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Abstract

We present a detailed analysis of the patient and resource scheduling problem

in rehabilitation hospitals. In practice, the predominantly therapeutical treatments

and activities which are prescribed for the patients are typically scheduled manually.

This leads to rigid and inefficient schedules which can have negative effects on the

quality of care and the patients’ satisfaction. We outline the conceptual framework

of a decision support system for the scheduling process that is based on formal opti-

mization models. To this end, we first develop a large-scale monolithic optimization

model. Then we derive a numerically tractable hierarchical model system in order

to deal with problem instances of realistic sizes. We report numerical results with

respect to solution times, model sizes and solution quality.
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1 Introduction

Rehabilitation hospitals serve to maintain and recover patients’ health, often following

surgery or other treatments in an acute hospital. Many patients remain in rehabilitation

(rehab) hospitals for several weeks. Each day they can receive multiple treatments like

massages or physiotherapy based on a physician’s prescription and the available resources.

Very often hundreds of different treatments are offered by a particular rehab hospital, de-

pending on its individual specialization. As societies in many developed countries tend to

age on average, the demand for rehabilitation will increase. Rehab hospitals are therefore

an important part of the health care system because of their function, number, size and

cost. In Germany, for example, more than 8 billion euros were spent on the 1000+ rehab

hospitals in 2008 according to the German federal office of statistics, see Statistisches

Bundesamt Deutschland (2010).

The predominantly therapeutic processes in these hospitals are typically personnel-

intensive and very numerous. They usually have a fixed duration and are almost entirely

planned in advance. For this reason, the quality of the schedules is highly important for the

medical effectiveness and economic efficiency of a rehab hospital. The schedule for a large

rehab hospital can easily comprise more than ten thousand appointments for hundreds of

patients over several weeks using hundreds of different resources. Scheduling all of these

activities is highly complex, time-consuming and very cumbersome. In practice, at best,

database systems are used to retrieve and store schedule-related data. Even paper-and-

pencil “‘solutions” can be found, in particular in smaller institutions. In any case, the

scheduling task itself is usually performed manually, on a patient-by-patient basis and

often continuously over time. This scheduling effort is often so tremendous that several

(low-level) clerks are required to find “empty time slots” in the resources’ calender in

order to “book in” an appointment for a patient. This leads to very rigid schedules that

are difficult to change if indicated due to changes in a patient’s health status and/or

rehabilitation success. Furthermore, it is very difficult for the management to efficiently

control the rehab processes in the short term, for example by reallocating resources, using

overtime etc.

To overcome this problem, we develop in this paper formal mixed-integer linear pro-

grams (MILPs) to determine appointments for patients of rehab hospitals, subject to

numerous constraints that are often found in practice. We show how these MILPs can be

solved quickly using commercial state-of-the-art solvers. Our analysis of the scheduling

problem shows that a well-designed decision support system based on such formal opti-

mization models can be used to automatize much of the scheduling effort. As a result,

the management of a rehab hospital can explicitly consider different schedules and hence

think systematically in terms of alternatives. Furthermore, it becomes possible to address

groups of patients differently, e.g., based on their economic attractiveness for the rehab

hospital.
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The remainder of the paper is organized as follows: In section 2 we analyze the schedul-

ing problem in detail and comment on the related literature. This leads to several design

considerations for our formal decision support system that we discuss in section 3. On

this basis we first present a monolithic model that captures the (in our eyes) most crucial

aspects of the considered scheduling problem. However, this monolithic model cannot

be solved for medium-sized to large problem instances with the currently available opti-

mization technology. For this reason, we decompose the monolithic model into a three-

stage hierarchical system of optimization models to make the planning task numerically

tractable. In section 4, we compare both approaches with respect to computation times,

model sizes and the losses in solution quality due to the hierarchical decomposition. In

section 5 we discuss directions for further research.

2 Problem statement and literature overview

2.1 Characteristics of rehabilitation hospitals

2.1.1 Patient types and revenue generation

From a scheduling point of view the patients of a rehab hospital can be very heterogenous.

This can affect the way revenues for the rehab hospital are generated and the way patients

have to be treated–medically as well as organizationally. In Germany, for example, rehab

patients will typically have health insurance from either a public or a private insurance

provider or be self-pay patients. Treating self-pay patients and those with private insur-

ance typically leads to higher per-capita revenues for the rehab hospital than treating the

first and largest group with public health insurance.

The management of a rehab hospital will usually strive to attract and satisfy as many

patients from the highly profitable patient groups as possible. To this end, it can be very

attractive for the management to have the ability to grant the economically attractive pa-

tient groups reliable schedules that reflect the temporal preferences of this (usually small)

group. While the ethical aspects of this kind of prioritization are complex (and beyond

the scope of this paper), the models presented below can at least make the underlying

trade-offs transparent within a structured decision support system.

In addition to patients who permanently stay in the rehabilitation hospital for (usually)

some weeks, other patients use only the hospital’s treatment facilities, but live outside

in their homes or in hotels. For those outpatients it is very important to have reliable

schedules in order to coordinate their treatment in the hospital with their outside activi-

ties. Inpatients, on the other hand, are in principle permanently available for treatment

and can be informed about their personal schedule at short notice, e.g., a day or two in

advance.
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2.1.2 Prescriptions, treatments and activities

After the initial admission diagnosis, a physician typically prescribes a program of pre-

dominantly therapeutic treatments and activities for each patient. This specifies the type,

frequency, and, possibly, time windows for each type of treatment. This program can fol-

low a specific clinical or medical “pathway”, i.e., a standardized process plan for a given

diagnosis. However, there is room for substantial variability, both with respect to the type

and the number of the prescriptions. The type (or nature) of the prescriptions reflects the

profile and philosophy of the particular hospital. The (possibly inflated) number of the

prescribed replications of any of these prescriptions can reflect the physician’s individual

experience with the hospital’s operational performance in the past.

The majority of the activities and treatments in a rehabilitation hospital is provided

by non-physician health care professionals like physiotherapists, masseurs, nutritionists

or balneotherapists. These treatments aim at regaining mobility, physical strength and

emotional stability. Physicians provide diagnostic services and prescribe both kinds of

activities. Quite frequently these activities have to be repeated several times over the

length of the patient’s stay. The prescriptions of treatments and therefore also the schedule

may have to be modified over the course of the therapy, given the development of the

patient’s health status. Treatments which may not be scheduled on the same day to

avoid harming the patient are listed in a conflict group.

Individual treatments address a single patient and his particular needs, for example

in a physiotherapy. From the hospital’s point of view these treatments are expensive and

require a substantial and individual scheduling effort. Other activities like cardiovascular

training or aquarobics tend to be organized as group activities and are hence substantially

cheaper from the hospital’s perspective. Collective activities often have to follow stable

schedules as they affect the individual schedules of many patients and therapists.

2.1.3 Resources and processes

The resources and the processes in a rehabilitation hospital have specific features that

differ substantially from those in acute hospitals. The therapeutic treatments tend to be

personnel-intensive and very often they require active participation of the patient.

