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Abstract

In a recent paper, Mertens and Ravn (2010) study the effects of anticipated fiscal
policy shocks in a structural vector autoregressive model. The authors maintain
that (i) the lag polynomial ©@~1(L) = wi™ + wI72L + ... + wLI~2 4 L9}
is a cyclotomic polynomial and (ii) the matrix B(L) which transforms a non-
fundamental MA representation into a fundamental one is a Blaschke matrix.
Though, the results in Mertens and Ravn (2010) are correct, we find that the

terms ‘cyclotomic’ and ‘Blaschke matrix’ are misused.
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1 Introduction

In a recent paper published in The Economic Journal, Mertens and Ravn (2010)
study the effects of anticipated fiscal policy shocks in a structural vector autoregressive
model. Due to the anticipation, the moving average (MA) representation of this model
is nonfundamental, i.e. some of the roots of the MA determinant lie inside the unit

circle. The associated lag polynomial of the anticipated shock is given by
QL) = wi™ + i 2L 4 .. f w2 4 L7 (1)

where ¢ > 1 and w € (0, 1) are the length of anticipation and the anticipation rate,
respectively. Based on Lippi and Reichlin (1993, 1994), the authors use the transfor-

mation matrix
B(L) = K My(L)My(L)...M,4(L) (2)

to flip the roots of the MA determinant and transform the nonfundamental MA repre-
sentation into a fundamental one. Mertens and Ravn (2010) maintain that ©@~ (L)
is a cyclotomic polynomial and B(L) is a Blaschke matriz. However, we find that
OV (L) is neither cyclotomic nor B(L) of Blaschke-type.

2 Cyclotomic Polynomials

We begin by stating the definition of a cyclotomic polynomial as it can be found in

many textbooks.!

Definition 1 Let n be a positive integer. Then the nth cyclotomic polynomial, de-
noted as ®,(x), is defined as

e(n)
k=1
where (1, . .., Cuom) are the p(n) primitive nth roots of unity and ¢(n) denotes Euler’s

totient function.

Remark 1 A primitive nth root satisfies ¢ = 1 with ord((x) = n, where ord(-)

denotes the order of (i, i.e. the smallest positive integer n that satisfies ¢ = 1.

Remark 2 Fuler’s totient function o(n) can be written as

e(n) = > pld) (4)

din

1See e.g. Lang (2002). Readers who are interested in the historical background of cyclotomic
polynomials are referred to Sury (1999).



with (d) as Mébius function

1 ifd=1
wu(d) = (=)™ if d is squarefree and m is the number of prime divisors of d (5)

0 else

Clearly, the polynomial ©@~1 (L) does not satisfy definition 1, but it can be related
to cyclotomic polynomials in the following way: Let x = L/w, then the polynomial
equation @1 (L) = 0 is equivalent to
oot —=1

QU V()= 2/ = i 0. (6)

Obviously, the ¢ — 1 roots of (:)(qfl)(:p) = 0 are the gth roots of unity, satisfying

2?9 —1 = 0. In Euler form, these roots can be explicitly expressed as

1 21y . )
xg-q ):exp (73) (j=1,...,9—1), (7)
where i = v/—1 is the imaginary unit. The roots of ©@@~Y(L) = 0 are then implicitly
given by w; = wxg-q_l) (j=1,...,q—1).

From definition 1 and equation (6) follows that the polynomial ©@~1(x) can be
written as the product of cyclotomic polynomials. Since 27 — 1 = [] dg = O4(x), we

can write

O V()= [[ ®alx). (8)

d|q,d>2

Note that (8) reduces to O (x) = & (x) if ¢ is prime.
If ¢ is not prime, then O (z) is not cyclotomic. For example, if ¢ = 4, then
et —1

O¥(zx) =14z +a2+2t= pogr R Oy () Py () 9)

with the cyclotomic polynomials ®5(x) and ®4(z) given by

Oy(x) = ] @G- =" -D@-1)" =a+1 (10)
d|2,d>1

Oyx) = ] @Y -1 =" - 1)@ - 1) =27 +1 (11)
d|4,d>1



3 Blaschke matrices

As in Lippi and Reichlin (1993, 1994), the Blaschke matrix is defined as follows:
Definition 2 A(L) is a Blaschke matriz if it satisfies
1. A(L) has no poles of modulus smaller or equal to unity.

2. If A*(L) denotes the transpose of the complex conjugate of A(L), then A(L)™! =
A*(L7h).

In Mertens and Ravn (2010) K is a constant orthogonal matrix and M;(L) is given
by

Ml.@):(; L) =1, 1), (12)

L—@;

where w; are the roots of @Y (L) = 0 and @; denotes the complex conjugate of w;.
The matrix B(L) has the property to flip the stable roots of the MA representation.
However, it is not a Blaschke matrix. Since all roots of (L) are stable, i.e. |w;| <1,
the pole of |M;| =0 (i.e. @;) lies inside the unit circle. Hence, B(L) does not satisfy
condition 1 of definition 2 und therefore is not a Blaschke matrix.

A Blaschke matrix would be of the form

B(L) = K My(L)... M,_,(L), (13)

M;(L) = (1 LE]M> , (i=1,...,q—-1)2 (14)

However, the Blaschke matrix B(L) flips the unstable roots of the MA determinant
and therefore transforms a fundamental MA representation into a nonfundamental
one. Contrarily, the transformation matrix B(L) used by Mertens and Ravn (2010)
works in the opposite direction. It flips the stable roots of the MA determinant and

therefore transforms a nonfundamental MA representation back to a fundamental one.

4 Conclusion

The purpose of this short terminological note is to clarify the terms cyclotomic poly-
nomial and Blaschke matrix and relate it to Mertens and Ravn (2010) and to the

topic of news shocks in general.

2Note that the term IL_;“:L is a Blaschke factor which was first introduced by Blaschke (1915).
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