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Abstract

This paper analyzes and quantifies the idea of model risk in the environment of internal model

building. We define various types of model risk including estimation risk, model risk in distri-

bution and model risk in functional form. By the quantification of these concepts we analyze

the impact of the modeling process of an econometric model onthe resulting company model.

Utilizing real insurance data we specify, estimate and simulate various linear and nonlinear time

series models for the inflation rate and examine its impact onpension liabilities under the aspect

of model risk. Under consideration of different risk measures it is shown that model risk can dif-

fer profoundly due to the specification process of the econometric model resulting in remarkable

monetary differences concerning capital reserves. We furthermore propose a specification strategy

for univariate time series models and demonstrate that thereby market risk and capital reserves can

be reduced distinctively.
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1 Introduction

From a financial institution’s point of view the importance of dealing with model risk has risen substantially
since the implementation of new regulatory laws such as Basel II or Solvency II. Since then the option of
implementing internal models instead of the hitherto obligatory application of standard methods as e.g. being
documented in QIS 4b for the calculation of the solvency capital requirement has been driven forth. Internal
models are particulary suitable for covering the risen demands of stakeholders concerning the quality of risk
management as the incorporation of sophisticated and flexible mathematical methods can be fulfilled. Another
advantage of internal models apart from the improved risk measurement marks the refinement of the risk
culture. This might be exemplified by the procedure of ratingagencies demanding the existence of an internal
model in order for the company to be ratedstrongconcerning its risk management. Internal models can be
defined as large (high amount of explanatory variables), nonlinear (embedded options), stochastic (modeling
future states of nature) systems. In the context of the holistic approach of Basel II and Solvency II an estimation
of the balance sheet’s forecast distribution is carried outby consulting company models (management rules,
provision for premium refunds etc.) as well as stochastic models.

Nevertheless the implementation of internal models implies one thus far not satisfactorily handled issue:
the topic of model risk. Without consideration of the latterthe capital reserves are determined by the standard
approach of risk management. That is portfolio risk is subsumed as the aggregate of the marginal distributions
of the risk factors market risk, credit risk and operationalrisk applying a suitable aggregation method (for a
discussion of this topic cf. Rosenberg and Schuermann [2006]) and reporting a risk measure thereof. With
the possible utilization of internal models in order to model market risk the risk measure of the latter depends
substantially on the concrete specification of the internalmodel. Thus there does exist a strong relationship
between model risk and the resulting market risk which should be accounted for when it comes to the deter-
mination of capital reserves. In this context we understandmodel risk as every risk induced by the choice,
specification and estimation of a statistical model.2

In order for model risk to be considered as a separate risk factor an operational quantification of the former
should be provided. Although some authors like Crouhy et al.[1998] or Cont [2006] made several proposals
for an abstract coverage of the topic there does not exist an unambiguous method for the quantification of model
risk thus far. In the literature there are basically two approaches dealing with the question of measuring model
risk: the bayesian model averaging approach (cf. e.g. Brocket al. [2003]) and the worst-case approach (cf.
e.g. Kerkhof et al. [2010]). Although from a practical pointof view there is no such thing as obligatory capital
charges for induced model risk the Basel Committee (cf. BCBS[1996]) suggests a so-called multiplication
factor of three with regard to market risk in order to accountfor model risk. Stahl [1997] showed that the
multiplication factor may be interpreted as the relation ofthe risk measure of the underlying under different
(parametric or non-parametric) distributions. This interpretation corresponds closely to the worst-case approach
of measuring model risk. Hence in this paper we follow the idea of Kerkhof et al. [2010] fragmenting model
risk into estimation risk, misspecification risk and identification risk and analyze its impact on capital reserves.
Our approach features the following new aspects concerningthe topic of model risk and capital reserves.

By using real insurance data we do not only analyze the model risk of the underlying but also take the
company model into account what, to our knowledge, has not been done before. By describing the structure of
an internal model Fig.1 illustrates this point. Whilst the existing literature does not differentiate between (6) and
(9), i.e. the statistical model equals the company model resulting in the assumption that the underlying marks
a concrete balance sheet position we take the whole structure of the internal model into account. Concretely
we utilize a specific company model, the model for pension liabilities of a large German insurance company,
and demonstrate its interaction with the econometric modelfor the underlying under the aspect of model risk.
By taking a broad range of time series models into account which differ in their functional forms we are able
to refine the definition of model risk further by discriminating between misspecification risk in functional form
and misspecification risk in distribution and are thus enabled to quantify its contribution to overall model risk.

2Note that human failure is captured under operational risk.
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Figure 1: illustrates the structure of an internal model. Itis important to emphasize the control circuit on which

the process of risk management (consisting of 8-12) is basedon. The statistical modeling process (1-7) is

preconnected. (5) functions as the feedback of the system.

The paper proceeds as follows. After a formal definition of the various types of model risk the description
of the pension model is carried out in section 3. Afterwards we characterize the different econometric models
for the underlying in section 4 while developing a classification of univariate time series models and specify,
estimate and forecast a broad range of these. The results of the impact of the model choice on the pension
liabilities are given in section 5. Following an empirical model specification strategy is carried out and its
importance is demonstrated. In section 7 we extend the economic scenario generator specifying an interest rate
model and examine the behavior of model risk in connection with the forecast horizon. Section 8 concludes.

2 Measuring Model Risk

Let X be a random variable forming the stochastic process{Xt}∞
−∞ with time indext being defined on the

probability triple(Ω,F ,P) consisting of event space,σ-algebra and a probability measure. Assume further-
more thatX is distributed according to some density functionf j (X), shortX ∼ f j (X), where{ f j(X)} with
j ∈ J = (1, . . . ,J) denotes a set of feasible density functions. With the sampleanalogue ofX being defined by
x≡ {xt}T

t=1 with T < ∞, x is now assumed to be generated by a so-called data generatingprocess (DGP).
The DGP connects the theoretical distribution ofX with its empirical counterpart by introducing thek-

dimensional parameter spaceΘ ⊆ R
k which determines the character of the empirical distribution function.

The population parameterθ ∈ Θ marks the point inΘ that generated the data leading to the definition of the
DGP being given asDX (x|θ). In a parametrical environmentθ may then be estimated via consideration of
f j (X). If there is no assumption aboutf j (X) nonparametric methods might be applied.
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Let furtherπ j(p) be defined as a risk measure according to the confidence levelp. Famous examples ofπ
are the value-at risk (VaR) being defined asVaRj(p) = inf{x ∈ R|P(X ≤ x) ≥ p} and the expected shortfall
(ES) being proposed by Artzner et al. [1999]:ESj(p) =EP(x∈R|x≥ inf{x∈R|P(X ≤ x)≥ p}). π j(p) might
then be defined as the market risk ofX at levelp under the assumption ofX ∼ f j (X).

Note however that in practical workθ and f j (X) and thusDX are unknown. While the former is typically
estimated consultingx, f j (X) andDX are rather specified via assumptions. Consequently the riskmeasure
marks an estimate, too, resulting in an operational definition of market risk.

Definition 1 (Market Risk). Let X be a random variable with X∼ f j (X), DX (x|θ) and sample analogue x. Then

the market risk of X concerning the confidence level p is givenby π̂(1)
j (p) = inf{x∈R|∫ x

−∞ f j(x|θ̂)dx≥ p} for

the VaR and bŷπ(2)
j (p) = EP(x∈R|x≥ inf{x∈R|∫ x

−∞ f j(x|θ̂)dx≥ p}) for the ES.3

Taking the consideration of estimation uncertainty into account leads to the definition of estimation risk
as a component of model risk. Since the risk measure marks a point estimate of a quantile of its probability
distribution a confidence interval[π̂ j ±η j(α)] for the estimate at level 1−α can be defined. Via the functional

delta method eta can be derived asη j(α) = z1−α/2σ̂ j , whereσ̂ j =
√

p(1− p)/T · f j(π̂(p))2. The quotient of
the upper bound of the confidence interval and the point estimate yields a definition for estimation risk.

Definition 2 (Estimation Risk). Let Π j(p,α) = π̂ j(p) +η j(α) be the upper bound of the1−α confidence

interval of the risk measure’s point estimate. Estimation risk is then given by ERj = Π j(p,α) · π̂ j(p)−1.

Consider now the case where the assumed distribution ofX does not correspond to its true distribution, i.e.
DX (x|θ) is misspecified. Indexing the assumed distribution byj = 1 and the true distribution byj = 2 yields a
formulation of misspecification risk. Iff2(X) is taken to be some estimate of the empirical density function a
measure of total model risk corresponding to the Basel multiplication factor can be formulated.

Definition 3 (Total Model Risk). Let Π2(p,α) be the upper bound of the1−α confidence interval of the risk

measure’s point estimate under the empirical density function while π̂1(p) denotes the market risk measure

under an assumed density function f1. Total model risk in correspondence to f1 can then be derived as MR=

Π2(p,α) · π̂1(p)−1.