In acute hospitals, the operating room is typically the central and also a very expensive

resource. Its schedule influences many other pre- and post-operation processes, see, e.g.,

Beliën et al. (2007, 2009), Guerriero and Guido (2011). In a rehab hospital, however,

it is neither possible nor necessary to derive schedules for the entire institution from

the schedule for a single type of bottleneck resource. In addition, the processes in a

rehab hospital are plannable to a high degree as emergencies are only dealt with in acute

hospitals. Furthermore, a therapeutic treatment (e.g., a 20-minute massage) is very often

defined by its processing time so that it can be treated as deterministic for scheduling

purposes.
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It may be necessary for some treatments to ensure that only a specific resource con-

ducts a series of identical or related treatments for a given patient. Consider the case of

a particular psychotherapist who has to get to know the patient and to establish a rela-

tionship based on trust over a series of meetings. In these cases, resource-loyal scheduling

may be required. In addition, it can be important to schedule collective activities so that

groups with a stable membership of patients emerge, for example, in a psychologic group

therapy.

2.1.4 Organizational structure

Rehab hospitals are very often specialized with respect to the medical services they provide

and the patient types they serve. Physicians typically constitute a relatively small fraction

of the workforce in rehab hospitals. Unlike in acute hospitals, they are often not assigned

to a specific department, but perform a central function and hence prescribe treatments

for the entire hospital. In this organizational setting, it is possible and actually quite

common to centralize the scheduling function for the entire rehab hospital. Note that the

situation in acute hospital differs substantially.

2.2 Established planning processes in rehabilitation hospitals

Established “planning methods” in practice typically focus on the manual management

of calendars for all relevant resources such as therapists, rooms or equipment. For this

purpose, either electronic database systems, physical scheduling boards or “paper-and-

pencil solutions” are used.

Electronic database systems frequently model time in a discrete fashion using time

slots with a length of five minutes. Clerks “book in” appointments for patients based

on the prescriptions and, sometimes, patients’ wishes. This booking is performed in a

sequential one-by-one manner. In large institutions, these clerks may even work spatially

distributed. Very often, the schedule for a patient is (at least temporarily) fixed after the

prescriptions have been booked in. This leads to schedules that can be very rigid, i.e.,

hard to adapt to changing patient’s needs over the course of the therapy or changes of the

resource availability. As with the initial scheduling, any re-scheduling is done manually.

For this reason, the scheduling process itself is expensive and time-consuming. It can

easily lead to schedules that cause an inefficient use of the resources.

In addition, hospitals do not have the ability to automatically treat their different

patient or “customer” segments individually in order to optimize the profit of the rehab

hospital or the resource utilization. The hospital management might want to gain the

ability to offer schedules to the profitable private health care and self-pay patients which

reflect the patient’s individual temporal wishes. The remaining majority of the public

health care patients could then be automatically scheduled “around” the exogenously
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fixed appointments for the more profitable patients. In currently available systems, this

is achieved via manual (re-)scheduling.

Commercial scheduling systems, to the best of our knowledge, tend (at best) to offer

undocumented scheduling algorithms to support the booking process described above.

These algorithms often operate directly (and hence slowly) on the mass storage holding

the database, nowadays often using client-server architectures.

2.3 Literature overview

Decades of research on health care operations management and research of health care

systems have led to numerous publications which address diverse topics such as fa-

cility location, capacity planning, shift scheduling, inventory management, to mention

only a few. Due to the interdisciplinary nature of the topic, these publications are

distributed over different academic disciplines from medicine to mathematics. The re-

cent handbooks by Brandeau et al. (2005) and Hall (2006) provide a good overview of

the different fields. A detailed “ORchestra Bibliography” is provided by the Centre for

Healthcare Operations Improvement & Research (CHOIR) at the University of Twente

(www.utwente.nl/choir). The websites of the “Centre for Research in Healthcare Engi-

neering” at the University of Toronto (crhe.mie.utoronto.ca) as well as the site by Franklin

Dexter (www.franklindexter.net) also provide many valuable references to research papers.

There is a broad body of literature on scheduling in (acute) hospitals. Much of this

literature focuses on operating room scheduling. A recent review is given by Cardoen

et al. (2010). Given the immense importance of acute hospitals and the central role

of the operating room, this scheduling task will continue to attract a lot of research.

Other publications address the efficient usage of expensive diagnostic equipment, see,

e.g., Kolisch and Sickinger (2008) and Sickinger (2008), dealing with radiologic diagnostic

services. A second important branch of research addresses nurse scheduling. Cheang et al.

(2003) provided a bibliographic survey and Kellogg and Walczak (2007) discussed why

much of this research is never implemented and how systems used in practice are actually

developed. Scheduling physicians has also attracted a lot of research, see, for example,

Brunner et al. (2009) as well as Brunner (2010), and the references given therein.

It is interesting to note that, compared to the substantial number of publications

dealing with planning and scheduling in acute hospitals, only a few papers address the

scheduling problems in rehabilitation hospitals. In an early work, Podgorelec and Kokol

(1997) described in very general and non-technical terms a genetic algorithm for patient

scheduling to a limited number of human or technical therapeutic resources. Later Chien

et al. (2008) developed a genetic algorithm to sequence (for a given day) the patients

requiring rehabilitation treatment. They use a hybrid job scheduling model that aims

at balancing the makespan against the waiting time of patients. This research does not

address the problem of how to derive a schedule for a complete rehab hospital over a
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planning horizon of several weeks. A genetic algorithm is also used in Chien et al. (2009)

in combination with data mining to solve a physical therapy scheduling problem. Ogulata

et al. (2008) developed a three-stage decision support system based on algebraic modeling

for the physiotherapy and rehabilitation services provided by the Cukurova University

Hospital in Turkey. At the first stage, a decision is made as to whether to accept or to

refuse a patient for treatment in the department. The second stage assigns patients to

physiotherapists and the third determines the schedule by assigning the treatments for a

given day to a particular time slot.

A common feature of these (rehabilitation-oriented) papers is that they tend to focus

on a single department. The rare opposite case is studied by Vanberkel et al. (2010) who

presented “A survey of health care models that encompass multiple departments”, i.e.,

they discussed models that aim to coordinate the schedule for the entire clinic. How-

ever, they concentrated on the situation in acute hospitals that face emergencies, that

have the operating room as a central and dominating resource and that exhibit decen-

tralized scheduling functions in the different medical departments. From our analysis of

the available literature, we conclude that software vendors which develop information and

decision support systems for rehabilitation hospitals are currently offered very limited sup-

port from the operations research literature. Our organizational and operational analysis

of the planning and scheduling problems furthermore suggests that these problems should

be easier to solve than those in acute hospitals, given the much more stable information

basis in rehab hospitals. We therefore try to close this gap by developing a general and

conceptual framework for model-based decision support systems for rehab hospitals that

reflects the needs described in subsection 2.1.

