A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Grossmann, Volker; Steger, Thomas M.; Trimborn, Timo

Working Paper

Dynamically optimal R&D subsidization

Diskussionsbeitrag, No. 453

Provided in Cooperation with:

School of Economics and Management, University of Hannover

Suggested Citation: Grossmann, Volker; Steger, Thomas M.; Trimborn, Timo (2010) : Dynamically
optimal R&D subsidization, Diskussionsbeitrag, No. 453, Leibniz Universitdt Hannover,

Wirtschaftswissenschaftliche Fakultat, Hannover

This Version is available at:
https://hdl.handle.net/10419/66022

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/66022
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Dynamically Optimal R&D Subsidization

Volker Grossmann,*Thomas M. Steger,'and Timo Trimborn?

August 4, 2010

Abstract

Previous research on optimal R&D subsidies has focussed on the long run.
This paper characterizes the optimal time path of R&D subsidization in a semi-
endogenous growth model, by exploiting a recently developed numerical method.
Starting from the steady state under current R&D subsidization in the US, the
R&D subsidy should significantly jump upwards and then slightly decrease over
time. There is a negligible loss in welfare, however, from immediately setting
the R&D subsidy to its optimal long run level, compared to the case where the
dynamically optimal policy is implemented.
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1 Introduction

A large body of empirical evidence suggests that the social return to R&D exceeds
the private return by a wide margin (e.g., Scherer, 1982; Grilichis and Lichtenberg,
1984).! By focussing on the long run, a similar finding is typically derived from cal-
ibrated endogenous growth models. In fact, positive externalities from R&D seem to
substantially outweigh negative externalities (e.g., Romer, 2000; Jones and Williams,
2000; Steger, 2005; Grossmann, Steger and Trimborn, 2010). For instance, Jones and
Williams (2000) argue on basis of a semi-endogenous growth model in the spirit of Jones
(1995), that the optimal long run R&D effort may be about twice the decentralized
R&D effort.

One widely discussed policy implication from the apparent R&D underinvestment
problem is to provide R&D subsidies to innovating industries. According to empirical
evidence, such tax incentives indeed seem to be successful in stimulating R&D invest-
ments (e.g., Bloom, Griffith and van Reenen, 2002). The question is thus not so much
whether or not R&D subsidies should be provided to innovating industries. One rather
needs to know to what extent R&D should be subsidized and how R&D subsidization
should change over time as the economy develops.

The existing literature has examined optimal R&D subsidization by either focussing
on static models or exclusively on the steady state in dynamic models. However, as it
is well known, in R&D-based models of economic growth the speed of convergence is
typically low.? Thus, any attempt to provide a careful policy recommendation requires
to investigate the entire time path of the first-best R&D subsidy along the transition
to the steady state. This is true even for advanced economies, which may have come
close to their decentralized steady state. The reason is that current R&D subsidy
rates may be far away from their long run social optimum. In this case, implementing

the optimal long run policy would induce transitional dynamics with potentially long

ISee also Jones and Williams (1998) for a discussion of the empirical literature in the light of
endogenous growth theory.

2See, for instance, Steger (2003) who examines the speed of convergence in the endogenous growth
model of Segerstrom (1998). Grossmann, Steger and Trimborn (2010) find a similar pattern for an
extended Jones (1995) model.



lasting adjustment to the new steady state. Hence, it is a priori not clear whether
looking at the long run optimal R&D subsidization is indeed meaningful when it comes
to providing careful policy recommendations.

This paper attempts to characterize the dynamically optimal, i.e. first-best, R&D
subsidy on the basis of a calibrated R&D-based growth model with accumulation of
both knowledge and physical capital. We show how the optimal time path of the R&D
subsidy and important allocation variables depend on the initial conditions of the econ-
omy. For instance, we take the steady state under the status quo R&D subsidization of
a calibrated US economy as anchor (i.e., we assume that the US is in long-run equilib-
rium) to investigate the dynamics induced by a shift towards the dynamically optimal
R&D subsidization.

We also calculate the welfare loss, in terms of permanent consumption-equivalent
changes, which results from implementing the long run optimal (time-invariant) policy
rather than the dynamically optimal one (i.e. the time-varying, first-best policy). This
exercise may be of high relevance for real-life policy. Policy makers may be constrained
to set policy instruments at time-invariant levels for the sake of simplicity. We would
like to have an idea about the magnitude of the loss from such a political constraint.
Moreover, policy makers do not know at which point along the transition path the
economy is located.

We deliberately choose to analyze the optimal dynamic R&D tax in a standard
growth model, i.e., a standard version of the semi-endogenous growth model by Jones
(1995). The reason is that, for a first analysis of a dynamically optimal R&D policy,
we consider it an advantage to be able to analytically derive the steady state (decen-
tralized equilibrium and social planner solution) and to draw on a deep understanding
of its properties (e.g., Jones, 2005). Nevertheless, to examine the evolution of the
variables of interest along the transition to the steady state requires the solution of
highly dimensional, non-linear differential equation systems. We are able to do so by
applying a novel numerical procedure which was suggested recently by Koch, Steger

and Trimborn (2008).



Our results indicate that the optimal R&D subsidy is time-dependent and adjusts
monotonically towards the steady state. Whether it should decrease or increase over
time depends on the gap in the knowledge stock and the capital stock to their optimal
steady state levels. For instance, if the knowledge stock is far away from the optimal
steady state relative to the capital stock, the optimal R&D subsidy should initially
start above its long run level and decrease over time when the economy approaches the
steady state. For the US, our analysis suggests that the R&D subsidy should jump up
significantly from its current level and then slightly decrease over time. The striking
result from our analysis is that the welfare loss from immediately setting the R&D
subsidy to its optimal long run level (i.e. the constrained optimum) is negligible com-
pared to the case where the dynamically optimal policy path is implemented. In other
words, the error of neglecting the transitional dynamics when designing the optimal
R&D subsidy is very small, despite the fact that the speed of convergence to the steady
state is fairly low.3

Dynamic optimal tax problems have been extensively studied in neoclassical growth
models with fixed government expenditure (e.g., Judd, 1985; Chamley, 1986). For
instance, it is well known that the optimal Ramsey-tax on capital income is highly
time-variant in a closed-economy neoclassical growth framework with endogenous labor
supply. Early in the transition, capital should be taxed at high rates due to the lump-
sum tax character of taxing the existing capital stock. However, in an infinite horizon
context the optimal capital tax becomes zero when the economy approaches the steady
state (i.e., required tax revenue is exclusively financed by labor income taxation).!
In an endogenous growth model there is no analogy with respect to R&D subsidies.’
Rather than studying a second-best Ramsey-tax problem, we seek for dynamically

optimal Pigouvian subsidies which eliminate inefficient investment incentives under

30ur analysis suggests that after a policy reform in the US which implements the optimal R&D
subsidization it takes more than 200 years to close half of the gap of per capita consumption to the
new steady state.