We may now look at the DGP in more detail. In order for the DGP tobe made operable in empirical work
DX (x|θ) is mapped to the generic econometric equationxt = h(zt |θ)+ εt wherezt = (xt−1, . . . ,x0,yt , . . . ,y0) =
(x̃t−1, ỹt) contains all kinds of endogenous ( ˜xt−1) and/or exogenous ( ˜yt ) explanatory variables,h(·) describes
the functional form of the relationship andεt denotes an error term. If nowh(zt |θ) = 0, π̂1(p) corresponds to
the assumed distribution forε while π̂2(p) is interpreted as the risk measure corresponding to the empirical
density function of{x}= {ε} resulting automatically in the definition of model risk given by Def.3. If however
h(zt |θ) 6= 0 we may differentiate the definition of model risk even further into misspecification risk in distri-
bution and misspecification risk in functional form. For thederivation of the former consider the case where
xt = h(zt |θ)+εt with h(zt |θ) 6= 0 and{ε} ∼ f2(ε). Further denoting the resulting density function ofx by f3(X)
leads to the following definition.

Definition 4 (Model Risk in Distribution). Let Π3(p,α) be the upper bound of the1−α confidence interval

of the risk measure’s point estimate with the DGP of the underlying being given as xt = h(zt |θ) + εt with

3If not mentioned otherwiseπ j describes the VaR in the upcoming analysis. In case we reported solely the VaR risk measure the results

for the ES did not differ profoundly.

4



h(zt |θ) 6= 0 and{ε} ∼ f2(ε) while π̂1(p) denotes the market risk measure under an assumed density function

f1. Model risk in distribution in correspondence to f1 can then be derived as MRdis = Π3(p,α) · π̂1(p)−1.

Straightforwardly we can now define model risk with regard tothe functional form.

Definition 5 (Model Risk in Functional Form). LetΠ2(p,α) be the upper bound of the1−α confidence interval

of the risk measure’s point estimate under the empirical density function whilêπ3(p) denotes the risk measure’s

point estimate with the DGP of the underlying being given as xt = h(zt |θ)+εt with h(zt |θ) 6= 0 and{ε}∼ f2(ε).

Model risk in functional form in correspondence to h(zt |θ) can then be derived as MRf f = Π2(p,α) · π̂3(p)−1.

Note that the the components of model risk are connected via the relationshipMR= MRdis ·MRf f /ER2.
Since so far solely the underlying has been regarded in the following we should look at model risk concerning
the company model. With the pension liabilities being chosen as an example of a company model the under-
lying X and the liabilitiesL are connected via the relationshipL = g(X) whereg(·) denotes a continuously
differentiable function.4 Then the density ofL with respect tof j (X) is given by f̃ j (L) = f j(X) · |dh(L)/dL|
whereh(L) = g−1(L). Hence the various definitions of market risk and model risk (total, in distribution and in
functional form) can easily be transferred to the company model by substitutingf j (X) for f̃ j (L). Note however
that we cannot define an estimation error in this setting since the company model cannot be handled like an
econometric model.

3 The Pension Model

The model’s objective is to calculate path-dependent future pension liabilitiesL. In general these pension
liabilities depend on many different factors including economic variables. As the development of the economy
goes along with great uncertainties, future pension liabilities exhibit a stochastic behavior. According to IFRS
the two most important explanatory variables for the pension liabilities from an economic point of view are the
inflation rateI and the interest rateY. The reason for the former to play a great role in the determination ofL
is the fact that it is used as a discount rate whereas the latter functions as an adjustment for the obligations in
terms of salary rates.

In practice the calculation of pension liabilities is a verycomplex procedure asL further depends on a wide
range of other factors, i.e. mortality risks, contractual details, possible cancelations etc., which additionally are
very likely to differ between a number ofν = 1, . . . ,P pensioners. With those factors being pooled inΘ, the
pension liabilityLk of a portfoliok ∈ K = {Actives, Vested Benefits, Pensioners} at timet can be formalized
as

L jkt =
P

∑
ν=1

Lν jkt = g(I jkt ,Y jkt ;Θν), (3.1)

where j = (1, . . . ,N) denotes the number of paths. 3.1 is called thePension Valuation System (PVS). Note that
for t > t∗ wheret∗ denotes the current point in time,L jkt is a random variable since for every random variable
X and measurable functiong(·), g(X) is a random variable as well. Hence in order to analyze the stochastic
behavior of the pension liabilities appropriately a sufficiently large amount of paths ofL j = g(I j ,Y j) have to
be simulated. Whilst the simulation can easily be carried out for I andY, the calculations of the corresponding
L are too computationally intensive to be carried out for every single path. In other words the functiong(·) is
too complex to be utilized for the necessary amount of operations.

4A concrete specification ofg(·) is given in section 3.
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Thus the objective is to specify a functionf (·) that approximatesg(·) sufficiently well. Once this function
is found and its parameters are calibrated, the liabilitiescan be fitted via application of

L̂ jkt = f̂ (I jkt ,Y jkt). (3.2)

f (·) will be called thePension Function (PF)with f̂ (·) denoting its calibrated counterpart. The calibration of
thePF is applied by using subsetsI ⊆ I, Y ⊆ Y of the simulated paths. Those subsets are called sample points
and they are chosen as to representI andY properly. Once the sample points are determined the corresponding
pension liabilities can be calculated by thePVSvia application ofLikt = g(Iikt ,Yikt ;Θν), wherei = (1, . . . ,M)
denotes the number of sample points. Note thatM should be chosen such that the reduction of the number of
paths fromN to M leads to an operable calculation ofL. After this has been donef (·) can be calibrated using
the input data(Likt , Iikt ,Yikt ).

The above procedure is called dynamic transformation approach. This approach can be described as a
process in which an existing external system is run using a small number of prescribed deterministic paths
and the output generated is then transformed and used to simulate a much larger set of path-dependent results.
Hence the dynamic transformation approach leverages an existing single-path without requiring it to be run for
all paths. The objective of the dynamic transformation model is to produce results that are consistent with what
the external system would produce if it were run over all paths. The leveraging is necessary as the calculation of
the pension liabilities entails a very complex operation. It should be made clear that this paper solely deals with
the influence of the econometric model on the pension liabilities concerning model risk, i.e. the difficulties
occurring in the selection of model points and calibration of the pension function are not considered in this
context and are open to future examination.

Concretely thePF is given as

Li,k = fk(Ii,k,Yi,k) = β0,k · (1+β1,k · Ii,k)β2,k · (1+β3,k ·Yi,k)
−β2,k, (3.3)

where(Lk, Ik,Yk) are vectors of dimension(M × 1) respectively,βk = (β0,k, . . . ,β3,k) is a (4× 1) vector of
coefficients,k∈ {1, . . . ,K} andi = (1, . . . ,M). Fig.3 gives an idea of the shape of the function.5 The function

Figure 2: illustrates the shape of the pension function.x1 describes the inflation rate, the interest rate is given

by x2 andL is displayed on thez-axis. Note that the combination of high inflation rates and low interest rates

leads the function to rise quickly.

can be interpreted as follows.β0,k represents the pension value if bothIi,k = Yi,k = 0, that is if there is no
inflation and the interest rate takes on zero.β1,k andβ3,k are the respective adjustment factors for inflation and

5Due to reasons of concealment theβk could not be reported in this paper.
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interest rates whilstβ2,k denotes a discount factor. Furthermore it should be mentioned that the time offsets
chosen as to represent the appropriate duration of the inflation rate and the interest rate amount tot1 = 10 and
t2 = 17 years respectively. ThusI jt1 (Y jt2) reflects the expected 10-year (17-year) ahead inflation rate (interest
rate) for thejth path.

With the error between liabilities and the function values being defined asεk 3.3 can be calibrated by
application of

min
βk

||εk||p with εi,k = Li,k−β0,k · (1+β1,k · Ii,k)β2,k · (1+β3,k ·Yi,k)
−β2,k,

wherep should be chosen appropriately. The minimization algorithm works as a combination of grid search
and hill-climb method.

4 The Inflation Models

In order not to further complicate the procedure the economic scenario generator solely deals with modeling the
inflation rate for a start. As far as the interest rate is concerned scenarios having been developed internally by
the insurance company are utilized (for a brief overview of the interest rate scenario’s distribution cf. Fig.4).6

This is legitimized by considering the position of the inflation rate at the top of the cascade in the benchmark

Interest Rate Scenarios
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D
en
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0.03 0.04 0.05 0.06 0.07

0
20

40
60

Figure 3: describes the histogram and density estimation ofthe interest rate scenarios generated by the insurers

internal economic scenario generator.

Wilkie model (Wilkie [1995]) mirroring its particular importance. In case a misspecified inflation model is
utilized the misspecification error transmits throughout the whole system. This means that dealing with the
inflation model should be of the highest priority when it comes to specifying an economic scenario generator
that is to outperform the Wilkie model.