3 Modeling approaches

3.1 Design considerations for a decision support system

From our discussions with managers and planners in rehab hospitals and with software

vendors we conclude that any decision support system which is actually useful in practice

must permit a substantial degree of manual scheduling, see Kellogg and Walczak (2007).

Planners in rehab hospitals tend to schedule the often periodic collective activities man-

ually with respect to time and resource allocation. In addition, they may need to be able

to exogenously fix some appointments, e.g., for self-pay patients or out patients, while

leaving it to the systems to schedule the remaining (not fixed) activities or treatments au-

tomatically. Furthermore, it may be necessary to permanently assign a particular resource

to a patient-treatment combination to ensure resource loyalty. It may also be necessary

to assign a patient to a particular group for a given collective activity in order to achieve

group loyalty.

We aim at a decision support system with the ability to automatically schedule activi-
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ties for patients and to assign the required resources, subject to a number of rehabilitation-

specific constraints. From a mathematical point of view this leads to an assignment prob-

lem. The assumed objective is to schedule as many of the prescribed activities as possible,

given the available resources and the exogenous scheduling decisions about, for example,

group activities. Note that a naive use of such a system can lead to schedules that are

unacceptable from the perspective of an individual patient or therapist. Consider, e.g.,

the case that the prescribed treatments for an individual patient are not scheduled to

a sufficient degree because of resource shortage. In addition, the workload assigned to

individual therapists may also vary substantially and hence also raise debates about fair-

ness. In order to deal with issues of this type, it is important that a decision support

system can quickly generate alternative schedules. Then it can be used iteratively until

exogenous decisions (by the planner) about resource allocations are found that lead to

satisfying endogenous decisions about the schedule. Such a decision support system will

merely help the planner to develop satisfying schedules and not take over this function.

We envision using the decision support system in a rolling fashion. Each day, the plan-

ners could solve the models to determine fixed (or “frozen”) schedules for the next few

days and tentative schedules for the remaining days of the planning horizon. Only fixed

schedules would be communicated to patients and therapists. This way planners would

preserve their flexibility to react to parameter changes due to new prescriptions, unavail-

ability of therapists etc. Note that over the planning horizon, some patients leave the

hospital while others arrive for which the precise prescriptions are not known. However,

based on their illness and/or prior treatment in an acute hospital, the planners could use

standardized clinical pathways to roughly determine the resource requirements over time

for a particular future patient and plan based on preliminary or projected prescription

that would be updated after the patient’s initial examination. In such an environment a

hierarchical planning system seems to be particularly adequate that treats the near future

at a greater level of details than the more distant future.

In this daily planning process, the planner would check both the utilization of the

resources and the number of prescribed treatments that could not be (at least tentatively)

scheduled. If the resulting plan were unacceptable, parameters would be changed and the

model(s) would be solved again to determine a plan that is acceptable from both the

patient’s and the planner’s perspective.

The system should be completely based on algebraic models, i.e., it should not use

problem-specific algorithms. The conceptual framework presented in this paper can there-

fore easily be modified to consider additional aspects of the planning problem that may

be relevant in a particular rehab hospital.
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3.2 General assumptions and notation

The major assumptions of our models can be separated into four classes: assumptions

concerning time, resources, patients, and activities/treatments.

Time

T1 Time is divided into discrete periods consisting of days d (Monday to Friday) and

intra-day slots t (e.g., 5-minute intervals).

T2 Transition times are not considered.

T3 Activities require resources for the whole duration of a treatment. The duration is

given by the number sm of consecutive intra-day time slots for treatment m.

T4 Patients need to rest after treatment m for psm time slots.

Resources

R1 Individual resources f like therapists, medical devices, and rooms are grouped into

homogeneous resource categories f̂ .

R2 A binary parameter avfdt = 1 indicates that resource f is available at time slot

(d, t), it is 0 otherwise.

R3 Treatment m requires uf̂m units of resource category f̂ simultaneously.

Patients

P1 A number of rpm replications of treatment m is prescribed for patient p.

P2 Patient p is available for treatments at days d ∈ Dp.

P3 Each patient p has an individual stress limit ap per day. A single replication of

treatment m places bm stress units on the patient on that day.

P4 At any moment in time, a patient p can attend at most one treatment.

Activities/treatments

A1 Treatment m is provided for either a single patient p or a group q of up to km

patients simultaneously.

A2 Patient p receiving a collective treatment can be exogenously assigned to a particular

group q and scheduled to time slot (d, t) to ensure group and/or resource loyalty.

A3 Group q for a collective activity/treatment is exogenously assigned to each required

resource f and (exogenously) scheduled to time slot (d, t).
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A4 An individual treatment of patient p can be exogenously assigned to each required

resource f and (exogenously) scheduled to time slot (d, t).

A5 Any treatment m is provided at most once per day for each patient p.

A6 No two treatments m belonging to the same conflict group c may be scheduled for

the same day for any patient p.

A7 Multiple replications rm of treatment m for patient p prescribed for a time window

[fipm, lapm] (in days) should be distributed (roughly) evenly over the days of this

time window.

A8 If to different treatments m1 and m2 for a patient p are assigned to the same day

d, it may be necessary that m1 precedes m2.

The following general notation is used in both the monolithic and the hierarchical model

system(s):

(Ordered) sets and indices

c ∈ C conflict groups to avoid scheduling conflicting treatments on the same day

d, δ ∈ D days (e.g., Monday to Friday)

Dp days patient p is available

f ∈ F resources (i.e., specific therapists, medical devices, rooms)

f̂ ∈ F̂ homogeneous resource categories

Ff̂ individual resources f belonging to resource category f̂

F̂m resource categories required for treatment m

lMpf treatments for patient p which require resource loyalty and are exogenously

allocated to resource f

lQpm exogenously assigned group(s) for group-loyal treatment m of patient p

m ∈M treatments/activities

Mc treatments belonging to conflict group c

Mf̂ treatments which require resource category f̂

Mp treatments prescribed for patient p

Nm1 treatments which may not be scheduled prior to treatment m1 on a given day

p ∈ P patients

Pm patients who need treatment m

q ∈ Qm groups for treatment m

t, τ ∈ T intra-day time slots (e.g., 5-minute time slots)
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Parameters

ap stress limit for patient p per day

bm stress factor of treatment m

dm1m2 minimal break (in 5-minute time slots) between treatments m1 and m2

fipm first possible day for treatment m of patient p

km maximum group size of collective activity/treatment m

lapm latest possible day for treatment m of patient p

psm duration (of the break) to recover from treatment m (in time slots)

rpm number of prescribed replications of treatment m for patient p

sm duration of treatment m (in 5-minute time slots)

uf̂m number of resource units of category f̂ needed for treatment m

3.3 Monolithic planning approach

3.3.1 Specific notation for the monolithic model

The following notation is specific to the monolithic model:

(Ordered) set

GMpdt exogenously scheduled treatments m of patient p that start at time slot (d, t)

Parameters

avfdt equals 1, if resource f is available at time slot (d, t), (0, otherwise)

wfqdt equals 1, if resource f is exogenously assigned to group q starting at time

slot (d, t), (0, otherwise)

zqdt equals 1, if group q is exogenously scheduled to start at time slot (d, t),

(0, otherwise)