4The result is potentially modified in overlapping-generation models (e.g., Conesa, Kitao and
Krueger, 2009).

>Moreover, the transitional dynamics are more complex when, in addition to physical capital
accumulation, R&D-based innovations are a second engine of growth.



laisser-faire R&D incentives are distorted, for instance, by intertemporal knowledge
spillovers. Inefficiency of capital accumulation arises from market power of capital
good producers. We show that the first-best allocation can be restored with two linear
policy instruments in our framework.

Our paper is most closely related to studies which numerically derive the long
run optimal R&D subsidy in an endogenous growth framework. For instance, Sener
(2008) studies an endogenous growth model without scale effects where the steady
state growth rate depends on the R&D subsidy. Calibration exercises indicate that the
optimal steady state R&D subsidy should range between 5 and 25 percent. However,
the analysis abstracts from transitional dynamics. Grossmann, Steger and Trimborn
(2010) extend the semi-endogenous growth framework of Jones and Williams (2000) to
capture distortions from the tax-transfer system. Their results suggest that in the long
run firms should be allowed to deduct at least twice the R&D costs from sales revenue
to calculate corporate income. This policy recommendation still holds when the whole
transition path is taken into account, provided that the subsidy rates are constrained to
be time-invariant. In this paper, we relax the latter restriction and analyze the socially
optimal transitional dynamics. To the best of our knowledge, the optimal time path
of the R&D subsidy and the welfare loss arising from neglecting the dynamic nature
of the optimal R&D subsidy has not previously been analyzed.

The paper is organized as follows. Section 2 presents the endogenous growth model
with linear subsidies on capital costs and R&D costs, derives the dynamic system
in decentralized equilibrium and analytically characterizes the dynamically optimal
capital and R&D subsidization. Section 3 presents and discusses the calibration of the
model. Based on the calibration strategy, section 4 numerically analyzes the socially
optimal evolution of important allocation variables and the R&D subsidy when varying
initial conditions. Most importantly, it also compares the optimal dynamics with the
one resulting from implementing the time-invariant, optimal long run R&D subsidy

from the start. The last section concludes.



2 The Model

Consider the following continuous-time model with semi-endogenous economic growth,
based on Jones (1995). There is a homogenous final output good with price normalized

to unity. Final output is produced under perfect competition according to
A
N (R 0
0

0 < o < 1, where LY is labor input in the manufacturing sector, A is the mass
(“number”) of intermediate goods and z; denotes the quantity of intermediate good i.
(Time index ¢ is omitted whenever this does not lead to confusion.) The number of
varieties, A, expands through horizontal innovations, protected with patent rights of
infinite length. As usual, A is interpreted as the economy’s stock of knowledge. Ay > 0
is given. The labor market is perfect.

In each sector ¢ there is one firm — the innovator or the buyer of a blueprint for
an intermediate good — which can produce good x; with a one-to-one technology: one
unit of foregone consumption (capital) can be transformed into one unit of output.
Capital depreciates at rate § > 0. Capital supply in the initial period, K, is given.
The capital market is perfect.

Moreover, in each sector i there is a competitive fringe which can produce a per-
fect substitute for good i (without violating patent rights) but is less productive in
manufacturing the good: one unit of output requires x units of capital; 1 < x < 1/a.°

There is free entry into the R&D sector. Ideas for new intermediate goods are

generated according to
A=pA?LA, with o= v (L), (2)

where L4 is the labor input in the R&D sector, v > 0, ¢ < 1,0 < § < 1. 7 is

taken as given in the decision of the representative R&D firm; that is, similar to Jones

6See Aghion and Howitt (2005), among others, for similar way of capturing a competitive fringe.



and Williams (2000), R&D firms perceive a constant returns to scale R&D technology,
although the social return to higher R&D input is decreasing when ¢ > 0. The wedge
between the private and social return may arise because firms do not take into account
that rivals may work on the same idea such that there is redundant R&D in market
equilibrium. 6 measures the strength of such “duplication externality”. If ¢ # 0, there
is a second R&D externality; ¢ > 0 captures a standard “standing on shoulders” effect,
whereas the case ¢ < 0 reflects by contrast that R&D productivity declines with the
number of preceding innovations (possibly because the most obvious innovations are
detected first; see Jones, 1995, for a discussion).”

There is an infinitely-living, representative dynasty with initial per capita wealth,

ao > 0. Household size, N, grows with constant exponential rate, n > 0. Ny is given

and normalized to unity. Preferences are represented by the standard utility function

1—0

[ele) 1—
°—1
U= / ()77 =1 oty (3)
0

o > 0, where ¢ is consumption per capita. Households take factor prices as given.
The government may subsidize both R&D costs (R&D sector) and capital costs
(intermediate goods sector), financed by lump-sum taxes (7") on households. The
subsidy rates are independent of total costs at one point in time, but possibly time-
variant. They are denoted by s, (R&D) and sg (capital), respectively.
Let w and r denote the wage rate and the interest rate, respectively. Financial

wealth per individual, a, accumulates according to

a=(r—n)a+w—c—T, (4)

with a¢ being given.

