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Abstract

This paper analyzes and quantifies the idea of model riskaretivironment of internal model
building. We define various types of model risk includingirasttion risk, model risk in distri-
bution and model risk in functional form. By the quantificatiof these concepts we analyze
the impact of the modeling process of an econometric modéherresulting company model.
Utilizing real insurance data we specify, estimate and &itewarious linear and nonlinear time
series models for the inflation rate and examine its impagienrsion liabilities under the aspect
of model risk. Under consideration of different risk measuit is shown that model risk can dif-
fer profoundly due to the specification process of the ecatdmmodel resulting in remarkable
monetary differences concerning capital reserves. Waduaniore propose a specification strategy
for univariate time series models and demonstrate thagltlyenarket risk and capital reserves can

be reduced distinctively.
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1 Introduction

From a financial institution’s point of view the importancedealing with model risk has risen substantially
since the implementation of new regulatory laws such as|Base Solvency Il. Since then the option of
implementing internal models instead of the hitherto ddtligy application of standard methods as e.g. being
documented in QIS 4b for the calculation of the solvency te@péquirement has been driven forth. Internal
models are particulary suitable for covering the risen dasaf stakeholders concerning the quality of risk
management as the incorporation of sophisticated and fexibthematical methods can be fulfilled. Another
advantage of internal models apart from the improved rislasueement marks the refinement of the risk
culture. This might be exemplified by the procedure of raiggncies demanding the existence of an internal
model in order for the company to be ratstiong concerning its risk management. Internal models can be
defined as large (high amount of explanatory variables)limear (embedded options), stochastic (modeling
future states of nature) systems. In the context of the thmtipproach of Basel Il and Solvency Il an estimation
of the balance sheet’s forecast distribution is carriedbyutonsulting company models (management rules,
provision for premium refunds etc.) as well as stochastidef®

Nevertheless the implementation of internal models inspliee thus far not satisfactorily handled issue:
the topic of model risk. Without consideration of the lattee capital reserves are determined by the standard
approach of risk management. That is portfolio risk is suistias the aggregate of the marginal distributions
of the risk factors market risk, credit risk and operatiofisit applying a suitable aggregation method (for a
discussion of this topic cf._Rosenberg and Schuermann [R@@@l reporting a risk measure thereof. With
the possible utilization of internal models in order to mladarket risk the risk measure of the latter depends
substantially on the concrete specification of the intematlel. Thus there does exist a strong relationship
between model risk and the resulting market risk which sihdwel accounted for when it comes to the deter-
mination of capital reserves. In this context we understadel risk as every risk induced by the choice,
specification and estimation of a statistical mdglel.

In order for model risk to be considered as a separate ris&rfao operational quantification of the former
should be provided. Although some authors like Crouhy €18198] or Cont[2006] made several proposals
for an abstract coverage of the topic there does not existamhiguous method for the quantification of model
risk thus far. In the literature there are basically two agghes dealing with the question of measuring model
risk: the bayesian model averaging approach (cf. le.q. Bebek [2003]) and the worst-case approach (cf.
e.g. Kerkhof et d1.[2010]). Although from a practical poaritview there is no such thing as obligatory capital
charges for induced model risk the Basel Committee M@D suggests a so-called multiplication
factor of three with regard to market risk in order to accofamtmodel risk. | Stahl[[1997] showed that the
multiplication factor may be interpreted as the relatiorttad risk measure of the underlying under different
(parametric or non-parametric) distributions. This iptetation corresponds closely to the worst-case approach
of measuring model risk. Hence in this paper we follow theidéKerkhof et al.|[2010] fragmenting model
risk into estimation risk, misspecification risk and idénétion risk and analyze its impact on capital reserves.
Our approach features the following new aspects concethatppic of model risk and capital reserves.

By using real insurance data we do not only analyze the maslelof the underlying but also take the
company model into account what, to our knowledge, has rer bdene before. By describing the structure of
an internal model Fifl1 illustrates this point. Whilst tixéséing literature does not differentiate between (6) and
(9), i.e. the statistical model equals the company modeltiag in the assumption that the underlying marks
a concrete balance sheet position we take the whole steuofuthe internal model into account. Concretely
we utilize a specific company model, the model for pensiadpillizes of a large German insurance company,
and demonstrate its interaction with the econometric mfmdehe underlying under the aspect of model risk.
By taking a broad range of time series models into accounthwdiffer in their functional forms we are able
to refine the definition of model risk further by discrimimagibetween misspecification risk in functional form
and misspecification risk in distribution and are thus ea@ld quantify its contribution to overall model risk.

2Note that human failure is captured under operational risk.
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Figure 1: illustrates the structure of an internal modek linportant to emphasize the control circuit on which
the process of risk management (consisting of 8-12) is basedThe statistical modeling process (1-7) is

preconnected. (5) functions as the feedback of the system.

The paper proceeds as follows. After a formal definition efvarious types of model risk the description
of the pension model is carried out in sectidn 3. Afterwarésclvaracterize the different econometric models
for the underlying in sectiol 4 while developing a classtfima of univariate time series models and specify,
estimate and forecast a broad range of these. The result d@ipact of the model choice on the pension
liabilities are given in sectionl5. Following an empiricabdel specification strategy is carried out and its
importance is demonstrated. In secfidn 7 we extend the esicrszenario generator specifying an interest rate
model and examine the behavior of model risk in connectidh thie forecast horizon. Sectibh 8 concludes.

