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1 Introdu
tionIn 
ontrast to the GARCH approa
h where volatility is modeled as a deterministi
 fun
tion of pastreturn innovations, the sto
hasti
 volatility (SV) model introdu
ed by Taylor (1982, 1986) assumesvolatility to have its own sto
hasti
 pro
ess. Kim et al. (1998) �nd that simple SV models typi
ally�t the daily asset return data as well as more heavily parameterized GARCH models. Basi
 SVmodels are furthermore natural dis
rete-time versions of 
ontinuous-time models whi
h build thefoundation of modern �nan
ial theory in
luding generalizations of the Bla
k-S
holes option pri
ingformula (see e.g. Hull and White, 1987). However, developing �exible multivariate SV (MSV) spe
-i�
ations proved to be 
ompli
ated.1 Proposed MSV models, e.g. employed by Daníelsson (1998),Harvey et al. (1994) and Smith and Pitts (2006), typi
ally feature ve
tors of log-volatilities inter-a
ting through a 
onstant 
orrelation stru
ture. The assumption of 
onstant 
orrelation is generallyreje
ted by the data. Yu and Meyer (2006) applied nine alternative MSV models to a bivariate ex-
hange rate series and found that models that allow for time-varying 
orrelations o�er a better �t tothe data. Fa
tor SV models e.g. applied by Chib et al. (2006), Doz and Renault (2006) and Pitt andShephard (1999b) a

ommodate time-varying 
orrelation patterns where the 
ovarian
e and 
orrela-tion dynami
s are driven by time-variation in fa
tor volatilities. This imposes restri
tions sin
e the
ovarian
es are not allowed to move independently from the varian
es. Asai and M
Aleer (2009) andPhilipov and Gli
kman (2006) introdu
ed a new 
lass of MSV models whi
h assumes a 
onditionallyinverse Wishart distributed 
ovarian
e matrix. The Wishart distribution is a multivariate general-ization of the gamma distribution and is de�ned on the domain of positive-de�nite matri
es (see e.g.Bodnar and Okhrin, 2008, and Muirhead, 1982). The proposed model therefore naturally generalizessto
hasti
 s
alar varian
es to 
ovarian
e matri
es rather than ve
tors of log-varian
es. Wishart SVmodels promise parti
ularly �exible (
o)varian
e and 
orrelation dynami
s sin
e the s
ale matrix ofthe Wishart distribution is modeled 
onditional on the history of the 
omplete 
ovarian
e matrix.The desirable properties of the Wishart distribution also 
ontribute to its in
reasing popularity inthe literature on dire
t modeling of realized (
o)varian
e measures (see e.g. Jin and Maheu, 2012,and Noureldin et al., 2011).1See the ex
ellent overview on multivariate SV models of Asai et al., 2006.1



The present paper analyzes the sto
hasti
 properties of the basi
 Wishart MSV (WMSV) modeland proposes a new �exible Markov Swit
hing (MS) WMSV model. The MS WMSV model allowsfor state-dependent shifts in the un
onditional means of (
o)varian
es and 
orrelations and state-dependent volatility transmission a
ross assets, so-
alled volatility spillover e�e
ts (see e.g. Gallo andOtranto, 2008). It has long been argued that strong persisten
e in asset return volatilities may be dueto shifts in the un
onditional mean of the volatility pro
ess (see e.g. Diebold, 1986, and Lamoureuxand Lastrapes, 1990). A volatility pro
ess featuring sudden shifts between various volatility levels isknown to generate long-memory like persisten
e patterns whi
h are typi
al for high-frequen
y returnvolatilities. Lamoureux and Lastrapes (1990) suggest to apply Markov swit
hing models as a wayto model persisten
e within and swit
hes between regimes. The MS approa
h allows to 
apture
hanges in the volatility level whi
h are due to e
onomi
 for
es like business 
y
le downturns (seeHamilton and Susmel, 1994) as well as sudden 
hanges whi
h are due to unusual market events likethe Lehman Brothers bust in 2008 or the 1987 sto
k market 
rash (see So et al., 1998). The idea of
hanges in volatility regimes is supported by various tests indi
ating multiple stru
tural breaks for the
onditional varian
e of asset return series spanning long time periods (see Andreou and Ghysels, 2002,for an overview). States of pani
-like mood indu
e a higher volatility level 
ompared to �
alm� periods.Lamoureux and Lastrapes (1990) argue that sudden shifts in the varian
e, if una

ounted for, maybias upward persisten
e estimates. This has a 
lear pra
ti
al impli
ation: biased persisten
e estimatesnegatively a�e
t volatility fore
asts. Fast tra
king of stru
tural 
hanges in the (
o)varian
e stru
turehelps to avoid this bias. Gray (1996), Haas et al. (2004) and Hamilton and Susmel (1994) proposedunivariate ARCH and GARCH models with regime swit
hing. So et al. (1998) suggest to applyMarkov swit
hing volatility regimes to univariate SV models while Lopes and Carvalho (2007) extendthe univariate framework to multivariate MS SV modeling and propose a fa
tor SV model featuringunivariate MS pro
esses for the 
ommon fa
tors' varian
e dynami
s. Limiting the MS pro
ess to a few
ommon fa
tors imposes restri
tions in multivariate volatility modeling. The proposed MS WMSVmodel 
ontributes to the literature by allowing for sudden shifts in the (
o)varian
e level a�e
ting alldistin
t elements of the 
ovarian
e matrix independently from one another. The model thereby o�ersparti
ularly �exible volatility and 
orrelation dynami
s in
luding long-memory type of persisten
e2



patterns, state-dependent (
o)varian
e and 
orrelation levels and volatility transmission e�e
ts a
rossassets. Crisis-related strengthening of volatility spillovers and return 
orrelations indi
ates 
ontagione�e
ts (see e.g. Billio and Carporin, 2010, Chiang and Wang, 2011, and Forbes and Rigobon, 2002),whi
h are known to reinfor
e �nan
ial 
risis events (see e.g. Diebold and Yilmaz, 2009). The MSWMSV model allows to assess the presen
e of 
ontagion e�e
ts in returns and volatilities, whi
h isimportant in order to understand the international propagation of �nan
ial distress.The proposed MS WMSV model is applied to daily returns of �ve European sto
k indi
es. Modeldiagnosti
 tests are 
ondu
ted in order to 
he
k the model's ability in 
apturing (
o)varian
e dy-nami
s and the distributional 
hara
teristi
s of the observed return data. The results show that theMS extension substantially improves the model �t of the basi
 WMSV approa
h. The estimatesfurthermore indi
ate intensifying return 
orrelation and volatility transmission in periods of �nan-
ial turmoil. The models' out-of-sample performan
e is evaluated in a VaR fore
asting appli
ation.The MS WMSV model outperforms a range of 
ompeting volatility models from the literature withrespe
t to un
onditional 
overage of the 5% VaR level.The rest of the paper is organized as follows. Se
tion 2 illustrates the basi
 WMSV model and theMS WMSV model, the Bayesian simulation based estimation s
heme and model diagnosti
s basedon standardized returns. Se
tion 3 presents estimation- and model diagnosti
 results and the VaRfore
asting appli
ation. Se
tion 4 
on
ludes.2. Model Spe
i�
ation, Bayesian Inferen
e and Model Diagnosti
s2.1. The Basi
 WMSV ModelConsider the sto
hasti
 k-dimensional return ve
tor ξt and its sto
hasti
 k × k 
ovarian
e matrix
Σt = (σij,t) at time period t (t = 1, . . . , T ). The basi
 WMSV model is given by

