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Abstract

This paper generalizes the basic Wishart multivariate stochastic volatility model of Philipov
and Glickman (2006) and Asai and McAleer (2009) to encompass regime switching behavior.
The latent state variable is driven by a first-order Markov process. The model allows for state-
dependent (co)variance and correlation levels and state-dependent volatility spillover effects. Pa-
rameter estimates are obtained using Bayesian Markov Chain Monte Carlo procedures and filtered
estimates of the latent variances and covariances are generated by particle filter techniques. The
model is applied to five European stock index return series. The results show that the proposed
regime-switching specification substantially improves the in-sample fit and the VaR forecasting

performance relative to the basic model.
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1 Introduction

In contrast to the GARCH approach where volatility is modeled as a deterministic function of past
return innovations, the stochastic volatility (SV) model introduced by Taylor (1982, 1986) assumes
volatility to have its own stochastic process. Kim et al. (1998) find that simple SV models typically
fit the daily asset return data as well as more heavily parameterized GARCH models. Basic SV
models are furthermore natural discrete-time versions of continuous-time models which build the
foundation of modern financial theory including generalizations of the Black-Scholes option pricing
formula (see e.g. Hull and White, 1987). However, developing flexible multivariate SV (MSV) spec-
ifications proved to be complicated.! Proposed MSV models, e.g. employed by Danielsson (1998),
Harvey et al. (1994) and Smith and Pitts (2006), typically feature vectors of log-volatilities inter-
acting through a constant correlation structure. The assumption of constant correlation is generally
rejected by the data. Yu and Meyer (2006) applied nine alternative MSV models to a bivariate ex-
change rate series and found that models that allow for time-varying correlations offer a better fit to
the data. Factor SV models e.g. applied by Chib et al. (2006), Doz and Renault (2006) and Pitt and
Shephard (1999b) accommodate time-varying correlation patterns where the covariance and correla-
tion dynamics are driven by time-variation in factor volatilities. This imposes restrictions since the
covariances are not allowed to move independently from the variances. Asai and McAleer (2009) and
Philipov and Glickman (2006) introduced a new class of MSV models which assumes a conditionally
inverse Wishart distributed covariance matrix. The Wishart distribution is a multivariate general-
ization of the gamma distribution and is defined on the domain of positive-definite matrices (see e.g.
Bodnar and Okhrin, 2008, and Muirhead, 1982). The proposed model therefore naturally generalizes
stochastic scalar variances to covariance matrices rather than vectors of log-variances. Wishart SV
models promise particularly flexible (co)variance and correlation dynamics since the scale matrix of
the Wishart distribution is modeled conditional on the history of the complete covariance matrix.
The desirable properties of the Wishart distribution also contribute to its increasing popularity in
the literature on direct modeling of realized (co)variance measures (see e.g. Jin and Maheu, 2012,

and Noureldin et al., 2011).

!See the excellent overview on multivariate SV models of Asai et al., 2006.



The present paper analyzes the stochastic properties of the basic Wishart MSV (WMSV) model
and proposes a new flexible Markov Switching (MS) WMSV model. The MS WMSV model allows
for state-dependent shifts in the unconditional means of (co)variances and correlations and state-
dependent volatility transmission across assets, so-called volatility spillover effects (see e.g. Gallo and
Otranto, 2008). It has long been argued that strong persistence in asset return volatilities may be due
to shifts in the unconditional mean of the volatility process (see e.g. Diebold, 1986, and Lamoureux
and Lastrapes, 1990). A volatility process featuring sudden shifts between various volatility levels is
known to generate long-memory like persistence patterns which are typical for high-frequency return
volatilities. Lamoureux and Lastrapes (1990) suggest to apply Markov switching models as a way
to model persistence within and switches between regimes. The MS approach allows to capture
changes in the volatility level which are due to economic forces like business cycle downturns (see
Hamilton and Susmel, 1994) as well as sudden changes which are due to unusual market events like
the Lehman Brothers bust in 2008 or the 1987 stock market crash (see So et al., 1998). The idea of
changes in volatility regimes is supported by various tests indicating multiple structural breaks for the
conditional variance of asset return series spanning long time periods (see Andreou and Ghysels, 2002,
for an overview). States of panic-like mood induce a higher volatility level compared to “calm” periods.
Lamoureux and Lastrapes (1990) argue that sudden shifts in the variance, if unaccounted for, may
bias upward persistence estimates. This has a clear practical implication: biased persistence estimates
negatively affect volatility forecasts. Fast tracking of structural changes in the (co)variance structure
helps to avoid this bias. Gray (1996), Haas et al. (2004) and Hamilton and Susmel (1994) proposed
univariate ARCH and GARCH models with regime switching. So et al. (1998) suggest to apply
Markov switching volatility regimes to univariate SV models while Lopes and Carvalho (2007) extend
the univariate framework to multivariate MS SV modeling and propose a factor SV model featuring
univariate MS processes for the common factors’ variance dynamics. Limiting the MS process to a few
common factors imposes restrictions in multivariate volatility modeling. The proposed MS WMSV
model contributes to the literature by allowing for sudden shifts in the (co)variance level affecting all
distinct elements of the covariance matrix independently from one another. The model thereby offers

particularly flexible volatility and correlation dynamics including long-memory type of persistence



patterns, state-dependent (co)variance and correlation levels and volatility transmission effects across
assets. Crisis-related strengthening of volatility spillovers and return correlations indicates contagion
effects (see e.g. Billio and Carporin, 2010, Chiang and Wang, 2011, and Forbes and Rigobon, 2002),
which are known to reinforce financial crisis events (see e.g. Diebold and Yilmaz, 2009). The MS
WMSYV model allows to assess the presence of contagion effects in returns and volatilities, which is
important in order to understand the international propagation of financial distress.

The proposed MS WMSV model is applied to daily returns of five European stock indices. Model
diagnostic tests are conducted in order to check the model’s ability in capturing (co)variance dy-
namics and the distributional characteristics of the observed return data. The results show that the
MS extension substantially improves the model fit of the basic WMSV approach. The estimates
furthermore indicate intensifying return correlation and volatility transmission in periods of finan-
cial turmoil. The models’ out-of-sample performance is evaluated in a VaR forecasting application.
The MS WMSYV model outperforms a range of competing volatility models from the literature with

respect to unconditional coverage of the 5% VaR level.