In order to carry out a consistent procedure of model specification a hierarchy of the univariate time series
models being used in practice is very helpful. In the first level we discriminate between linear and nonlinear
models. Recall that by the Wold decomposition any zero-meanpurely non deterministic stationary process
{yt}T

t=1 can be written in the form

yt =
∞

∑
i=0

ψiεt−i (4.1)

6In chapter 7 the relation between the inflation model and interest rates is further analyzed.
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where∑i ||Ψi ||2 < ∞ and{εt}T
t=1 is a stationary sequence of centered and uncorrelated random variables with

common varianceΣ. A process{yt}T
t=1 is said to be linear when{εt} iid∼ (0,Σ) in 4.1. Otherwise the process

can be declared nonlinear. Note that the nonlinearity can occur in the mean as well as in the volatility.
This thought leads to the discrimination of three classes oftime series models in our model selection

procedure: linear models, nonlinear models in the mean and nonlinear models in the volatility. Fig.4 illustrates
the classification of time series models. Whereas the major part of the existing linear models can be subsumed

Figure 4: describes the classification of univariate time series models. The dotted lines signify nested relation-

ships.

under the class of autoregressive fractionally integratedmoving average models, shortARFIMA(p,d,q), the
class of nonlinear models is not as homogenous.

ARFIMA models. TheARFIMA(p,d,q) model can be defined as

Θ(L)−1Φ(L)(1−L)dyt = εt , (4.2)

where{yt}T
t=1 describes the time series of interest and{εt}T

t=1 forms a white noise process.Θ(L) = 1−θ1L−
θ2L2− . . .− θqLq andΦ(L) = 1− φ1L− φ2L2− . . .− φpLp are polynomials of degreesq andp with Li being
defined as the backshift operator such thatLi ·yt = yt−i . d describes the fractional differencing parameter. Note
that by setting zero restrictions on the respective parameters 4.2 nests a broad range of linear time series models
like autoregressive and moving average processes.

For d ∈ Z
+
0 the resulting model belongs to the well-known class ofARIMA models having elaborately

been examined by Box and Jenkins [1976]. The estimation procedure in this model class is usually be carried
out by testing for unit roots first. Some formal tests for distinguishing betweend = 0 andd = 1 exist (see
e.g. Dickey and Fuller [1979] or Kwiatkowski et al. [1992]).After having differenced the processd times the
resultingARMAmodel can be estimated by several methods such as conditional sum of squares or maximum
likelihood estimation (MLE). Setting the order of the moving-average (autoregressive) part equal to zero leads
to the class of autoregressive (moving-average) processes.

For many empirical time series however taking the first or thesecond difference seems somewhat exagger-
ated whereas not differencing the series at all does not yield stationarity. Therefore fractional differencing was
proposed by Hosking [1981] and Granger and Joyeux [1980] with− 1

2 < d < 1
2 being able to model long-range

dependencies between (economic) variables adequately.d can be estimated via maximum likelihood methods
(cf. e.g. Yajima [1985]). Beran [1995] additionally suggests an estimation method in case of nonstationary
long-memory (d ≥ 0.5). Hassler and Wolters [1995] examined the inflation rates of five countries finding ev-
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idence of long memory in each series. For a more detailed description of the estimation procedure cf. also
section 6.

Mean shift models.The simplest form of nonlinearity can be described by mean shift models. By rewriting
a time seriesyt = µt +εt as the sum of a deterministic partµt and a stochastic partεt the former can be modelled
asµt = µ1+∑n

i=1λi · I(l i < t ≤ l i+1) wheren denotes the number of breaks,l i are the break points,I(·) denotes
the indicator function andλi = µi+1−µi. Note that structural changes in the mean are a typical example of the
occurance of spurious long memory (cf. Diebold and Inoue [2001] or Engle and Smith [1999]). By neglecting
the mean shifts the estimation of the fractional differencing parameterd might be biased quite heavily. That
is why Hsu [2005] proposed to first determine the number of break points in the model and thereafter estimate
theARFIMAparameters and the time of the breaks simultaneously. Whereas the former is done via application
of theLIC information criterion described in Lavielle and Moulines [2000] the estimation is carried out by a
modified local Whittle method.

STAR models. One of the most prominent regime-switching model marks the smooth transition autore-
gressive (STAR) model introduced by Chan and Tong [1986] and popularized byGranger and Teräsvirta [1993]
and Teräsvirta [1994]. It is given by

yt = (φ0,1+φ1,1yt−1+ . . .+φp1yt−p1)(1−G(yt−1;γ,c))
+(φ0,2+φ1,2yt−1+ . . .+φp2yt−p2)G(yt−1;γ,c)+ εt . (4.3)

Thus theSTARmodel is given by two autoregressive regimes connected by the transition functionG(·) ∈ [0,1]
plus a white noise error term. IfG(·) is a continuous function the transition between the two regimes is carried
out smoothly. The transition occurs once the threshold value c is passed such thatG(c;γ,c) = 0.5. Popular
choices for the transition function are the exponential function (ESTAR) or the logistic function(LSTAR).
In the latter caseG(yt−1;γ,c) = (1+ exp(−γ(yt−1 − c)))−1. Note thatγ determines the smoothness of the
transition. If e.g. γ is very large the change ofG(·) from 0 to 1 becomes almost instantaneous atyt−1 = c
whereas forγ → 0, G(·) converges to a constant and 4.3 reduces to a linear model. In the former case one
speaks of a threshold autoregressive (TAR) model. For an example of anESTARapplication on the inflation
rate cf. Gregoriou and Kontonikas [2006] while an example for anLSTARcan be found in Huh [2002].

4.3 can be estimated via nonlinear least squares (NLS). Special care has to be taken concerning the choice
of the starting values for the optimization algorithm as well as the estimation of the smoothness parameterγ in
the transition function due to reasons of identification.

APARCH models. The third class of time series models to be examined is the group of regime-switching
models for the volatility called general autoregressive conditional heteroscedasticity(GARCH) models. The
latter are very popular among practitioners (cf. e.g. Karanasos et al. [2004]) as they are not only capable of
describing stylized facts of financial time series such as excess kurtosis or fat-tailedness but also incorporate
the concept of volatility clustering meaning that periods of large movements in prices alternate with periods
during which prices hardly change. The general asymmetric power GARCH (APARCH) was introduced by
Ding et al. [1993] and is defined as

yt = µ+
p

∑
i=1

aiyt−i +
q

∑
j=1

εt− j + εt , (4.4)

εt = h1/δ
t ·νt ,

ht = ω+
K

∑
k=1

αk (|εt−k|−ψk · εt−k)
δ +

L

∑
l=1

βl ·ht−l , (4.5)

whereµ andω are constants,a, α andβ are vectors of coefficients and{νt} iid∼ (0,Σ). Obviouslyεt is now no
longer assumed to be homoscedastic but conditionally heteroscedastic asE[ε2

t |Ωt−1] = ht for δ = 2 with Ωt−1

describing the information set of all relevant informationup to and including timet −1.
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ψ reflects the so-called leverage effect taking into account that positive and negative shocks might have a
different impact on the conditional volatility of the process. By rewriting 4.5 forδ = 2 as

ht = ω+
K

∑
k=1

[
αk(1−ψk)

2+4αkψk · I(εt−k < 0)
]
· ε2

t−k+
L

∑
l=1

βl ·ht−l

with I(·) denoting the indicator function it can be seen that negativeshocks have an impact ofαk(1−ψk)
2+

4αkψk on the conditional variance, while for positive shocks the impact reduces toαk(1−ψk)
2. Finally δ > 0

mirrors the parameter of the Box-Cox transformation. Note that by setting (zero) restrictions ona, α, β, ψ
and/orδ several nested models can be specified (cf. Bollerslev [2008]) while for all the reported models in
section 5,δ was set to 2 specifying aGJR-GARCH(cf. Glosten et al. [1993]) forψ 6= 0. 4.4 can be estimated
by MLE. The specified models and its parameters are given in Tab.1.