2 Measuring Model Risk

Let X be a random variable forming the stochastic prode§3$®,, with time indext being defined on the
probability triple (Q, F,1P) consisting of event space;algebra and a probability measure. Assume further-
more thatX is distributed according to some density functifigX), shortX ~ f;(X), where{f;(X)} with
j€J=(1,...,J) denotes a set of feasible density functions. With the saeupdéogue oKX being defined by
X= {X% }thl with T < o, Xis now assumed to be generated by a so-called data genguatitess (DGP).

The DGP connects the theoretical distributionXofvith its empirical counterpart by introducing tlke
dimensional parameter spa€C RK which determines the character of the empirical distriufunction.
The population parametéc © marks the point ir® that generated the data leading to the definition of the
DGP being given a®, (x|8). In a parametrical environmeftmay then be estimated via consideration of
f; (X). If there is no assumption abofjt(X) nonparametric methods might be applied.



Let furtherttj(p) be defined as a risk measure according to the confidencegetf@mous examples of
are the value-at risk (VaR) being defined\&aR(p) = inf{x € R|P(X < x) > p} and the expected shortfall
(ES) being proposed by Artzner ef al. [1D98]S(p) = Ep (x € R|x > inf{x € R|P(X < x) > p}). 7;(p) might
then be defined as the market riskoht levelp under the assumption &f ~ f;(X).

Note however that in practical wotkand f;(X) and thusD, are unknown. While the former is typically
estimated consulting, f;(X) andD, are rather specified via assumptions. Consequently thenesksure
marks an estimate, too, resulting in an operational dedimitf market risk.

Definition 1 (Market Risk) Let X be a random variable with X f;(X), D, (x|8) and sample analogue x. Then
the market risk of X concerning the confidence level p is gimeﬁl)(p) =inf{xe R| [*, f;(x/8)dx> p} for
the VaR and by’r}z)(p) = Ep(xe R|x>inf{xc R| [, f;(x|8)dx> p}) for the E

Taking the consideration of estimation uncertainty intocamt leads to the definition of estimation risk
as a component of model risk. Since the risk measure markiagxiimate of a quantile of its probability
distribution a confidence intervék; & n;j(a)] for the estimate at level-X a can be defined. Via the functional

delta method eta can be derivedrgga) = z1_q /20, Wheredj = \/p(l— p)/T - fj(fi(p))2. The quotient of
the upper bound of the confidence interval and the point estityields a definition for estimation risk.

Definition 2 (Estimation Risk) Let [Mj(p,a) = 7;(p) +nj(a) be the upper bound of thk— a confidence
interval of the risk measure’s point estimate. Estimatisk is then given by ER=M;(p,a) - i (p) 2.

Consider now the case where the assumed distributidhdifes not correspond to its true distribution, i.e.
D, (x|6) is misspecified. Indexing the assumed distributiorj by1 and the true distribution by= 2 yields a
formulation of misspecification risk. If2(X) is taken to be some estimate of the empirical density funcio
measure of total model risk corresponding to the Basel plidétion factor can be formulated.

Definition 3 (Total Model Risk) LetIMx(p,a) be the upper bound of the— a confidence interval of the risk
measure’s point estimate under the empirical density fanawhile Ty (p) denotes the market risk measure
under an assumed density functian Total model risk in correspondence tpdan then be derived as MR
Ma(p, o) - fu(p)~*.

We may now look at the DGP in more detail. In order for the DGBdanade operable in empirical work
D, (x|6) is mapped to the generic econometric equatica h(z|0) + & wherez = (%—1,...,%X0,%,--.,Y0) =
(%-1,%t) contains all kinds of endogenous_(1) and/or exogenousx) explanatory variabled)(-) describes
the functional form of the relationship asgddenotes an error term. If nola(z|6) = 0, Ty (p) corresponds to
the assumed distribution ferwhile fo(p) is interpreted as the risk measure corresponding to theraalpi
density function of x} = {€} resulting automatically in the definition of model risk giviey Defl3. If however
h(z|0) # 0 we may differentiate the definition of model risk even fertinto misspecification risk in distri-
bution and misspecification risk in functional form. For therivation of the former consider the case where
% = h(z|0) + & with h(z|8) # 0 and{e} ~ f2(€). Further denoting the resulting density functiorxddfy f3(X)
leads to the following definition.

Definition 4 (Model Risk in Distribution) Let M3(p,a) be the upper bound of the— a confidence interval
of the risk measure’s point estimate with the DGP of the ulyd®y being given asix= h(z|0) + & with

3If not mentioned otherwisg; describes the VaR in the upcoming analysis. In case we egpediely the VaRr risk measure the results
for the ES did not differ profoundly.



h(z|B) # 0 and {e} ~ f»(&) while fy(p) denotes the market risk measure under an assumed densitjofun

f1. Model risk in distribution in correspondence tg dan then be derived as MR= MNz(p,a) - ﬁl(p)‘l.

Straightforwardly we can now define model risk with regarthte functional form.

Definition 5 (Model Risk in Functional Form)LetM,(p,a) be the upper bound of tHe- a confidence interval
of the risk measure’s point estimate under the empiricabitgiiunction whileii(p) denotes the risk measure’s
point estimate with the DGP of the underlying being givenasi(z|0) + & with h(z|0) # 0and{e} ~ f2(g).