The rest of the paper is organized as follows. Section 2 illustrates the basic WMSV model and the
MS WMSV model, the Bayesian simulation based estimation scheme and model diagnostics based
on standardized returns. Section 3 presents estimation- and model diagnostic results and the VaR

forecasting application. Section 4 concludes.

2. Model Specification, Bayesian Inference and Model Diagnostics

2.1. The Basic WMSV Model

Consider the stochastic k-dimensional return vector & and its stochastic k x k covariance matrix

¥ = (04j¢) at time period ¢t (t =1,...,T). The basic WMSV model is given by

&t’zt ~ N(Ovzt)v (1)

SOUS ~ W, Siw), (2)



where the return vector & is assumed to be mean-corrected. W, denotes the law of a k-dimensional
central Wishart distribution with v > k degrees of freedom and a k X k symmetric and positive
definite scale matrix S;/v, where S; = (s;;). By specifying a conditional Wishart distribution for
the precision matrix ¥, instead of the covariance matrix ¥; the WMSV framework generalizes the

univariate inverse gamma SV model which is e.g. discussed in Gander and Stephens (2007).

Using the properties of the Wishart and inverse Wishart distribution of X, Land =, respectively,

we obtain (see Muirhead, 1982)

EZNE ) = S, (3)
1 -1

E[%¢[3¢1] Py T

In order to allow for serial and cross-correlations across the variances and covariances the scale matrix

in period t is assumed to depend on lagged (co)variances:
o= wtan, (5)

where A is a positive definite k x k parameter matrix and d is a scalar persistence parameter.? Based

on the spectral decomposition >, - ViA V! we obtain
d
5 = VARV, (6)

where V; denotes the matrix of orthogonal eigenvectors of %, Land A; denotes the corresponding
diagonal matrix of eigenvalues. The power operator is defined to work element-wise. Note that

X, 4/ 22; 42 _ X, 4 The quadratic expression in Eq. (5) ensures a positive definite scale matrix.

(Co)variance dynamics are governed by the parameter matrix A and the scalar d, which directs
the persistence of the (co)variance process. This can be seen by rewriting the WMSV model using

the properties of the Wishart distribution: Denoting the k x k identity matrix by I and the lower

*The assumed functional form of the scale matrix S; corresponds to the Wishart Inverse Covariance (WIC) model
of Asai and McAleer (2009). Philipov and Glickman (2006) assume a similar specification: Sy = Al/zE;dlAl/zl.



triangular Cholesky factor of A by L, i.e. A= LL', we obtain
ot = %E; LWy (n, 1) LS, (7)
which yields an autoregressive representation for the logarithmic determinant of 3, !
In [T = —kIn(v) + In|A] + dIn |74 |+ In W (v, ). (8)

The condition for weak stationarity of the logarithmic determinant of the Wishart process is there-
fore given by |d| < 1. Philipov and Glickman (2006) acknowledge that deriving analytical conditions
for weak stationarity of the (co)variances themselves may not be possible. In practice, d should be
additionally restricted to positivity to rule out stochastic processes for X, 1 which alternate between
powers of inverses. While d determines the strength of inter-temporal relationships, A can be in-
terpreted as a measure of “inter-temporal sensitivity” (see Philipov and Glickman, 2006). Without
restrictions on this matrix, all elements of 3; are allowed to depend on their own lag and the lags of all
remaining (co)variances. Restricting A to a diagonal matrix completely excludes volatility spillover
effects. Eqs. (4) and (5) show that the interpretation of inter-temporal (co)variance transmission is

actually based on A~1.

Since no closed form analytical expression can be derived, I simulate unconditional (co)variance
moments based on a two-dimensional WMSV model and a variety of parameter constellations in
order to further analyze the influence of the model parameters A~!, v and d on distributional and
dynamic characteristics. For each structural model parameter five parameter values are considered:
The parameter sets for d and v are {d; = 0.2, dy = 0.4, d3 = 0.6, dy = 0.8, d5 = 0.9} and {11 =
20, vo =40, v3 =60, vy = 80, v5 = 90}. The matrices Ai_l, 1=1,...,5, are characterized by overall
increasing matrix entries in ¢ on each single position in A . Let vech(-) denote the operator that
stacks the lower triangular portion, including the diagonal of a matrix into a vector. In order to reflect
realistic (co)variance dynamics vech(A]!) is set to its point estimate vech(A; ") = (0.96, 0.02, 0.96)’
obtained by fitting the basic WMSV model to a bivariate series of daily stock index returns for

France and Germany (see the data description in Section 3 below). For i = 2,...,5 we obtain



vech(A; 1) = (1.2, 2, 1.2)' ® vech(A; ), where ® denotes element-wise multiplication®. Figure 1
shows that increasing the elements of A~! has a significant positive effect on the overall (co)variance
and correlation level. The effects of v and d in contrast appear comparatively minor. Figure 2
(left panel) depicts simulated autocorrelation functions for the first asset’s variance. The persistence
appears to be solely driven by d. Corresponding plots for the second variance and the covariance
are not presented here but confirm that d drives serial correlation for the whole (co)variance process.
Figure 2 (right panel) depicts simulated cross-correlation functions for the variances of the first and
second asset return. The functions show that cross-asset volatility persistence is solely captured by
A~L. Spillover effects increase with increasing matrix entries in A~!. Summarizing the results, while
d drives the overall (co)variance persistence, the volatility and correlation level as well as the strength
of cross-asset volatility transmission effects are captured by A~!. The role of the d.o.f. parameter v
becomes apparent by considering (co)variances of the 3 ! clements based on the properties of the

Wishart distribution (see Muirhead, 1982):

_ _ _ 1
Cov(aij’lt, alnit\zt_ll) = ;(Sz‘l,t “Sjmyt + Simyt * Sjlt)s (9)

for 4,j,{,m = 1,...,k, where 0,3 denotes the ij’th element of Et_l. Hence v directly effects the

dependence structure within the (co)variance process.

2.2. The Markov Switching WMSV Model

This section describes a new Markov switching (MS) WMSV model, which induces state-dependent
covariance and correlation levels and state-dependent volatility spillover effects. This is accomplished
by allowing the parameter matrix A of the basic WMSV model to switch between different realiza-

tions.