Parameter

Equation Model p q d p1 p2 c γ K L ψ Notation

4.2

M1 1 0 0 - - - - - - - Wilkie, AR(1)

M2 2∗ 2∗ 0 - - - - - - - ARMA(2,2)

M3 0 0 0.178∗∗ - - - - - - - ARFIMA(0,d,0)

M4 2∗ 2∗ 0.118∗∗ - - - - - - - ARFIMA(p,d,q)

M5 0 0 0.083∗∗ - - - - - - - HSU

4.3
M6 - - - 1 1 0.005∗∗ 40∗∗ - - - STAR(1,c,γ)

M7 - - - 13∗ 13∗ −0.012∗∗ 40∗∗ - - - STAR(p,c,γ)

4.4

M8 0 0 0 - - - - 1 0 0 ARCH(1)

M9 0 0 0 - - - - 4∗ 0 0 ARCH(K)

M10 0 0 0 - - - - 1 1 0 GARCH(1,1)

M11 1 0 0 - - - - 1 0 0 ARMA(1,0)-ARCH(1)

M12 1 0 0 - - - - 2∗ 0 0 ARMA(1,0)-ARCH(K)

M13 1 1 0 - - - - 1 1 0 ARMA(1,1)-GARCH(1,1)

M14 0 0 0 - - - - 1 0 0.083∗∗ APARCH(1)

M15 0 0 0 - - - - 1 1 0.102∗∗ APARCH(1,1)

Table 1: offers an overview of the specified models.∗ signifies that the respective lag order has been chosen

via information criteria.∗∗ marks estimated values. Note that in M6 and M7γ was respectively estimated to

equal 40 signifying that the regime-switch is not carried out smoothly. In fact a threshold autoregressive (TAR)

model is specified. The model specifications reported here are the most striking ones regarding its impact on

the pension function. We examined a broad range of further specifications which can be reported upon request.
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5 Simulation Results

5.1 Inflation Models

The modeling of the inflation rate has been carried out by using monthly US inflation data for the period
01/1954 until 02/2010 taken from Datastream. The time series and its empirical density estimate is plotted in
Fig.5.
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Figure 5: plots the monthly US inflation rate being calculated as the difference of the log consumer price in-

dexes in regard to the respective value from the previous year and the corresponding empirical density estimate.

TheADF test (cf. Dickey and Fuller [1979]) as well as theKPSStest (cf. Kwiatkowski et al. [1992]) indi-
cate the series to beI(1) which is why henceforward its first difference is utilized. The procedure concerning
the simulation of the inflation rates is given as follows. Foreach of theK = 15 modelsMk, k = 1, . . . ,K, the
parameters are estimated. Following forecast values ˆyt+h with h = 1, . . . ,H are derived, where the forecast
period is chosen to equalH = 118. This value accounts for the fact that 3.3 necessitates the 10-year ahead
inflation rate while having monthly data up to 02/2010. The forecast values are then given by

ŷt+h = E(yt+h|Ωt+h−1)+ εt+h, h= 1, . . . ,H (5.1)

whereΩt+h−1 is the information set consisting of all relevant information up to and including timet +h−1.
The yearly inflation rate is then given by the year’s mean value. This procedure is replicatedN = 10,000 times
for each of theK = 15 models yielding the empirical distributions which are summarized in Tab.4 (cf. section
B).

The first striking result marks the fact that the differencesof the inflation’s distributions mainly focuses on
its tails. Whereas the central part of the distributions is surprisingly homogenous the more extreme quantiles
and the range differ considerably. This is especially driven by those models belonging to the class ofGARCH
processes (i.e. M10, M13 and M15). Although these models forecast rather plausible 10-year ahead inflation
rates of approximately 2% in the mean its worst case scenarios of e.g. 170% deflation do not seem to be very
realistic.

An explanation for these features can be given by more thoroughly looking at the autocorrelation function
of theGARCH(1,1) process. Bollerslev [1986] and Bollerslev [1988] showed that thekth autocorrelation of
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the squared errors in theGARCH(1,1) process is given by

ρ1 = α1+
α2

1β1

1−2α1β1−β2
1

(5.2)

ρk = (α1+β1)
k−1ρ1 for k= 2,3, . . . (5.3)

Note that the decay factor of 5.3 isα1+β1. If the sum is close to 1 the autocorrelations will decline only very
gradually (although an exponential decline is still given). In our case the sum of the estimated coefficients from
the respectiveGARCHmodels are in each of the three cases very close to 1 i.e. theGARCHmodels feature
slowly decaying autocorrelation functions. This leads to the result that draws of exceptionally high error terms
during the simulation process 5.1 hardly decline in this model class explaining the extreme scenarios. Note that
the fact of the sum of the estimated parameters inGARCH(1,1) models being close to 1 is commonly found
in empirical research. E.g. Taylor [1986] estimatedGARCH(1,1) models for 40 different financial time series
finding in all but six cases that 0.97≤ α1+β1 < 1.

It should furthermore be mentioned that Bollerslev [1986] and Bollerslev [1988] conditioned 5.2-5.3 on
the validity of (α1 + β1)

2 + 2α2
1 < 1 signifying that the kurtosis ofεt is finite. If however this cannot be

maintained, which is the case in our analysis, Ding and Granger [1996] showed that forα1 + β1 < 1 and
(α1 +β1)

2 +2α2
1 ≥ 1 theGARCH(1,1) model is still covariance stationary with infinite fourth moment. In

this case 5.3 is approximately valid withρ1 ≈ α1+β1/3. Note also that theHSU model (M5) features a lower
mean than the other models. This is due to the fact that we determinedn= 1 break point via theLIC criterion
at t∗ = 302 which corresponds to 02/1979. By looking at Fig.5 it becomes clear that aftert∗ the trend in the
inflation rate is declining what explains the lower mean of M5even over 10,000 replications.

The risk measures being defined in section 2 are summarized inTab.2. By first concentrating on the esti-

Model π̂1 ER1 ER2 MRdis MRf f MR

M1 0.15 1.088 1.022 0.988 0.845 0.816

M2 0.15 1.085 1.024 0.997 0.807 0.786

M3 0.24 1.096 1.028 1.016 0.499 0.493

M4 0.09 1.068 1.022 1.057 1.362 1.408

M5 0.15 1.286 1.025 1.018 0.814 0.808

M6 0.14 1.098 1.024 1.000 0.874 0.854

M7 0.14 1.079 1.023 1.015 0.819 0.813

M8 0.12 1.093 1.029 0.994 1.029 0.994

M9 0.14 1.116 1.029 0.868 1.029 0.868

M10 0.21 1.189 1.029 0.589 1.029 0.589

M11 0.14 1.085 1.024 0.974 0.893 0.849

M12 0.15 1.088 1.025 0.975 0.877 0.833

M13 0.26 1.278 1.029 3.231 0.134 0.421

M14 0.12 1.077 1.029 1.055 1.029 1.055

M15 0.36 1.568 1.029 0.375 1.029 0.375

Table 2: returns measures of market risk, estimation risk, model risk in distribution, model risk in functional

form and total model risk being defined in section 2 for each ofthe models withp= 0.99 andα = 0.05.

mation risk with regard tof1(X) it becomes clear that for the majority of the models the estimation error lies
somewhere between 5 and 10 percent. TheGARCHmodel class again forms an exception with estimation risks
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up to almost 57% which naturally can be attributed to its near-integratedness and high volatilities. Together
with M3 those are also the models featuring low multiplication factors being displayed in the last column.
Note that in many popular examplesMR> 1 as the underlying marks a financial market variable exhibiting
the stylized fact of fat-tailedness. This results in the empirical density function having a higher kurtosis than
most of the standard parametric models which is whyπ2(p) > π1(p) with the resulting multiplication factor
exceeding 1. Inflation however is not a monetary but a real variable usually not featuring these stylized facts.
Hence in many cases (except forM4 andM14) the parametric distribution possesses a much higher kurtosis
than its empirical counterpart. Thus our results mirror thefollowing trade-off. Those models implying a low
market risk are penalized by a multiplication factor greater than 1 concerning the capital reserves. If a model
reports a high market risk it is compensated by a multiplication factor smaller 1.

Another crucial aspect is the fact that model risk in functional form marks the main factor for the determi-
nation of total model risk. By looking at the last three columns of Tab.2 it becomes clear that except for the
GARCHmodel classMRdis is very close to 1 indicating low explanatory power forMR= MRdis ·MRf f /ER2

which is a rather intuitive result. Note further that there are five models exhibiting the same model risk in func-
tional form of 2.9%. For those modelsh(zt |θ) = 0 in xt = h(zt |θ)+εt which means that there are no short-term
dependencies in theDGP. Hence model risk in functional forms reduces to the estimation error concerning
π̂3(p), i.e. Π2(p,α) · π̂3(p) = η2(α). This also becomes clear by looking at column 3 where the estimation risk
concerningx with ε ∼ f2(ε) is described.7 In other wordsf3(X) = f2(ε) results in model risk in distribution
exclusively determining total model risk.

Hence we can conclude that market risk as well as model risk differs substantially between the various
econometric models. Whereas theoretically there is a trade-off between market risk and model risk as both
depend on the functional form and the distribution of the underlying practically the Basel multiplication factor
is fixed which leads to the fact that the model inducing the lowest market risk implies the lowest capital reserves.
The implication of this result in terms of monetary values isoutlined in the next section.

5.2 Pension Liabilities

Once the inflation scenarios have been determined the corresponding pension liabilities are calculated by 3.3
via the calibrated parametersβ̂. The resulting distributions ofL·k are summarized in Tab.5 (cf. section B). Note
that due to reasons of concealment the respective difference to the benchmark Wilkie model (M1) instead of
the absolute values are reported.

