCH(p,q) dynamis for the ondi-14



tional varianes {hii,t}ki=1. The modeling of dynami onditional orrelations is based on thedeomposition
Ht = DtPtDt, (19)where Dt = diag(√h11,t, . . . ,√hkk,t) and Pt is a k × k onditional orrelation matrix. Thelatter is expressed as

Pt =
(diag(Qt)

)− 1

2Qt

(diag(Qt)
)− 1

2 , (20)with Qt being a k × k symmetri, positive de�nite matrix given by
Qt = (1− α− β)Q̄+ αut−1u

′
t−1 + βQt−1, (21)where α and β are positive salar parameters and ut is the k-dimensional vetor of standardizedresiduals with elements

ui,t =
ξi,t
√

hii,t
, i = 1, . . . , k. (22)

Q̄ is the unonditional ovariane matrix of ut whih is onsistently estimated by the aordingsample ovariane matrix.3. The Constant Conditional Correlation (CCC)-GARCH(p,q) model of Bollerslev (1990) is ob-tained by restriting the DCC-GARCH(p,q) model setting Pt = P , where P is the sampleorrelation matrix of returns.4. The Exponentially Weighted Moving Average (EWMA) approah is a simple foreasting model,whih is ommonly used for risk management purposes (see RiskMetris, J.P. Morgan, 1996).The model assumes onditional normality for returns and a onditional ovariane matrix
Ht = (1− λ)ξt−1ξ

′
t−1 + λHt−1. (23)For the empirial appliation λ is set to its typial value for daily asset return data given by

0.94.Details on obtaining foreasts given the multivariate GARCH and EWMA models are e.g. pro-15



vided by Chib et al. (2006). For standard MGARCH models the portfolio return's umulativeone-step ahead distribution is normal. VaR foreasts are then obtained as the α-perentile of theorresponding normal distribution for portfolio returns. Chib et al. (2006) illustrate how to obtainVaR foreasts within the simulation based MCMC sheme: The Gibbs sampling algorithm allows fora diret simulation from the preditive densities of the individual asset returns. The VaR foreast isthen obtained by the (left-tail) quantile of interest.The auray of obtained VaR estimates is evaluated using the unonditional overage test illus-trated by Lopez and Walter (2001) and e.g. applied by Chib et al. (2006) and Storti (2006). This testis expliitly inorporated into the Basel bank apital requirements. De�ning an indiator variable
It =















1 if ξp,t < VaRp,t|t−1,

0 if ξp,t ≥ VaRp,t|t−1,

(24)and denoting the number of out-of-sample observations by T ⋆, the �hit-rate� is obtained as α̂ = γ/T ⋆,where γ =
∑T ⋆

t=1 It. Aurate VaR foreasts should feature a hit-rate α̂ lose to α. The hypothesis
E[α̂] = α an be tested using the statisti

LRu = 2{ ln[ α̂γ(1− α̂)T
⋆−γ ]− ln[ αγ(1− α)T

⋆−γ ] }, (25)whih is under the null asymptotially χ2(1) distributed.Table 6 presents the foreasting results. The basi WMSV model shows the overall worst VaRforeasting performane aross all onsidered volatility models - the hit-rate amounts to 15%. Thesigni�ant overestimation of overage an be traed bak to the model's general problem in apturingthe leptokurti distribution of daily asset return data. This shortoming learly e�ets the VaRmeasure. Extending the basi WMSV model by Markov swithing regimes signi�antly improves theVaR foreasting results. The respetive hit-rate amounts to 8.78%, whih is losest to the 5% levelaross all onsidered foreasting models - aording to the test results we annot rejet the null oforret unonditional overage at the 1% signi�ane level. The fat that most applied volatilitymodels show signi�ant violations of overage is explained by the overall high volatility level in 200816