Suppose that s; € {1,2} is an unobserved two-state Markov process with transition probability

3The simulation results are found to be robust to variations in the parameter values.



matrix

1—e e
Pr(s¢|si—1) = ( 1) ! , (10)

€9 (1 — 62)
where e; denotes the probability of switching from state 1 in period ¢ — 1 to state 2 in period ¢ and
eo the probability of switching from state 2 in period ¢ — 1 to state 1 in period t. The latent state
variable s; defines a particular regime characterized by a regime-specific parameter matrix Ag,. The

2-regime MS model is then given by

§iX ~ N<0,Et), (11)

STUSTL ~ W Sifv), S =P A s (12)

together with Eq. (10). According to the simulation results of Section 2.1 above the MS WMSV
model allows for structural changes in the (co)variance/correlation level and volatility transmission

intensity, where the timing of the shifts is captured by the latent Markov process.

The MS WMSV model as specified is unidentified. A sufficient condition for identification is
restricting the first diagonal element of the matrix difference A = Ay — A; to positivity. Note that
it is straightforward to also allow the parameters v and d to change according to the same Markov
process. The goal is, however, to capture clusters of low and high risk in the market as captured
by small and large values in A. Also note that the model can easily be generalized to more than
two volatility states. This would however significantly increase the dimension of the parameter space
since the number of parameters in A is proportional to the square of the number of assets. The results
of Carvalho and Lopes (2007) and Lopes and Carvalho (2007) indicate the empirical sufficiency of
a 2-regime model, which preserves parsimony in multivariate volatility modeling. Two states imply

two (co)variance and correlation levels, which correspond to times of high and low risk in the market.



2.3. Estimation and Diagnostics

Following Asai and McAleer (2009) and Philipov and Glickman (2006) a Bayesian estimation ap-
proach is applied for inference on the (MS) WMSV model’s parameter vector §WMSV = (vech(A), v, d)’
or OMS WMSV — - (vech(A1)', vech(As)’,v,d, e1,e2), respectively. Bayesian estimation is particu-
larly attractive for complex multivariate models including a large number of parameters. High-
dimensionality of the parameter vector involves practical problems of the classical estimation scheme
due to the numerical maximization of the likelihood function. These complications can be avoided
by making use of tractable Bayesian estimation techniques. The objective of primary interest is the
joint posterior distribution of the model parameters, whose moments can be used to generate point
estimates and to assess the according parameter uncertainty. The posterior distribution is propor-
tional to the product of the likelihood function and the parameters’ joint prior distribution. The

likelihood function of the basic WMSV model is a high-dimensional integral

T
L{&},10VY) = /.../Hp(gtmt) X P(S¢|8-1,0VMY) d%y, L dEy. (13)

SiSy
This integral is analytically intractable and its evaluation requires simulation-based estimation tech-
niques. The Monte Carlo Markov Chain (MCMC) approach became increasingly popular in the
last decades and can be readily applied for Bayesian inference within the WMSV framework. The
MCMC scheme generates draws from the joint posterior distribution of the model parameters via
simulating an irreducible and aperiodic Markov chain. Under some mild regularity conditions the
latter converges to the parameters’ joint posterior distribution. The Markov chain is generated
by the Gibbs sampling algorithm, which involves iterative drawing from the full conditional dis-
tributions of the model parameters, where the parameter vector is augmented by the set of latent
variables?. Bayesian point estimates are obtained by averaging the Gibbs draws after convergence
of the Markov chain®. Estimation uncertainty is captured by the sample standard deviation of the

Gibbs draws. Following Lopes and Carvalho (2007) full conditional sampling of the state sequence

*For details on the Gibbs sampling algorithm and Monte Carlo Markov Chain methods see e.g. Bauwens et al.
(1999).
®Le. after a certain number of burn-in iterations of the Gibbs sampler.



{s;}]_, is achieved by Forward Filtering Backward Sampling (FFBS) using the Hamilton filter (see
Hamilton and Susmel, 1994). All derivations of full conditional distributions are given in the ap-
pendix. If specific distributions are not available in closed form, but known up to an integrating
constant, the Metropolis-Hastings algorithm is applied for simulation purposes.

After a model has been fitted to the data, diagnostics are applied in order to check the model’s
ability to reflect (co)variance dynamics and distributional characteristics of the observed return series.
Diagnostic tests on (co)variance dynamics are conducted from the vector of standardized Pearson

residuals
ef = Var[ft\}"t_l]_%&ZE[Et\}—t—l]_%&’ (14)

where Fy_1 = {& i;% and E[Zt|]:t_1]_% denotes the inverse Cholesky factor of E[¥;|F;—1]. The
filtered covariance estimate F[¥;|F;_1] constitutes a high-dimensional integral, which can be approx-

imated by the sample mean over draws from the respective conditional distribution:
) 1 )
ef = B[Sy|Froa] 26, = (M y 29)) &, (15)

where Zgj ) denotes a draw from f(3¢|Fi—1), which is obtained by applying the standard particle
filter algorithm illustrated by Pitt and Shephard (1999), and M is the simulation sample size. For
a correctly specified model, the standardized residuals €7, in the vector e; are serially uncorrelated
in levels, squares and cross-products. The series can therefore be used for diagnostic checking of the
assumed dynamic structure, e.g. using the Ljung-Box test on serial correlation.

The model’s ability in reflecting the distributional characteristics of the underlying return data is
checked following Kim et al. (1998) and Liesenfeld and Richard (2003). The approach requires the
computation of the conditional probability that the i’th return y;; is less than the actually observed

return yp,, i.e. Pr(yi: < y9[Fi-1). Again applying standard particle filtering this probability can



be approximated by

Pr(yiz < y2i|Fe1) 2w =

= |

M
Z ylt —yzt| ut) (16)

where JZ(Z]% denotes the i’th diagonal element of Eﬁj), drawn from f(%¢|F—1), j=1,..., M. Under
the null of a correctly specified model the {u T sequence is iid uniform distributed on [0, 1]
forall i = 1,...,k and can be mapped into the standard normal distribution via the inverse of the
according cdf: e% =r A_,l(u% ). Statistical tests for normality of e% can be based on the Jarque-Bera

test statistic.

3. Empirical Application

3.1 Data

The (MS) WMSV models are applied to daily AR(p) pre-filtered stock index log-returns® for France,
Germany, Italy, Switzerland and the UK from January 2, 2003 to December 31, 2008, leaving a
sample of 1565 observations.” The return series are illustrated in Figure 3 and descriptive statistics
are given in Table 1. All series feature excess kurtosis, insignificant autocorrelation in levels and
significant autocorrelation in squared returns. The reported sample correlations indicate a huge

degree of co-movement for all five stock indices.