It turns out that, for the transversality conditions to hold and the value of the

"In his seminal contribution on endogenous technical change, Romer (1990) assumes ¢ = 1. This
assumption has been modified by Jones (1995) as ¢ = 1 implies that the economy’s growth rate
depends on the aggregate human capital level (“strong scale effect”), a prediction which seems to be
largely inconsistent with the data. We therefore follow Jones (1995).



utility stream, U, to be finite, we have to restrict the parameter space such that

(1-0)n

p—n+(oc—1)g >0 with g = -

(A1)
As will become apparent, g is the economy’s long run growth rate in decentralized equi-

librium as well as in social planning optimum. We maintain assumption Al throughout.

2.1 Market Equilibrium

We first derive the decentralized equilibrium and show how the steady state allocation
of labor and the steady state savings rate (equal to the investment rate) depends on
policy parameters.

We start with intermediate goods producers. Note that r + 0 is the user cost per
unit of capital for an intermediate good firm. As one unit of capital is required for one
unit of output, if the government subsidizes capital costs at rate s, producer ¢ has

profits
mi = [pi — (1 = sk)(r +6)] @, (5)

where p; is the price of good i. According to (1), the inverse demand function for
intermediate good i reads p; = a(LY /x;)1 7.

Profit maximization implies that the optimal price of each firm i is given by
pi=p=k(l—sg)(r—+9). (6)

To see this, note that a firm which owns a blueprint would choose a mark-up factor
which is equal to 1/a > k if it were not facing a competitive fringe. Moreover, the
competitive fringe would make losses at a price lower than k(1 — sk )(r+3). Thus, each
firm ¢ sets the maximal price allowing it to remain monopolist. We can substitute (6)

into the inverse demand function and solve for z; to obtain output

1

S (m —si><r+6)) o "




Substituting (7) into (1) gives

(8]

R =) ®

Moreover, as the total amount of physical capital is K = fOA x;di = Az, the capital-

output ratio is given by
K @

Y K(1—sg)(r+9) ©)

Thus, if the interest rate r is stationary in the long run, the total capital stock and
aggregate income grow at the same rate along a balanced growth path.

Let us denote the present discounted value of the profit stream generated by an
innovation by P4 (being equal to the price an intermediate good producer pays to the
R&D sector for a new blueprint and to the stock market evaluation of a firm). In
equilibrium, there are no arbitrage possibilities in the capital market. Noting that all
intermediate goods producers have the same profit due to the symmetry in their sector,
i.e., m; = 7 for all 7, this implies the standard capital market equilibrium condition

P47

ﬁ—f—ﬁ:ﬂ (10)

Let us define 7 = 1 — s4. In the R&D sector, under R&D subsidy rate s, a

representative firm maximizes
I = PApA°LA — rwLA, (11)
H,._/
—A

taking A, 7 and prices as given. That is, in equilibrium, IT = 0.

The household’s problem is to solve

l-0 1 t
maX/(Ct>—6(pn)tdt s.t. (4), lim ateffo (remmis > 0, (12)
{Ct} 1 — 0 t—o0

0

The household chooses the optimal consumption path, where savings are supplied to



the financial market.
Definition. A market equilibrium in this economy consists of time paths for the
quantities { LA, LY, ¢, {xi Yy, ar, Yz, Ky, Ay}, and prices { PA, {pis 1y, wy, 7 152, such

that

1. final goods producers, intermediate goods producers and R&D firms maximize

profits,

2. households maximize intertemporal welfare,
A

3. the capital resource constraint / ridi = Ky holds,
0

4. the capital market equilibrium condition, equ. (10), holds,

5. the labor market, the intermediate goods market, and the financial market clear.®

We define per capita measures [* = L4/N, ¥ = LY/N, k= K/N,y = Y/N and
p? = PA/N. Clearing of the financial market requires aN = K + PAA. Moreover, in
labor market equilibrium, /4 4+ ¥ = 1. Along a balanced growth path, all variables
grow at a constant (possibly zero) rate. We descale those variables which turn out to
grow with rate g = % in steady state and define A = A/N%, k= k/N% and

=c¢/N =3 Proposition 1 (below) presents the full dynamical system which governs

™\

the evolution of the market equilibrium and its steady state.

Proposition 1. (Dynamic system for market equilibrium)

(i) Given the time path of T, the evolution of A pr ke, r, 1A =1-1is governed

8 According to Walras’ law, the final goods market then clears as well.



by the following dynamic system (together with appropriate boundary conditions)

Ly o
‘A _ (1 1A
il (?u —l)sf>/<i)+ 5)](131;)’ "
et e
pATTI (N = 7(1-a) (ﬁ)a (18)

(i1) In the long run, there exists a unique balanced growth equilibrium, where

r = og+p=rv, (19)
1

4 = =M (20)

7(1/a—1)(cg+p—n )

(/(17)1(/5)911 ) 41

1
5 (AN T
i- (v = i, (21)
9

K — 1) (/)T (1 — 14 .

A = DmTa-ry -

[(r* 4+ 0)(1 = sg)]7== (r* — )

1

= A= (mu ) ¥ 5))
¢ = (B)AN Q=1 — (0 +n+g)k* =& (24)

TN

k*, (23)

In the long run, k, y, ¢ and A grow at rate g = %. The savings and investment

C

rate, sav =1 — o s given by

a(n +9+ 5) N
= = ) 2
T A —sx)ogtpro) W (25)

10



Proof. See Appendix. =

Like in Jones (1995), the growth rate of per capita income along a balanced growth
path is independent of economic policy (in contrast to the level of income). Proposition
1 also implies that life-time utility (3) is finite if and only if assumption (A1) holds.

Moreover, Proposition 1 shows that subsidizing physical capital does not affect the
allocation of labor in long run equilibrium, but an increase in sx raises the long run
savings and investment rate, sav*. Similarly, an increase in the R&D subsidy rate s4

ZA*

(i.e., a decline in 7) stimulates R&D activity of firms (i.e., increases); it does not,

however, affect the long run equilibrium rate of investment in physical capital, sav*.