Model risk in functional form in correspondence t@8) can then be derived as MR= M»(p,a) - fiz(p) 1.

Note that the the components of model risk are connectecheiagiationshipMR = MRyjs- MRs ¢ /ERb.
Since so far solely the underlying has been regarded in flenviog we should look at model risk concerning
the company model. With the pension liabilities being cimoas an example of a company model the under-
lying X and the liabilitiesL are connected via the relationship= g(X) whereg(-) denotes a continuously
differentiable functiofl Then the density of. with respect tofj (X) is given byﬂ-(L) = fj(X) -|dh(L)/dL]
whereh(L) = g~(L). Hence the various definitions of market risk and model rista(, in distribution and in
functional form) can easily be transferred to the companglehby substitutingj (X) for ﬂ-(L). Note however
that we cannot define an estimation error in this settingesthe company model cannot be handled like an
econometric model.

3 The Pension Model

The model’s objective is to calculate path-dependent &pension liabilitied.. In general these pension
liabilities depend on many different factors including romic variables. As the development of the economy
goes along with great uncertainties, future pension ligsl exhibit a stochastic behavior. According to IFRS
the two most important explanatory variables for the pemabilities from an economic point of view are the
inflation ratel and the interest raté The reason for the former to play a great role in the deteation of L

is the fact that it is used as a discount rate whereas the fatietions as an adjustment for the obligations in
terms of salary rates.

In practice the calculation of pension liabilities is a vegmplex procedure dsfurther depends on a wide
range of other factors, i.e. mortality risks, contractustbds, possible cancelations etc., which additionaky ar
very likely to differ between a number of= 1,... P pensioners. With those factors being poole®inthe
pension liabilityLy of a portfoliok € K = {Actives, Vested Benefits, Pensiongat timet can be formalized
as

p
Likk = 3 Luje = 9(! jit, Yike: ©v), (3.1)
v=1

wherej = (1,...,N) denotes the number of paths.]3.1 is calledReasion Valuation System (PV8Ipte that
fort > t* wheret* denotes the current point in timie is a random variable since for every random variable
X and measurable functiag(-), g(X) is a random variable as well. Hence in order to analyze thehssiic
behavior of the pension liabilities appropriately a suéfitiy large amount of paths &f = g(I j,Y;) have to

be simulated. Whilst the simulation can easily be carriedau andyY, the calculations of the corresponding
L are too computationally intensive to be carried out for gwéngle path. In other words the functigg-) is

too complex to be utilized for the necessary amount of omrst

4A concrete specification af(-) is given in sectiofil3.



Thus the objective is to specify a functidi) that approximateg(-) sufficiently well. Once this function
is found and its parameters are calibrated, the liabil@@sbe fitted via application of

Lie = T jut. Yio)- (3.2)

f(-) will be called thePension Function (PFyith f(-) denoting its calibrated counterpart. The calibration of
thePF is applied by using subselts” |, Y C Y of the simulated paths. Those subsets are called samplispoin
and they are chosen as to represeandY properly. Once the sample points are determined the cametspg
pension liabilities can be calculated by ¥ Svia application ofLix = g(lik, Yikt; ©v), Wwherei = (1,...,M)
denotes the number of sample points. Note Mathould be chosen such that the reduction of the number of
paths fromN to M leads to an operable calculationlof After this has been donf-) can be calibrated using
the input datd Lk, likt, Yikt ) -

The above procedure is called dynamic transformation ambro This approach can be described as a
process in which an existing external system is run using alsmmber of prescribed deterministic paths
and the output generated is then transformed and used téastneumuch larger set of path-dependent results.
Hence the dynamic transformation approach leverages atirexsingle-path without requiring it to be run for
all paths. The objective of the dynamic transformation ni@l® produce results that are consistent with what
the external system would produce if it were run over all paifhe leveraging is necessary as the calculation of
the pension liabilities entails a very complex operatidshbuld be made clear that this paper solely deals with
the influence of the econometric model on the pension lizsliconcerning model risk, i.e. the difficulties
occurring in the selection of model points and calibratiérthe pension function are not considered in this
context and are open to future examination.

Concretely thé®F is given as

Lik = fi(lix Yik) = Bok- (14 Buk-lik)P2x- (14 Bak- Yik) P2k, (3.3)

where (Lg, Ik, Yk) are vectors of dimensiofM x 1) respectivelyfx = (Bok,---,B3k) is a (4 x 1) vector of
coefficientsk € {1,...,K} andi = (1,...,M). Fig[3 gives an idea of the shape of the funclohhe function

10

Figure 2: illustrates the shape of the pension functiardescribes the inflation rate, the interest rate is given
by x2 andL is displayed on the-axis. Note that the combination of high inflation rates amal interest rates

leads the function to rise quickly.

can be interpreted as followg3k represents the pension value if bdih = Y x = 0, that is if there is no
inflation and the interest rate takes on zg$o, andpz x are the respective adjustment factors for inflation and

5Due to reasons of concealment fhecould not be reported in this paper.



interest rates whils, x denotes a discount factor. Furthermore it should be meedidhat the time offsets
chosen as to represent the appropriate duration of theianfledite and the interest rate amountjte= 10 and
to = 17 years respectively. Thlig, (Yj,) reflects the expected 10-year (17-year) ahead inflatien(iaterest
rate) for thejth path.