whih omes as a result of the subprime risis.4. ConlusionsThis paper proposes a new Markov swithing (MS) extension to the basi Wishart MSV (WMSV)model of Asai and MAleer (2009) and Philipov and Glikman (2006). The proposed model allowsfor partiularly �exible (o)variane dynamis inluding state-dependent shifts in the unonditionalmean of (o)varianes and orrelations as well as state-dependent volatility transmission e�ets arossassets. The MS approah aptures sudden hanges in the volatility level related to partiular eventslike inreasing market unertainty indued by the 2005 terrorist attaks in London as well as lastingstrutural hanges due to �nanial risis e.g. indued by the ollapse of the US subprime mortgagemarket in 2007. Markov swithing volatility regimes generate long-memory like persistene patternswhih are typial for high-frequeny return volatilities.The WMSV model is applied to daily returns of �ve European stok indies. Parameter estimatesare obtained using Bayesian Monte Carlo Markov Chain (MCMC) methods. The estimation resultsindiate the presene of a high-volatility and a low-volatility regime where states of high marketvolatility orrespond to inreasing market orrelations. This indiates the presene of ontagione�ets in asset returns in the lines of Forbes and Rigobon (2002) as well as vanishing diversi�ationbene�ts in periods of turmoil. The high-volatility states are aompanied by inreasing volatilitytransmission e�ets aross assets. This indiates volatility ontagion, i.e. risis-related inreasesin inter-asset volatility dependenies (see e.g. Chiang and Wang, 2011, and Diebold and Yilmaz,2009). Contagion e�ets stimulate the international propagation of risis as e.g. observed for theU.S. subprime risis, whih spread out around the world through various transmission hannels.Model diagnostis show that the MS WMSV model alleviates the shortoming of the basi WMSVmodel in aommodating the strong persistene of daily asset return (o)varianes. The modelprevents the underestimation of (o)varianes in periods of high market volatility resulting in animproved model �t to the leptokurti return distribution. A Value-at-Risk (VaR) foreasting experi-ment shows that the MS WMSV model outperforms a range of ompeting volatility models from theliterature with respet to unonditional overage of the 5% VaR level.17



AppendixFull Conditional Distributions: Basi WMSV ModelThe basi WMSV model is outlined in Eqs. (1), (2) and (5). The joint prior distribution is assumedto fator into the produt of marginal prior distributions given by1. a Wishart prior πA−1(Q0, γ0) for A−1 with sale matrix Q0 and d.o.f. parameter γ0;2. a uniform prior πd(0, 1) on [0, 1] for d;3. a gamma prior πν(α0, β0) for ν − k with shape parameter α0 and sale parameter β0.Denoting the augmented parameter vetor by θaug = (θ′, veh(Σ1)
′, . . . , veh(ΣT )

′), we obtain
P (θaug|Ξ) ∝

T
∏

t=1

f(ξt|Σ−1
t )× f(Σ−1

t |Σ−1
t−1, θ)

× πA−1(Q0, γ0)× πd(0, 1) × πν(α0, β0). (26)In order to simplify notation, the vetor of remaining model parameters for eah parameter blokis denoted by θaug− . The full onditional distributions are obtained as follows:Full onditional distribution of Σ−1
t :For notational onveniene suppressing dependene on model parameters, the kernel of the full on-ditional distribution of Σ−1

t is obtained as
p(Σ−1

t |θaug− ) ∝ f(ξt|Σ−1
t )× f(Σ−1

t |Σ−1
t−1)× f(Σ−1

t+1|Σ−1
t )

∝ |Σ−1
t |(ν−k−dν)/2 × exp{−0.5 tr[(S−1

t + ξtξ
′
t)Σ

−1
t ]}

× exp{−0.5 tr[S−1
t+1Σ

−1
t+1]}

∝ Wκ
k (Σ

−1
t |ν̃, S̃t)× f(Σ−1

t ), (27)
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where Wκ
k (Σ

−1
t |·) denotes a Wishart kernel in Σ−1

t and
ν̃ = ν(1− d) + 1, (28)
S̃t = (S−1

t + ξtξ
′
t)
−1, (29)

f(Σ−1
t ) = exp{−0.5 tr[S−1

t+1Σ
−1
t+1]}, (30)

St = Σ
−d/2
t AΣ

−d/2
t . (31)The full onditional distribution of Σ−1

t is known up to an integrating onstant and the Metropolis-Hastings (MH) algorithm is applied in order to obtain samples from p(Σ−1
t |θaug− ). The proposaldensity is given by Wk(ν, S̃t).Full onditional distribution of A−1:The full onditional distribution of A−1 is Wishart sine

p(A−1|θaug− ) ∝ πA−1(Q0, γ0)

T
∏

t=1

f(Σ−1
t |Σ−1

t−1)

∝ πA−1(Q0, γ0) |A−1|(Tν)/2

× exp
{

− 0.5tr[ν T
∑

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1A

−1
]}

∝ πA−1(Q0, γ0)×Wκ
k (A

−1|γ, U), (32)where U−1 = ν
∑T

t=1 Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1 and γ = Tν + k + 1. Hene

p(A−1|θaug− ) ∝ πA−1(Q0, γ0)×Wκ
k (A

−1|γ, U)