3.2 Estimation Results
3.2.1 Basic WMSV Model

Table 2 presents the estimation results for the basic WMSYV model. The chosen prior distributions are
overall uninformative and reported in the table. The estimation is based on 50,000 Gibbs iterations
and a burn-in of 15,000 iterations. The convergence of the generated Markov chains is checked using

convergence diagrams (not presented here) as e.g. applied by Liesenfeld and Richard (2008) and

®Datastream DS market indices.
"The daily prices p; are transformed into continuously compounded rates r, = 100 x In(p:/p;—1) which are then
filtered for AR(p) processes according to the Akaike information criterium.
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Ross (2002). All parameter estimates are significant at the 5% level.

The estimated persistence parameter d = 0.95 implies strong persistence of the (co)variance
process and the significant off-diagonal elements in A~! indicate the presence of volatility spillover
effects. Figures 4 and 5 depict smoothed estimates of dynamic standard deviations and correlations.
The results imply strong volatility clustering and accentuated volatility peaks at the beginning of
2003 and in 2006, and a large volatility cluster slowly building up from the middle of 2007. The
latter is caused by the financial crisis originating in the US subprime market. Figure 5 shows strong

co-movement and significant dynamics in the correlation series.

Table 3 shows diagnostics for the series of Pearson residual cross-products. The Ljung-Box test at
50 lags indicates significant predictability of 14 out of 15 series. This implies considerable problems
of the baseline WMSV model in accommodating the strong serial and cross-sectional correlation of
daily asset return (co)variances. Figure 6 (left panel) shows sample autocorrelation functions for
the squared residual series which support the Ljung-Box results. The plots show significant serial
correlation for up to 50 lags. Yet the model successfully accounts for a major portion of the highly
persistent (co)variance dynamics. Table 4 shows diagnostic results on distributional characteristics.
The Jarque-Bera test indicates significant deviations from normality for all residual series. This
finding is mainly due to unexplained excess kurtosis of the return distribution. The basic WMSV
model has problems in capturing the fat tails of daily asset return data. The residuals are furthermore
skewed to the left, which suggests the presence of asymmetric effects, e.g. the leverage effect of Black
(1976) and Christie (1982). The previous findings are supported by QQ-plots depicted in Figure 7

(left panel). The plots show severe deviations from normality in the tails of the residual distribution.

3.2.2 MS WMSV Model

Table 2 shows estimation results and prior distributions for the two-state Markov switching WMSV
model. 14 out of 15 estimates in A5 ! significantly exceed their corresponding estimates in Al_l. This
suggests an overall higher volatility and correlation level in the second state, which is supported by
numerical approximations of unconditional means of volatility and correlation presented in Table 5.

A higher correlation level under turbulent market conditions is a commonly observed phenomenon

11



(see e.g. Solnik et al., 1996) and can be interpreted as contagion in the lines of Forbes and Rigobon
(2002), i.e. crisis-related increases in return dependencies. Increasing asset correlation in periods
of turmoil indicates that diversification opportunities tend to vanish when they are needed most.
Figure 8 depicts smoothed state and volatility estimates for France and Germany obtained under the
basic WMSV and the MS WMSV model. The figure illustrates the link of the second volatility state
to periods of high market volatility, where MS WMSYV implied volatility significantly exceeds basic
WMSV implied volatility. In particular, assuming that a volatility state has been realized if the cor-
responding smoothed state probability exceeds 0.5, the second volatility state covers two pronounced
clusters of exceedingly high market volatility: the period of Iraq war in March 2003 and preceding oil
price fluctuations as well as the subprime crisis period slowly building up from the midst of 2007 and
finally culminating in a huge volatility cluster initiated by the Lehman Brothers bust on September
15, 2008. The high-volatility state additionally covers particular events like the terrorist attacks in
Madrid and London on March 11, 2004, and July 7, 2005, respectively, which had pronounced effects
on international stock markets. State-dependent regime switching allows for a fast tracking of struc-
tural changes like crisis-related increases in volatility levels. This helps to avoid an overestimation of
the model-implied volatility persistence which is likely to occur if structural changes in the volatility
process are not taken into account: The estimate of the persistence parameter d obtained under the
MS WMSV model is significantly lower compared to the corresponding estimate obtained under the
basic WMSV model (see Table 2). The estimated diagonal elements of the transition probability
matrix Pr(s; = 1|s;—1 = 1) = 0.92 and Pr(s; = 2|s;—1 = 2) = 0.60 imply long duration in each
regime with a predominance of the low volatility regime. The estimated unconditional probability
for state 2 is 0.17.% The estimates of Al_1 and Ay ! suggest intensifying volatility transmission effects
in periods of high market volatility. Table 5 shows that model-implied one-period ahead volatility
cross-correlations increase significantly by switching from state 1 to state 2. This indicates intensified
volatility spillovers in periods of turmoil and implies contagion in volatilities (see e.g. Chiang and
Wang, 2011, and Diebold and Yilmaz, 2009). The presence of contagion stimulates international
propagation of crisis effects as e.g. observed for the U.S. subprime crisis, which spread out around

the world through various economic and financial links. A potential source of such changes in mar-

8See Hamilton, 1994, p. 683, for the computation of unconditional state probabilities.
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ket dependencies could be the boost of intensity at which news hits international financial markets
when entering a turbulent crisis period. This prompts investors to strengthen their monitoring of
financial market transactions in order to gather new critical information about their investments and

fundamentally reassess the vulnerability of other financial markets (see e.g. Bekaert et al., 2011).

Table 3 shows Ljung-Box diagnostic test results for the series of Pearson residual cross-products.
13 out of 15 series are unpredictable at the 1% level. This finding is supported by sample ACFs of
squared residual series depicted in Figure 6 (right panel). Compared to the basic WMSV approach the
MS framework offers enhanced flexibility in capturing strong persistence of asset return (co)variances.
The MS WMSV model captures long-memory like persistence patterns by combining structural shifts
in the mean of the volatility process with volatility persistence in each regime. Table 4 shows
diagnostics on distributional characteristics. Compared to the basic WMSV model the results show
remarkable improvements in capturing the excess kurtosis of the return distribution. According to
the Jarque-Bera test results we cannot reject the null of normality for two out of five series at the
1% significance level. Figure 7 (right panel) depicts QQ-plots which confirm the Jarque-Bera test
results. Since it is a widely accepted fact that conditional normality in standard SV and GARCH
models does not capture the excess kurtosis of financial return series, fat-tailed conditional return
distributions, like the multivariate Student-¢ distribution, represent an alternative popular way of
accounting for excess kurtosis. For an initial investigation I fitted a WMSV model with conditionally
multivariate Student-¢ distributed returns to the European asset return data. In contrast to the
MS WMSV model the respective residual series still implied considerable problems in capturing the

excess kurtosis of the return data.