2.2 Social Planning Optimum

A social planner chooses a symmetric capital allocation across intermediate firms, i.e.,

xr; = K/A for all i. Using this in production function (1) yields per capita output

(y =Y/N):
y = k*(AIY)e, (26)

Thus, using the goods market clearing condition K =Y — N¢ — 6K, the capital stock
per capita (k = K/N) evolves according to

k= k(AN — (6 +n)k —c. (27)

Also note that the social planner takes R&D externalities into account such that the

relevant knowledge accumulation technology is
A=vA®(NI*)0, (28)
The social planner’s problem thus is to solve

max U s.t. (27), (28), 14 =1 -1, (29)

11



and non-negativity constraints, where ¢, [, [¥ are control variables and k, A are state
variables.

Comparing the social planning optimum to the decentralized equilibrium, we may
ask if the two policy instruments, a subsidy to R&D and capital costs, can restore the
first best optimum, in view of the following market failures. First, due to monopolis-
tic competition as compared to marginal cost pricing, intermediate goods supply and
therefore the demand for capital is inefficiently low. Thus, savings (and thus capital
investment) may be too low, calling for a capital cost subsidy. Moreover, there are
three sources of inefficient R&D incentives. The duplication externality (# > 0) pro-
motes overinvestment in R&D, whereas a standing on shoulders effect (¢ > 0) promotes
underinvestment. (In the case where ¢ < 0, there is a force towards overinvestment.)
Finally, innovators can only appropriate part of the economic surplus from raising the
K _ KY

knowledge stock of the economy. To see this, first note that z; = » = 5 = §7.

Substituting this into (5) and using (6) and (9) implies that instantaneous profit of an

intermediate goods firm reads m = «(1 — 1)%. Moreover, according to (8), we have
% = %. Since (1 — %) < 1, the per-period profit = for an innovator is lower than

the contribution of an additional blueprint to output, %. In other words, there is a

“surplus appropriability problem” which promotes underinvestment.

The next proposition shows that appropriately setting 7 = 1 — s4 and sk in the
market economy can indeed implement the first best optimum. Moreover, it turns out
that the optimal R&D subsidy is time-variant rather than being equal to the time-
invariant long run optimum, whereas the optimal capital subsidy does not change over

time. We will closely examine the implications of this insight below.

Proposition 2. (Social optimum) The first-best optimal evolution of the economy

can be implemented by setting a time-invariant capital cost subsidy
1 opt
sk =1——=s¢ (30)
K
together with a time-variant R€D subsidy sa = 1 — 7, where the optimal T evolves

12



according to

[ R ) e e

with terminal condition (long-run optimal R&D subsidy)

o 1-1/k (c—=1)g+p—06n
C1/a—1(1—0)(cg+p—n)

= rort, (32)

Proof. See Appendix. =

A higher mark up factor x drives a bigger wedge between the equilibrium invest-
ment rate and the socially optimal investment rate, calling for a higher subsidy on
capital costs. At the same time, if x rises, the surplus appropriability problem, which
promotes sub-optimally low investment in R&D, becomes less severe, such that the
optimal long run R&D subsidy, 1 — 797", decreases. This suggests that stronger patent
protection should be accompanied by lower R&D subsidies. As long run growth is
policy-independent and the dynamically optimal Pigouvian subsidies implement the
first best allocation, Proposition 2 implies that the long-run growth rate in social op-
timum coincides with the one arising in decentralized equilibrium.

The important questions we examine below is whether the optimal R&D subsidy
should increase or decrease over time, given that the capital cost subsidy is set op-
timally. Moreover, as previous studies of optimal R&D subsidies have exclusively fo-
cussed on the long run, it is interesting to compare the evolution of important variables
under the first-best (i.e. time-varying) R&D subsidy and the optimal steady state (i.e.
the time-invariant) R&D subsidy. As both requires numerical analysis, we need to

calibrate the model first.

3 Calibration

We calibrate the model for the US economy. The strategy is to match steady state

values of important variables. First, g is set to the average US GDP per capita growth

13



rate for the period 1990-2004. Taking data from the Penn World Tables (PWT) 6.2
(Heston, Summers and Baten, 2006), we find that approximately g = 0.02.° Moreover,
for the same period and again from PWT 6.2, the average population growth rate is
approximately n = 0.01.

We use measures for the investment rate and the capital-output ratio to calibrate

the depreciation rate of physical capital as follows. The investment share is given by
sav = (K +0xK))Y = (K/K +0)K/Y. Using K/K = n+ g and solving for § yields

J= % —n—g. (33)
Averaging over the period 1990-2004, sav is equal to about 21 percent, according to
PWT 6.2. For the capital-output ratio, K/Y, we take averages over the period 2002-
2007 calculated from data of the US Bureau of Economic Analysis. The capital stock is
measured by total fixed assets (private and public structures, equipment and software).
When measuring K and Y in current prices, this gives us K/Y = 3. From (33), the
evidence thus suggests 0 = 0.04, a standard value in the literature.

Moreover, the steady state interest rate is set to seven percent, which coincides
with the real long-run stock market return estimated by Mehra and Prescott (1985)."
According to (19), for g = 0.02, r = 0.07, and a typical value for the time preference
rate of p = 0.02, one gets 0 = 2.5.

We also assume that the capital cost subsidy rate, sg, is at the optimal level, for two
reasons: First, this allows us to focus on the consequences of deviating from the optimal
path of the R&D subsidy rate. Second, one may argue that sy actually is at the optimal
level (sift) at present in the US. In line with estimates for the average mark up factor in
the economy (e.g. Norrbin, 1993), setting x = 4/3 implies s%?' = 1 —1/k = 0.25. Now,
given a rate of depreciation allowances for capital investments, s;, and a corporate

Tesd

income tax rate, 7., the behaviorally relevant capital cost subsidy is sx = 7<% (e.g.,

Grossmann, Steger and Trimborn, 2010). According to Devereux, Griffith and Klemm

9 Averaging over some years takes out business cycle phenomena.
10 Jones and Williams (2000) argue that this rate of return is more appropriate for calibration of
growth models than the risk-free rate of government bonds.