ξt|Σt ∼ N(0,Σt), (1)
Σ−1
t |Σ−1

t−1 ∼ Wk(ν, St/ν), (2)
3



where the return ve
tor ξt is assumed to be mean-
orre
ted. Wk denotes the law of a k-dimensional
entral Wishart distribution with ν > k degrees of freedom and a k × k symmetri
 and positivede�nite s
ale matrix St/ν, where St = (sij,t). By spe
ifying a 
onditional Wishart distribution forthe pre
ision matrix Σ−1
t instead of the 
ovarian
e matrix Σt the WMSV framework generalizes theunivariate inverse gamma SV model whi
h is e.g. dis
ussed in Gander and Stephens (2007).Using the properties of the Wishart and inverse Wishart distribution of Σ−1

t and Σt, respe
tively,we obtain (see Muirhead, 1982)
E[Σ−1

t |Σ−1
t−1] = St, (3)

E[Σt|Σt−1] =
1

ν − k − 1
S−1
t−1. (4)In order to allow for serial and 
ross-
orrelations a
ross the varian
es and 
ovarian
es the s
ale matrixin period t is assumed to depend on lagged (
o)varian
es:

St = Σ
−d/2
t−1 AΣ

−d/2
t−1 , (5)where A is a positive de�nite k×k parameter matrix and d is a s
alar persisten
e parameter.2 Basedon the spe
tral de
omposition Σ−1

t = VtΛtV
′
t we obtain

Σ
−d/2
t = VtΛ

d
2

t V
′
t , (6)where Vt denotes the matrix of orthogonal eigenve
tors of Σ−1

t and Λt denotes the 
orrespondingdiagonal matrix of eigenvalues. The power operator is de�ned to work element-wise. Note that
Σ
−d/2
t Σ

−d/2
t = Σ−d

t . The quadrati
 expression in Eq. (5) ensures a positive de�nite s
ale matrix.(Co)varian
e dynami
s are governed by the parameter matrix A and the s
alar d, whi
h dire
tsthe persisten
e of the (
o)varian
e pro
ess. This 
an be seen by rewriting the WMSV model usingthe properties of the Wishart distribution: Denoting the k × k identity matrix by Ik and the lower2The assumed fun
tional form of the s
ale matrix St 
orresponds to the Wishart Inverse Covarian
e (WIC) modelof Asai and M
Aleer (2009). Philipov and Gli
kman (2006) assume a similar spe
i�
ation: St = A1/2Σ−d
t−1

A1/2′ .4



triangular Cholesky fa
tor of A by L, i.e. A = LL′, we obtain
Σ−1
t =

1

ν
Σ
−d/2
t−1 L Wk(ν, Ik) L

′Σ
−d/2
t−1 , (7)whi
h yields an autoregressive representation for the logarithmi
 determinant of Σ−1

t

ln |Σ−1
t | = −k ln(ν) + ln |A|+ d ln |Σ−1

t−1|+ ln |Wk(ν, Ik)|. (8)The 
ondition for weak stationarity of the logarithmi
 determinant of the Wishart pro
ess is there-fore given by |d| < 1. Philipov and Gli
kman (2006) a
knowledge that deriving analyti
al 
onditionsfor weak stationarity of the (
o)varian
es themselves may not be possible. In pra
ti
e, d should beadditionally restri
ted to positivity to rule out sto
hasti
 pro
esses for Σ−1
t whi
h alternate betweenpowers of inverses. While d determines the strength of inter-temporal relationships, A 
an be in-terpreted as a measure of �inter-temporal sensitivity� (see Philipov and Gli
kman, 2006). Withoutrestri
tions on this matrix, all elements of Σt are allowed to depend on their own lag and the lags of allremaining (
o)varian
es. Restri
ting A to a diagonal matrix 
ompletely ex
ludes volatility spillovere�e
ts. Eqs. (4) and (5) show that the interpretation of inter-temporal (
o)varian
e transmission isa
tually based on A−1.Sin
e no 
losed form analyti
al expression 
an be derived, I simulate un
onditional (
o)varian
emoments based on a two-dimensional WMSV model and a variety of parameter 
onstellations inorder to further analyze the in�uen
e of the model parameters A−1, ν and d on distributional anddynami
 
hara
teristi
s. For ea
h stru
tural model parameter �ve parameter values are 
onsidered:The parameter sets for d and ν are {d1 = 0.2, d2 = 0.4, d3 = 0.6, d4 = 0.8, d5 = 0.9} and {ν1 =

20, ν2 = 40, ν3 = 60, ν4 = 80, ν5 = 90}. The matri
es A−1
i , i = 1, . . . , 5, are 
hara
terized by overallin
reasing matrix entries in i on ea
h single position in A−1

i . Let ve
h(·) denote the operator thatsta
ks the lower triangular portion, in
luding the diagonal of a matrix into a ve
tor. In order to re�e
trealisti
 (
o)varian
e dynami
s ve
h(A−1
1 ) is set to its point estimate ve
h(A−1

1 ) = (0.96, 0.02, 0.96)′obtained by �tting the basi
 WMSV model to a bivariate series of daily sto
k index returns forFran
e and Germany (see the data des
ription in Se
tion 3 below). For i = 2, . . . , 5 we obtain5



ve
h(A−1
i ) = (1.2, 2, 1.2)′ ⊙ ve
h(A−1

i−1), where ⊙ denotes element-wise multipli
ation3 . Figure 1shows that in
reasing the elements of A−1 has a signi�
ant positive e�e
t on the overall (
o)varian
eand 
orrelation level. The e�e
ts of ν and d in 
ontrast appear 
omparatively minor. Figure 2(left panel) depi
ts simulated auto
orrelation fun
tions for the �rst asset's varian
e. The persisten
eappears to be solely driven by d. Corresponding plots for the se
ond varian
e and the 
ovarian
eare not presented here but 
on�rm that d drives serial 
orrelation for the whole (
o)varian
e pro
ess.Figure 2 (right panel) depi
ts simulated 
ross-
orrelation fun
tions for the varian
es of the �rst andse
ond asset return. The fun
tions show that 
ross-asset volatility persisten
e is solely 
aptured by
A−1. Spillover e�e
ts in
rease with in
reasing matrix entries in A−1. Summarizing the results, while
d drives the overall (
o)varian
e persisten
e, the volatility and 
orrelation level as well as the strengthof 
ross-asset volatility transmission e�e
ts are 
aptured by A−1. The role of the d.o.f. parameter νbe
omes apparent by 
onsidering (
o)varian
es of the Σ−1

t elements based on the properties of theWishart distribution (see Muirhead, 1982):Cov(σ−1
ij,t, σ

−1
lm,t|Σ−1

t−1) =
1

ν
(sil,t · sjm,t + sim,t · sjl,t), (9)for i, j, l,m = 1, . . . , k, where σ−1

ij,t denotes the ij'th element of Σ−1
t . Hen
e ν dire
tly e�e
ts thedependen
e stru
ture within the (
o)varian
e pro
ess.2.2. The Markov Swit
hing WMSV ModelThis se
tion des
ribes a new Markov swit
hing (MS) WMSV model, whi
h indu
es state-dependent
ovarian
e and 
orrelation levels and state-dependent volatility spillover e�e
ts. This is a

omplishedby allowing the parameter matrix A of the basi
 WMSV model to swit
h between di�erent realiza-tions.Suppose that st ∈ {1, 2} is an unobserved two-state Markov pro
ess with transition probability3The simulation results are found to be robust to variations in the parameter values.