3.3 Value-at-Risk Forecasting Application

This section assesses the out-of-sample performance of the WMSV model in a Value-at-Risk (VaR)
forecasting experiment. VaR measures indicate the portfolio value that could be lost over a given
time-period with a specified confidence level a. Given a k-dimensional vector of portfolio weights w

the level o VaR forecast of a portfolio return &,; at time t given return information up to period

13



t — 1 is computed as

VaRp7t\t—1(04) = \/&p,t|t—1 F_l(a)7 (17)

where F~!(a) denotes the a-percentile of the cumulative one-step-ahead distribution assumed for
portfolio returns and &, ;1 denotes the model-based portfolio variance forecast using return infor-
mation up to period ¢ — 1. The VaR framework is of particular importance for financial managers
since, for example, regulatory capital requirements for the market risk exposure of commercial banks
are now explicitly based on VaR estimates and include a penalty for model inaccuracy (see Lopez

and Walter, 2001).

According to common practice (see e.g. Chib et al., 2006, and Lopez and Walter, 2001) I conduct
5% VaR forecasts for an equally weighted portfolio of the considered five European stock indices.
The out-of-sample window covers 262 trading days from January 2, 2008 through December 31, 2008.
All models are re-estimated daily and new forecasts are generated based on the updated parameter
estimates. I consider a range of prominent competing forecasting models, where the choices are
motivated by the popularity of the models in the academic literature. The following specifications

are used:

1. The BEKK-GARCH(p,q) model of Engle and Kroner (1995) assumes & = Htl/Qvt, where
v ~ N(0, ;) and Htl/ % is the lower triangular Cholesky factor of the conditional covariance

matrix H, which is specified as
P q
Hy = DoDy+ Y DiHyiDj+ > Gjl&—5& 1G5, (18)
i=1 j=1

where Dy is a lower triangular k x k matrix. D;, G are k x k matrices which may be restricted
to diagonality to reduce the dimension of the parameter space (Diagonal BEKK-GARCH(p,q)

model).

2. The Dynamic Conditional Correlation (DCC)-GARCH(p,q) model of Engle (2002) assumes

conditional normality for the return vector & and scalar GARCH(p,q) dynamics for the condi-

14



tional variances {hu’,t}f:l- The modeling of dynamic conditional correlations is based on the
decomposition

Hy = Dy P, Dy, (19)

where D; = diag(\/h11¢,---,+/hkkyt) and P is a k x k conditional correlation matrix. The

latter is expressed as

D=

Py = (diag(Qr)) "2 Qs (diag(Q2)) 2, (20)

with Q¢ being a k x k symmetric, positive definite matrix given by

Qr=01-a-p8)Q+ au_ru;_; + BQi1, (21)

where v and [ are positive scalar parameters and u; is the k-dimensional vector of standardized

residuals with elements

S it
it — )
T Vhiig

@ is the unconditional covariance matrix of u; which is consistently estimated by the according

i=1,...k (22)

sample covariance matrix.

3. The Constant Conditional Correlation (CCC)-GARCH(p,q) model of Bollerslev (1990) is ob-
tained by restricting the DCC-GARCH(p,q) model setting P, = P, where P is the sample

correlation matrix of returns.

4. The Exponentially Weighted Moving Average (EWMA) approach is a simple forecasting model,
which is commonly used for risk management purposes (see RiskMetrics, J.P. Morgan, 1996).

The model assumes conditional normality for returns and a conditional covariance matrix

Hy=(1-=XN&-1&_ 1+ \Hy_q. (23)

For the empirical application A is set to its typical value for daily asset return data given by

0.94.

Details on obtaining forecasts given the multivariate GARCH and EWMA models are e.g. pro-
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vided by Chib et al. (2006). For standard MGARCH models the portfolio return’s cumulative
one-step ahead distribution is normal. VaR forecasts are then obtained as the a-percentile of the
corresponding normal distribution for portfolio returns. Chib et al. (2006) illustrate how to obtain
VaR forecasts within the simulation based MCMC scheme: The Gibbs sampling algorithm allows for
a direct simulation from the predictive densities of the individual asset returns. The VaR forecast is

then obtained by the (left-tail) quantile of interest.

The accuracy of obtained VaR estimates is evaluated using the unconditional coverage test illus-
trated by Lopez and Walter (2001) and e.g. applied by Chib et al. (2006) and Storti (2006). This test

is explicitly incorporated into the Basel bank capital requirements. Defining an indicator variable

1 if §p7t < VaR’pﬂt—lu
I = (24)

0 if gp,t > VaR'p,t\t—la

and denoting the number of out-of-sample observations by 7™, the “hit-rate” is obtained as & = /1%,
where v = 221 I;. Accurate VaR forecasts should feature a hit-rate & close to a. The hypothesis

E[&] = « can be tested using the statistic

*

LR =2{In[&"1—-a) T 7] -In[a"(1-a)T"77 ]}, (25)

which is under the null asymptotically x?(1) distributed.

Table 6 presents the forecasting results. The basic WMSV model shows the overall worst VaR
forecasting performance across all considered volatility models - the hit-rate amounts to 15%. The
significant overestimation of coverage can be traced back to the model’s general problem in capturing
the leptokurtic distribution of daily asset return data. This shortcoming clearly effects the VaR
measure. Extending the basic WMSV model by Markov switching regimes significantly improves the
VaR forecasting results. The respective hit-rate amounts to 8.78%, which is closest to the 5% level
across all considered forecasting models - according to the test results we cannot reject the null of
correct unconditional coverage at the 1% significance level. The fact that most applied volatility

models show significant violations of coverage is explained by the overall high volatility level in 2008
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which comes as a result of the subprime crisis.

4. Conclusions

This paper proposes a new Markov switching (MS) extension to the basic Wishart MSV (WMSV)
model of Asai and McAleer (2009) and Philipov and Glickman (2006). The proposed model allows
for particularly flexible (co)variance dynamics including state-dependent shifts in the unconditional
mean of (co)variances and correlations as well as state-dependent volatility transmission effects across
assets. The MS approach captures sudden changes in the volatility level related to particular events
like increasing market uncertainty induced by the 2005 terrorist attacks in London as well as lasting
structural changes due to financial crisis e.g. induced by the collapse of the US subprime mortgage
market in 2007. Markov switching volatility regimes generate long-memory like persistence patterns

which are typical for high-frequency return volatilities.