14



(2002), in the US, we approximately have s; = 0.75. For large corporations, the federal
US statutory corporate income tax rate is 35 percent (and about 39 percent including
sub-governments).!! For small corporations, it is 15 (with sub-governments, about 20)
percent. We may thus base our calibration on 7, = 0.25, which together with s; = 0.75
indeed implies sx = 0.25.

Next, using (9), we find that x(1 — sg) = 1, r = 0.07, § = 0.04 and K/Y = 3
implies o = 0.33, which is a typical value of the output elasticity of capital used in the
growth literature.!?

Parameter v is irrelevant for the steady state allocation of labor in both market
equilibrium and social optimum. Moreover, for a given growth rate of per capita
income (g) and population size (n), we can use the relationship between the standing

on shoulders parameter (¢) and the duplication externality parameter () which is

(1-0)n
¢

- Hence, from g = 0.02 and n = 0.01 we get

implied by g =
»=10.5(14+0). (34)

This leaves us with one degree of freedom. We focus our discussion on the case
where § = 0.5 (medium degree of duplication externality), which implies that ¢ = 0.75.
According to (32), this implies an optimal long run R&D subsidy rate, s%* =1 — 7%,
of 81.5 percent.'®> In a model with corporate income taxation, assuming a corporate
tax rate 7. = 0.25, this would mean that innovating firms should be allowed to deduct
1+ (1_:& = 3.4 times their R&D costs from sales revenue to compute the corporate

income tax base (Grossmann, Steger and Trimborn, 2010). Our main results and

conclusions are unchanged when we use other values for @, as long as 6 is not too high

See the OECD tax database.

12We consider it to be an advantage of our calibration strategy that we do not have to assume
a value for «, but infer it from observables. Although « is one minus the labor share of income in
neoclassical models, we cannot use this standard argument in our context where labor is not only used
in final goods production. Moreover, as discussed by Krueger (1999), measurement of the labor share
is difficult and inevitably depends on strong assumptions.

13This may seem high at the first glance. However, it is in line with previous calibration exercises.
For instance, Grossmann, Steger and Trimborn (2010) show that a R&D subsidy of that kind of
magnitude is required to solve the R&D underinvestment problem which is identified in the seminal
paper by Jones and Williams (2000).
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(obviously, for # — 1 no R&D should be conducted). For instance, for § = 0.25 we find
that 3.6 times R&D costs and for § = 0.75 about three times the R&D costs should
be deductible. The current US R&D subsidy rate is given by s4 = 0.066 (OECD,
2009),' which means that in the US only 1.2 times the R&D costs are deductible.
With s4 = 0.066, we find that the share of labor devoted to R&D, [4*, is about 4.2
percent for our calibration, according to (20). This corresponds to a steady state R&D

intensity, wi/Y, of 2.9 percent.

4 Quantitative Analysis

In this section, we make use of Proposition 1 and 2 to examine, based on the calibra-
tion described above, the optimal time path of the R&D subsidy rate (s4) and main
allocation variables and compare the results to the case where the optimal steady state
R&D policy 7 = 79! is implemented from the start. We also discuss policy implications

from our analysis for the US economy.

4.1 The Role of Initial Conditions

Panel (a) of Fig. 1 shows how the optimal level of 7 = 1 — s4 evolves over time when
the adjusted capital stock per capita (k) and/or the adjusted stock of knowledge (A)
start below their optimal long run levels. For instance, suppose the initial knowledge
stock is at 50 percent of its optimal long run level (flo — 0.54*, where the long run
level A* is evaluated at 7 = 7°P) and the capital stock is initially optimal (l%o = k*,
where k* is evaluated at 7 = 7%), which is Scenario (i) in Fig. 1. Then 7 should start

below the long run optimum, 7%, and increase over time. That is, the R&D subsidy

rate, s4, should be high initially in view of the high initial gap in the knowledge stock

MOECD (2009) reports a R&D subsidy rate RDT'S = 1 — Bindex, where the so-called B-index is

given by Bindex = 11:75 , with 7. being the statutory corporate income tax rate and = the net present

discounted value of deﬁreciation allowances, tax credits and special allowances on R&D assets. We
have 2 = 7.(1 4 sgr), where sg is the subsidy rate at which R&D costs which can be deducted from

pre-tax profits. Thus, RDT'S = 722&. Grossmann et al. (2010) show that RDTS is equal to the

behaviorally relevant R&D subsidy rante, SA-
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(“knowledge gap”) and decrease over time when A comes closer to the steady state.'®

Quantitatively, however, the variation in the dynamically optimal s4 over time is small.
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Figure 1: Transitional dynamics (solid lines: first-best solution, dashed lines: constrained
optimal policy). Scenario (i): Ag = 0.54* and ko = k*; Scenario (ii): Ay = A* and
/20 = 0.5/;*; Scenario (iii): 1210 — 0.54* and /::0 = 0.5k*. The time path for ¢ is normalized

such that the final steady state equals unity.

A qualitatively similar evolution is induced for the fraction of R&D labor, I4, as
displayed by the solid line in panel (b) for Scenario (i). In this scenario the social
planner reallocates labor in favor of R&D to close the initial knowledge gap, as seen
in panel (b). This implies a drop in final output production and, holding the saving
rate constant, would also imply a low level of consumption. To achieve a comparably

smooth consumption path, however, the social planner reduces the savings rate, sav,

15 A gap expresses the proportional difference between the initial value of the state variable under
consideration and its socially optimal steady state value.
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in parallel to high R&D investment. Subsequently, sav rises quite quickly over time.
Panel (c) shows the evolution of per capita consumption, ¢, relative to its optimal
long run level. One recognizes that consumption decreases initially and then starts to
increase.