6



matrix Pr(st|st−1) =







(1− e1) e1

e2 (1− e2)






, (10)where e1 denotes the probability of swit
hing from state 1 in period t− 1 to state 2 in period t and

e2 the probability of swit
hing from state 2 in period t − 1 to state 1 in period t. The latent statevariable st de�nes a parti
ular regime 
hara
terized by a regime-spe
i�
 parameter matrix Ast . The2-regime MS model is then given by
ξt|Σt ∼ N

(

0,Σt

)

, (11)
Σ−1
t |Σ−1

t−1 ∼ Wk(ν, St/ν), St = Σ
−d/2
t−1 AstΣ

−d/2
t−1 , (12)together with Eq. (10). A

ording to the simulation results of Se
tion 2.1 above the MS WMSVmodel allows for stru
tural 
hanges in the (
o)varian
e/
orrelation level and volatility transmissionintensity, where the timing of the shifts is 
aptured by the latent Markov pro
ess.The MS WMSV model as spe
i�ed is unidenti�ed. A su�
ient 
ondition for identi�
ation isrestri
ting the �rst diagonal element of the matrix di�eren
e Ã = A2 − A1 to positivity. Note thatit is straightforward to also allow the parameters ν and d to 
hange a

ording to the same Markovpro
ess. The goal is, however, to 
apture 
lusters of low and high risk in the market as 
apturedby small and large values in A. Also note that the model 
an easily be generalized to more thantwo volatility states. This would however signi�
antly in
rease the dimension of the parameter spa
esin
e the number of parameters in A is proportional to the square of the number of assets. The resultsof Carvalho and Lopes (2007) and Lopes and Carvalho (2007) indi
ate the empiri
al su�
ien
y ofa 2-regime model, whi
h preserves parsimony in multivariate volatility modeling. Two states implytwo (
o)varian
e and 
orrelation levels, whi
h 
orrespond to times of high and low risk in the market.

7



2.3. Estimation and Diagnosti
sFollowing Asai and M
Aleer (2009) and Philipov and Gli
kman (2006) a Bayesian estimation ap-proa
h is applied for inferen
e on the (MS)WMSVmodel's parameter ve
tor θWMSV = (ve
h(A)′, ν, d)′or θMS WMSV = (ve
h(A1)
′, ve
h(A2)

′, ν, d, e1, e2)
′, respe
tively. Bayesian estimation is parti
u-larly attra
tive for 
omplex multivariate models in
luding a large number of parameters. High-dimensionality of the parameter ve
tor involves pra
ti
al problems of the 
lassi
al estimation s
hemedue to the numeri
al maximization of the likelihood fun
tion. These 
ompli
ations 
an be avoidedby making use of tra
table Bayesian estimation te
hniques. The obje
tive of primary interest is thejoint posterior distribution of the model parameters, whose moments 
an be used to generate pointestimates and to assess the a

ording parameter un
ertainty. The posterior distribution is propor-tional to the produ
t of the likelihood fun
tion and the parameters' joint prior distribution. Thelikelihood fun
tion of the basi
 WMSV model is a high-dimensional integral

L({ξt}Tt=1|θWMSV) = ∫ . . .

∫

Σ1,...,ΣT

T
∏

t

P (ξt|Σt)× P (Σt|Σt−1, θ
WMSV) dΣ1, . . . , dΣT . (13)This integral is analyti
ally intra
table and its evaluation requires simulation-based estimation te
h-niques. The Monte Carlo Markov Chain (MCMC) approa
h be
ame in
reasingly popular in thelast de
ades and 
an be readily applied for Bayesian inferen
e within the WMSV framework. TheMCMC s
heme generates draws from the joint posterior distribution of the model parameters viasimulating an irredu
ible and aperiodi
 Markov 
hain. Under some mild regularity 
onditions thelatter 
onverges to the parameters' joint posterior distribution. The Markov 
hain is generatedby the Gibbs sampling algorithm, whi
h involves iterative drawing from the full 
onditional dis-tributions of the model parameters, where the parameter ve
tor is augmented by the set of latentvariables4. Bayesian point estimates are obtained by averaging the Gibbs draws after 
onvergen
eof the Markov 
hain5. Estimation un
ertainty is 
aptured by the sample standard deviation of theGibbs draws. Following Lopes and Carvalho (2007) full 
onditional sampling of the state sequen
e4For details on the Gibbs sampling algorithm and Monte Carlo Markov Chain methods see e.g. Bauwens et al.(1999).5I.e. after a 
ertain number of burn-in iterations of the Gibbs sampler.8



{st}Tt=1 is a
hieved by Forward Filtering Ba
kward Sampling (FFBS) using the Hamilton �lter (seeHamilton and Susmel, 1994). All derivations of full 
onditional distributions are given in the ap-pendix. If spe
i�
 distributions are not available in 
losed form, but known up to an integrating
onstant, the Metropolis-Hastings algorithm is applied for simulation purposes.After a model has been �tted to the data, diagnosti
s are applied in order to 
he
k the model'sability to re�e
t (
o)varian
e dynami
s and distributional 
hara
teristi
s of the observed return series.Diagnosti
 tests on (
o)varian
e dynami
s are 
ondu
ted from the ve
tor of standardized Pearsonresiduals
e∗t = Var[ξt|Ft−1]

− 1

2 ξt = E[Σt|Ft−1]
− 1

2 ξt, (14)where Ft−1 = {ξt}t−1
t=1 and E[Σt|Ft−1]

− 1

2 denotes the inverse Cholesky fa
tor of E[Σt|Ft−1]. The�ltered 
ovarian
e estimate E[Σt|Ft−1] 
onstitutes a high-dimensional integral, whi
h 
an be approx-imated by the sample mean over draws from the respe
tive 
onditional distribution:
e∗t = E[Σt|Ft−1]

− 1

2 ξt ∼=
(

1

M

M
∑

j=1

Σ
(j)
t

)− 1

2

ξt, (15)where Σ
(j)
t denotes a draw from f(Σt|Ft−1), whi
h is obtained by applying the standard parti
le�lter algorithm illustrated by Pitt and Shephard (1999), and M is the simulation sample size. Fora 
orre
tly spe
i�ed model, the standardized residuals e∗i,t in the ve
tor e∗t are serially un
orrelatedin levels, squares and 
ross-produ
ts. The series 
an therefore be used for diagnosti
 
he
king of theassumed dynami
 stru
ture, e.g. using the Ljung-Box test on serial 
orrelation.The model's ability in re�e
ting the distributional 
hara
teristi
s of the underlying return data is
he
ked following Kim et al. (1998) and Liesenfeld and Ri
hard (2003). The approa
h requires the
omputation of the 
onditional probability that the i'th return yi,t is less than the a
tually observedreturn yoi,t, i.e. Pr(yi,t ≤ yoi,t|Ft−1). Again applying standard parti
le �ltering this probability 
an

9



be approximated by
Pr(yi,t ≤ yoi,t|Ft−1) ∼= uMi,t =

1

M

M
∑

j=1

Pr(yi,t ≤ yoi,t|σ(j)ii,t), (16)where σ(j)ii,t denotes the i'th diagonal element of Σ(j)
t , drawn from f(Σt|Ft−1), j = 1, . . . ,M . Underthe null of a 
orre
tly spe
i�ed model the {uMi,t}Tt=1 sequen
e is iid uniform distributed on [0, 1]for all i = 1, . . . , k and 
an be mapped into the standard normal distribution via the inverse of thea

ording 
df: eMi,t = F−1

N (uMi,t). Statisti
al tests for normality of eMi,t 
an be based on the Jarque-Beratest statisti
.3. Empiri
al Appli
ation3.1 DataThe (MS) WMSV models are applied to daily AR(p) pre-�ltered sto
k index log-returns6 for Fran
e,Germany, Italy, Switzerland and the UK from January 2, 2003 to De
ember 31, 2008, leaving asample of 1565 observations.7 The return series are illustrated in Figure 3 and des
riptive statisti
sare given in Table 1. All series feature ex
ess kurtosis, insigni�
ant auto
orrelation in levels andsigni�
ant auto
orrelation in squared returns. The reported sample 
orrelations indi
ate a hugedegree of 
o-movement for all �ve sto
k indi
es.3.2 Estimation Results3.2.1 Basi
 WMSV ModelTable 2 presents the estimation results for the basi
 WMSV model. The 
hosen prior distributions areoverall uninformative and reported in the table. The estimation is based on 50, 000 Gibbs iterationsand a burn-in of 15,000 iterations. The 
onvergen
e of the generated Markov 
hains is 
he
ked using
onvergen
e diagrams (not presented here) as e.g. applied by Liesenfeld and Ri
hard (2008) and6Datastream DS market indi
es.7The daily pri
es pt are transformed into 
ontinuously 
ompounded rates rt = 100 × ln(pt/pt−1) whi
h are then�ltered for AR(p) pro
esses a