The WMSYV model is applied to daily returns of five European stock indices. Parameter estimates
are obtained using Bayesian Monte Carlo Markov Chain (MCMC) methods. The estimation results
indicate the presence of a high-volatility and a low-volatility regime where states of high market
volatility correspond to increasing market correlations. This indicates the presence of contagion
effects in asset returns in the lines of Forbes and Rigobon (2002) as well as vanishing diversification
benefits in periods of turmoil. The high-volatility states are accompanied by increasing volatility
transmission effects across assets. This indicates volatility contagion, i.e. crisis-related increases
in inter-asset volatility dependencies (see e.g. Chiang and Wang, 2011, and Diebold and Yilmaz,
2009). Contagion effects stimulate the international propagation of crisis as e.g. observed for the

U.S. subprime crisis, which spread out around the world through various transmission channels.

Model diagnostics show that the MS WMSV model alleviates the shortcoming of the basic WMSV
model in accommodating the strong persistence of daily asset return (co)variances. The model
prevents the underestimation of (co)variances in periods of high market volatility resulting in an
improved model fit to the leptokurtic return distribution. A Value-at-Risk (VaR) forecasting experi-
ment shows that the MS WMSYV model outperforms a range of competing volatility models from the

literature with respect to unconditional coverage of the 5% VaR. level.

17



Appendix

Full Conditional Distributions: Basic WMSV Model

The basic WMSV model is outlined in Eqgs. (1), (2) and (5). The joint prior distribution is assumed

to factor into the product of marginal prior distributions given by
1. a Wishart prior m4-1(Qo, o) for A~ with scale matrix Qo and d.o.f. parameter o;
2. a uniform prior 74(0,1) on [0, 1] for d;

3. a gamma prior m,(ag, By) for v — k with shape parameter «g and scale parameter (.

Denoting the augmented parameter vector by 6298 = (8’ vech(%1)',...,vech(X7)’), we obtain
T
PO*8)=) o [r@=") < F(57E2,0)
=1
x m4-1(Qo,70) X ma(0,1) X my (a0, Bo)- (26)

In order to simplify notation, the vector of remaining model parameters for each parameter block

is denoted by 6*"8. The full conditional distributions are obtained as follows:
Full conditional distribution of ¥;':

For notational convenience suppressing dependence on model parameters, the kernel of the full con-

ditional distribution of X! is obtained as

p(S7HOME) o FGIETY x FETSEY) < FELAIE
x|SR o exp{—0.5 tr[(S; + &)}

oo WEETHD,S) x f(S7), (27)

18



where Wi (X, 1|-) denotes a Wishart kernel in ¥, ! and

o= v(l—d)+1, (28)
Sp o= (57 +&g)™ (29)
FE7Y = exp{=05 t[S LS, (30)
S, = u;Pan; Y (31)

The full conditional distribution of X, Lis known up to an integrating constant and the Metropolis-

Hastings (MH) algorithm is applied in order to obtain samples from p(X;'|#*'®). The proposal

density is given by W(v, St).
Full conditional distribution of A~!:
The full conditional distribution of A~! is Wishart since

T

p(AT0ME) o mu-1(Qovo) [T AETBY)
t=1
o ma-1(Qo,0) [ATHTV/2
co{ ~ 05y s 4]}

t=1
o« Ta-1(Qo,70) X WE(A |, U), (32)

where U~1 = VZ;FZI 2%212;12?121 and y=Tv + k + 1. Hence

p(ATHOME) o Ta-1(Qo,0) X Wi (AT A, U)

o \A—1](70+“/—2’f—2)/2 exp{—0.5 tr[(Qal + U HA ) (33)

Therefore A~1|0™8 ~ Wy, (3,U), where Ut = Q' + U and ¥y =49 +v — k — 1.
Full conditional distribution of v and d:

The full conditional distributions of the parameters v and d are not obtained in closed form and the
Metropolis-Hastings algorithm is used for simulation issues. Since v > k and d € (0,1), truncated

normal proposal densities are applied where mean and variance are given by the optimum and
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the corresponding Hessian obtained after numerically optimizing the posterior distribution’s density

kernel.
The kernel of the full conditional distribution of d is obtained as

T
p(d|62) o ma(0,1) [T IB 2
t=1

exp{ — 05 tr[((l/V)Et_—dlﬂAzlt_—dl/z) _12;1] }

X exp {dw — 0.5 tr [Q(d)A—l] } (34)

v — d —1vd
where ¢ = —5 tT:I In(|2,]) and Q(d) = Zthl V2t1212t 12;21-

The kernel of the full conditional distribution of v is obtained as

T
p(v]0°"€) o m (a0, Bo) x [ FEZ)
t=1

x exp{(a—1)In(v—k)—B(v—k)}
( ’VA—l‘u/2 )T
X
22T, T (v = 5+ 1)/2)

T
< TT1Q7 /2 exp{~0.5 tr [Q—lA—l] 1, (35)

t=1

where Q; ' = 220192 and Q1 = v L 025 1w

Full Conditional Distributions: Markov Switching MWSV Model

The MS WMSV model is outlined in Egs. (10), (11) and (12). The joint prior distribution is
assumed to factor into the product of marginal prior distributions. Given the state sequence s =
(s1,82,...,s7)", the derivation of the full conditional distributions for Et_l, Ay, As, v and d is
analogous to the illustrations of the previous section, except that we have to condition on Ag,Vt =

1,...,T instead of A.
Full conditional distribution of s = (s1,s2,...,s7)":

Denoting X; ! = {¥%,...,5; !} and exploiting the Markov property of s;, the full conditional
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density of the state vector s can be factorized as

p(s|62®) = P(s|=7,0)
= P(ST‘Z;I,Q) X P(ST_l‘ST,Z;l,H) X e X P(SﬂSg,ZEl,@)

= P(s7|Z7',0) x P(sr—1|sr, 71 ,,0) x -+ x P(s1]s2, 271, 0). (36)

The conditional probabilities

P(seya]se) x P(s|Z ", 0)