In panels (b)-(d) of Fig. 1, we also compare the time paths of the allocation vari-
ables (I and sav) and consumption under optimal R&D subsidization (solid lines)
with the ones under the steady state R&D subsidy (dashed lines). A time-invariant
R&D subsidy rate which is set at its long run level may be referred to as “constrained
optimal policy”.'® The constraint captures the potential difficulty to write tax laws
which specify how policy rates change over time as well as the difficulty to know at
which point along the transition path the economy is located. We see rather small
differences in the respective time paths. It should also be observed that the differ-
ence between the first-best solution (solid line) and the solution under the constrained
optimal steady state policy (dashed line) appears small.!” This raises the question
about the welfare gain which results from implementing the first-best rather than the
constrained optimal steady state policy. This welfare gain is expressed in terms of the
permanent percentage gain in consumption (see the appendix for details). It turns
out that this consumption equivalent welfare gain is negligible. For Scenario (i), the
permanent increase in consumption is merely about 1.1 per mall. This result is in
line with our finding that, although an unconstrained social planner would like to re-
duce the R&D subsidy rate as the knowledge gap narrows, quantitatively the initial
dynamically optimal R&D subsidy rate is close to the optimal long run value, sf’ft.
Intuitively, the result is an implication of the standard consumption-smoothing motive
which prevents the social planner to close the knowledge gap too fast at the cost of

lower consumption early on.

16There is an alternative notion of a constrained optimum, where the welfare gain from a policy
reform is maximized (taking into account the transition phase and assuming the economy is initially
in steady state under the status quo policy). As shown in Grossmann, Steger and Trimborn (2010),
a R&D policy which is optimal in this sense is very close to the optimal long run policy.

1"Moreover, a detailed inspection shows that a dynamically optimal R&D policy implies to give
up slightly more consumption in the beginning than under the constrained optimal policy. As the
knowledge gap is closed faster, the consumption level in the first-best optimum overtakes the one
under the constrained optimal R&D subsidy at a later stage of development.
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Fig. 1 also contains the scenarios where only the capital stock is at 50 percent
of its optimal long-run level (Scenario (ii)) and the scenario where both the capital
and the knowledge stock are at 50 percent of their long run levels (Scenario (iii)).
In Scenario (ii), the dynamically optimal R&D subsidy rate and the fraction of labor
devoted to R&D both increase over time, whereas the savings rate decreases over time.
Hence, these variables qualitatively follow the opposite paths than in Scenario (i). As
a result, the consumption level relative to the long run optimal value is monotonically
increasing over time. In Scenario (i), neither the allocation variables (I and sav)
nor the first-best R&D subsidy change much over time and are close to their steady
state values right from the start. This is unsurprising given the contrary evolution of
these variables over time in Scenario (i) and (ii). In Scenario (iii) the gaps in both
stock variables (knowledge and capital) have to be closed simultaneously. Fig. 1 thus
suggests that when the gap (i.e. the proportional difference between the initial value of
the state variable and its socially optimal steady state) in knowledge is large relative
to the gap in the capital stock, then in the beginning one should, relative to the steady
state optimum, save little and invest much in R&D via a high R&D subsidy, whereas
the opposite holds when the initial conditions constitute a relatively large gap in the
capital stock.

Interestingly, the welfare gain from choosing the dynamically optimal R&D subsidy
instead of the constrained optimal steady state policy is again very small in Scenario
(i1) and (iii). The potential gain in the per capita consumption level is 0.3 and 0.1

per mill, respectively, and thus even smaller than in Scenario (i) where there was a

knowledge gap only.

4.2 The US Economy

We now consider the optimal R&D policy in the US. Obviously, as shown in section 3,
the long run optimal subsidy rate s?ft = 0.815 (for # = 0.5) exceeds the current one,
s4 = 0.066, dramatically. Consequently, we find that the current knowledge stock and

capital stock are merely at 5.4 percent and 6.3 percent of the long run optimal levels,
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respectively.

Starting from these initial conditions, a policy reform which implements the dynam-
ically optimal R&D subsidy is characterized as follows, shown in Fig. 2 (solid lines).
The R&D subsidy rate, s4 = 1 — 7, should initially jump upwards significantly (to
about 83.6 percent) and then slightly decrease over time to s%* (panel (a)). Again, the
optimal change in s, over time is small, despite the fact that we start far away from
the long run optimum. Also the fraction of labor devoted to R&D (initially at about
4.2 percent under current R&D subsidization in the US), I, should jump upwards dra-
matically and then decrease considerably over time towards 18.2 percent (panel (b)).
Thus, in steady state, the US should devote about four times as much labor to R&D
than at present. The importance of knowledge accumulation for the growth process
in the model is so high, that the initial savings rate should be slightly negative in the
beginning under the optimal resource allocation (panel (d)). Overall, a steep increase
in per capita consumption is induced (panel (c)). Notably, there is a long transition
towards the new steady state with a half life of more than 200 years.

With respect to the welfare gain when the dynamically optimal policy rather than
the constrained steady state optimal R&D subsidy is implemented, the insights of
the previous subsection are confirmed also for the US. Despite the dramatic R&D
underinvestment in the US, which is suggested by the model, the welfare difference
is equivalent to a permanent change in per capita consumption of merely 0.4 per
mall. Notice that the time paths for per capita consumption and the savings rate are
strikingly similar in the first-best and the constrained-optimum case. This observation
is in line with the negligible welfare gain reported above. The fraction of R&D labor

under the first-best policy should be somewhat higher than in the constrained optimum,

especially in the beginning, but the difference in the two paths is rather small.
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Figure 2: Transitional dynamics for the US economy (solid lines: first-best solution, dashed
lines: constrained optimal policy). The time path for c is normalized such that the final
steady state equals unity. In panel (b) and (d) the circles indicate the initial steady state

values under the status quo policies in the US.

5 Conclusion

We characterized the time path of first-best (i.e. time-varying) R&D subsidization
in a semi-endogenous growth model and compared the allocative impact to the one
arising from implementing the optimal steady state (i.e. time-invariant) policy from
the start. We find that the differences in the time paths of per capita consumption and
the allocation variables which result from the comparison between the first-best and
the constrained optimal steady state policy are rather small. Our results suggest that

the optimal R&D subsidization should change little over time, even when the economy
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starts far away from its socially optimal steady state. As a result, the welfare loss from
a possible political constraint to use time-invariant policies is negligible. This insight
is striking, and at a first glance surprising, given the slow speed of convergence to the
steady state in R&D-based endogenous growth models. The economic reasoning for
this observation lies in the standard consumption-smoothing motive which prevents
the social planner to sacrifice a high level of consumption in the early transition phase.