ording to the Akaike information 
riterium.10



Ross (2002). All parameter estimates are signi�
ant at the 5% level.The estimated persisten
e parameter d = 0.95 implies strong persisten
e of the (
o)varian
epro
ess and the signi�
ant o�-diagonal elements in A−1 indi
ate the presen
e of volatility spillovere�e
ts. Figures 4 and 5 depi
t smoothed estimates of dynami
 standard deviations and 
orrelations.The results imply strong volatility 
lustering and a

entuated volatility peaks at the beginning of2003 and in 2006, and a large volatility 
luster slowly building up from the middle of 2007. Thelatter is 
aused by the �nan
ial 
risis originating in the US subprime market. Figure 5 shows strong
o-movement and signi�
ant dynami
s in the 
orrelation series.Table 3 shows diagnosti
s for the series of Pearson residual 
ross-produ
ts. The Ljung-Box test at50 lags indi
ates signi�
ant predi
tability of 14 out of 15 series. This implies 
onsiderable problemsof the baseline WMSV model in a

ommodating the strong serial and 
ross-se
tional 
orrelation ofdaily asset return (
o)varian
es. Figure 6 (left panel) shows sample auto
orrelation fun
tions forthe squared residual series whi
h support the Ljung-Box results. The plots show signi�
ant serial
orrelation for up to 50 lags. Yet the model su

essfully a

ounts for a major portion of the highlypersistent (
o)varian
e dynami
s. Table 4 shows diagnosti
 results on distributional 
hara
teristi
s.The Jarque-Bera test indi
ates signi�
ant deviations from normality for all residual series. This�nding is mainly due to unexplained ex
ess kurtosis of the return distribution. The basi
 WMSVmodel has problems in 
apturing the fat tails of daily asset return data. The residuals are furthermoreskewed to the left, whi
h suggests the presen
e of asymmetri
 e�e
ts, e.g. the leverage e�e
t of Bla
k(1976) and Christie (1982). The previous �ndings are supported by QQ-plots depi
ted in Figure 7(left panel). The plots show severe deviations from normality in the tails of the residual distribution.3.2.2 MS WMSV ModelTable 2 shows estimation results and prior distributions for the two-state Markov swit
hing WMSVmodel. 14 out of 15 estimates in A−1
2 signi�
antly ex
eed their 
orresponding estimates in A−1

1 . Thissuggests an overall higher volatility and 
orrelation level in the se
ond state, whi
h is supported bynumeri
al approximations of un
onditional means of volatility and 
orrelation presented in Table 5.A higher 
orrelation level under turbulent market 
onditions is a 
ommonly observed phenomenon11



(see e.g. Solnik et al., 1996) and 
an be interpreted as 
ontagion in the lines of Forbes and Rigobon(2002), i.e. 
risis-related in
reases in return dependen
ies. In
reasing asset 
orrelation in periodsof turmoil indi
ates that diversi�
ation opportunities tend to vanish when they are needed most.Figure 8 depi
ts smoothed state and volatility estimates for Fran
e and Germany obtained under thebasi
 WMSV and the MS WMSV model. The �gure illustrates the link of the se
ond volatility stateto periods of high market volatility, where MS WMSV implied volatility signi�
antly ex
eeds basi
WMSV implied volatility. In parti
ular, assuming that a volatility state has been realized if the 
or-responding smoothed state probability ex
eeds 0.5, the se
ond volatility state 
overs two pronoun
ed
lusters of ex
eedingly high market volatility: the period of Iraq war in Mar
h 2003 and pre
eding oilpri
e �u
tuations as well as the subprime 
risis period slowly building up from the midst of 2007 and�nally 
ulminating in a huge volatility 
luster initiated by the Lehman Brothers bust on September15, 2008. The high-volatility state additionally 
overs parti
ular events like the terrorist atta
ks inMadrid and London on Mar
h 11, 2004, and July 7, 2005, respe
tively, whi
h had pronoun
ed e�e
tson international sto
k markets. State-dependent regime swit
hing allows for a fast tra
king of stru
-tural 
hanges like 
risis-related in
reases in volatility levels. This helps to avoid an overestimation ofthe model-implied volatility persisten
e whi
h is likely to o

ur if stru
tural 
hanges in the volatilitypro
ess are not taken into a

ount: The estimate of the persisten
e parameter d obtained under theMS WMSV model is signi�
antly lower 
ompared to the 
orresponding estimate obtained under thebasi
 WMSV model (see Table 2). The estimated diagonal elements of the transition probabilitymatrix Pr(st = 1|st−1 = 1) = 0.92 and Pr(st = 2|st−1 = 2) = 0.60 imply long duration in ea
hregime with a predominan
e of the low volatility regime. The estimated un
onditional probabilityfor state 2 is 0.17.8 The estimates of A−1
1 and A−1

2 suggest intensifying volatility transmission e�e
tsin periods of high market volatility. Table 5 shows that model-implied one-period ahead volatility
ross-
orrelations in
rease signi�
antly by swit
hing from state 1 to state 2. This indi
ates intensi�edvolatility spillovers in periods of turmoil and implies 
ontagion in volatilities (see e.g. Chiang andWang, 2011, and Diebold and Yilmaz, 2009). The presen
e of 
ontagion stimulates internationalpropagation of 
risis e�e
ts as e.g. observed for the U.S. subprime 
risis, whi
h spread out aroundthe world through various e
onomi
 and �nan
ial links. A potential sour
e of su
h 
hanges in mar-8See Hamilton, 1994, p. 683, for the 
omputation of un
onditional state probabilities.12



ket dependen
ies 
ould be the boost of intensity at whi
h news hits international �nan
ial marketswhen entering a turbulent 
risis period. This prompts investors to strengthen their monitoring of�nan
ial market transa
tions in order to gather new 
riti
al information about their investments andfundamentally reassess the vulnerability of other �nan
ial markets (see e.g. Bekaert et al., 2011).Table 3 shows Ljung-Box diagnosti
 test results for the series of Pearson residual 
ross-produ
ts.13 out of 15 series are unpredi
table at the 1% level. This �nding is supported by sample ACFs ofsquared residual series depi
ted in Figure 6 (right panel). Compared to the basi
 WMSV approa
h theMS framework o�ers enhan
ed �exibility in 
apturing strong persisten
e of asset return (
o)varian
es.The MS WMSV model 
aptures long-memory like persisten
e patterns by 
ombining stru
tural shiftsin the mean of the volatility pro
ess with volatility persisten
e in ea
h regime. Table 4 showsdiagnosti
s on distributional 
hara
teristi
s. Compared to the basi
 WMSV model the results showremarkable improvements in 
apturing the ex
ess kurtosis of the return distribution. A

ording tothe Jarque-Bera test results we 
annot reje
t the null of normality for two out of �ve series at the1% signi�
an
e level. Figure 7 (right panel) depi
ts QQ-plots whi
h 
on�rm the Jarque-Bera testresults. Sin
e it is a widely a

epted fa
t that 
onditional normality in standard SV and GARCHmodels does not 
apture the ex
ess kurtosis of �nan
ial return series, fat-tailed 
onditional returndistributions, like the multivariate Student-t distribution, represent an alternative popular way ofa