Plodser, 27.0) = =5 o 5
+1|<e

(37)

are obtained by the “Hamilton filter” which - given a starting value for P(so|Z;",6) (e.g. stationary

probabilities, see Hamilton, 1994, p. 683) - proceeds recursively in five steps Vt € {1,...,T}:

I P(st,s-11Z70,0) = Pselse—1) x P(si—1|274,6) (38)
IT P(si[Z,0) = Plsi,si1]Z7,6) (39)
I f(S5 Y selZh,0) = F(57 s, B0, 0) X P27, 0) (40)
v NS0 =D s 6) (41)

f(zt_l’ St|zt_—11’ 9)
FETELL0)

Vo P(sixt0) =

The whole state sequence s = (s1,82,...,s7)" can then be sampled backward recursively based on
Eq. (36).
Full conditional distributions of ¢; and es:

Using beta prior distributions e, (a0, 8i0), @ € {1,2}, the kernel of the full conditional distribution

of e; is obtained as

gi h;

p(ei‘reSt) X Te, (aLOu /Bi,()) X H €; H(l - ei)
j=1 j=1

PO )P el (1= e, (43)

x i
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where g; denotes the number of switches from state i to state i— (not state i) and h; denotes the
number of periods where the state does not change. The full conditional distribution of e; is therefore

beta with parameters a; = ;0 + g; and 3; = B0 + hi, i € {1,2}.
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Table 1. Descriptive Statistics for the Daily Index Log Returns.

Statistic France Germany Italy Switzerland UK
Sample 1.00 0.72 0.91 0.89 0.90
correlation . 1.00 0.68 0.66 0.69
1.00 0.83 0.89
1.00 0.84
. . . . 1.00
Mean 0.00 0.00 0.00 0.00 0.00
Std. dev. 1.26 1.34 1.13 1.11 1.18
Kurtosis 12.48 24.67 14.47 11.84 12.86
Skewness —0.03 0.80 —0.23 —0.09 —0.47
Minimum —8.35 —8.64 —-9.01 —7.50 —8.54
Maximum 9.60 16.24 9.19 9.68 8.34
LB, (10) 4.98 1.34 291 7.91 1.56

LB,2(30) 2293.70"  1137.94"  2409.56" 2341.55" 2583.31"

LB-(10): Ljung-Box test statistic for the return series at 10 lags. LB,2(30): Ljung-Box test statistic for the squared
return series at 30 lags. The number of observations for each series is 1,565.

*. Significant at the 1% level.
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Table 2. Estimation Results.

Basic WMSV Model

A1 v d
a1l az1 as1 a41 as1 a22 asz2 a42 as2 a33 a43 as3 a44 asa ass
Estimate 0.88 0.02 0.04 0.04 0.04 0.92 0.02 0.01 0.02 0.88 0.02 0.03 0.88 0.03 0.88 69.05 0.95
Post. Std. Dev. x102 0.57 0.32 0.34 0.37 0.35 0.47 0.32 0.31 0.31 0.57 0.31 0.33 0.54 0.33 0.56 48.09 0.27
q.025 0.87 0.02 0.03 0.03 0.03 0.91 0.01 0.01 0.01 0.86 0.02 0.02 0.87 0.02 0.87 67.88 0.94
q.975 0.89 0.03 0.05 0.05 0.04 0.93 0.03 0.02 0.02 0.89 0.03 0.04 0.89 0.03 0.89 69.91 0.95
MS WMSV Model
AT v d
a1l az1 asi a41 as1 a22 asz2 a42 as2 a33 a43 as3 a44 asa ass
Estimate 0.75 0.05 0.07 0.07 0.07 0.84 0.04 0.03 0.04 0.75 0.04 0.05 0.76 0.05 0.75 80.12 0.89
Post. Std. Dev. x102 0.90 0.46 0.51 0.44 0.46 0.92 0.43 0.43 0.50 1.10 0.46 0.60 0.96 0.49 0.94 49.41 0.61
q.025 0.74 0.04 0.06 0.06 0.06 0.82 0.03 0.02 0.03 0.73 0.04 0.04 0.74 0.04 0.73 79.16 0.88
q.975 0.77 0.06 0.08 0.08 0.08 0.86 0.05 0.03 0.05 0.77 0.05 0.06 0.78 0.06 0.76 81.09 0.90
A;l el €2
ail a1 as1 a41 as1 az2 as2 a42 as2 as3 a43 as3 a44 asq ass
Estimate 1.21 0.11 0.20 0.19 0.19 1.30 0.11 0.11 0.10 1.17 0.10 0.19 1.24 0.14 1.27 0.08 0.40
Post. Std. Dev. x102 3.03 2.46 2.01 2.72 3.20 6.31 2.48 2.57 2.77 2.77 2.63 2.07 3.74 3.65 3.03 0.70 0.98
q.025 1.15 0.07 0.16 0.14 0.13 1.23 0.06 0.06 0.05 1.11 0.04 0.15 1.16 0.07 1.21 0.07 0.38
q.975 1.26 0.17 0.24 0.24 0.25 1.37 0.16 0.16 0.16 1.22 0.15 0.23 1.31 0.20 1.33 0.10 0.42

95% a posteriori high density region: [g.025;¢.975]. Basic WMSV model: Burn-in: 15,000; Gibbs sequences: 50,000; Gamma prior for v implies E[v] = 70, \/Var[v] = 10;
Wishart prior for A~!: scale matrix Qo = I5, d.o.f. 0 = 6. MS WMSV Model: Burn-in: 20,000; Gibbs sequences: 50,000; Gamma prior for v implies E[v] = 80,
y/ Var|v] = 10; Wishart prior for A;l and A;lz scale matrix Qo = Is, d.o.f. 70 = 6. Beta prior for ey implies Ele1] = 0.09, y/Var[ei] = 0.1. Beta prior for e2 implies

Eles] = 0.4, y/Var[e2] = 0.1.



Table 3. Model Diagnostic Results: Pearson Residuals.

Ljung-Box test statistics for residual cross-products, 50 lags
el xej el x e el X ej el xej el X eg e x e e X e es X ej es X eg e x e e3 X ej e; x ef ey xej ey xeg ef x ef
Data
2653.21* 1398.42* 2594.82* 2571.13* 2858.81* 1220.47* 1229.21* 1353.14* 1804.84* 2721.31* 2543.02* 2903.62* 2555.77* 3031.24* 3016.18*
Basic WMSV model
315.85* 86.33* 84.84* 137.37* 213.15* 262.70* 149.52* 146.56* 203.59* 71.32 140.14* 76.58* 281.41* 115.75* 308.12*
MS WMSV model
75.19 37.91 56.84 55.53 88.44* 44.21 64.66 58.00 48.49 61.59 70.53 63.49 41.05 59.94 82.56*

The particle filtering is based on 100,000 particles. *: Significant at the 1% level.