With the error between liabilities and the function valuesniy defined asy 3.3 can be calibrated by
application of

I”féi”||*‘5k||p with g = Lik — Bok- (14 Brk-lix)P2* - (1+ Bak-Yik) P2%,
k

wherep should be chosen appropriately. The minimization algorithorks as a combination of grid search
and hill-climb method.

4 The Inflation Models

In order not to further complicate the procedure the econaeenario generator solely deals with modeling the
inflation rate for a start. As far as the interest rate is comeg scenarios having been developed internally by
the insurance company are utilized (for a brief overviewhef interest rate scenario’s distribution cf. EI@4).

This is legitimized by considering the position of the inflatrate at the top of the cascade in the benchmark

Interest Rate Scenarios

il

0.03 0.04 0.05 0.06 0.07

Interest Rate

Figure 3: describes the histogram and density estimatitimeahterest rate scenarios generated by the insurers

internal economic scenario generator.

Wilkie model M @]) mirroring its particular imptance. In case a misspecified inflation model is
utilized the misspecification error transmits throughdw thole system. This means that dealing with the
inflation model should be of the highest priority when it cantie specifying an economic scenario generator
that is to outperform the Wilkie model.

In order to carry out a consistent procedure of model spatiific a hierarchy of the univariate time series
models being used in practice is very helpful. In the firselave discriminate between linear and nonlinear
models. Recall that by the Wold decomposition any zero-npearly non deterministic stationary process
{yt}{_; can be written in the form

Ve = iwi&—i (4.1)

8In chaptefY the relation between the inflation model andésteates is further analyzed.



wherey; ||Wi||? < = and{&}{_, is a stationary sequence of centered and uncorrelatedravaiéables with
common varianc&. A process{yt}i_; is said to be linear whef; } 9 (0,%) in[41. Otherwise the process
can be declared nonlinear. Note that the nonlinearity canrda the mean as well as in the volatility.

This thought leads to the discrimination of three classetnoé series models in our model selection
procedure: linear models, nonlinear models in the mean anlinear models in the volatility. Figl.4 illustrates

the classification of time series models. Whereas the majargb the existing linear models can be subsumed

[odel Class |
Model Class [

| Linear | _| Nonlinear Ii
ARFIMA (p,d,q) | —@— | In Volatility |
:------I ARMA (p,q) l ------- | Mean Shift STAR (p) | APARCH (p,q,v,5) |

f

AR (p) MA (0 TAR (p) | camcipo |

Figure 4: describes the classification of univariate timmesenodels. The dotted lines signify nested relation-

ships.

under the class of autoregressive fractionally integrateding average models, sh&kRFIMA(p,d,q), the
class of nonlinear models is not as homogenous.
ARFIMA models. TheARFIMA(p,d,q) model can be defined as

(L) to(L)(1-L)%y =&, 4.2)

where{y }{_, describes the time series of interest dad,_, forms a white noise proces®(L) = 1—6;L —
Bol2—... — BgL9 andd(L) =1—@L — @L2—... — @pLP are polynomials of degreepand p with L' being
defined as the backshift operator such tHay; = y;_i. d describes the fractional differencing parameter. Note
that by setting zero restrictions on the respective parardéi? nests a broad range of linear time series models
like autoregressive and moving average processes.

Ford € Z{§ the resulting model belongs to the well-known classA&MA models having elaborately
been examined by Box and Jenkins [1976]. The estimationegiare in this model class is usually be carried
out by testing for unit roots first. Some formal tests for idigtiishing betweenl = 0 andd = 1 exist (see
e.g..Dickey and Fullet [1979] or Kwiatkowski et'dl. [1992Bfter having differenced the procedgimes the
resultingARMAmModel can be estimated by several methods such as contlgiomaof squares or maximum
likelihood estimation (MLE). Setting the order of the mogiaverage (autoregressive) part equal to zero leads
to the class of autoregressive (moving-average) processes

For many empirical time series however taking the first orstaeond difference seems somewhat exagger-
ated whereas not differencing the series at all does nat gtationarity. Therefore fractional differencing was
proposed by Hosking [1981] and Granger and Joyeux [1980] wi < d < 3 being able to model long-range
dependencies between (economic) variables adequdten be estimated via maximum likelihood methods
(cf. e.g.lYajimal[1985]). Beran [19D5] additionally sugtgean estimation method in case of nonstationary
long-memory @ > 0.5). [Hassler and Wolters [1995] examined the inflation rafeive countries finding ev-




idence of long memory in each series. For a more detailedrigéien of the estimation procedure cf. also
sectior[ 6.

Mean shift models. The simplest form of nonlinearity can be described by meéhrslodels. By rewriting
atime seriey; = |k + & as the sum of a deterministic partand a stochastic past the former can be modelled
aspk =+ S 1 Ai - [ (Ii <t <li1+1) wheren denotes the number of breaksare the break points$(-) denotes
the indicator function andl; = p;, 1 — 1. Note that structural changes in the mean are a typical ebeaniithe
occurance of spurious long memory (cf. Diebold and Inou@®12@r Engle and Smith [1999]). By neglecting
the mean shifts the estimation of the fractional differaggbarameted might be biased quite heavily. That
is Why |[E_Qb] proposed to first determine the number cdkbpmints in the model and thereafter estimate
theARFIMAparameters and the time of the breaks simultaneously. Vilbéne former is done via application
of the LIC information criterion described In Lavielle and Mouling0D0] the estimation is carried out by a
modified local Whittle method.