ounting for ex
ess kurtosis. For an initial investigation I �tted a WMSV model with 
onditionallymultivariate Student-t distributed returns to the European asset return data. In 
ontrast to theMS WMSV model the respe
tive residual series still implied 
onsiderable problems in 
apturing theex
ess kurtosis of the return data.3.3 Value-at-Risk Fore
asting Appli
ationThis se
tion assesses the out-of-sample performan
e of the WMSV model in a Value-at-Risk (VaR)fore
asting experiment. VaR measures indi
ate the portfolio value that 
ould be lost over a giventime-period with a spe
i�ed 
on�den
e level α. Given a k-dimensional ve
tor of portfolio weights wthe level α VaR fore
ast of a portfolio return ξp,t at time t given return information up to period
13



t− 1 is 
omputed as VaRp,t|t−1(α) =
√

σ̂p,t|t−1 F
−1(α), (17)where F−1(α) denotes the α-per
entile of the 
umulative one-step-ahead distribution assumed forportfolio returns and σ̂p,t|t−1 denotes the model-based portfolio varian
e fore
ast using return infor-mation up to period t − 1. The VaR framework is of parti
ular importan
e for �nan
ial managerssin
e, for example, regulatory 
apital requirements for the market risk exposure of 
ommer
ial banksare now expli
itly based on VaR estimates and in
lude a penalty for model ina

ura
y (see Lopezand Walter, 2001).A

ording to 
ommon pra
ti
e (see e.g. Chib et al., 2006, and Lopez and Walter, 2001) I 
ondu
t5% VaR fore
asts for an equally weighted portfolio of the 
onsidered �ve European sto
k indi
es.The out-of-sample window 
overs 262 trading days from January 2, 2008 through De
ember 31, 2008.All models are re-estimated daily and new fore
asts are generated based on the updated parameterestimates. I 
onsider a range of prominent 
ompeting fore
asting models, where the 
hoi
es aremotivated by the popularity of the models in the a
ademi
 literature. The following spe
i�
ationsare used:1. The BEKK-GARCH(p,q) model of Engle and Kroner (1995) assumes ξt = H

1/2
t υt, where

υt ∼ N (0, Ik) and H1/2
t is the lower triangular Cholesky fa
tor of the 
onditional 
ovarian
ematrix Ht, whi
h is spe
i�ed as
Ht = D0D

′
0 +

p
∑

i=1

DiHt−iD
′
i +

q
∑

j=1

Gj [ξt−jξ
′
t−j]G

′
j , (18)where D0 is a lower triangular k× k matrix. Di, Gj are k× k matri
es whi
h may be restri
tedto diagonality to redu
e the dimension of the parameter spa
e (Diagonal BEKK-GARCH(p,q)model).2. The Dynami
 Conditional Correlation (DCC)-GARCH(p,q) model of Engle (2002) assumes
onditional normality for the return ve
tor ξt and s
alar GARCH(p,q) dynami
s for the 
ondi-14



tional varian
es {hii,t}ki=1. The modeling of dynami
 
onditional 
orrelations is based on thede
omposition
Ht = DtPtDt, (19)where Dt = diag(√h11,t, . . . ,√hkk,t) and Pt is a k × k 
onditional 
orrelation matrix. Thelatter is expressed as

Pt =
(diag(Qt)

)− 1

2Qt

(diag(Qt)
)− 1

2 , (20)with Qt being a k × k symmetri
, positive de�nite matrix given by
Qt = (1− α− β)Q̄+ αut−1u

′
t−1 + βQt−1, (21)where α and β are positive s
alar parameters and ut is the k-dimensional ve
tor of standardizedresiduals with elements

ui,t =
ξi,t
√

hii,t
, i = 1, . . . , k. (22)

Q̄ is the un
onditional 
ovarian
e matrix of ut whi
h is 
onsistently estimated by the a

ordingsample 
ovarian
e matrix.3. The Constant Conditional Correlation (CCC)-GARCH(p,q) model of Bollerslev (1990) is ob-tained by restri
ting the DCC-GARCH(p,q) model setting Pt = P , where P is the sample
orrelation matrix of returns.4. The Exponentially Weighted Moving Average (EWMA) approa
h is a simple fore
asting model,whi
h is 
ommonly used for risk management purposes (see RiskMetri
s, J.P. Morgan, 1996).The model assumes 
onditional normality for returns and a 
onditional 
ovarian
e matrix
Ht = (1− λ)ξt−1ξ

′
t−1 + λHt−1. (23)For the empiri
al appli
ation λ is set to its typi
al value for daily asset return data given by

0.94.Details on obtaining fore
asts given the multivariate GARCH and EWMA models are e.g. pro-15



vided by Chib et al. (2006). For standard MGARCH models the portfolio return's 
umulativeone-step ahead distribution is normal. VaR fore
asts are then obtained as the α-per
entile of the
orresponding normal distribution for portfolio returns. Chib et al. (2006) illustrate how to obtainVaR fore
asts within the simulation based MCMC s
heme: The Gibbs sampling algorithm allows fora dire
t simulation from the predi
tive densities of the individual asset returns. The VaR fore
ast isthen obtained by the (left-tail) quantile of interest.The a

ura
y of obtained VaR estimates is evaluated using the un
onditional 
overage test illus-trated by Lopez and Walter (2001) and e.g. applied by Chib et al. (2006) and Storti (2006). This testis expli
itly in
orporated into the Basel bank 
apital requirements. De�ning an indi
ator variable
It =















1 if ξp,t < VaRp,t|t−1,

0 if ξp,t ≥ VaRp,t|t−1,

(24)and denoting the number of out-of-sample observations by T ⋆, the �hit-rate� is obtained as α̂ = γ/T ⋆,where γ =
∑T ⋆

t=1 It. A

urate VaR fore
asts should feature a hit-rate α̂ 
lose to α. The hypothesis
E[α̂] = α 
an be tested using the statisti


LRu
 = 2{ ln[ α̂γ(1− α̂)T
⋆−γ ]− ln[ αγ(1− α)T

⋆−γ ] }, (25)whi
h is under the null asymptoti
ally χ2(1) distributed.Table 6 presents the fore
asting results. The basi
 WMSV model shows the overall worst VaRfore
asting performan
e a
ross all 
onsidered volatility models - the hit-rate amounts to 15%. Thesigni�
ant overestimation of 
overage 
an be tra
ed ba
k to the model's general problem in 
apturingthe leptokurti
 distribution of daily asset return data. This short
oming 
learly e�e
ts the VaRmeasure. Extending the basi
 WMSV model by Markov swit
hing regimes signi�
antly improves theVaR fore
asting results. The respe
tive hit-rate amounts to 8.78%, whi
h is 
losest to the 5% levela
ross all 
onsidered fore
asting models - a

ording to the test results we 
annot reje
t the null of
orre
t un
onditional 
overage at the 1% signi�
an
e level. The fa
t that most applied volatilitymodels show signi�
ant violations of 
overage is explained by the overall high volatility level in 200816



whi
h 
omes as a result of the subprime 
risis.4. Con
lusionsThis paper proposes a new Markov swit
hing (MS) extension to the basi
 Wishart MSV (WMSV)model of Asai and M
Aleer (2009) and Philipov and Gli
kman (2006). The proposed model allowsfor parti
ularly �exible (
o)varian
e dynami
s in
luding state-dependent shifts in the un
onditionalmean of (
o)varian
es and 
orrelations as well as state-dependent volatility transmission e�e
ts a
rossassets. The MS approa
h 
aptures sudden 
hanges in the volatility level related to parti
ular eventslike in
reasing market un
ertainty indu
ed by the 2005 terrorist atta
ks in London as well as lastingstru
tural 
hanges due to �nan
ial 
risis e.g. indu
ed by the 
ollapse of the US subprime mortgagemarket in 2007. Markov swit
hing volatility regimes generate long-memory like persisten
e patternswhi
h are typi
al for high-frequen
y return volatilities.The WMSV model is applied to daily returns of �ve European sto
k indi
es. Parameter estimatesare obtained using Bayesian Monte Carlo Markov Chain (MCMC) methods. The estimation resultsindi
ate the presen
e of a high-volatility and a low-volatility regime where states of high marketvolatility 
orrespond to in
reasing market 
orrelations. This indi
ates the presen
e of 
ontagione�e
ts in asset returns in the lines of Forbes and Rigobon (2002) as well as vanishing diversi�
ationbene�ts in periods of turmoil. The high-volatility states are a