∝ |A−1|(γ0+γ−2k−2)/2 exp{−0.5 tr[(Q−1
0 + U−1)A−1]}. (33)Therefore A−1|θaug− ∼ Wk(γ̃, Ũ), where Ũ−1 = Q−1

0 + U−1 and γ̃ = γ0 + γ − k − 1.Full onditional distribution of ν and d:The full onditional distributions of the parameters ν and d are not obtained in losed form and theMetropolis-Hastings algorithm is used for simulation issues. Sine ν > k and d ∈ (0, 1), trunatednormal proposal densities are applied where mean and variane are given by the optimum and19



the orresponding Hessian obtained after numerially optimizing the posterior distribution's densitykernel.The kernel of the full onditional distribution of d is obtained as
p(d|θaug− ) ∝ πd(0, 1)

T
∏

t=1

|Σ−1
t−1|−dν/2

exp
{

− 0.5 tr[((1/ν)Σ−d/2
t−1 AΣ

−d/2
t−1

)−1
Σ−1
t

]}

∝ exp
{

dψ − 0.5 tr[Q(d)A−1
]}

, (34)where ψ = −ν
2

∑T
t=1 ln(|Σ−1

t−1|) and Q(d) =
∑T

t=1 νΣ
d/2
t−1Σ

−1
t Σ

d/2
t−1.The kernel of the full onditional distribution of ν is obtained as

p(ν|θaug) ∝ πν(α0, β0)×
T
∏

t=1

f(Σ−1
t |Σ−1

t−1)

∝ exp{(α− 1) ln(ν − k)− β(ν − k)}

×
(

|νA−1|ν/2

2νk/2
∏k

j=1 Γ
(

(ν − j + 1)/2
)

)T

×
T
∏

t=1

|Q−1
t |ν/2 exp{−0.5 tr[Q−1A−1

]

}, (35)where Q−1
t = Σ

d/2
t−1Σ

−1
t Σ

d/2
t−1 and Q−1 = ν

∑T
t=1 Σ

d/2
t−1Σ

−1
t Σ

d/2
t−1.Full Conditional Distributions: Markov Swithing MWSV ModelThe MS WMSV model is outlined in Eqs. (10), (11) and (12). The joint prior distribution isassumed to fator into the produt of marginal prior distributions. Given the state sequene s =

(s1, s2, . . . , sT )
′, the derivation of the full onditional distributions for Σ−1

t , A1, A2, ν and d isanalogous to the illustrations of the previous setion, exept that we have to ondition on Ast∀t =

1, . . . , T instead of A.Full onditional distribution of s = (s1, s2, . . . , sT )
′:Denoting Σ−1

t = {Σ−1
1 , . . . ,Σ−1

t } and exploiting the Markov property of st, the full onditional20



density of the state vetor s an be fatorized as
p(s|θaug− ) = P (s|Σ−1

T , θ)

= P (sT |Σ−1
T , θ)× P (sT−1|sT ,Σ−1

T , θ)× · · · × P (s1|s2,Σ−1
T , θ)

= P (sT |Σ−1
T , θ)× P (sT−1|sT ,Σ−1

T−1, θ)× · · · × P (s1|s2,Σ−1
1 , θ). (36)The onditional probabilities

P (st|st+1,Σ
−1
t , θ) =

P (st+1|st)× P (st|Σ−1
t , θ)

P (st+1|Σ−1
t , θ)

(37)are obtained by the �Hamilton �lter� whih - given a starting value for P (s0|Σ−1
0 , θ) (e.g. stationaryprobabilities, see Hamilton, 1994, p. 683) - proeeds reursively in �ve steps ∀t ∈ {1, . . . , T}:

I P (st, st−1|Σ−1
t−1, θ) = P (st|st−1)× P (st−1|Σ−1

t−1, θ) (38)
II P (st|Σ−1

t−1, θ) =
∑

st−1

P (st, st−1|Σ−1
t−1, θ) (39)

III f(Σ−1
t , st|Σ−1

t−1, θ) = f(Σ−1
t |st,Σ−1

t−1, θ)× P (st|Σ−1
t−1, θ) (40)