Again the models of theGARCHclass feature distinct differences in the tails in comparison with the other
models. By recapitulating the shape of the pension function(cf. Fig.3) this result should not be surprising.
Remember that theGARCH inflation scenarios exhibit values in its right tail that arewell above 0.4 which is
exactly the area where 3.3 increases rapidly. As the pensionfunction is leveraged by the inflation scenarios
the center of the distributions differ slightly more than the scenarios itself. Nevertheless the most striking
deviations are once more found in the distributions’ tails.

By looking at Tab.5 it can be seen that the values for the VaR differ enormously. Note that the values
are reported in millione implying a discrepancy of the model with the lowest VaR (M4) and the model with
the highest VaR (M15) of 5,717.4 million e . Of course, one might argue that common sense allows the
exclusion of theGARCHmodel class but then still the difference adds up to 2,074.3 million e (M4 vs. M3).
Regarding the expected shortfall the differences in the pension liabilities are even more striking going from
18,359.6 million e without exclusion of theGARCHto 2,497.2 million e without consideration ofM10,M13
andM15. Generally it becomes clear that both a high range and excess kurtosis in the econometric models
produces the kurtosis in the pension liabilities’ distribution to rise resulting in large values for the VaR and ES.

As was argued in section 2 the market risk ofL is given byπ̃ j(p) = inf{L ∈R|∫ L
−∞ f̃ j(L|θ̂; β̂)dL≥ p} with

f̃ j (L) = f j(X) · |dh(L)/dL|. 3.3 automatically yieldsh(L) = β−1
1 ((L/β0(1+β3Y)−β3)1/β1 −1) which is why

7Note that the fact thatER2 = 1.029 forM13 is an artefact caused by rounding. It is not perfectly equal to η2(α) concerningh(·) = 0.
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|dh(L)/dL| = (β1β2L)−1(L/β0(1+β3Y)−β3)1/β1. Denoting the absolute difference ofπ̃i(p) andπ̃ j(p) where
i, j ∈ J by π̃i j we may now define the different types of model risk in terms of monetary values. Hence total
model risk is given bymr= π̃12, model risk in distribution is defined asmrdis = π̃13 andmrf f = π̃23 describes
model risk in functional form.

Tab. 3 returns the resulting values in millione with market risk being again measured as the difference to
the Wilkie modelM1. It is of no surprise that the results displayed in Tab.2 arerecover in Tab.3. The market risk

Model π̃ j (p) mrdis mrf f mr

1 0.0 6.9 -262.9 -256.0

2 71.6 -33.5 -294.0 -327.6

3 1305.1 -25.1 -1536.0 -1561.1

4 -571.7 14.2 301.5 315.7

5 15.8 46.2 -318.0 -271.9

6 -27.2 -48.7 -180.1 -228.8

7 37.6 -33.6 -260.1 -293.7

8 -250.3 -5.8 0.0 -5.8

9 -40.0 -216.0 0.0 -216.0

10 693.3 -949.3 0.0 -949.3

11 -24.8 -49.7 -181.5 -231.3

12 0.6 -71.7 -184.8 -256.6

13 1925.0 20920.6 -23101.6 -2181.0

14 -316.3 60.3 0.0 60.3

15 2633.6 -2889.6 0.0 -2889.6

Table 3: returns measures of market risk, model risk in distribution, model risk in functional form and total

model risk for each of the models concerning the monetary value of the pension liabilities. Due to reasons of

concealment the market risk is measured as the difference tothe Wilkie model (M1). The values are reported

in 1e+06e.

of M4 undercuts the market risk ofM1 by 571.7 million e. On the other handM4 features the highest model
risk describing again the above mentioned trade-off. With the multiplication factor being fixed in practiceM4
clearly induces the lowest capital reserves. As the next section shows this marks a very interesting result since
M4 is the model which is indeed chosen by application of an empirical model specification strategy.

6 Empirical Model Specification Strategy

The process of finding an appropriate model for the inflation scenarios marks a widely debated task among
practitioners. In empirical work a specific model class is often chosen based on somewhat ideologic reasons
and a suitable specification procedure is only very seldom carried out. Even if previous work attested a specific
model to work very well for the economic variable at interestconsulting a different data set might lead to a
completely converse implication. That is why we propose a data driven approach concerning the process of
model specification.

Our strategy consists of at most three steps and is given as follows. At first we try to find the best model
in the class of linear time series. Once this model has been found, it is tested for remaining unspecified
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nonlinearity. If the latter cannot be rejected the best linear model is tested against each of the nonlinear model
classes given in Fig.4 being represented by their most general form. In other words we discriminate between the
cases of short memory, long memory and spurious long memory.Whilst the decision between short and long
memory is the decision betweenARFIMAandARMA, spurious long memory can be invoked by a nonlinear
behavior of the process.

The selection of the most suited linear model might at first sight be thought of as an easy task since almost
every conventional time series model is nested in 4.2. I.e. by selecting the lag orders in 4.2 first and estimating
the corresponding parameters thereafter one might be able to impose zero restrictions on some of the parameters
leading to sub models of theARFIMA class. Hence a general-to-specific modeling procedure equivalent to
the Box-Jenkins approach forARMA models might be applied. There are however certain caveats in this
argumentation.

Note that there are several ways to estimate the fractional differencing parameter in 4.2 which are based on
the periodogram of the process . These include e.g. theGPH estimator of Geweke and Porter-Huwak [1983] or
the Whittle estimator (cf. Robinson [1995]). The spectrum of a covariance stationary process{yt}T

t=1 is given
as

f (λ) = |1−exp(−iλ)|−2d f ∗(λ), −π ≤ λ ≤ π, |d|< 0.5 (6.1)

with f ∗(λ) representing the short-term correlation structure of the model andi =
√
−1. In practice 6.1 is

approximated by the estimation function

logI(λk) = c+dXk+ εk, k= 1, . . . ,m (6.2)

for m≤ T/2, Xk = −2log(sinλk), λk = 2πk/T andI(λ) = (2πT)−1|∑T
t=1 yt exp(itλ)|2 for the sampleyt , t =

1, . . . ,T. 6.2 is called the periodogram wherec andd can be estimated via linear regression. However, as
Hurvich et al. [1998] pointed out, the procedure of estimatingd by 6.2 leads to a bias in case there are short-term
correlations in the model, i.e. iff ∗(λ) is not a constant. This induces that if 4.2 containsARMAcomponents
no statements about the parameters’ significance should be made for estimators based on 6.2.

Hence there are two possibilities for avoiding this shortcoming. Either one applies a different estimator
not being based on the periodogram such as the nonparametricestimator proposed by Hurst [1951] or the
maximum likelihood estimator of Beran [1995] determining all parameters simultaneously. Or the application
of tests discriminating between short and long memory should be carried out. We decided for the second
procedure as it is, to our knowledge, not assured that alternative estimators are robust againstARMAprocesses.
Concretely we applied two tests in order to discriminate between short and long memory. Firstly we employed
the test of Lo [1991] and secondly we applied the test of Davidson and Sibbertsen [2009].

Lo [1991] specifies a modified rescaled range estimator givenby

Q̂T =
max0<i≤T{∑i

t=1 (yt − y)}−min0<i≤T{∑i
t=1 (yt − y)}

σ̂T
and (6.3)

σ̂T = T−1
T

∑
t=1

(yt − y)2+2T−1ω j(q)

(
q

∑
t= j+1

(yt − y)(yt− j − y)

)

(6.4)

where{y}T
t=1 denotes the process of interest with meany= T−1 ∑T

t=1 yt andω j(q) = 1− ( j/(q+1)) for q< T.
Hence 6.3 can be interpreted as the range of partial sums of deviations of a time series from its mean, rescaled by
its standard deviation. Note that 6.4 is the heteroscedasticity and autocorrelation consistent variance estimator
with the weightsω j(q) being those suggested by Newey and West [1987]. Hence in casethe process is short-
range dependent̂σT controls for the autocovariances making 6.3 able to discriminate between short-range
and long-range dependence. AsT−1/2Q̂T is asymptotically distributed as the range of a standard brownian
bridge under the Null of short-range dependence the latter can be tested against the alternative of long-range
dependence.
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The bias test of Davidson and Sibbertsen [2009] is based on 6.1 and testsH0 : f ∗(λ) = consvs. H1 : f ∗(λ) 6=
cons. The test statistic is given by

TS=
d̂1− d̂2

SE(d̂1− d̂2)
(6.5)

whered̂1 andd̂2 denote alternative estimators of the fractional differencing parameter withSE(·) being a suit-
able estimation for the difference’s standard deviation being derived in Davidson and Sibbertsen [2009]. The

authors further proved in their paper thatTS
d→ N(0,1) under certain conditions. Choosinĝd1 to be the estima-

tor regressingI(λk) onto(Xk,1) in 6.2 whilstd̂2 is derived ifI(λk) is regressed onto(Xk,1,h1(λk), . . . ,hpT(λk)),
whereh j(λk) = cos( jλk)/

√
π is the jth order Fourier frequency, one can test the Null of anARFIMA(0,d,0)

process against the alternative of anARFIMA(p,d,q) process with eitherp> 0 and/orq> 0. Note that 6.5 is
a simple type of the Hausman [1978] test as under the Nulld̂1 is consistent and asymptotically efficient, but
biased and inconsistent under the alternative, whereasd̂2 is consistent under both hypotheses.