ompanied by in
reasing volatilitytransmission e�e
ts a
ross assets. This indi
ates volatility 
ontagion, i.e. 
risis-related in
reasesin inter-asset volatility dependen
ies (see e.g. Chiang and Wang, 2011, and Diebold and Yilmaz,2009). Contagion e�e
ts stimulate the international propagation of 
risis as e.g. observed for theU.S. subprime 
risis, whi
h spread out around the world through various transmission 
hannels.Model diagnosti
s show that the MS WMSV model alleviates the short
oming of the basi
 WMSVmodel in a

ommodating the strong persisten
e of daily asset return (
o)varian
es. The modelprevents the underestimation of (
o)varian
es in periods of high market volatility resulting in animproved model �t to the leptokurti
 return distribution. A Value-at-Risk (VaR) fore
asting experi-ment shows that the MS WMSV model outperforms a range of 
ompeting volatility models from theliterature with respe
t to un
onditional 
overage of the 5% VaR level.17



AppendixFull Conditional Distributions: Basi
 WMSV ModelThe basi
 WMSV model is outlined in Eqs. (1), (2) and (5). The joint prior distribution is assumedto fa
tor into the produ
t of marginal prior distributions given by1. a Wishart prior πA−1(Q0, γ0) for A−1 with s
ale matrix Q0 and d.o.f. parameter γ0;2. a uniform prior πd(0, 1) on [0, 1] for d;3. a gamma prior πν(α0, β0) for ν − k with shape parameter α0 and s
ale parameter β0.Denoting the augmented parameter ve
tor by θaug = (θ′, ve
h(Σ1)
′, . . . , ve
h(ΣT )

′), we obtain
P (θaug|Ξ) ∝

T
∏

t=1

f(ξt|Σ−1
t )× f(Σ−1

t |Σ−1
t−1, θ)

× πA−1(Q0, γ0)× πd(0, 1) × πν(α0, β0). (26)In order to simplify notation, the ve
tor of remaining model parameters for ea
h parameter blo
kis denoted by θaug− . The full 
onditional distributions are obtained as follows:Full 
onditional distribution of Σ−1
t :For notational 
onvenien
e suppressing dependen
e on model parameters, the kernel of the full 
on-ditional distribution of Σ−1

t is obtained as
p(Σ−1

t |θaug− ) ∝ f(ξt|Σ−1
t )× f(Σ−1

t |Σ−1
t−1)× f(Σ−1

t+1|Σ−1
t )

∝ |Σ−1
t |(ν−k−dν)/2 × exp{−0.5 tr[(S−1

t + ξtξ
′
t)Σ

−1
t ]}

× exp{−0.5 tr[S−1
t+1Σ

−1
t+1]}

∝ Wκ
k (Σ

−1
t |ν̃, S̃t)× f(Σ−1

t ), (27)
18



where Wκ
k (Σ

−1
t |·) denotes a Wishart kernel in Σ−1

t and
ν̃ = ν(1− d) + 1, (28)
S̃t = (S−1

t + ξtξ
′
t)
−1, (29)

f(Σ−1
t ) = exp{−0.5 tr[S−1

t+1Σ
−1
t+1]}, (30)

St = Σ
−d/2
t AΣ

−d/2
t . (31)The full 
onditional distribution of Σ−1

t is known up to an integrating 
onstant and the Metropolis-Hastings (MH) algorithm is applied in order to obtain samples from p(Σ−1
t |θaug− ). The proposaldensity is given by Wk(ν, S̃t).Full 
onditional distribution of A−1:The full 
onditional distribution of A−1 is Wishart sin
e

p(A−1|θaug− ) ∝ πA−1(Q0, γ0)

T
∏

t=1

f(Σ−1
t |Σ−1

t−1)

∝ πA−1(Q0, γ0) |A−1|(Tν)/2

× exp
{

− 0.5tr[ν T
∑

t=1

Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1A

−1
]}

∝ πA−1(Q0, γ0)×Wκ
k (A

−1|γ, U), (32)where U−1 = ν
∑T

t=1 Σ
d/2
t−1Σ

−1
t Σ

d/2
t−1 and γ = Tν + k + 1. Hen
e

p(A−1|θaug− ) ∝ πA−1(Q0, γ0)×Wκ
k (A

−1|γ, U)

∝ |A−1|(γ0+γ−2k−2)/2 exp{−0.5 tr[(Q−1
0 + U−1)A−1]}. (33)Therefore A−1|θaug− ∼ Wk(γ̃, Ũ), where Ũ−1 = Q−1

0 + U−1 and γ̃ = γ0 + γ − k − 1.Full 
onditional distribution of ν and d:The full 
onditional distributions of the parameters ν and d are not obtained in 
losed form and theMetropolis-Hastings algorithm is used for simulation issues. Sin
e ν > k and d ∈ (0, 1), trun
atednormal proposal densities are applied where mean and varian
e are given by the optimum and19



the 
orresponding Hessian obtained after numeri
ally optimizing the posterior distribution's densitykernel.The kernel of the full 
onditional distribution of d is obtained as
p(d|θaug− ) ∝ πd(0, 1)

T
∏

t=1

|Σ−1
t−1|−dν/2

exp
{

− 0.5 tr[((1/ν)Σ−d/2
t−1 AΣ

−d/2
t−1

)−1
Σ−1
t

]}

∝ exp
{

dψ − 0.5 tr[Q(d)A−1
]}

, (34)where ψ = −ν
2

∑T
t=1 ln(|Σ−1

t−1|) and Q(d) =
∑T

t=1 νΣ
d/2
t−1Σ

−1
t Σ

d/2
t−1.The kernel of the full 
onditional distribution of ν is obtained as

p(ν|θaug) ∝ πν(α0, β0)×
T
∏

t=1

f(Σ−1
t |Σ−1

t−1)

∝ exp{(α− 1) ln(ν − k)− β(ν − k)}

×
(

|νA−1|ν/2

2νk/2
∏k

j=1 Γ
(

(ν − j + 1)/2
)

)T

×
T
∏

t=1

|Q−1
t |ν/2 exp{−0.5 tr[Q−1A−1

]

}, (35)where Q−1
t = Σ

d/2
t−1Σ

−1
t Σ

d/2
t−1 and Q−1 = ν

∑T
t=1 Σ

d/2
t−1Σ

−1
t Σ

d/2
t−1.Full Conditional Distributions: Markov Swit
hing MWSV ModelThe MS WMSV model is outlined in Eqs. (10), (11) and (12). The joint prior distribution isassumed to fa
tor into the produ
t of marginal prior distributions. Given the state sequen
e s =

(s1, s2, . . . , sT )
′, the derivation of the full 
onditional distributions for Σ−1

t , A1, A2, ν and d isanalogous to the illustrations of the previous se
tion, ex
ept that we have to 
ondition on Ast∀t =

1, . . . , T instead of A.Full 
onditional distribution of s = (s1, s2, . . . , sT )
′:Denoting Σ−1

t = {Σ−1
1 , . . . ,Σ−1

t } and exploiting the Markov property of st, the full 
onditional20



density of the state ve
tor s 
an be fa
torized as
p(s|θaug− ) = P (s|Σ−1

T , θ)

= P (sT |Σ−1
T , θ)× P (sT−1|sT ,Σ−1

T , θ)× · · · × P (s1|s2,Σ−1
T , θ)