Binary decision variables

vpqdt equals 1, if patient p is assigned to group q starting at time slot (d, t),

(0, otherwise)

xpmdt equals 1, if treatment m for patient p starts at time slot (d, t), (0, other-

wise)

ypmfdt equals 1, if (individual) treatment m of a patient p starting at time slot

(d, t) uses resource f , (0, otherwise)

3.3.2 Monolithic model

The objective function (1) maximizes the number of treatments scheduled for all patients

in the rehabilitation hospital, taking the possible time slots into account.
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Max ZF =
∑
p∈P

∑
m∈Mp

∑
d∈Dp

fipm≤d≤lapm

∑
t∈T

t≤|T |−sm+1

xpmdt (1)

The following group of constraints addresses the patients:

∑
m∈Mp

∑
τ∈T

t−sm−psm+1≤τ≤t

xpmdτ ≤ 1 p ∈ P, d ∈ Dp, t ∈ T (2)

∑
d∈Dp

fipm≤d≤lapm

∑
t∈T

t≤|T |−sm+1

xpmdt ≤ rpm p ∈ P,m ∈Mp (3)

∑
m∈Mp

∑
t∈T

t≤|T |−sm+1

bm · xpmdt ≤ ap p ∈ P, d ∈ Dp (4)

∑
δ∈Dp

d≤δ≤d+b
lapm−fipm+1

rpm
c−1

∑
t∈T

t≤|T |−sm+1

xpmδt ≤ 1 p ∈ P,m ∈Mp,

d ∈ Dp, fipm ≤ d ≤ lapm

(5)

∑
t∈T

t≤|T |−sm2+1

t · xpm2dt −
∑
t∈T

t≤|T |−sm1+1

t · xpm1dt

≥ sm1 + dm1m2 − |T | · (1−
∑
t∈T

t≤|T |−sm1+1

xpm1dt)

− 2 · |T | · (1−
∑
t∈T

t≤|T |−sm2+1

xpm2dt) p ∈ P, d ∈ Dp,

m1,m2 ∈Mp,m2 ∈ Nm1

(6)

∑
m∈Mp∩Mc

∑
t∈T

t≤|T |−sm+1

xpmdt ≤ 1 p ∈ P, d ∈ Dp, c ∈ C (7)

Restrictions (2) guarantee that each patient p can be scheduled for only one treatment m

at time (d, t). No more than the number of prescribed activities may be scheduled (3).

Constraints (4) ensure that the total stress due to the treatments a patient p receives

on day d does not exceed the individual stress limit ap. The prescribed replications

of treatment m have to be distributed (roughly) evenly within the given time window

[fipm, lapm] for patient p, see restrictions (5). Restrictions (6) enforce a precedence relation

between two treatments assigned to the same day. Restrictions (7) prohibit to schedule

more than one treatment m ∈ Mc of a conflict group c on any day d for any patient p.

The next group of constraints deals with the resources:
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∑
f∈Ff̂

ypmfdt = uf̂m · xpmdt p ∈ P,m ∈Mp, km = 1,

f̂ ∈ F̂m, d ∈ Dp, t ∈ T, t ≤ |T | − sm + 1

fipm ≤ d ≤ lapm

(8)

∑
p∈P

∑
m∈Mp∩Mf̂
km=1

∑
τ∈T

t−sm+1≤τ≤t

ypmfdτ

≤ avfdt −
∑
m∈M

f̂
km>1

∑
q∈Qm

∑
τ∈T

t−sm+1≤τ≤t

wfqdτ f̂ ∈ F̂ , f ∈ Ff̂ , d ∈ D, t ∈ T (9)

Constraints (8) allocate the number uf̂m of resources units of resource category f̂ which

are required for individual treatments (km = 1) to the scheduled treatment m of patient

p. Resource f can only be allocated to an individual treatment if it is available and not

exogenously allocated to a collective/group activity, see constraints (9). The next two

restrictions address collective activities (km > 1):

∑
q∈Qm

zqdt · vpqdt = xpmdt p ∈ P,m ∈Mp, km > 1, t ∈ T,
d ∈ Dp, fipm ≤ d ≤ lapm, t ≤ |T | − sm + 1

(10)

∑
p∈Pm

vpqdt ≤ km · zqdt m ∈M,km > 1, q ∈ Qm, d ∈ D,
t ∈ T, t ≤ |T | − sm + 1

(11)

Restrictions (10) assign the patients requiring collective treatment m to a group q starting

in time slot (d, t) that is dedicated to this treatment m. The group size km for treatment

m must not be exceeded by any group q, see (11). The remaining three restrictions reflect

exogenous settings with respect to patients, group loyalty and factor loyalty.

xpmdt = 1 p ∈ P, d ∈ Dp, t ∈ T,m ∈ GMpdt,

f ipm ≤ d ≤ lapm, t ≤ |T | − sm + 1

(12)

vpqdt = 1 p ∈ P, d ∈ Dp, t ∈ T,m ∈ GMpdt,

f ipm ≤ d ≤ lapm, q ∈ lQpm, t ≤ |T | − sm + 1

(13)

ypmfdt = xpmdt p ∈ P, f ∈ F,m ∈ lMpf , km = 1,

d ∈ Dp, fipm ≤ d ≤ lapm, t ∈ T, t ≤ |T | − sm + 1

(14)

Exogenously scheduled treatments of patients have to be enforced, see (12). A possible

exogenous assignment of patients to particular groups q is treated in (13). Equations (14)

assure that for individual treatments in the set lMpf that require resource loyalty, only

the preselected resources f are assigned to the combination of patient and treatment.

Variable definitions are given in section 3.3.1.
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3.4 Hierarchical planning approach

3.4.1 Overview and problem decomposition

As our numerical experiments (see section 4) indicated that it is not possible to solve

the monolithic model for medium-sized or large problem instances using current personal

computers, we decomposed the model into a hierarchical three-stage model system:

• Stage 1: The Stage 1 model assigns the prescribed treatments for the patients to

single days over the whole planning horizon (e.g., 30 days). Time is modeled at

the aggregate level of days and capacity constraints are mainly considered at the

aggregate level of resource categories f̂ .

• Stage 2: For each day d of the planning horizon we solve a first intra-day model.

We consider the treatments assigned to that day within Stage 1 and schedule them

to 5-minute time slots. Capacity constraints are mainly modeled at the aggregate

level of resource categories f̂ .

• Stage 3: Given the intra-day temporal assignments of treatments to time slots for

a given day d from Stage 2, we finally assign specific resources f to each scheduled

individual treatment. We furthermore assign patients that require group treatments

to the specific groups offering this treatment. The assignment for a particular com-

bination of patient p and treatment m can be limited to a particular group q to

ensure group loyalty.

As a result, we obtain a schedule that meets all the constraints of the monolithic model.