With a p-value being very close to zero the Lo test clearly rejects the Null of short-range dependence. The
p-value of the bias test equals 0.045 indicating that there areARMAcomponents in the process at the 5% level.
Having in mind the result ofd being actually different from zero we can now be relatively sure that the presence
of the fractional differencing parameter is due to long-range dependence and not spuriously caused byARMA
components although the latter are indeed present. Thus in the next step we estimated the parameters of the
ARFIMA(p,d,q) model simultaneously by the method of Beran [1995] after selecting the lag orders via the
Schwarz information criterion leading to the values reported in Tab.4 for M4.

Once a linear model has been specified and estimated it is tested against remaining nonlinearity. Note that
there are several linearity tests in the literature (for an overview cf. Granger and Teräsvirta [1993]). We focused
on testing against unspecified remaining nonlinearity as from a practical point of view it is not feasible to carry
out different types of tests for every kind of nonlinear model. Thus we applied the popular test of Tsay [1986]
performing considerably well in small samples as has been shown in simulation studies (cf. e.g. Tsay [1986]
or Pena and Rodriguez [2005]). The test can be described as follows.

At first a linear model (in our case M4) is fitted to the time series and the residuals of the linear fitε̂t are
computed. Secondlyh = M(M + 1)/2 proxy variables, whereM stands for the autoregressive order of the
process, are defined. The proxy variables are represented byzt = vech(Y

′
t Yt) whereYt = (yt−1, . . . ,yt−M) and

vech(·) denotes the column stacking operator using only those elements on or below the main diagonal of each
column. Hencezt consists of several squares and cross products of the seriestypifying the nonlinearity. Thirdly
each of the proxy variables is regressed againstYt and theh corresponding residuals are denoted by ˆut . Finally
the model

ε̂t = ξ · ût +ηt (6.6)

whereη is white noise andξ = (ξ1, . . . ,ξh) denotes a vector of coefficients. 6.6 is estimated by OLS and
H0 : ξ1 = · · · = ξh = 0 vs. H1 : ξi 6= 0, for at least onei = 1, . . . ,h is tested consulting a conventional F-test.
Under the Null no remaining nonlinearity covered by the proxy variables can be detected. Having utilized the
test we do not find remaining nonlinearity inM4 as the Tsay test reported a p-value of 0.75 forM = 3.8

7 Interest Rates

Until now the interest rate scenarios have been modeled exogenously, i.e. without regard of its reaction to the
inflation scenarios. Furthermore its duration was given by theoretical considerations leading to the fact that

8M was determined by information criteria. Choosing different orders did not alter the test’s outcome.
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model risk was solely determined by the inflation model. In this chapter the economic scenario generator is
extended taking the impact of the interest rate’s duration on model risk into account.

Note that there are mainly two approaches of modeling interest rates in the literature. The first marks the
finance approach where affine no-arbitrage term structure models for the interest rate are utilized. The main
disadvantage of this approach is that it is not economicallymotivated. That is little can be stated about the
economic processes causing movements in the interest rate.This shortcoming can be avoided by modeling the
interest rate by macro models being specified as the interestrate’s reaction function to changes in economic
variables such as e.g. inflation. Hence by noting that the benchmark economic scenario generators imply
cascade structures with the inflation rate being the drivingforce, that is causality exclusively flowing from the
inflation rate into interest rates without any feedback structure, modeling the interest rates via a macro model
seems more appropriate for our analysis.

Recalling the shape of the pension function in Fig.3 it should be clear that model risk depends on the
dynamics of the interest rate’s forecast distribution. Hence the objective is to derive conclusions about the
behavior of model risk in dependence on the forecast horizonof the interest rates. That is once the dynamics
of the first two moments in dependence ofh could be derived, statements about model risk can be deduced.

As a typical9 macro model for interest rates we utilized the model of Clarida et al. [2000] being given by

yt = (1−ρ)xt +ρyt−1+ εt , where (7.1)

yt denotes the funds rate at timet, ρ describes a coefficient,εt is a normally distributed white noise term andxt is
the desired funds rate. The latter however depends on the difference of the one quarter ahead expected inflation
E(xt+1) and the inflation target ˜x as well as on the expected output gapE(zt+1− z̃) measured as the deviation
of log real gross domestic product from trend (cf. e.g. Taylor [1993]). With Ωt denoting the information set
consisting of all relevant information up to and including time t the desired funds rate can be written as

xt = ỹ+φ1E(xt+1− x̃|Ωt)+φ2E(zt+1− z̃|Ωt),

whereỹ denotes the long term target for the funds rate. Hence 7.1 develops according toyt = (1− ρ)(ỹ+
φ1E(xt+1− x̃|Ωt)+φ2E(zt+1− z̃|Ωt))+ρyt−1+ εt .

It can now be shown (cf. A.1) that under non-consideration ofthe output gap’s dynamics, i.e. forE(zT+k) =
cons∀k∈ {1, . . . ,H} the dynamics of the expectedh−step ahead forecast value of the funds rate are given by

∆E(yT+h) = E(yT+h)−E(yT+h−1)≷ 0 for φ0+φ1 (E[xT+h− x̃|ΩT ])
︸ ︷︷ ︸

Deviation Inflation

≷ E[yT+h−1− ỹ|ΩT ]
︸ ︷︷ ︸

Deviation Interest

, (7.2)

whereφ0 denotes a constant term being defined in A.1. 7.2 can be interpreted as follows. If the inflation target
deviation exceeds more thanφ−1

1 times the previous period’s interest rate target deviationminus a constant, the
expected value of the interest rate increases. If the inflation target deviation does not exceed more thanφ−1

1
times the previous period’s interest rate target deviationminus a constant, the expected value of the interest rate
decreases.

In order to gain more detailed results the inflation model should be specified and the dynamics of 7.2 should
be further analyzed. If the inflation is again modeled with the benchmark inflation model of Wilkie [1995] being
given by the simpleAR(1) modelxt = α0+α1xt−1+ut the condition in 7.2 can be written as (cf. A.2)

∆E(yT+h|ΩT)≷ 0 for
h−1

∑
i=1

(
α1

ρ

)h−i

︸ ︷︷ ︸

:=g(h)

≷
yT − φ̃0−φ1xT

φ1(α0+(α1−1)xT)
−1

︸ ︷︷ ︸

:=b

, (7.3)

9In his influential article Taylor [1993] developed the Taylor rule by modeling the funds rate as a function of inflation andthe output

gap. This model was refined by several authors like Goodhard [1992], Taylor [1999], Judd and Rudebusch [1998], Clarida etal. [2000] or

Orphanides [2004], where the basic structure of Taylor’s original model has been maintained.
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whereφ̃0 denotes a constant being defined in A.2.
Obviouslyg(h) rises withh for a := α1/ρ > 0 10 whilst b remains unaltered. This means that one might

find one 0≤ h∗ < ∞ after which the expected forecast value of the funds rate eventually increases. In other
words forh≤ h∗ the development of∆E(yT+h) depends on the initial conditions, i.e. on the size of the various
parameters in 7.3 whereas forh> h∗ ∆E(yT+h)> 0.

In order to determineh∗ the cases of 0< a < 1 as well asa > 1 ought to be discriminated (cf. A.3
in the following). In the former case∆E(yT+h|ΩT) marks a convex function ofh leading to the fact that
∆E(yT+h|ΩT) < 0 for h< h∗1 = ln(a+b(a−1)) andb> 0 whilst ∆E(yT+h|ΩT) > 0 for h> h∗1. However in
case 0< a< 1, ∆E(yT+h|ΩT) marks a concave function ofh with lim

h→∞
∆E(yT+h|ΩT) = a/(1−a). Hence for

b > a/(1− a) the expected forecast value of the funds rate permanently decreases. Note that there are two
conditions in order for the latter condition to hold. First,the enumerator and the denominator of the right-hand

side term in 7.3 should feature the same sign and secondly|yT − φ̃0−φ1xT |
!
> (1−a)−1|φ1(α0+(α1−1)xT)|.