= P (sT |Σ−1
T , θ)× P (sT−1|sT ,Σ−1

T−1, θ)× · · · × P (s1|s2,Σ−1
1 , θ). (36)The 
onditional probabilities

P (st|st+1,Σ
−1
t , θ) =

P (st+1|st)× P (st|Σ−1
t , θ)

P (st+1|Σ−1
t , θ)

(37)are obtained by the �Hamilton �lter� whi
h - given a starting value for P (s0|Σ−1
0 , θ) (e.g. stationaryprobabilities, see Hamilton, 1994, p. 683) - pro
eeds re
ursively in �ve steps ∀t ∈ {1, . . . , T}:

I P (st, st−1|Σ−1
t−1, θ) = P (st|st−1)× P (st−1|Σ−1

t−1, θ) (38)
II P (st|Σ−1

t−1, θ) =
∑

st−1

P (st, st−1|Σ−1
t−1, θ) (39)

III f(Σ−1
t , st|Σ−1

t−1, θ) = f(Σ−1
t |st,Σ−1

t−1, θ)× P (st|Σ−1
t−1, θ) (40)

IV f(Σ−1
t |Σ−1

t−1, θ) =
∑

st

f(Σ−1
t , st|Σ−1

t−1, θ) (41)
V P (st|Σ−1

t , θ) =
f(Σ−1

t , st|Σ−1
t−1, θ)

f(Σ−1
t |Σ−1

t−1, θ)
. (42)The whole state sequen
e s = (s1, s2, . . . , sT )

′ 
an then be sampled ba
kward re
ursively based onEq. (36).Full 
onditional distributions of e1 and e2:Using beta prior distributions πei(αi,0, βi,0), i ∈ {1, 2}, the kernel of the full 
onditional distributionof ei is obtained as
p(ei|rest) ∝ πei(αi,0, βi,0)×

gi
∏

j=1

ei

hi
∏

j=1

(1− ei)

∝ e
αi,0−1
i (1− ei)

βi,0−1 × egii (1− ei)
hi , (43)21



where gi denotes the number of swit
hes from state i to state i− (not state i) and hi denotes thenumber of periods where the state does not 
hange. The full 
onditional distribution of ei is thereforebeta with parameters αi = αi,0 + gi and βi = βi,0 + hi, i ∈ {1, 2}.
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Table 1. Des
riptive Statisti
s for the Daily Index Log Returns.Statisti
 Fran
e Germany Italy Switzerland UKSample 1.00 0.72 0.91 0.89 0.90
orrelation . 1.00 0.68 0.66 0.69
. . 1.00 0.83 0.89
. . . 1.00 0.84
. . . . 1.00Mean 0.00 0.00 0.00 0.00 0.00Std. dev. 1.26 1.34 1.13 1.11 1.18Kurtosis 12.48 24.67 14.47 11.84 12.86Skewness −0.03 0.80 −0.23 −0.09 −0.47Minimum −8.35 −8.64 −9.01 −7.50 −8.54Maximum 9.60 16.24 9.19 9.68 8.34

LBr(10) 4.98 1.34 2.91 7.91 1.56

LBr2(30) 2293.70∗ 1137.94∗ 2409.56∗ 2341.55∗ 2583.31∗

LBr(10): Ljung-Box test statisti
 for the return series at 10 lags. LBr2(30): Ljung-Box test statisti
 for the squaredreturn series at 30 lags. The number of observations for ea
h series is 1,565.*: Signi�
ant at the 1% level.
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Table 2. Estimation Results.Basi
 WMSV Model

A−1 ν d

a11 a21 a31 a41 a51 a22 a32 a42 a52 a33 a43 a53 a44 a54 a55Estimate 0.88 0.02 0.04 0.04 0.04 0.92 0.02 0.01 0.02 0.88 0.02 0.03 0.88 0.03 0.88 69.05 0.95Post. Std. Dev. ×102 0.57 0.32 0.34 0.37 0.35 0.47 0.32 0.31 0.31 0.57 0.31 0.33 0.54 0.33 0.56 48.09 0.27

q.025 0.87 0.02 0.03 0.03 0.03 0.91 0.01 0.01 0.01 0.86 0.02 0.02 0.87 0.02 0.87 67.88 0.94

q.975 0.89 0.03 0.05 0.05 0.04 0.93 0.03 0.02 0.02 0.89 0.03 0.04 0.89 0.03 0.89 69.91 0.95MS WMSV Model
A−1

1
ν d

a11 a21 a31 a41 a51 a22 a32 a42 a52 a33 a43 a53 a44 a54 a55Estimate 0.75 0.05 0.07 0.07 0.07 0.84 0.04 0.03 0.04 0.75 0.04 0.05 0.76 0.05 0.75 80.12 0.89Post. Std. Dev. ×102 0.90 0.46 0.51 0.44 0.46 0.92 0.43 0.43 0.50 1.10 0.46 0.60 0.96 0.49 0.94 49.41 0.61

q.025 0.74 0.04 0.06 0.06 0.06 0.82 0.03 0.02 0.03 0.73 0.04 0.04 0.74 0.04 0.73 79.16 0.88

q.975 0.77 0.06 0.08 0.08 0.08 0.86 0.05 0.03 0.05 0.77 0.05 0.06 0.78 0.06 0.76 81.09 0.90

A−1

2
e1 e2

a11 a21 a31 a41 a51 a22 a32 a42 a52 a33 a43 a53 a44 a54 a55Estimate 1.21 0.11 0.20 0.19 0.19 1.30 0.11 0.11 0.10 1.17 0.10 0.19 1.24 0.14 1.27 0.08 0.40Post. Std. Dev. ×102 3.03 2.46 2.01 2.72 3.20 6.31 2.48 2.57 2.77 2.77 2.63 2.07 3.74 3.65 3.03 0.70 0.98

q.025 1.15 0.07 0.16 0.14 0.13 1.23 0.06 0.06 0.05 1.11 0.04 0.15 1.16 0.07 1.21 0.07 0.38

q.975 1.26 0.17 0.24 0.24 0.25 1.37 0.16 0.16 0.16 1.22 0.15 0.23 1.31 0.20 1.33 0.10 0.4295% a posteriori high density region: [q.025; q.975]. Basi
 WMSV model: Burn-in: 15,000; Gibbs sequen
es: 50,000; Gamma prior for ν implies E[ν] = 70, √Var[ν] = 10;Wishart prior for A−1: s
ale matrix Q0 = I5, d.o.f. γ0 = 6. MS WMSV Model: Burn-in: 20,000; Gibbs sequen
es: 50,000; Gamma prior for ν implies E[ν] = 80,

√Var[ν] = 10; Wishart prior for A−1

1

and A−1

2

: s
ale matrix Q0 = I5, d.o.f. γ0 = 6. Beta prior for e1 implies E[e1] = 0.09, √Var[e1] = 0.1. Beta prior for e2 implies

E[e2] = 0.4, √Var[e2] = 0.1.
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Table 3. Model Diagnosti
 Results: Pearson Residuals.Ljung-Box test statisti
s for residual 
ross-produ
ts, 50 lags
e∗
1
× e∗

1
e∗
1
× e∗

2
e∗
1
× e∗

3
e∗
1
× e∗

4
e∗
1
× e∗

5
e∗
2
× e∗

2
e∗
2
× e∗

3
e∗
2
× e∗

4
e∗
2
× e∗

5
e∗
3
× e∗

3
e∗
3
× e∗

4
e∗
3
× e∗

5
e∗
4
× e∗

4
e∗
4
× e∗

5
e∗
5
× e∗

5Data

2653.21∗ 1398.42∗ 2594.82∗ 2571.13∗ 2858.81∗ 1220.47∗ 1229.21∗ 1353.14∗ 1804.84∗ 2721.31∗ 2543.02∗ 2903.62∗ 2555.77∗ 3031.24∗ 3016.18∗Basi
 WMSV model

315.85∗ 86.33∗ 84.84∗ 137.37∗ 213.15∗ 262.70∗ 149.52∗ 146.56∗ 203.59∗ 71.32 140.14∗ 76.58∗ 281.41∗ 115.75∗ 308.12∗MS WMSV model
75.19 37.91 56.84 55.53 88.44∗ 44.21 64.66 58.00 48.49 61.59 70.53 63.49 41.05 59.94 82.56∗The parti
le �ltering is based on 100,000 parti
les. *: Signi�
ant at the 1% level.