IV f(Σ−1
t |Σ−1

t−1, θ) =
∑

st

f(Σ−1
t , st|Σ−1

t−1, θ) (41)
V P (st|Σ−1

t , θ) =
f(Σ−1

t , st|Σ−1
t−1, θ)

f(Σ−1
t |Σ−1

t−1, θ)
. (42)The whole state sequene s = (s1, s2, . . . , sT )

′ an then be sampled bakward reursively based onEq. (36).Full onditional distributions of e1 and e2:Using beta prior distributions πei(αi,0, βi,0), i ∈ {1, 2}, the kernel of the full onditional distributionof ei is obtained as
p(ei|rest) ∝ πei(αi,0, βi,0)×

gi
∏

j=1

ei

hi
∏

j=1

(1− ei)

∝ e
αi,0−1
i (1− ei)

βi,0−1 × egii (1− ei)
hi , (43)21



where gi denotes the number of swithes from state i to state i− (not state i) and hi denotes thenumber of periods where the state does not hange. The full onditional distribution of ei is thereforebeta with parameters αi = αi,0 + gi and βi = βi,0 + hi, i ∈ {1, 2}.
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Table 1. Desriptive Statistis for the Daily Index Log Returns.Statisti Frane Germany Italy Switzerland UKSample 1.00 0.72 0.91 0.89 0.90orrelation . 1.00 0.68 0.66 0.69
. . 1.00 0.83 0.89
. . . 1.00 0.84
. . . . 1.00Mean 0.00 0.00 0.00 0.00 0.00Std. dev. 1.26 1.34 1.13 1.11 1.18Kurtosis 12.48 24.67 14.47 11.84 12.86Skewness −0.03 0.80 −0.23 −0.09 −0.47Minimum −8.35 −8.64 −9.01 −7.50 −8.54Maximum 9.60 16.24 9.19 9.68 8.34

LBr(10) 4.98 1.34 2.91 7.91 1.56

LBr2(30) 2293.70∗ 1137.94∗ 2409.56∗ 2341.55∗ 2583.31∗

LBr(10): Ljung-Box test statisti for the return series at 10 lags. LBr2(30): Ljung-Box test statisti for the squaredreturn series at 30 lags. The number of observations for eah series is 1,565.*: Signi�ant at the 1% level.
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Table 2. Estimation Results.Basi WMSV Model

A−1 ν d

a11 a21 a31 a41 a51 a22 a32 a42 a52 a33 a43 a53 a44 a54 a55Estimate 0.88 0.02 0.04 0.04 0.04 0.92 0.02 0.01 0.02 0.88 0.02 0.03 0.88 0.03 0.88 69.05 0.95Post. Std. Dev. ×102 0.57 0.32 0.34 0.37 0.35 0.47 0.32 0.31 0.31 0.57 0.31 0.33 0.54 0.33 0.56 48.09 0.27

q.025 0.87 0.02 0.03 0.03 0.03 0.91 0.01 0.01 0.01 0.86 0.02 0.02 0.87 0.02 0.87 67.88 0.94

q.975 0.89 0.03 0.05 0.05 0.04 0.93 0.03 0.02 0.02 0.89 0.03 0.04 0.89 0.03 0.89 69.91 0.95MS WMSV Model
A−1

1
ν d

a11 a21 a31 a41 a51 a22 a32 a42 a52 a33 a43 a53 a44 a54 a55Estimate 0.75 0.05 0.07 0.07 0.07 0.84 0.04 0.03 0.04 0.75 0.04 0.05 0.76 0.05 0.75 80.12 0.89Post. Std. Dev. ×102 0.90 0.46 0.51 0.44 0.46 0.92 0.43 0.43 0.50 1.10 0.46 0.60 0.96 0.49 0.94 49.41 0.61

q.025 0.74 0.04 0.06 0.06 0.06 0.82 0.03 0.02 0.03 0.73 0.04 0.04 0.74 0.04 0.73 79.16 0.88

q.975 0.77 0.06 0.08 0.08 0.08 0.86 0.05 0.03 0.05 0.77 0.05 0.06 0.78 0.06 0.76 81.09 0.90