This behavior is illustrated in Fig.7
Note however that these statements do not suffice in order to derive implications concerning model risk as we

(a)

h

g(
h)

5 10 15

0
5

10
15

20
25

30

Delta E < 0 Delta E > 0

g(h)
b
h*

(b)

h

g(
h)

5 10 15 20

0
1

2
3

4

Delta E < 0 Delta E > 0

g(h)
b
h*

(c)

h

g(
h)

5 10 15 20

0
1

2
3

4

g(h)
b

Figure 6: illustrates the behavior of∆E(yT+h) depending ong(h) := (ah−a)/(1−a) and the boundaryb. In

panel (a)a= 1.1 andb= 5 resulting inh∗1 = 5. Hence forh< 5 the expected forecast value of the funds rate

decreases whereas it increases forh> 5. The same dynamics can be detected in panel (b) witha= 0.75,b= 2

andh∗2 = 5. In panel (c) the case of a permanently decreasing expectancy is illustrated as againa= 0.75 but

b= 3.5> a/(1−a). In the latter case there is no intersection ofg(h) andb and consequentlyb always exceeds

(ah−a)/(a−1).

additionally have to regard the forecast variance of the funds rate being given byV(yT+h) = σ2 ∑h
i=1 ρ2(h−i) (cf.

A.4). Straightforwardly

∆V(yT+h) = σ2ρ2(h−1). (7.4)

Forρ > 0 as is the case in the existing literature (cf. Taylor [1999], Clarida et al. [2000] or Orphanides [2004])
the forecast variance marks a monotonically increasing (concave) function ofh. In other words the interest
rate’s volatility increases with the forecast horizon, i.e. with the implied duration.

These results lead to the following statements. Fora> 1 model risk increases if firstlyh< h∗1 and secondly
b> 0 as in this case the expected forecast value of the funds ratedecreases while at the same time the forecast

10This condition should always hold as neitherα1 nor ρ are negative in empirical applications.
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variance increases withh indicating an inflation / interest rate combination in the area of the steeper ascend of
the pension function. Forh > h∗1 no distinct statement about the behavior of model risk concerning h can be
made since the increase of the forecast variance might very well be overcompensated by an increasing expected
value of the funds rate. For 0< a< 1 the same conclusions hold with one exception. Forb> a/(1−a), h≥ h∗2
can never be fulfilled indicating that model risk always increases with risingh.

These findings illustrate and elaborate three very important aspects of model risk. Firstly the forecast
distribution of the funds rate is driven by the models being assumed for the interest rate as well as for the
inflation. I.e. the model risk of the company model depends onthe specification of the statistical models flowing
into the ESG (cf. Fig.1). The second and third crucial components of model risk are given by the estimation
procedure as well as the data. This becomes clear by recalling conditions 7.3 and 7.4 which determine the
behavior ofF(yT+h|ΩT). Both conditions merely include parameters to be estimated(ρ,α0,α1,φ1,σ) and data
values (xT ,yT ). Whereas the estimated parameters depend on numerous considerations such as the estimation
procedure, the choice of the sample period, as well as the data, xT andyT are exclusive components of the
sample at hand. Note that these three aspects are linked veryclosely with each other as naturally the model
specification determines possible estimation procedures which depend on the data while the latter again drive
the model specification process. Hence when it comes to the analysis of model risk it seems reasonable to
first consider several aspects of model risk such as specification, estimation and data rather than examine the
components unconnectedly whilst secondly the interactionof those components should not be neglected.

8 Conclusion

In this paper we exemplified the interaction of an econometric model and the corresponding pension liabili-
ties under the focus of induced model risk. For this purpose we modeled the inflation rate with 15 different
economic scenario generators representing most of the conventional time series models in the literature. We
then looked at the impact of model risk on capital reserves with the former functioning as a multiplication
factor concerning market risk. We differentiated model risk into estimation risk, model risk functional form
and model risk in distribution. The first striking result marks the fact that between the models the distribution
of the inflation rate most substantially differs in its tails. Especially the class ofGARCHmodels exhibits a
high range as well as high kurtosis. This leads to a high estimation risk as well as considerable model risk in
distribution for these kinds of models. The remaining models however feature rather decent (between 5 and 10
%) estimation risk. With model risk in distribution also being rather small total model risk is mainly caused by
model risk in functional form. By using real insurance data we then determined the corresponding pension lia-
bilities finding that induced model risk differs remarkablydepending on the economic scenario generator that
is applied. In general the model risk rises if the range and/or the kurtosis of the inflation scenarios increases.
Concretely the discrepancy between the models might add up to several millione concerning capital reserves.

Furthermore we tried to objectively specify an inflation model by a data driven approach. By discrimi-
nating between short and long memory in the first place and thereafter testing for spurious long memory we
predetermined the model class empirically. It was found that for the data set at hand long memory is indeed
existent. Spurious long memory caused by nonlinearities could, however, not be detected. Hence the specifi-
cation procedure signaled anARFIMA process to be most appropriate. Remarkably the fitted process marks
the model with the lowest induced model risk for the pension liabilities. Thus it can be stated that the task of
model specification exhibits great influence on the related model risk.

Finally we examined the role of the interest rate model concerning model risk. By especially concentrating
on the forecast horizon i.e. on the interest rate’s durationbeing utilized in the pension function we find that
there is a strong relation between model risk and the forecast horizon. Whether or not the former increases or
decreases cannot be derived generally but mainly depends onthe data.

Our analysis might be refined in two respects. First, we merely focused on cascade models as economic
scenario generators. Here our work might easily be extendedvia utilization of (structural) multivariate models
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covering topics such as cointegration or causality. Furthermore consulting an alternative company model being
dependent of more than two economic variables offers the analysis of the cascade structure of the Wilkie model
in general and possible improvements thereof.

Secondly as was briefly mentioned in section 3, we did not dealwith errors which might occur by leveraging
the pension function. I.e. the selection of model points as well as the calibration of the pension function was
neglected. Especially the first aspect is worth consideringas it is still unclear which scenarios should be selected
such that an appropriate fit of the pension function is achieved. Considering that an unrepresentative selection
might lead to a bad fit misleading statements concerning the pension liabilities and the induced model risk
might be concluded.
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A Proofs

A.1 Deriving 7.2

Considering 7.1 theh−step forecast value of the interest rate is given as

yT+h = (1−ρ)
h

∑
k=1

ρh−kxT+k+ρhyT +
h

∑
k=1

ρh−kεT+k. (A.1)

Thus it follows that

E(yT+h|ΩT) = (1−ρ)
h

∑
k=1

ρh−kE(xT+k|ΩT)+ρhyT

= ρE(yT+h−1|ΩT)+ (1−ρ)E(xT+h|ΩT), since

E(yT+h−1|ΩT) = (1−ρ)
[

ρh−2E(xT+1)+ρh−3E(xT+2)+ . . .+ρE(xT+h−2)+E(xT+h−1)
]

+ρh−1yT .

Hence

∆E(yT+h|ΩT) = E(yT+h|ΩT)−E(yT+h−1|ΩT)

= (ρ1−1)E(yT+h−1|ΩT)+ (1−ρ)E(xT+h|ΩT)

= (1−ρ)(E(xT+h|ΩT)−E(yT+h−1|ΩT))

⇒ ∆E(yT+h|ΩT) ≷ 0 for E(xT+h|ΩT)≷ E(yT+h−1|ΩT). (A.2)

Under non-consideration of the output gap’s dynamics, i.e.for E(zT+k) = cons∀k∈ {1, . . . ,H}
xT+k = ỹ+φ1E(xT+k− x̃|ΩT)+φ2E(zT+k− z̃|ΩT)

= φ2(E(zT+k|Ω)− z̃)
︸ ︷︷ ︸

:=φ0

+φ1E(xT+k− x̃|ΩT)+ ỹ

which immediately results in 7.2.

A.2 Deriving 7.3

Utilizing the Wilkie inflation model (Wilkie [1995]) being given by the simpleAR(1) modelxt =α0+α1xt−1+
ut leads to

E(xT+k|ΩT) = α0

k

∑
i=1

αk−i
1 +αk

1xT . (A.3)

Recursively inserting into A.2 yields for
h= 2 :

E(xT+2|ΩT) = ỹ− x̃+φ2E(zT+2− z̃|ΩT)
︸ ︷︷ ︸

:=φ̃0

+φ1E(xT+2|ΩT)

= φ̃0+φ1(α0(1+α1)+α2
1xT)

E(yT+1|ΩT) = ρyT +(1−ρ)E(xT+1|ΩT) = ρyT +(1−ρ)(φ̃0+φ1(α0+α1xT))

⇒ ∆E(yT+2|ΩT) = φ1α1(α0+(α1−1)xT)
︸ ︷︷ ︸

=E(xT+2)−E(xT+1)

+ρ(φ̃0+φ1(α0+α1xT)− yT)

= E(xT+2)−E(xT+1)+ρE(xT+1)+ρyT

= ∆E(xT+2)+ρ(E(xT+1)− yT)
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h= 3 :

E(xT+3|ΩT) = φ̃0+φ1(α0(1+α1+α2
1)+α3

1xT)

E(yT+2|ΩT) = ρE(yT+1)+ (1−ρ)E(xT+2|ΩT)

= ρ2yT +ρ(1−ρ)(φ̃0+φ1(α0+α1xT))+ (1−ρ)(φ̃0+φ1(α0(1+α1)+α2
1xT))

⇒ ∆E(yT+3|ΩT) = ∆E(xT+3)+ρ∆E(xT+2)+ρ2(E(xT+1)− yT)

...

h= H :

⇒ ∆E(yT+h|ΩT) = ∆E(xT+h)+ρ∆E(xT+h−1)+ρ2∆E(xT+h−2)+ . . .+ρh−1(E(xT+1)− yT)

=
h−1

∑
i=1

ρi−1∆E(xT+h−i+1)+ρh−1(E(xT+1)− yT), with

∆E(xT+h−i+1) = E(xT+h−i+1)−E(xT+h−i)

= φ̃0+φ1E(xT+h−i+1)− (φ̃0+φ1E(xT+h−i))

= φ1(α0

h−i+1

∑
j=1

αh−i+1− j
1 +αh−i+1

1 xT − (α0

h−i

∑
j=1

αh−i− j
1 +αh−i

1 xT))

= φ1(α0αh−i
1 +(αh−i+1

1 −αh−i
1 )xT)

= φ1αh−i
1 (α0+(α1−1)xT)

and thus

∆E(yT+h|ΩT) = φ1(α0+(α1−1)xT)
h−1

∑
i=1

ρi−1αh−i
1 +ρh−1(φ̃0+φ1(α0+α1xT)− yT).