Table 4. Distributional Diagnosti
s.Fran
e Germany Italy Switzerland UKBasi
 WMSV modelMean 0.01 0.02 0.03 0.02 0.02Std. Dev. 0.99 0.99 0.99 0.99 0.99Kurtosis 3.72 3.94 3.81 3.73 3.62Skewness −0.27 −0.23 −0.45 −0.27 −0.33JB-Test 53.89∗ 72.14∗ 96.20∗ 54.46∗ 54.31∗MS WMSV modelMean 0.04 0.04 0.06 0.04 0.04Std. Dev. 1.06 1.04 1.06 1.06 1.06Kurtosis 2.95 3.05 3.02 2.92 2.95Skewness −0.17 −0.15 −0.29 −0.19 −0.21JB-Test 8.11 6.29 22.25∗ 9.83∗ 12.18∗Std. Dev.: Standard Deviation. JB-Test: Jarque-Bera test. The parti
le �ltering is based on 100,000 parti
les.*: Signi�
ant at the 1% level.

29



Table 5. Simulation Results for the Fitted MS WMSV Model.Fran
e Germany Italy Switzerland UK Fran
e Germany Italy Switzerland UK
E[Σt], A1 E[Σt], A2Fran
e 0.39 0.29 0.28 0.28 0.28 84.62 63.07 71.57 71.67 81.99Germany 0.29 0.51 0.24 0.21 0.24 63.07 58.40 54.34 54.83 61.77Italy 0.28 0.24 0.31 0.23 0.24 71.57 54.34 63.69 60.11 71.30Switzerland 0.28 0.21 0.23 0.32 0.24 71.67 54.83 60.11 65.63 69.77UK 0.28 0.24 0.24 0.24 0.31 81.99 61.77 71.30 69.77 85.22

E[Corrt], A1 E[Corrt], A2Fran
e 1.00 0.64 0.82 0.80 0.82 1.00 0.89 0.98 0.96 0.97Germany 0.64 1.00 0.59 0.52 0.60 0.89 1.00 0.89 0.88 0.87Italy 0.82 0.59 1.00 0.72 0.77 0.98 0.89 1.00 0.93 0.97Switzerland 0.80 0.52 0.72 1.00 0.75 0.96 0.88 0.93 1.00 0.93UK 0.82 0.60 0.77 0.75 1.00 0.97 0.87 0.97 0.93 1.00Corr[σii,t−1, σjj,t], A1 Corr[σii,t−1, σjj,t], A2Fran
e 0.89 0.34 0.53 0.51 0.50 0.89 0.66 0.80 0.78 0.78Germany 0.34 0.89 0.28 0.23 0.27 0.66 0.89 0.65 0.62 0.63Italy 0.53 0.28 0.89 0.41 0.47 0.80 0.65 0.89 0.70 0.78Switzerland 0.51 0.22 0.41 0.89 0.43 0.77 0.62 0.70 0.89 0.71UK 0.50 0.27 0.47 0.43 0.89 0.77 0.63 0.78 0.71 0.89Simulation sample size: T = 20, 000. Corrt denotes the 
orrelation matrix implied by Σt. Corr[σii,t−1, σjj,t]: i is the row-index and j is the 
olumn-indexof the respe
tive panel. All parameters are set to their point estimates under the MS framework.
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Table 6. VaR Fore
asting Results.5% VaRModel (p, q) Hit-Rate LRu
 Model Hit-Rate LRu
DCC-GARCH (2, 1) 0.0916 0.0054 EWMA 0.0954 0.0026CCC-GARCH (1, 1) 0.0992 0.0012 WMSV 0.1527 < 0.0001BEKK-GARCH (1, 1) 0.0916 0.0054 MS WMSV 0.0878 0.0108D-BEKK-GARCH (1, 1) 0.1107 < 0.0001The table reports hit-rates and p-values for the likelihood ratio test of un
onditional 
overage of the 5% VaR level. Ifmodel orders are quoted, models up to order (3, 3) have been estimated and the presentation is limited to the bestperforming models a

ording to the hit-rate 
riterion. D-BEKK-GARCH: Diagonal BEKK-GARCH.
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Figure 1. Simulated means of 
ovarian
es and 
orrelations. Left panel: Simulated means of 
ovarian
es. Dashed line: σ11; solid line: σ12;dashdotted line: σ22. Right panel: simulated means of 
orrelation. ρ12 = σ12/
√
σ11σ22. i is the index on the respe
tive parameter sets given inSe
tion 2.1. Simulation sample size: T = 20, 000. All remaining model parameters are kept 
onstant at ve
h(A−1

1
) = (0.96, 0.02, 0.96)′,

ν4 = 80 and d4 = 0.8, respe
tively.
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Figure 2. Simulated auto
orrelation and 
ross-
orrelation fun
tions for volatilities. Left panel: Simulated auto
orrelation fun
tions for σ11.Right panel: Simulated 
ross-
orrelation fun
tions Corr[σ11,t, σ22,t−q] for q = 1, . . . , 50. Simulation sample size: T = 20, 000. Dashed line:

i = 1; dashdotted line: i = 2; dotted line: i = 3; solid line: i = 4; ◦: i = 5, where i is the index on the respe
tive parameter sets given inSe
tion 2.1. All remaining model parameters are kept 
onstant at ve
h(A−1

1
) = (0.96, 0.02, 0.96)′, ν4 = 80 and d4 = 0.8, respe
tively.
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Figure 3. Log-returns of Datastream DS market indi
es. The number of observations for ea
h series is 1565.

34



2003 2004 2005 2006 2007 2008 2009

1

2

3

4

√
σ
1
1

France

2003 2004 2005 2006 2007 2008 2009

1

2

3

4

√
σ
2
2

Germany

2003 2004 2005 2006 2007 2008 2009

−5

0

5

ξ
1

France

2003 2004 2005 2006 2007 2008 2009

−5

0

5

10

15

ξ
2

Germany

2003 2004 2005 2006 2007 2008 2009

1

2

3

√
σ
3
3

Italy

2003 2004 2005 2006 2007 2008 2009

1

2

3

√
σ
4
4

Switzerland

2003 2004 2005 2006 2007 2008 2009

−5

0

5

ξ
3

Italy

2003 2004 2005 2006 2007 2008 2009

−5

0

5
ξ
4

Switzerland

2003 2004 2005 2006 2007 2008 2009

1

2

3

√
σ
5
5

UK

2003 2004 2005 2006 2007 2008 2009

−5

0

5

ξ
5

UK

Figure 4. Smoothed volatility estimates and 
orresponding return series: Basi
 WMSV model.
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orrelation estimates: Basi
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Figure 6. Sample auto
orrelation fun
tions of squared residual series. Left panel: Basi
 WMSV model. Right panel: MS WMSV model. Solidline: WMSV model; ◦: squared return series; dashed line: 95% Bartlett 
on�den
e bands for no serial dependen
e.
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Figure 7. Residual QQ-plots. Left panel: Basi
 WMSV model. Right panel: MS WMSV model. The qq-plots refer to the residual series et ondistributional diagnosti
s.
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Figure 8. Smoothed volatility and Markov state estimates. Solid line: Basi
 WMSV model; dashed line: MSWMSV model. The gray shaded areas mark periods where the smoothed state probability ex
eeds 0.5.
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