However, it may contain fewer scheduled treatments than the solution of the monolithic

model due to decomposition losses. Note that none of the models can ever be mathe-

matically infeasible, but in an extreme case, it might (like the monolithic model) lead to

a “solution” without any scheduled treatments. We discuss the decomposition losses in

section 4. The three-stage model system is described in detail below together with the

specific notation needed in addition to those given in section 3.2.

3.4.2 Specific notation for the hierarchical model system

The modified notation for the hierarchical model system can mainly be derived from those

for the monolithic model by omitting the index for intra-day time slots t for parameters

and decision variables of the Stage 1 model and by omitting the index d for days from

the Stage 2 and 3 models. To avoid confusion with the notation of the monolithic model,

we add superscripts in brackets to sets, parameters and decision variables that appear

similarly in both modeling approaches. The superscripts indicate the stage that uses this

notational element.
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(Ordered) sets and indices

GM
(1)
pd exogenously scheduled treatments m of patient p for day d (Stage 1)

GM
(2,3)
pt exogenously scheduled treatments m of patient p to start at time t of the

current day (Stages 2 and 3)

lF̂ ⊆ F̂ subset of resource categories f̂ that may require resource-loyal scheduling

lQf groups which require resource f

M
(2,3)
p treatments for patient p assigned (in the Stage 1 solution) to the current day

P
(2,3)
m patients with treatment m assigned (in the Stage 1 solution) to the current

day

Parameters

av
(2,3)
ft equals 1, if resource f is available at time slot t of the current day, and

0 otherwise (i.e., av
(2,3)
ft = avfdt of day d)

capF̂f̂d available capacity (in hours) of resource category f̂ at day d (assuming

5-minute time slots, i.e., capF̂f̂d =
∑

f∈Ff̂

∑
t∈T

avfdt
12

of day d)

capFfd available capacity (in hours) of resource f at day d (i.e., capFfd =∑
t∈T

avfdt
12

of day d)

nf̂m capacity requirement (in hours) of resource category f̂ for treatment m

u
(2)

f̂ t
number of units of resource category f̂ available at time t of the current

day d, (i.e., u
(2)

f̂ t
=

∑
f∈Ff̂

avfdt of day d)

w
(3)
fqt equals 1, if resource f is exogenously assigned to group q starting at time

t of the current day, and 0 otherwise (i.e., w
(3)
fqt = wfqdt of day d)

z
(1)
qd equals 1, if group q is exogenously scheduled at day d, and 0 otherwise

(i.e., z
(1)
qd =

∑
t∈T zqdt of day d)

z
(2,3)
qt equals 1, if group q is exogenously scheduled to start at time t of the

current day, and 0 otherwise (i.e., z
(2,3)
qt = zqdt of day d)

Binary decision variables

x
(1)
pmd equals 1, if treatment m of patient p is scheduled at Stage 1 for day d,

(0, otherwise)

x
(2)
pmt equals 1, if treatment m of patient p is scheduled at Stage 2 to start at

time t of the current day, (0, otherwise)

x
(3)
pmt equals 1, if treatment m of patient p is scheduled at Stage 3 to start at

time t of the current day, (0, otherwise)

v
(3)
pqt equals 1, if patient p is assigned at Stage 3 to group q starting at time t,

(0, otherwise)

y
(3)
pmft equals 1, if (individual) treatment m of patient p starting at time t of

the current day is assigned resource f at Stage 3, (0, otherwise)
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3.4.3 Stage 1: Daily model

The objective function (15) maximizes the number of the tentatively scheduled treatments:

Max ZF =
∑
p∈P

∑
m∈Mp

∑
d∈Dp

fipm≤d≤lapm

x
(1)
pmd (15)

The following group of restrictions is the aggregated equivalent of constraints (3) to (7)

from the monolithic model:

∑
d∈Dp

fipm≤d≤lapm

x
(1)
pmd ≤ rpm p ∈ P,m ∈Mp (16)

∑
m∈Mp

fipm≤d≤lapm

bm · x(1)pmd ≤ ap p ∈ P, d ∈ Dp (17)

∑
δ∈Dp

d≤δ≤d+b
lapm−fipm+1

rpm
c−1

x
(1)
pmδ ≤ 1 p ∈ P,m ∈Mp,

d ∈ Dp, fipm ≤ d ≤ lapm

(18)

∑
m∈Mp∩Mc

fipm≤d≤lapm

x
(1)
pmd ≤ 1 p ∈ P, d ∈ Dp, c ∈ C (19)

The next three constraints reflect the capacities of groups for collective treatments, re-

sources at the category level and–where required for resource-loyal scheduling–at the level

of individual resources:

∑
p∈Pm

x
(1)
pmd ≤ km ·

∑
q∈Qm

z
(1)
qd m ∈M,km > 1, d ∈ D (20)

∑
p∈P

∑
m∈Mp∩Mf̂
km=1

nf̂m · x
(1)
pmd

≤ capF̂f̂d −
∑
m∈M

f̂
km>1

∑
q∈Qm

nf̂m · z
(1)
qd f̂ ∈ F̂ , d ∈ D (21)

∑
p∈P

∑
m∈lMpf
km=1

nf̂m
uf̂m
· x(1)pmd

≤ capFfd −
∑
m∈M
km>1

∑
q∈lQf∩Qm

nf̂m
uf̂m
· z(1)qd f̂ ∈ lF̂ , f ∈ Ff̂ , d ∈ D (22)

Constraints (20) ensure that aggregate capacity limits of groups providing collective treat-

ments/activities are respected. The aggregated capacity limited of each resource category
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f̂ must not be exceeded by the scheduled individual treatments and the usage of the

resources for group treatments, see (21). In addition, an individual capacity constraint

has to be met for each resource that is required for a treatment which requires resource

loyalty, see (22). The last constraint addresses possible exogenous settings:

x
(1)
pmd = 1, p ∈ P, d ∈ Dp,m ∈ GM (1)

pd (23)

The treatments scheduled exogenously to day d (collected in GM
(1)
pd ) have to be enforced

(23).

3.4.4 Stage 2: Time-oriented intra-day model

The objective function (24) maximizes the number of tentatively scheduled treatments of

the patients for the current day, given the assignment of treatments M
(2,3)
p to that day

determined by the Stage 1 model:

Max ZF =
∑
p∈P

∑
m∈M(2,3)

p

∑
t∈T

t≤|T |−sm+1

x
(2)
pmt (24)

Note that it is possible that a treatment is assigned to a particular day in the solution of

the Stage 1 model, but cannot be scheduled in the solution of the Stage 2 model for that

day, for example, as patients can receive only one treatment at a time.