STAR models. One of the most prominent regime-switching model marks theath transition autore-

gressive 8T AR model introduced by Chan and Tdng [1086] and popularizé@ianger and Terasvirta [1993]

and Terasvirta [1994]. Itis given by

Yo = (Q1+@uiyi1+...+0pYi—p)(1—G(%-1;Y,C))
+(Po2+ PLoYe—1+ - - -+ P, Yt—p,y ) G(Ye—1;Y,C) + &t (4.3)

Thus theSTARmodel is given by two autoregressive regimes connectedéiransition functiorG(-) € [0, 1]
plus a white noise error term. @(-) is a continuous function the transition between the twomegiis carried
out smoothly. The transition occurs once the thresholdevelis passed such th&(c;y,c) = 0.5. Popular
choices for the transition function are the exponentiatfiom (ESTAR or the logistic function(LSTAR.

In the latter cas&(y;_1;y,¢) = (1+exp(—y(yi—1 —¢)))~L. Note thaty determines the smoothness of the
transition. If e.g.y is very large the change @(-) from 0 to 1 becomes almost instantaneoug:at = ¢
whereas fory — 0, G(-) converges to a constant ahdl4.3 reduces to a linear modehelfotmer case one
speaks of a threshold autoregressive (TAR) model. For ampbeaof anE ST ARapplication on the inflation
rate cf/ Gregoriou and Kontonikds [2006] while an exampteafoL ST ARcan be found in HUH [2002].

[23 can be estimated via nonlinear least squares (NLS)i@mace has to be taken concerning the choice
of the starting values for the optimization algorithm ashaslthe estimation of the smoothness paramgiter
the transition function due to reasons of identification.

APARCH models. The third class of time series models to be examined is thepgobregime-switching
models for the volatility called general autoregressiveditional heteroscedasticif@GARCH) models. The
latter are very popular among practitioners (cf. e.g. Kasas et &l [2004]) as they are not only capable of
describing stylized facts of financial time series such a®&x kurtosis or fat-tailedness but also incorporate
the concept of volatility clustering meaning that periofl$ange movements in prices alternate with periods
during which prices hardly change. The general asymmetweep GARCH (APARCH was introduced by

. ] and is defined as

p q

Yo = H+ ) a-it+ ) &—j+E&, (4.4)
2,20t 3 B

&t - htl/a'vta
K s &

he = o+ ) oic(le—« — Wi &) +21B"h‘*" (4.5)
K=1 =

wherep andw are constantsa, a andp are vectors of coefficients afd: } e (0,%). Obviouslyg; is now no
longer assumed to be homoscedastic but conditionally detedastic ak[e2|Q; 1] = h; for & = 2 with Q;

describing the information set of all relevant informatigmto and including timé— 1.



W reflects the so-called leverage effect taking into accaduatt positive and negative shocks might have a
different impact on the conditional volatility of the prase By rewritind 4.b fod = 2 as

K L
h =w+ z [ak(l— l]Jk)2—|—4le]Jk- [(&_k < O)] '512,k+ Z Br-hey
k=1 =1

with 1(-) denoting the indicator function it can be seen that negaticeks have an impact af(1 — i) +
4a Pk on the conditional variance, while for positive shocks tngact reduces tay (1 — Y)?. Finally 8 > 0
mirrors the parameter of the Box-Cox transformation. Nog by setting (zero) restrictions @y a, B, @
and/ord several nested models can be specified [(cf._Boller Q@&le for all the reported models in
sectior b5 was set to 2 specifying @JRGARCH(cf. [Glosten et &l 3]) fow # 0.[4.4 can be estimated
by MLE. The specified models and its parameters are givenbfilTa

Parameter
Equation | Model | p q d p1 p2 c Y K L U] Notation

M1 1 0 0 - - - - - - - Wilkie, AR(1)
M2 2 2 0 - - - - - - - ARMA(2,2)

2 M3 0 0 0178* - - - - - - - ARFIMA(0,d,0)
M4 | 2¢ 2 0118* - - - - - - - ARFIMA(p,d,q)
M5 0 0 0083 - - - - - - - HSU
M6 - - 1 1 0005 40 - - - STAR(L,cy)

a3 M7 - - 13 13*  —0.012* 40 - - - STAR(p,cy)
M8 0 0 0 1 0 0 ARCH(1)
M9 0 0 0 4 0 0 ARCH(K)
M0 | O O 0 1 1 0 GARCH(1,1)
M1 | 1 O 0 1 0 0 ARMA(1,0)-ARCH(1)

a4 M2 | 1 O 0 Z 0 0 ARMA(1,0)-ARCH(K)
M13 | 1 1 0 1 1 0 ARMA(1,1)-GARCH(1,1)
M14 0 0 0 1 0 0083* APARCH(1)
M15 0 0 0 1 1 0102 APARCH(1,1)

Table 1: offers an overview of the specified modélsignifies that the respective lag order has been chosen
via information criteria.** marks estimated values. Note that in M6 and ¥Was respectively estimated to
equal 40 signifying that the regime-switch is not carrietiuoothly. In fact a threshold autoregressive (TAR)
model is specified. The model specifications reported her¢éha most striking ones regarding its impact on

the pension function. We examined a broad range of furthezriBpations which can be reported upon request.
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5 Simulation Results

5.1 Inflation Models

The modeling of the inflation rate has been carried out bygusionthly US inflation data for the period
01/1954 until 02/2010 taken from Datastream. The time senal its empirical density estimate is plotted in
Fig[3.