Table 4. Distributional Diagnostics.

Mean
Std. Dev.
Kurtosis
Skewness
JB-Test

Mean
Std. Dev.
Kurtosis
Skewness
JB-Test

France  Germany Italy Switzerland UK

Basic WMSV model

0.01 0.02 0.03 0.02 0.02
0.99 0.99 0.99 0.99 0.99
3.72 3.94 3.81 3.73 3.62
—0.27 —-0.23 —0.45 -0.27 -0.33
53.89* 72.14* 96.20" 54.46™ 54.31*
MS WMSV model
0.04 0.04 0.06 0.04 0.04
1.06 1.04 1.06 1.06 1.06
2.95 3.05 3.02 2.92 2.95
—-0.17 —0.15 —0.29 —0.19 —0.21
8.11 6.29 22.25% 9.83* 12.18*

Std. Dev.: Standard Deviation.

JB-Test: Jarque-Bera test. The particle filtering is based on 100,000 particles.
*; Significant at the 1% level.
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Table 5. Simulation Results for the Fitted MS WMSV Model.

France Germany Italy  Switzerland UK France Germany Italy  Switzerland UK
E[Et]a Ay E[Ef]a Ao
France 0.39 0.29 0.28 0.28 0.28 84.62 63.07 71.57 71.67 81.99
Germany 0.29 0.51 0.24 0.21 0.24 63.07 58.40 54.34 54.83 61.77
Italy 0.28 0.24 0.31 0.23 0.24 71.57 54.34 63.69 60.11 71.30
Switzerland 0.28 0.21 0.23 0.32 0.24 71.67 54.83 60.11 65.63 69.77
UK 0.28 0.24 0.24 0.24 0.31 81.99 61.77 71.30 69.77 85.22
E[Corry], Ay E[Corry], Ao
France 1.00 0.64 0.82 0.80 0.82 1.00 0.89 0.98 0.96 0.97
Germany 0.64 1.00 0.59 0.52 0.60 0.89 1.00 0.89 0.88 0.87
Italy 0.82 0.59 1.00 0.72 0.77 0.98 0.89 1.00 0.93 0.97
Switzerland 0.80 0.52 0.72 1.00 0.75 0.96 0.88 0.93 1.00 0.93
UK 0.82 0.60 0.77 0.75 1.00 0.97 0.87 0.97 0.93 1.00
COI‘I‘[O’ii,tfl, O’jj,t], A1 COI“r[O'ii,tfl,O'jj,t], A2
France 0.89 0.34 0.53 0.51 0.50 0.89 0.66 0.80 0.78 0.78
Germany 0.34 0.89 0.28 0.23 0.27 0.66 0.89 0.65 0.62 0.63
Italy 0.53 0.28 0.89 0.41 0.47 0.80 0.65 0.89 0.70 0.78
Switzerland 0.51 0.22 0.41 0.89 0.43 0.77 0.62 0.70 0.89 0.71
UK 0.50 0.27 0.47 0.43 0.89 0.77 0.63 0.78 0.71 0.89

Simulation sample size: T = 20,000. Corr; denotes the correlation matrix implied by X;. Corr[oi—1,0j;,]: 4 is the row-index and j is the column-index

of the respective panel. All parameters are set to their point estimates under the MS framework.



Table 6. VaR Forecasting Results.

5% VaR,
Model (p,q) Hit-Rate LRy Model Hit-Rate LR,
DCC-GARCH (2,1) 0.0916 0.0054 EWMA 0.0954 0.0026
CCC-GARCH (1,1) 0.0992 0.0012 WMSV 0.1527 < 0.0001
BEKK-GARCH (1,1) 0.0916 0.0054 MS WMSV 0.0878 0.0108
D-BEKK-GARCH  (1,1) 0.1107 < 0.0001

The table reports hit-rates and p-values for the likelihood ratio test of unconditional coverage of the 5% VaR level. If
model orders are quoted, models up to order (3,3) have been estimated and the presentation is limited to the best
performing models according to the hit-rate criterion. D-BEKK-GARCH: Diagonal BEKK-GARCH.
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Figure 1. Simulated means of covariances and correlations. Left panel: Simulated means of covariances. Dashed line: o11; solid line: o12;
dashdotted line: o23. Right panel: simulated means of correlation. p1a = 012/ \/O11022. 1 is the index on the respective parameter sets given in
Section 2.1. Simulation sample size: T = 20,000. All remaining model parameters are kept constant at vech(A;") = (0.96, 0.02, 0.96)’,
vy = 80 and d4 = 0.8, respectively.



Simulated autocorrelation functions for o1y Simulated cross-correlation functions for o1 and 099
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Figure 2. Simulated autocorrelation and cross-correlation functions for volatilities. Left panel: Simulated autocorrelation functions for oy1.
Right panel: Simulated cross-correlation functions Corr{o11,4,022+—q) for ¢ =1,...,50. Simulation sample size: T = 20,000. Dashed line:
i = 1; dashdotted line: 1 = 2; dotted line: © = 3; solid line: ¢ = 4; o: ¢ = 5, where i is the index on the respective parameter sets given in

Section 2.1. All remaining model parameters are kept constant at vech(A;') = (0.96, 0.02, 0.96)’, v4 = 80 and d4 = 0.8, respectively.
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Figure 4. Smoothed volatility estimates and corresponding return series: Basic WMSV model.
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Figure 5. Smoothed correlation estimates: Basic WMSV model.
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Basic WMSV model MS WMSV model

Figure 6. Sample autocorrelation functions of squared residual series. Left panel: Basic WMSV model. Right panel: MS WMSV model. Solid
line: WMSYV model; o: squared return series; dashed line: 95% Bartlett confidence bands for no serial dependence.
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Figure 7. Residual QQ-plots. Left panel: Basic WMSV model. Right panel: MS WMSV model. The qq-plots refer to the residual series e; on
distributional diagnostics.
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Figure 8. Smoothed volatility and Markov state estimates. Solid line: Basic WMSV model; dashed line: MS
WMSYV model. The gray shaded areas mark periods where the smoothed state probability exceeds 0.5.
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