A−1

2
e1 e2

a11 a21 a31 a41 a51 a22 a32 a42 a52 a33 a43 a53 a44 a54 a55Estimate 1.21 0.11 0.20 0.19 0.19 1.30 0.11 0.11 0.10 1.17 0.10 0.19 1.24 0.14 1.27 0.08 0.40Post. Std. Dev. ×102 3.03 2.46 2.01 2.72 3.20 6.31 2.48 2.57 2.77 2.77 2.63 2.07 3.74 3.65 3.03 0.70 0.98

q.025 1.15 0.07 0.16 0.14 0.13 1.23 0.06 0.06 0.05 1.11 0.04 0.15 1.16 0.07 1.21 0.07 0.38

q.975 1.26 0.17 0.24 0.24 0.25 1.37 0.16 0.16 0.16 1.22 0.15 0.23 1.31 0.20 1.33 0.10 0.4295% a posteriori high density region: [q.025; q.975]. Basi WMSV model: Burn-in: 15,000; Gibbs sequenes: 50,000; Gamma prior for ν implies E[ν] = 70, √Var[ν] = 10;Wishart prior for A−1: sale matrix Q0 = I5, d.o.f. γ0 = 6. MS WMSV Model: Burn-in: 20,000; Gibbs sequenes: 50,000; Gamma prior for ν implies E[ν] = 80,

√Var[ν] = 10; Wishart prior for A−1

1

and A−1

2

: sale matrix Q0 = I5, d.o.f. γ0 = 6. Beta prior for e1 implies E[e1] = 0.09, √Var[e1] = 0.1. Beta prior for e2 implies

E[e2] = 0.4, √Var[e2] = 0.1.
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Table 3. Model Diagnosti Results: Pearson Residuals.Ljung-Box test statistis for residual ross-produts, 50 lags
e∗
1
× e∗

1
e∗
1
× e∗

2
e∗
1
× e∗

3
e∗
1
× e∗

4
e∗
1
× e∗

5
e∗
2
× e∗

2
e∗
2
× e∗

3
e∗
2
× e∗

4
e∗
2
× e∗

5
e∗
3
× e∗

3
e∗
3
× e∗

4
e∗
3
× e∗

5
e∗
4
× e∗

4
e∗
4
× e∗

5
e∗
5
× e∗

5Data

2653.21∗ 1398.42∗ 2594.82∗ 2571.13∗ 2858.81∗ 1220.47∗ 1229.21∗ 1353.14∗ 1804.84∗ 2721.31∗ 2543.02∗ 2903.62∗ 2555.77∗ 3031.24∗ 3016.18∗Basi WMSV model

315.85∗ 86.33∗ 84.84∗ 137.37∗ 213.15∗ 262.70∗ 149.52∗ 146.56∗ 203.59∗ 71.32 140.14∗ 76.58∗ 281.41∗ 115.75∗ 308.12∗MS WMSV model
75.19 37.91 56.84 55.53 88.44∗ 44.21 64.66 58.00 48.49 61.59 70.53 63.49 41.05 59.94 82.56∗The partile �ltering is based on 100,000 partiles. *: Signi�ant at the 1% level.



Table 4. Distributional Diagnostis.Frane Germany Italy Switzerland UKBasi WMSV modelMean 0.01 0.02 0.03 0.02 0.02Std. Dev. 0.99 0.99 0.99 0.99 0.99Kurtosis 3.72 3.94 3.81 3.73 3.62Skewness −0.27 −0.23 −0.45 −0.27 −0.33JB-Test 53.89∗ 72.14∗ 96.20∗ 54.46∗ 54.31∗MS WMSV modelMean 0.04 0.04 0.06 0.04 0.04Std. Dev. 1.06 1.04 1.06 1.06 1.06Kurtosis 2.95 3.05 3.02 2.92 2.95Skewness −0.17 −0.15 −0.29 −0.19 −0.21JB-Test 8.11 6.29 22.25∗ 9.83∗ 12.18∗Std. Dev.: Standard Deviation. JB-Test: Jarque-Bera test. The partile �ltering is based on 100,000 partiles.*: Signi�ant at the 1% level.
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Table 5. Simulation Results for the Fitted MS WMSV Model.Frane Germany Italy Switzerland UK Frane Germany Italy Switzerland UK
E[Σt], A1 E[Σt], A2Frane 0.39 0.29 0.28 0.28 0.28 84.62 63.07 71.57 71.67 81.99Germany 0.29 0.51 0.24 0.21 0.24 63.07 58.40 54.34 54.83 61.77Italy 0.28 0.24 0.31 0.23 0.24 71.57 54.34 63.69 60.11 71.30Switzerland 0.28 0.21 0.23 0.32 0.24 71.67 54.83 60.11 65.63 69.77UK 0.28 0.24 0.24 0.24 0.31 81.99 61.77 71.30 69.77 85.22