Inflation Rate Inflation Density Estimation

i
|

T T T T T T r T T T 1
1960 1970 1980 1990 2000 2010 -0.05 0.00 0.05 0.10 0.15

0.10
I

Inflation Rate
ity

0.05
I
D

0.00
I

Year Inflation Rate

Figure 5: plots the monthly US inflation rate being calcudads the difference of the log consumer price in-

dexes in regard to the respective value from the previousayehthe corresponding empirical density estimate.

The ADF test (cf. Dickey and Fullbf [1979]) as well as ti@SStest (cf. Kwiatkowski et d1[[1992]) indi-
cate the series to Hé1) which is why henceforward its first difference is utilizechelprocedure concerning
the simulation of the inflation rates is given as follows. Each of theKk = 15 modeldMy, k=1,... K, the
parameters are estimated. Following forecast vajuaswith h=1,... H are derived, where the forecast
period is chosen to equéd = 118. This value accounts for the fact that]3.3 necessithwd @-year ahead
inflation rate while having monthly data up to 02/2010. Thee@ast values are then given by

Yirh = E(Vesn|Qtin-1) +&4n, h=1,....H (5.1)

whereQ;.,_1 is the information set consisting of all relevant inforneatup to and including time+ h — 1.
The yearly inflation rate is then given by the year's meanealthis procedure is replicatéti= 10,000 times
for each of thek = 15 models yielding the empirical distributions which arensuarized in Tabl4 (cf. section
B).

The first striking result marks the fact that the differenckthe inflation’s distributions mainly focuses on
its tails. Whereas the central part of the distributionsuigogsingly homogenous the more extreme quantiles
and the range differ considerably. This is especially drig those models belonging to the clas$G#&RCH
processes (i.e. M10, M13 and M15). Although these modekxctst rather plausible 10-year ahead inflation
rates of approximately 2% in the mean its worst case scenafie.g. 170% deflation do not seem to be very
realistic.

An explanation for these features can be given by more thybtiguooking at the autocorrelation function

of the GARCH(1,1) process|_Bollerslév [1986] and Bollerslév [1988] showeat thekth autocorrelation of
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the squared errors in tt@ARCH1, 1) process is given by

afps
= 1+ —— 5.2
P1 1 1 2048, 2 (5.2)
Pk = (01+Bl)k71p1 fork=23,... (5.3)

Note that the decay factor bf 5.3dg + B;. If the sum is close to 1 the autocorrelations will declinéyorery
gradually (although an exponential decline is still givdn)our case the sum of the estimated coefficients from
the respectivé6SARCHmodels are in each of the three cases very close to 1 i.eGARCHmodels feature
slowly decaying autocorrelation functions. This leadh®rtesult that draws of exceptionally high error terms
during the simulation procegsb.1 hardly decline in this elathss explaining the extreme scenarios. Note that
the fact of the sum of the estimated parameteitGARCH1,1) models being close to 1 is commonly found
in empirical research. E.I 86] estima@lRCH1,1) models for 40 different financial time series
finding in all but six cases that®7 < a; +B; < 1.

It should furthermore be mentioned that Bollerslev [1986j @ollerslev [1988] conditioned B[2-5.3 on
the validity of (ay + B1)? + 20@ < 1 signifying that the kurtosis of; is finite. If however this cannot be
maintained, which is the case in our analysis, Ding and Graiit996] showed that foo; +B1 < 1 and
(a1 4+ B1)?+202 > 1 theGARCH(1, 1) model is still covariance stationary with infinite fourth ment. In
this cas€ 513 is approximately valid with ~ a; + B1/3. Note also that thel SU model (M5) features a lower
mean than the other models. This is due to the fact that werdigtedn = 1 break point via th&IC criterion
att* = 302 which corresponds to 02/1979. By looking at[Hig.5 it lmes clear that aftetr* the trend in the
inflation rate is declining what explains the lower mean of &&n over 10,000 replications.

The risk measures being defined in seclibn 2 are summarizgabl2. By first concentrating on the esti-

Model | Tu ER ER.  MRyis MRsg¢ MR

M1 0.15 1.088 1.022 0.988 0.845 0.81
M2 0.15 1.085 1.024 0.997 0.807 0.78
M3 0.24 1.096 1.028 1.016 0.499 0.49
M4 0.09 1.068 1.022 1.057 1.362 1.40
M5 0.15 1.286 1.025 1.018 0.814 0.80
M6 0.14 1.098 1.024 1.000 0.874 0.85
M7 0.14 1.079 1.023 1.015 0.819 0.81
M8 0.12 1.093 1.029 0.994 1.029 0.99
M9 0.14 1116 1.029 0.868 1.029 0.86
M10 0.21 1189 1.029 0.589 1.029 0.5§
M11 0.14 1.085 1.024 0.974 0.893 0.84
M12 0.15 1.088 1.025 0.975 0.877 0.83
M13 0.26 1.278 1.029 3.231 0.134 0.42
M14 0.12 1.077 1.029 1.055 1.029 1.05
M15 0.36 1568 1.029 0.375 1.029 0.37

g O Fr W © © 0 b W B 0O 0 W O O

Table 2: returns measures of market risk, estimation riskgehrisk in distribution, model risk in functional
form and total model risk being defined in secfidn 2 for eactinefmodels withp = 0.99 anda = 0.05.