Hence it follows that

∆E(yT+h|ΩT) ≷ 0 for
h−1

∑
i=1

ρi−1αh−i
1 ≷ −ρh−1(φ̃0+φ1(α0+α1xT)− yT)/(φ1(α0+(α1−1)xT))

⇔
h−1

∑
i=1

ρi−hαh−i
1 =

h−1

∑
i=1

(
α1

ρ

)h−i

≷
yT − φ̃0−φ1(α0+α1xT)

φ1(α0+(α1−1)xT)
=

yT − φ̃0−φ1xT

φ1(α0+(α1−1)xT)
−1

A.3 Deriving h∗

Defininga := α1/ρ andb := (yT − φ̃0−φ1xT)/(φ1(α0+(α1−1)xT))−1 and determining

h−1

∑
i=1

ah−i =
ah−a
a−1

with a 6= 1 yields for

(i) a> 1:

∆E(yT+h|ΩT)≷ 0 ⇔ ah−a
a−1

≷ b

⇔ h ≷
ln(a+b(a−1))

lna
= h∗1 where b

!
>

−a
a−1
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and(ii) 0< a< 1:

∆E(yT+h|ΩT)≷ 0 ⇔ ah−a
a−1

≷ b

⇔ h ≶
ln(a+b(a−1))

lna
= h∗2 where b

!
<

−a
a−1

Note that for the unlikely case ofa= 1, ∆E(yT+h|ΩT)≷ 0 for h≷ b+1.

A.4 Forecast Variance

By consideration of A.1

V(yT+h) = E [(yT+h−E(yT+h))(yT+h−E(yT+h))] = E

[(
h

∑
k=1

ρh−k
1 εT+k

)(
h

∑
k=1

ρh−k
1 εT+k

)]

.

With ε being white noise the forecast variance is given as

V(yT+h) = E
[

(ρh−1
1 εT+1+ρh−2

1 εT+2+ . . .+ρ1εT+h−1+ εT+h)
2
]

= σ2
(

ρ2(h−1)
1 +ρ2(h−2)

1 + . . .+ρ2
1+1

)

= σ2
h

∑
i=1

ρ2(h−i)
1

resulting in 7.4 since

∆V(yT+h) = V(yT+h)−V(yT+h−1) = σ2ρ2(h−1)
1 .
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B Tables

B.1 Tab.4

Model

Statistic M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Minimum -0.18 -0.21 -0.33 -0.09 -0.21 -0.16 -0.14 -0.16 -0.25 -1.09 -0.19 -0.20 -1.70 -0.15 -1.24

1%-Quantile -0.10 -0.11 -0.20 -0.04 -0.13 -0.10 -0.07 -0.08 -0.10 -0.18 -0.10 -0.11 -0.22 -0.08 -0.25

5%-Quantile -0.07 -0.08 -0.13 -0.03 -0.09 -0.07 -0.04 -0.05 -0.06 -0.08 -0.06 -0.07 -0.11 -0.05 -0.12

1st Quartile -0.01 -0.02 -0.04 0.00 -0.03 -0.02 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.03

Median 0.02 0.02 0.02 0.02 0.01 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Mean 0.02 0.02 0.02 0.02 0.01 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

3rd Quartile 0.06 0.06 0.09 0.04 0.05 0.05 0.07 0.05 0.05 0.05 0.06 0.06 0.06 0.05 0.06

95%-Quantile 0.11 0.12 0.18 0.07 0.11 0.10 0.11 0.09 0.10 0.12 0.11 0.11 0.15 0.09 0.17

99%-Quantile 0.15 0.15 0.24 0.09 0.15 0.14 0.14 0.12 0.14 0.21 0.14 0.15 0.26 0.12 0.36

Maximum 0.22 0.25 0.52 0.12 0.23 0.21 0.22 0.18 0.35 0.84 0.20 0.23 0.74 0.20 2.95

1st Moment 0.02 0.02 0.02 0.02 0.01 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

2nd Moment 0.05 0.06 0.10 0.03 0.06 0.05 0.05 0.04 0.05 0.07 0.05 0.05 0.09 0.04 0.11

3rd Moment -0.02 -0.03 0.02 0.01 -0.03 -0.05 0.00 -0.03 0.07 -0.33 -0.03-0.01 -1.4 -0.05 3.42

4th Moment -0.04 -0.01 0.00 -0.01 -0.02 -0.05 -0.05 0.02 1.14 18.5 0.04 0.15 27.2 0.06 78.53

Table 4: gives some descriptive statistics of theN = 10,000 simulated inflation path according to the respective model. The 4th moment corresponds

to excess kurtosis compared to the normal distribution.
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B.2 Tab.5

Model

Statistic M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Minimum 0 -15.2 -17.3 185.8 -14.3 12.4 54.0 9.8 -17.0 -17.3 -6.4 -11.0-17.3 27.6 -17.3

1%-Quantile 0 -27.0 -131.1 202.7 -54.2 -3.2 89.0 73.9 17.3 -89.5 4.2 -3.1 -119.4 64.0 -125.3

5%-Quantile 0 -35.2 -178.9 166.1 -71.2 -9.1 84.1 64.5 38.9 -36.4 7.6 -7.2 -111.1 63.5 -117.0

1st Quartile 0 -23.0 -137.5 86.6 -63.2 -17.7 97.6 38.2 29.4 9.5 9.8 -0.1 -35.6 35.7 -49.6

Median 0 -16.6 -8.5 -10.6 -54.6 -22.7 83.6 -5.1 -16.0 -6.8 -6.0 -8.2 -11.2 -9.5 -34.3

Mean 0 -7.3 100.3 -42.7 -44.9 -32.5 7.1 -21.5 -19.5 28.6 -6.5 -9.7 60.6 -26.3 168.5

3rd Quartile 0 3.9 215.5 -135.6 -36.3 -42.9 68.5 -59.9 -63.4 -34.6 -15.4 -17.8 39.5 -68.8 14.7

95%-Quantile 0 25.8 757.7 -376.9 5.1 -89.2 25.3 -178.5 -112.6 117.4 -44.6 -24.8 377.3 -185.9 673.5

99%-Quantile 0 84.2 1186.4 -563.9 72.4 -92.0 2.6 -266.7 -68.2 755.9 -48.8 1.1 1411.9 -294.3 3358.4

Maximum 0 693.0 6148.0 -1011.0 129.0 -39.0 239.0 -52.02 2039.0 19007.0 -34.0 267.0 14417.0 -152.0 230937.0

1st Moment 0 -7.3 100.3 -42.7 -44.9 -32.5 78.0 -21.5 -19.5 28.6 -6.5 -9.7 60.6 -26.3 168.5

2nd Moment 0 21.9 310.7 -169.6 25.9 -22.1 -20.1 -77.6 -37.1 247.0 -14.8 -4.9 305.2 -79.8 2596.1

3rd Moment 0 0.1 0.6 -0.3 0.0 0.9 -0.1 -0.2 0.5 10.1 0.0 0.1 4.6 -0.2 56.8

4th Moment 0 0.3 3.1 -0.5 1.2 0.0 -0.1 -0.3 5.3 262.5 0.0 0.5 69.4 -0.2 4144.4

VaR 0.995 0 77.0 1405.5 -668.8 119.7 -80.0 9.0 -304.0 -3.2 1407.5 -46.136.7 2201.3 -334.9 5048.6

TVaR 0.995 0 121.4 1728.7 -768.5 128.2 -115.0 -8.5 -374.9 151.3 3758.3 -56.0 64.9 3892.3 -381.9 17591.1

Table 5: gives some descriptive statistics of the distribution of theN = 10,000 pension liabilities measured as the difference to the Wilkie model (M1).

The values are reported in 1e+06e. The 4th moment corresponds to excess kurtosis compared to the normal distribution.
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