Restrictions (25) are the counterparts of restrictions (2). They ensure that any patient

attends at most one treatment at a time. Restrictions (26) guarantee that each treatment

is scheduled at most once per day. Similarly to restrictions (6), restrictions (27) take the

given order of treatments into account:

∑
m∈M(2,3)

p

∑
τ∈T

t−sm−psm+1≤τ≤t

x(2)pmτ ≤ 1, p ∈ P, t ∈ T (25)

∑
t∈T

t≤|T |−sm+1

x
(2)
pmt ≤ 1, p ∈ P,m ∈MP

(2,3)
p (26)

∑
t∈T

t≤|T |−sm2+1

t · xpm2t −
∑
t∈T

t≤|T |−sm1+1

t · xpm1t

≥ sm1 + dm1m2 − |T | · (1−
∑
t∈T

t≤|T |−sm1+1

xpm1t)

− 2 · |T | · (1−
∑
t∈T

t≤|T |−sm2+1

xpm2t) p ∈ P,m1,m2 ∈M (2,3)
p ,m2 ∈ Nm1 (27)

The capacity restrictions of the groups dedicated to treatment m have to be respected:
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∑
p∈P (2,3)

m

x
(2)
pmt ≤ km ·

∑
q∈Qm

z
(2,3)
qt m ∈M,km > 1,

t ∈ T, t ≤ |T | − sm + 1

(28)

The capacity constraints of the resource categories have to be met, see (29). If a treatment-

patient combination needs a loyal assignment to a particular resource f , the capacity

constraint for this specific resource has to be met as well, see (30):

∑
p∈P

∑
m∈M(2,3)

p ∩M
f̂

km=1

∑
τ∈T

t−sm+1≤τ≤t

uf̂m · x
(2)
pmτ

≤ u
(2)

f̂ t
−

∑
m∈M

f̂
km>1

∑
q∈Qm

∑
τ∈T

t−sm+1≤τ≤t

uf̂m · z
(2,3)
qτ f̂ ∈ F̂ , t ∈ T (29)

∑
p∈P

∑
m∈M(2,3)

p ∩lMpf
km=1

∑
τ∈T

t−sm+1≤τ≤t

x(2)pmτ

≤ av
(2,3)
ft −

∑
m∈M

f̂
km>1

∑
q∈lQf∩Qm

∑
τ∈T

t−sm+1≤τ≤t

z(2,3)qτ f̂ ∈ lF̂ , f ∈ Ff̂ , t ∈ T (30)

Exogenously scheduled treatments have to be enforced:

x
(2)
pmt = 1 p ∈ P, t ∈ T,m ∈ GM (2,3)

pt (31)

3.4.5 Stage 3: Resource-oriented intra-day model

Given the assignment of treatments to time slots for the current day from Stage 2, the

Stage 3 model maximizes in the objective function (32) the number of treatments that

are assigned to individual resources and hence are finally scheduled:

Max ZF =
∑
p∈P

∑
m∈M(2,3)

p

∑
t∈T

x
(2)
pmt=1

x
(3)
pmt (32)

Restrictions (33) guarantee that all the resources required for single treatments are pro-

vided:

∑
f∈Ff̂

y
(3)
pmft = uf̂m · x

(3)
pmt p ∈ P,m ∈M (2,3)

p , km = 1,

f̂ ∈ F̂m, t ∈ T, x(2)pmt = 1

(33)

Constraints (34) ensure that the capacity constraint of each individual resource is re-

spected:
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∑
p∈P

∑
m∈M(2,3)

p ∩M
f̂

km=1

∑
τ∈T

t−sm+1≤τ≤t
x
(2)
pmτ=1

y
(3)
pmfτ

≤ av
(2,3)
ft −

∑
m∈M

f̂
km>1

∑
q∈Qm∩lQf

∑
τ∈T

t−sm+1≤τ≤t
z
(2,3)
qτ =1

w
(2,3)
fqτ f̂ ∈ F̂ , f ∈ Ff̂ , t ∈ T (34)

Patients are assigned to groups (35) subject to the groups’ capacity constraints (36):

∑
q∈Qm

v
(3)
pqt = x

(3)
pmt p ∈ P,m ∈M (2,3)

p , km > 1, t ∈ T, x(2)pmt = 1 (35)∑
p∈P (2,3)

m

x
(2)
pmt=1

v
(3)
pqt ≤ km m ∈M,km > 1, q ∈ Qm, t ∈ T, z(2,3)qt = 1 (36)

Exogenously scheduled treatments (37), group loyalty (38) and resource loyalty (39) are

enforced:

x
(3)
pmt = 1 p ∈ P, t ∈ T,m ∈ GM (2,3)

pt , x
(2)
pmt = 1 (37)

v
(3)
pqt = 1 p ∈ P, t ∈ T,m ∈ GM (2,3)

pt , q ∈ lQpm (38)

y
(3)
pmft = x

(3)
pmt p ∈ P, f ∈ F,m ∈M (2,3)

p ∩ lMpf , km = 1, t ∈ T, x(2)pmt = 1 (39)

Note that it is possible that a treatment is assigned to a particular day in the solution

of the Stage 1 model and (tentatively) scheduled to start at a particular time slot t, but

cannot finally be scheduled in the solution of the Stage 3 model. Such a situation can

occur if the availability of several individual resources of the same category is fragmented

over the time slots t. In such a case the aggregate capacity in Stages 1 and 2 might

(wrongly) seem to be sufficient to schedule a treatment to start at a time slot t which is

only seen to be impossible as the Stage 3 model is solved.

4 Numerical experiments

4.1 Outline of the numerical experiments

We performed a number of numerical experiments with the models presented in section 3

to answer the following four questions: First, we wanted to explore the computational

effort to solve both the monolithic model and the hierarchical model system. The question

is how the computational effort is affected by the size of the problem instance as deter-

mined by the number of patients, resources, prescriptions and the time horizon. Second,
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we were interested in the loss of solution quality of the hierarchical model system com-

pared to the monolithic model that is caused by the hierarchical decomposition and the

aggregation of time and resource capacities. Of course, this comparison is only possible

for problem instances that can be solved using either model. Third, we wanted to know

how the answers to the first two questions depend on the utilization of the resources.

Fourth, we studied the impact of exogenous settings on the solution times and expected

that c.p. solution times decrease as the fraction of exogenous settings increase. For our

experiments we used a 3GHz Intel Core 2 Quad Pentium PC with 8 GB RAM, under

a 64-bit version of Windows 7. The model was implemented in GAMS 23.3.3. CPLEX

12.1.0 was used to solve the models.

4.2 Description of the test cases

The average number of beds in rehabilitation hospitals in Germany in 2008 was 138, with

an average bed utilization of 81%. The average length of stay of inpatients was 25 days,

see Statistisches Bundesamt Deutschland (2010). However, there is substantial variance

in the number of beds per hospital. Furthermore, many rehab hospitals treat a substantial

number of outpatients who only come to the hospital for treatments as specified by their

individual schedule. This increases the variance of the number of patients to be scheduled.

We used data on activities and prescriptions collected from different rehab hospitals and

made anonymous by a software provider serving those hospitals.

In our numerical study, we worked with two different test instances modeling vir-

tual rehab hospitals. Aggregate information about the features of these test instances is

provided in Table 1. A subset of the treatments, in particular those requiring psychother-

apists, were assumed to require resource loyalty with respect to the therapists. For those

treatments patients were assigned to individual therapists. The number of active prescrip-

tions is the number of events to be scheduled, i.e., the sum of the prescribed replications

over all patient-treatment combinations.