mation risk with regard td1(X) it becomes clear that for the majority of the models the estiion error lies
somewhere between 5 and 10 percent. GR&RCHmodel class again forms an exception with estimation risks
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up to almost 57% which naturally can be attributed to its fielagratedness and high volatilities. Together
with M3 those are also the models featuring low multiplicatiortdex being displayed in the last column.
Note that in many popular exampl®R > 1 as the underlying marks a financial market variable exhipit
the stylized fact of fat-tailedness. This results in the gitg@ density function having a higher kurtosis than
most of the standard parametric models which is whfp) > T (p) with the resulting multiplication factor
exceeding 1. Inflation however is not a monetary but a reahbbe usually not featuring these stylized facts.
Hence in many cases (except tdd andM14) the parametric distribution possesses a much higheéodisr
than its empirical counterpart. Thus our results mirrorftiilowing trade-off. Those models implying a low
market risk are penalized by a multiplication factor gre#ttan 1 concerning the capital reserves. If a model
reports a high market risk it is compensated by a multiplecetactor smaller 1.

Another crucial aspect is the fact that model risk in funagiform marks the main factor for the determi-
nation of total model risk. By looking at the last three cohswof Tall.R it becomes clear that except for the
GARCHmodel classMRy;s is very close to 1 indicating low explanatory power fdR = MRyis- MRt /ERy
which is a rather intuitive result. Note further that there five models exhibiting the same model risk in func-
tional form of 29%. For those modelsz|6) = 0 in % = h(z|0) + & which means that there are no short-term
dependencies in theGP. Hence model risk in functional forms reduces to the esiimnagrror concerning
TB(p), i.e.Ma(p,a)-f(p) = n2(a). This also becomes clear by looking at column 3 where thenasion risk
concerningk with € ~ fa(g) is describefl In other wordsfz(X) = fa(€) results in model risk in distribution
exclusively determining total model risk.

Hence we can conclude that market risk as well as model rigkrslisubstantially between the various
econometric models. Whereas theoretically there is a todffdeetween market risk and model risk as both
depend on the functional form and the distribution of theartyng practically the Basel multiplication factor
is fixed which leads to the fact that the model inducing thegsimarket risk implies the lowest capital reserves.
The implication of this result in terms of monetary valuesuslined in the next section.

5.2 Pension Liabilities

Once the inflation scenarios have been determined the pormding pension liabilities are calculated[by]3.3
via the calibrated parametgds The resulting distributions df, are summarized in Tab.5 (cf. sectloh B). Note
that due to reasons of concealment the respective differenthe benchmark Wilkie modelM1) instead of
the absolute values are reported.

Again the models of th&ARCHclass feature distinct differences in the tails in compmariwith the other
models. By recapitulating the shape of the pension fundiebn Fig[3) this result should not be surprising.
Remember that th6 ARCH inflation scenarios exhibit values in its right tail that arell above 0.4 which is
exactly the area whefe_3.3 increases rapidly. As the peffisiuriion is leveraged by the inflation scenarios
the center of the distributions differ slightly more tharm thcenarios itself. Nevertheless the most striking
deviations are once more found in the distributions’ tails.

By looking at Tali.b it can be seen that the values for the VdRrdénormously. Note that the values
are reported in millior€ implying a discrepancy of the model with the lowest VaR (Maidlahe model with
the highest VaR (M15) of 517.4 million €. Of course, one might argue that common sense allows the
exclusion of theGARCHmodel class but then still the difference adds up ,i©072.3 million € (M4 vs. M3).
Regarding the expected shortfall the differences in thesipenliabilities are even more striking going from
18,359.6 million € without exclusion of th&sARCHTto 2, 497.2 million € without consideration df110,M13
andM15. Generally it becomes clear that both a high range andsexagtosis in the econometric models
produces the kurtosis in the pension liabilities’ disttibo to rise resulting in large values for the VaR and ES.

As was argued in secti@f 2 the market risk.d§ given byft (p) = inf{L € R| [*,, f;(L|8;B)dL > p} with
fi(L) = f;(X) - |dh(L)/dL|. B3 automatically yields(L) = B;((L/Bo(L1 + BsY) P3)¥/PL — 1) which is why

"Note that the fact thaE R, = 1.029 forM13 is an artefact caused by rounding. It is not perfectly kuay (a) concerningh(-) = 0.
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|dh(L)/dL| = (B1B2L) *(L/Bo(1+B3Y)P3)Y/PL. Denoting the absolute difference @ p) andfij(p) where
i,] € 7 by T5; we may now define the different types of model risk in terms ohetary values. Hence total
model risk is given bynr = T, model risk in distribution is defined asryis = T3 andmr; = T3 describes
model risk in functional form.