E[Corrt], A1 E[Corrt], A2Frane 1.00 0.64 0.82 0.80 0.82 1.00 0.89 0.98 0.96 0.97Germany 0.64 1.00 0.59 0.52 0.60 0.89 1.00 0.89 0.88 0.87Italy 0.82 0.59 1.00 0.72 0.77 0.98 0.89 1.00 0.93 0.97Switzerland 0.80 0.52 0.72 1.00 0.75 0.96 0.88 0.93 1.00 0.93UK 0.82 0.60 0.77 0.75 1.00 0.97 0.87 0.97 0.93 1.00Corr[σii,t−1, σjj,t], A1 Corr[σii,t−1, σjj,t], A2Frane 0.89 0.34 0.53 0.51 0.50 0.89 0.66 0.80 0.78 0.78Germany 0.34 0.89 0.28 0.23 0.27 0.66 0.89 0.65 0.62 0.63Italy 0.53 0.28 0.89 0.41 0.47 0.80 0.65 0.89 0.70 0.78Switzerland 0.51 0.22 0.41 0.89 0.43 0.77 0.62 0.70 0.89 0.71UK 0.50 0.27 0.47 0.43 0.89 0.77 0.63 0.78 0.71 0.89Simulation sample size: T = 20, 000. Corrt denotes the orrelation matrix implied by Σt. Corr[σii,t−1, σjj,t]: i is the row-index and j is the olumn-indexof the respetive panel. All parameters are set to their point estimates under the MS framework.
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Table 6. VaR Foreasting Results.5% VaRModel (p, q) Hit-Rate LRu Model Hit-Rate LRuDCC-GARCH (2, 1) 0.0916 0.0054 EWMA 0.0954 0.0026CCC-GARCH (1, 1) 0.0992 0.0012 WMSV 0.1527 < 0.0001BEKK-GARCH (1, 1) 0.0916 0.0054 MS WMSV 0.0878 0.0108D-BEKK-GARCH (1, 1) 0.1107 < 0.0001The table reports hit-rates and p-values for the likelihood ratio test of unonditional overage of the 5% VaR level. Ifmodel orders are quoted, models up to order (3, 3) have been estimated and the presentation is limited to the bestperforming models aording to the hit-rate riterion. D-BEKK-GARCH: Diagonal BEKK-GARCH.
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Figure 1. Simulated means of ovarianes and orrelations. Left panel: Simulated means of ovarianes. Dashed line: σ11; solid line: σ12;dashdotted line: σ22. Right panel: simulated means of orrelation. ρ12 = σ12/
√
σ11σ22. i is the index on the respetive parameter sets given inSetion 2.1. Simulation sample size: T = 20, 000. All remaining model parameters are kept onstant at veh(A−1

1
) = (0.96, 0.02, 0.96)′,

ν4 = 80 and d4 = 0.8, respetively.



Simulated autoorrelation funtions for σ11 Simulated ross-orrelation funtions for σ11 and σ22
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Figure 2. Simulated autoorrelation and ross-orrelation funtions for volatilities. Left panel: Simulated autoorrelation funtions for σ11.Right panel: Simulated ross-orrelation funtions Corr[σ11,t, σ22,t−q] for q = 1, . . . , 50. Simulation sample size: T = 20, 000. Dashed line:

i = 1; dashdotted line: i = 2; dotted line: i = 3; solid line: i = 4; ◦: i = 5, where i is the index on the respetive parameter sets given inSetion 2.1. All remaining model parameters are kept onstant at veh(A−1

1
) = (0.96, 0.02, 0.96)′, ν4 = 80 and d4 = 0.8, respetively.
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Figure 3. Log-returns of Datastream DS market indies. The number of observations for eah series is 1565.
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Figure 4. Smoothed volatility estimates and orresponding return series: Basi WMSV model.
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Figure 5. Smoothed orrelation estimates: Basi WMSV model.
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Figure 6. Sample autoorrelation funtions of squared residual series. Left panel: Basi WMSV model. Right panel: MS WMSV model. Solidline: WMSV model; ◦: squared return series; dashed line: 95% Bartlett on�dene bands for no serial dependene.
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Figure 7. Residual QQ-plots. Left panel: Basi WMSV model. Right panel: MS WMSV model. The qq-plots refer to the residual series et ondistributional diagnostis.
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