Instance I1 reflects the situation of a rather small and possibly very specialized re-

hab hospital with a limited number of patients and resources used in the rehab processes.

Scheduling the treatments in this rehab hospital is a manageable task for which the mono-

lithic model (still) can be solved. The second problem instance I2 models the situation

in a substantially larger institution with more patients, therapists etc.

In order to examine the impact of the resource utilization, we furthermore defined

in Table 2 three different utilization scenarios based on the following two quantities:

The gross utilization utilgrsres per resource category f̂ is the workload due to prescribed

individual treatments plus the workload due to exogenously scheduled group activities

divided by the total available capacity of that resource category. The net utilization utilnetres

per resource category is defined similarly, but based on finally scheduled treatments. If

all prescribed treatments can be scheduled, gross and net utilization are equal.
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Table 1: Key data of the test instances
Indicator \ Test instance I1 (Instance 1) I2 (Instance 2)
Number of days |D| 30 30
Time slots per day |T | 120 120

Number of resource categories |F̂ | 18 26
Number of resources |F | 18 92
Number of patients |P | 40 429
Number of activities |M | 25 182
Resource-loyal activities 3 46
Number of groups |Q| 17 224
Number of patient-loyal groups 1 2
Number of precedence relationships for activities 1 6
Number of active prescriptions (base case) 2,458 36,301
Resource-loyal prescriptions (base case) 40 1,349

In addition to the utilization of resources at the level of resource categories, we also

considered the gross utilization utilgrsgrp of the exogenously scheduled groups q ∈ Qm for

collective activities m,∀km > 1. The ratio of the duration of the prescribed group activi-

ties to the total capacity of the groups dedicated to the specific activities yields the gross

group utilization of the groups for activity m. The net group utilization utilnetgrp is deter-

mined by computing this ratio for actually scheduled activities of patients participating

in these groups.

Table 2: Utilization scenarios
Scenario L (Low) M (Medium, base case) H (High)
Instance I1
Active prescriptions 1,570 2,458 3,394
Gross resource utilization utilgrsres [%] [29%-73%] [45%-88%] [60%-120%]
Weighted resource utilization [%] 57% 76% 100%
Gross group utilization utilgrsgrp [%] [45%-53%] [68%-78%] [91%-111%]
Weighted group utilization [%] 50% 78% 107%
Instance I2
Active prescriptions 23,471 36,301 49,824
Gross resource utilization utilgrsres [%] [46%-82%] [70%-86%] [77%-118%]
Weighted resource utilization [%] 66% 81% 99%
Gross group utilization utilgrsgrp [%] [44%-80%] [67%-86%] [80%-119%]
Weighted group utilization [%] 52% 80% 111%

Table 2 presents the range of the gross utilizations over all resource categories and

exogenously scheduled groups in each scenario for the entire planning horizon. In the

utilization scenario H (High) we studied the case in which physicians prescribed more

treatments than the rehab hospital actually can carry out. To construct the different

utilization scenarios, we initially allocated the number of resource units in each category

necessary to reach the medium weighted utilization around 76% for the 2,458 active

prescriptions of the I1 base case and around 81% for the 36,301 active prescriptions of the

21



I2 base case. Afterwards we scaled the number of prescriptions up by a factor 110
80

and down

by a factor 50
80

and rounded to integer values to reach the “High” and “Low” utilization as

given in Table 2 for both the groups and the resource categories. In Table 2 we present

the resulting number of active prescriptions as well as the prescription-weighted average

of gross resource and group utilization for these active prescriptions for each combination

of instance and utilization scenario.

4.3 Numerical results

Tables 3 and 4 present the results of our numerical study in an aggregate form. In

Table 3 we first study Instances I1 and I2 without considering exogenously scheduled

single treatments. The upper part gives the results for the solution of the monolithic

model. The key performance measure is the number of scheduled treatments (ST). We

furthermore report the number of rows and columns of the matrix after the matrix-

reduction preprocessing step performed by CPLEX prior to the optimization, the size

(in MB) of the matrix generated by GAMS and transferred to CPLEX, the CPU time

CPLEX required to solve the model, the optimality gap when the optimization terminated,

and the average utilization of resource categories as well as of groups. The information

provided for the Stage 1 model is similar. The models for Stages 2 and 3, however, treat

individual days with different workloads as determined at Stage 1. We therefore provide

average information for the different quantities over all 30 models of the planning horizon

(30 days). In the bottom part of Table 3, we finally report data on the solution of the

hierarchical model system (HMS) for the complete planning horizon that is created by

combining the results of the Stage 3 models for the 30 different days. We worked with a

CPU time limit of one hour for the monolithic model and of 100, 400 and 100 seconds for

Stages 1, 2 and 3 of the hierarchical system. In either case we terminated the solution

when an integrality gap of 1% was reached.

The results in Table 3 show that the monolithic model can solve the small I1 instances,

but not the larger I2 instances. (The required storage for the matrices of the monolithic

model in the I2 cases exceeded the 8 GB of RAM available on our computer.) The

hierarchical system, however, can solve both instances. The Stage 1 and Stage 3 models

tend to be solved quickly while the Stage 2 model of the hierarchical system appears to be

relatively hard to solve. For the larger I2 instances we observed several cases where the

Stage 2 model was not solved to an integrality gap of 1% within the given time limit of

400 seconds. Note that our aggregation approach limits the size of the models at Stages

1 to 3 substantially–compared to the model sizes of the monolithic model.

We made a very interesting observation by comparing the number of rows and columns

of the matrix prior to and after the matrix-reduction preprocessing step performed by

CPLEX. For the monolithic model, the preprocessing step eliminated more than 90% of

both the rows and columns. For the Stage 1 model, typically 40%-50% of the rows and
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Table 3: Model statistics (No single treatments scheduled exogenously)
Instance & Scenario I1-L I1-M I1-H I2-L I2-M I2-H

Active prescriptions 1,570 2,458 3,394 23,471 36,301 49,824

Monolithic model
Rows 100,841 101,407 101,472
Columns 302,087 301,425 300,020
Size [MB] 2,026 1,933 1,878
CPU [sec.] 219 3,625 (limit) 3,624 (limit)
Gap [%] 0.0 4.6 7.6
ST 1,467 2,108 2,454
utilnetres [%] 54 64 68
utilnetgrp [%] 45 70 85

Stage 1 model
Rows 7,033 7,355 7,188 109,597 120,184 119,967
Columns 9,212 9,199 9,147 184,228 184,215 184,045
Size [MB] 15 14 13 219 196 181
CPU [sec.] 0.4 0.4 0.4 15.7 22.4 52.3
Gap [%] 0.1 0.2 0.4 0.0 0.1 0.3
ST 1,496 2,346 2,936 23,130 35,629 44,299