Our analysis also suggests that the US economy is currently far away from its so-
cially optimal steady state. Starting from the steady state under current R&D subsi-
dization, the R&D subsidy should significantly jump upwards and then slightly decrease
over time. Again, the welfare loss from implementing the long run optimal policy from
the start compared to the dynamically optimal one is almost zero.

Our results may have important implications for further research on optimal policy
design. In line with previous research which employs semi-endogenous growth models,
we identify a huge R&D underinvestment gap. This suggests to dramatically raise
R&D subsidies. Such an analysis is of major importance in view of the huge potential
welfare gains from a reform of growth policy. Future research should investigate optimal
growth policy in alternative models of endogenous technical change in order to obtain
a robust picture on the optimal policy programme. Moreover, although our paper
suggests that policy makers may focus on policy rates which are optimal in the long

run, it is necessary to substantiate also this conclusion in alternative frameworks.

Appendix

Proof of Proposition 1: The current-value Hamiltonian which corresponds to the

household optimization problem (12) is given by

He ST N —natw—c—T], (35)

l1—0

where ) is the co-state-variable associated with constraint (4). Necessary optimality

conditions are IHYdc = 0, A = (p—n)\—OHy/da, and the corresponding transversality
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condition. Thus,

A ¢
)\ = - ._ e — = —O0 —
7, de, 5 o, (36)
A
X =p—-T, (37)
lim e~ Mg, = 0. (38)

Combining (36) with (37), we obtain the standard Euler equation

c_r-e (39)

Using N/N = n together with definitions ¢ = ¢/N 16 and g= (11__(2” confirms (16). In
a similar fashion, (13) can be derived from (2).
Moreover, it can be shown (available upon request) that the capital stock per capita

(k = K/N) evolves according to
k=y—(0+n)k—c (40)

Using z; = K/A for all i in production function (1) gives us for per capita output
(y = Y/N) the expression
y =k (AIM), (41)

where [¥ = LY /N has been used. Combining (40) and (41) as well as using [ = 1—14,

N/N =n, k = k/N% and g = % confirms (15). From (9), we find in addition

that
Q Yy

r= mg—d (42)

Substituting (41) into (42) and using that A/k = A/k then confirms (17).
Next, substitute (6) and (7) into (5) to obtain the following expression for the profit

of each intermediate goods producer i:

1

m=r= (= 1) (2) 7 0= s+ b0 L (13
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Now recall definition p# = P4/N as well as LY /N = 1 — [* to rewrite (10) such as to
confirm (14).
Since final goods producers take the wage rate as given, we have w = (1 —«a)Y/LY.

Thus,

w=(1—a)A™ (%)a : (44)

according to (41) and the fact that Y/LY = y/I¥. Moreover, due to free entry in the
R&D sector, in equilibrium, IT = 0 holds, i.e., p v A?N1=?(1*)~% = 7w, according to
(11). Inserting (44) implies

k )a B pAVAqSNl—@(lA)—@
- .

(1—a)Al™™ <l7

Using the definitions of k& and A (thus, A?"'N'=% = A?~1), we then obtain

7\ Ay, Jo—1(]A)-0
(1-@(%) _ AT )T (46)

T

Substituting ¥ = 1 — 4 into (46) confirms (18). This concludes the proof of part (i).
To prove part (ii), first, set &=0 (implying that ¢ grows at rate g in steady state)
in (16) to confirm (19). Next, set p* = 0 in (14) to find

A (=1 (a/r)TF (117 -
LTl s o

Moreover, substituting (8) into w = (1 — «)Y/LY implies

BNIRS

“o-0 (i) )

It will become apparent, that in steady state knowledge stock A grows with rate g.
From condition IT = 0, i.e., p*A = 7w, we find that A/A = g implies pig = 47w /A.
Substituting both (47) and (48) into this expression and using (19) leads to (20).
According to (13), fl = 0 implies (21). (22) immediately follows from (47). (23)
follows from rearranging (17). To confirm (24), set l;: =0 in (15).
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The savings rate (and investment share) is given by
sav = (K + 6K)/Y = (K/K + §)K/Y. (49)

As l% = 0, we have K/K = n + g in steady state. Substituting this and (9) into (49)
and using (19) confirms (25).

Finally, using A\/A\ = —og from (36) and the fact that ¢/c = g, we find that if
a grows with rate ¢ in the long run, the transversality condition (38) holds under

assumption (Al). Rewriting (4) to

' T
S+t oS (50)
a

a a a

reveals that a/a = ¢ indeed holds in steady state, if both the lump-sum tax per
household (7') and wage rate w grow at rate g (recall that ¢ grows at rate g and r
is time-invariant in steady state). That w grows at the same rate as A (namely at
rate ¢g) in steady state can be seen from (48), since r is time-invariant in the long run.
Moreover, we have

T = sg(r + 0)k + s ,wl?, (51)
which also confirms that, in steady state, T/ T = g. This concludes the proof. B

Proof of Proposition 2: The current-value Hamiltonian which corresponds to

the social planning problem (29) is given by

i =A

N

N

—1 -~ % o ~ -
H= e AR AY) 0 = (6 )k — o) A AN )T (52)

=4

=Y

where )\, and A4 are co-state variables associated with constraints (27) and (28), re-
spectively. Necessary optimality conditions are OHy/dc = OH)/dI¥ = 0 (control vari-
ables), A, = (p—n)\, — IHYdz for z € {k, A} (state variables), and the corresponding
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transversality conditions. Thus,

Ne=c7 de, = —ag, (53)
o (KN Aa 6 AT1—0(7AY—0
1-a)A (=) =221 - 0)wAN 914, (54)
Y M\ N - _
=A/14
A AN\
Mo (A 5 55
W Ak AN |
22 =25 = =~ a_ plo
M —pon-Fa-a(f) e - (56)
—_—
=y/A
Jim Ao P =0, 2 € {k, A} (57)

(A, denotes the co-state variable associated with state variable z at time t.)
To find the optimal capital cost subsidy, first note that from (36) and (53) that we

must have A = \; in social optimum; thus, according to (37) and (55),

v\ 11—«
r+6=a«a (A%) . (58)

Comparing (58) with (17), by using [¥ = 1 — [* and the definitions of ¢, k, A, we find
that k(1 — sx) = 1 must hold in social optimum at all times, which is equivalent to
(30).

Next, note from (45) and (54) that a R&D subsidy which implements the social

optimum must fulfill

pt = (1- Q)TA—A, ie., (59)
Ak

Lo
p Aa Ak
- E‘(E‘E)' (00

SRRL
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Moreover, substituting optimality conditions 1 — sk = 1/ and (59) into (14), we find

T (1= 1/m)al = 1) A

Y = : 1
T T A R (1= 60) A (6
Rewriting (54) to
1—0) (Al /k)" A
)\A (1 — Oé)lA A
and substituting into (61) leads to
‘A _ _ Ay
p—:T—n—(l 1/k)(1 — 1 >é (63)
pA 7(1/a—1)I4 A

Moreover, combining (55) and (56) by subtracting both sides of the equations from
each other and substituting (62), we have
YA A

>_ —5—n—(1—9)l—AZ— Z (64)

M A AlY
VDV

“ Tk
Substituting (63) and (64) into (60) and making use of (58) and ¥ = 1 — [ then leads

e e

T1/a—1

to

D

From (28) and the definition of A we find
A ~ A 1-0
1= vAPTH (1) (66)

Substituting (66) into (65) confirms (31).
It remains to confirm terminal condition (32), i.e., the optimal long run R&D policy.
We seek for a steady state where A, k and ¢ all grow at rate g and I¥ = [4 = 7 = 0.

Setting 7 = 0 in (31) implies that, in long run social optimum,

(1— —%i/;l_/?) (%—1)+¢:0. (67)

To infer (32) from (67) we need to find the steady state value for the fraction of R&D
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labor, I4. From (53), Ax/A\x = —og; combining with (55) implies

A\
« (T) —d=o0g+p. (68)

From (62) and A/A = g, together with the property that Al /k are 4 are constant
in the long run, we find )\k/)\k = }\A/AA. Using /\k/)\k = }\A/AA, A/A = g, (68) and
IY =1 —14in (64) we can solve for /. Doing so and using (1 — ¢)g = (1 — 0) n from

the definition of g in (A1) implies

1
4 = : (69)
(o0—1)g+p—6n
Gomg T 1

Substituting (69) into (67) and using (1 — ¢)g = (1 — 0) n confirms (32).

From (53) and ¢/c = g, we have A,/\, = —og. Using that \y/A\y = Aa/ds =
—og for t — oo and k/k = AJ/A = g, transversality condition (57) is fulfilled under
assumption (A1) for both state variables, k and A.

So far we have shown that the policy mix in Proposition 2 is necessary for a first-
best optimum. To show that it is also sufficient, we need to prove that under this
policy mix, the market equilibrium is the same as the social planning optimum.

From (27) we obtain
B A\ 5 é 70)
o\ k T

which coincides with (15) by using [¥ = 1 — 4 and the definitions of ¢, &, A. Similarly,
(66) coincides with (13) and combining (53) with (55) leads to (16) when using (58).
Finally, combining (59) with (62) and using (66) leads to (18). This concludes the
proof. H

Measuring Welfare Differences: To quantify the welfare difference between
implementing the dynamically optimal policy mix and the optimal steady state policy

mix, we express it as the percentage change of a hypothetical steady state per capita
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consumption stream when implementing the dynamic optimal policy rather than the
steady state optimal policy. Formally, recall that in the long run adjusted per capita
consumption, ¢ = ¢/N %, is stationary and per capita consumption ¢ grows with rate

= %. Thus, in the long run, ¢ = ¢*e%. Moreover, denote the steady state value
of ¢ when using the (suboptimal) steady state optimal policy by é%,,, the change in
life-time utility when switching to the dynamically optimal policy by AU, and the

associated hypothetical increase in adjusted steady per capita consumption by Ac.

Then we have:

00 ([~ ~ 1-o 00 (k l-o
AU = / (Cop +ADe") " =1 oty / ) " =1 ooy ()
0 0

l1—0 l1—0
which we can solve to find

Ac _ @@L+ AU(o — 1)(g(1 — o) +n—p))T= B

~ ~x )

Csub Csub

(72)

which is the measure we use to quantify welfare differences.
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Supplementary Material (not intended for publication)

Here we show that the goods market clearing condition (40) holds in equilibrium.

e Given the linear-homogenous production function (1) and due to perfect compe-

tition we know that profits are zero in the final goods sector. Thus,
A
Y = / pizidi +wLY . (73)
0

Using (5), i.e., m; = pjx; — (1 —sk)(r+9)z; together with K = fOA ridiand m; = T

for all ¢ (firms are symmetric) we obtain
A
/ piridi = TA+ (1 —sg)(r+0)K (74)
0

and thus
A=Y — (1 —sg)(r +0)K —wL”. (75)
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Under a balanced government budget, the aggregate lump-sum tax faced by

households is

NT = sg(r + 6K + sqwL™. (76)

According to (11) and IT = 0, we have (recall 7 =1 — s4):

PAA = (1 —sy)wL”. (77)

Total assets of households are given by Na = K + PAA. Differentiating with

respect to time yields:
Na+ Na=K + PAA+ PAA. (78)
Using N = nN we can write
Na= K + PAA+ P*A —nNa. (79)
Combining (79) with asset accumulation equation (4) we find
K+ P*A+ P*A=rNa+wN — Nc— NT.
Using Na = K + P*A and 7 = rP4 — P4 from (10) we obtain
K =rK +wN — Nc+ NT + 1A — PAA.
Substituting (75), (76), (77) and using N = LY + L implies
K=Y — Nc—§K.

Using the definition of per capita measures k and y confirms (40). Q.E.D.
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