Stage 2 models
Avr. Rows 499 746 999 10,885 17,895 22,936
Avr. Columns 1,461 2,390 3,026 33,136 51,095 63,842
Avr. Size [MB] 15 19 20 187 233 259
Avr. CPU [sec.] 0.1 0.2 0.3 98.8 205.5 402.0
Avr. Gap [%] 0.0 0.0 0.0 0.9 1.8 3.7
Avr. ST 45 69 83 747 1,137 1,375

Stage 3 models
Avr. Rows all elim. all elim. all elim. 1,514 2,539 2,886
Avr. Columns all elim. all elim. all elim. 2,318 3,672 4,391
Avr. Size [MB] 10 11 11 115 122 121
Avr. CPU [sec.] 0.0 0.0 0.0 0.2 0.1 0.2
Avr. Gap [%] 0.0 0.0 0.0 0.0 0.0 0.0
Avr. ST 45 69 83 704 1,069 1,294

Final solution HMS
ST 1,335 2,077 2,502 21,112 32,056 38,805
utilnetres [%] 49 65 72 56 66 70
utilnetgrp [%] 44 69 85 50 77 94
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Table 4: Model statistics (30% patients with exogenously scheduled single treatments)
Instance & Scenario I1-L I1-M I1-H I2-L I2-M I2-H

Active prescriptions 1,570 2,458 3,394 23,471 36,301 49,824

Monolithic model
Rows 65,815 60,246 50,340
Columns 184,393 168,353 134,193
Size [MB] 2,026 1,933 1,878
CPU [sec.] 119.3 3,625 (limit) 951.4
Gap [%] 0.1 1.4 0.5
ST 1,465 2,163 2,550
utilnetres [%] 54 66 70
utilnetgrp [%] 45 71 87

Stage 1 model
Rows 6,125 6,594 6,562 96,449 105,772 107,029
Columns 8,177 8,270 8,284 165,070 165,077 167,021
Size [MB] 15 14 13 220 196 182
CPU [sec.] 0.4 0.4 0.4 9.0 16.2 33.6
Gap [%] 0.0 0.2 0.6 0.0 0.0 0.2
ST 1,497 2,347 2,930 23,126 35,643 44,302

Stage 2 models
Avr. Rows 255 344 371 7,888 12,697 15,669
Avr. Columns 656 914 909 24,227 35,972 43,168
Avr. Size [MB] 15 18 21 188 235 261
Avr. CPU [sec.] 0.1 0.1 0.1 60.0 151.8 386.5
Avr. Gap [%] 0.0 0.0 0.0 0.7 0.7 1.7
Avr. ST 44 68 82 748 1,144 1,391

Stage 3 models
Avr. Rows all elim. all elim. all elim. 1,524 2,547 2,911
Avr. Columns all elim. all elim. all elim. 2,243 3,580 4,286
Avr. Size [MB] 10 11 11 115 123 123
Avr. CPU [sec.] 0.0 0.0 0.0 0.1 0.2 0.2
Avr. Gap [%] 0.0 0.0 0.0 0.0 0.0 0.0
Avr. ST 44 68 82 706 1,079 1,314

Final solution HMS
ST 1,321 2,049 2,459 21,175 32,356 39,428
utilnetres [%] 49 64 71 56 67 72
utilnetgrp [%] 43 68 82 50 77 95
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5%-20% of the columns were eliminated. In case of the Stage 2 model, in most cases

50% to 90% of both the rows and columns were eliminated. At Stage 3 the preprocessor

eliminated all rows and columns for Instance I1. The reason is that in this instance there

was always just one resource per resource type so that there was eventually nothing left

to decide with respect to the concrete resource used for any scheduled treatment. In case

of the Instance I2, around 70% of the rows and of the columns were eliminated.

The computation times of the hierarchical model system are substantially lower than

those of the monolithic model. In many real-world settings, the computation times of

the monolithic model would be prohibitively long. As expected, the monolithic model

provides in principle better solutions, i.e., more scheduled treatments. The loss of 5% to

10% of the treatments that are not scheduled due to the hierarchical decomposition can

be noticeable. Note that in the Stage 1 model more treatments are scheduled than in the

solution of the monolithic model as well as the final solution of the hierarchical model

system because of the aggregate time and resource constraints used in the Stage 1 model.

If the resource utilization increases, the computation times of the monolithic model

and the Stage 2 model tend to increase as well. It is also interesting that the resource

utilization in the I1-H and I2-H cases is substantially below 100%, despite of the up-scaling

of the active prescriptions. Here the time and stress constraints of the patients apparently

permitted to schedule many of the additional treatments (compared to the base case).

We finally asked how the performance of both systems is affected if a substantial num-

ber of treatments is exogenously scheduled with respect to time and resource assignment.

In order to answer this question we took the results from the first run that led to the

results in Table 3 and randomly selected 30% of the patients. For these 30% of the pa-

tients, we exogenously fixed the schedule from the first run of the system and started

the optimization again. This way we could easily ensure that all the exogenous settings

were capacity-feasible and reduce the solution space as 30% of the solution was already

given. The results are reported in Table 4. They show that in all cases a very similar

number of total treatments was scheduled when the CPU time limit or the integrality

gap limit was reached. On average the computational effort decreased (as expected) by

exogenously scheduling a large fraction of the treatments. However, we also observed

some cases in which the computation times increased slightly. Apparently the search tree

of the branch&bound process to solve the models can exhibit a disadvantageous structure

leading to longer computation times if some of the decision variables are fixed beforehand.

It hence appears that it is possible to automatically schedule treatments in a rehab

hospital using our hierarchical model system. It might be a valuable contribution for the

development of software and for the management of rehab hospitals.
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5 Conclusions and outlook

In this paper we presented the central elements of a model-based decision support system

for patient and resource scheduling in rehabilitation hospitals. The scheduling problems

in rehabilitation hospitals appear to have features that make the use of a formal system

both possible and worthwhile. The size of the scheduling instances appears to demand a

hierarchical scheduling approach as developed in this paper. Our hierarchical approach

has the attractive feature that the near future within the planning horizon can be treated

in detail solving the Stage 2 and 3 models, while the more distant future can be treated

at an aggregate level only in the Stage 1 model. Furthermore, the Stage 2 and 3 models

can be solved in isolation for different days. This gives the possibility, for example, to

re-schedule the plan for the next day (in isolation) if a patient or a therapist becomes ill

and his appointments therefore have to be canceled or re-assigned.

The numerical results show that the approach works well in principle for virtual rehab

hospitals of a substantial size. It would certainly be both necessary and possible for a real-

world application to add constraints which reflect specific requirements of the particular

rehab hospital. Our scheduling approach–as based entirely on algebraic models and the

use of commercial solvers–appears to be most flexible and hence well-suited to adapt to

these needs.

Using such a system would substantially change the processes in–and the management

of–a rehab hospital. The system would be a useful tool in the discussions between physi-

cians and schedulers about treatments to prescribe and resources to allocate in order to

serve the patients well and to operate efficiently at the same time. Schedulers would focus

less on scheduling individual treatments and more on decisions about the resource usage

on the global level, e.g., by deciding about overtime, creation of additional groups etc.

We plan to address these questions in our further work.
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