Tab.[3 returns the resulting values in milli@with market risk being again measured as the difference to
the Wilkie modeM1. Itis of no surprise that the results displayed in[Tab.2ecever in Talh]3. The market risk

Model i (p) Mrgis mr ¢ mr

1 0.0 6.9 -262.9 -256.0
2 71.6 -33.5 -294.0 -327.6
3 1305.1 -25.1 -1536.0 -1561.1
4 -571.7 14.2 301.5 315.7
5 15.8 46.2 -318.0 -271.9
6 -27.2 -48.7 -180.1 -228.9
7 37.6 -33.6 -260.1 -293.7
8 -250.3 -5.8 0.0 -5.8]
9 -40.0 -216.0 0.0 -216.0
10 693.3 -949.3 0.0 -949.3
11 -24.8 -49.7 -181.5 -231.3
12 0.6 -71.7 -184.8 -256.4
13 1925.0 20920.6 -23101.6 -2181)0
14 -316.3 60.3 0.0 60.3
15 2633.6  -2889.6 0.0 -2889.6

Table 3: returns measures of market risk, model risk initistion, model risk in functional form and total
model risk for each of the models concerning the monetanyevaf the pension liabilities. Due to reasons of
concealment the market risk is measured as the differente té/ilkie model M1). The values are reported
in le+0e6E.

of M4 undercuts the market risk 81 by 5717 million €. On the other hani4 features the highest model
risk describing again the above mentioned trade-off. Withrhultiplication factor being fixed in practidé4
clearly induces the lowest capital reserves. As the nexioseshows this marks a very interesting result since
M4 is the model which is indeed chosen by application of an gogbimodel specification strategy.

6 Empirical Model Specification Strategy

The process of finding an appropriate model for the inflaticenarios marks a widely debated task among
practitioners. In empirical work a specific model class i®nfchosen based on somewhat ideologic reasons
and a suitable specification procedure is only very seldaniechout. Even if previous work attested a specific
model to work very well for the economic variable at intereshsulting a different data set might lead to a
completely converse implication. That is why we propose ta daiven approach concerning the process of
model specification.

Our strategy consists of at most three steps and is givenlas$o At first we try to find the best model
in the class of linear time series. Once this model has beendfoit is tested for remaining unspecified
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nonlinearity. If the latter cannot be rejected the bestdimaodel is tested against each of the nonlinear model
classes given in Figl4 being represented by their most gefoem. In other words we discriminate between the
cases of short memory, long memory and spurious long memdmjist the decision between short and long
memory is the decision betwe&RFIMAandARMA spurious long memory can be invoked by a nonlinear
behavior of the process.

The selection of the most suited linear model might at fiightsbe thought of as an easy task since almost
every conventional time series model is nestdd ih 4.2. yeselecting the lag orders[in 4.2 first and estimating
the corresponding parameters thereafter one might beaingpbse zero restrictions on some of the parameters
leading to sub models of theRFIMA class. Hence a general-to-specific modeling procedure/a&lgui to
the Box-Jenkins approach fétRMA models might be applied. There are however certain cavaaitsis
argumentation.

Note that there are several ways to estimate the fractioffietehcing parameter in-4.2 which are based on
the periodogram of the process . These include e.gGid estimator of Geweke and Porter-Huwak [1983] or
the Whittle estimator (cf. Robinsoh [1995]). The spectruina covariance stationary proce§s}_; is given
as

f(\) = |1—exp(—iN)|["2f*(\), —m<A<m |d <05 (6.1)

with f*(A) representing the short-term correlation structure of tleelehandi = /—1. In practicd Gl is
approximated by the estimation function

logl(Ak) =c+dX+e, k=1,....m (6.2)

for m< T/2, X = —2log(sinAk), Ak = 2rk/T andl(A) = (2nT) | 5, yr expl(itA)|? for the sampley, t =
1,....T. is called the periodogram wheteandd can be estimated via linear regression. However, as
Hurvich et al.[1998] pointed out, the procedure of estimgti by[6.2 leads to a bias in case there are short-term
correlations in the model, i.e. f*(A) is not a constant. This induces thafifl4.2 contaM&MVAcomponents

no statements about the parameters’ significance shouldale for estimators based onl6.2.

Hence there are two possibilities for avoiding this shartow. Either one applies a different estimator
not being based on the periodogram such as the nonpararestiritator proposed MrémSl] or the
maximum likelihood estimator MQS] determinirigarameters simultaneously. Or the application
of tests discriminating between short and long memory shbel carried out. We decided for the second
procedure as it is, to our knowledge, not assured that altieenestimators are robust agaiARMAprocesses.
Concretely we lied two tests in order to discriminateveei short and long memory. Firstly we employed
the test ofﬁb@%p] and secondly we applied the test of Devidand Sibbertsen [2009)].

] specifies a modified rescaled range estimator diyen

QT _ ma)@<i§T{z{=l (yt _y)}a__ min0<i§T{z{=1 (yt _V)} and (63)
T

q
or=T" ZYt )2+ 2T Lwj(q )< > (Yt—V)(Ytj—7)> (6.4)
t

:J+]_

where{y}{_, denotes the process of interest with mganT 15[,y andwj(q) =1—(j/(q+1)) forg<T.
Hencd 6.B can be interpreted as the range of partial sumsiatidas of a time series from its mean, rescaled by
its standard deviation. Note tHafb.4 is the heteroscamigstind autocorrelation consistent variance estimator
with the weightswj (g) being those suggested by Newey and West [1987]. Hence irtliagocess is short-
range dependerdt controls for the autocovariances makingl6.3 able to disodte between short-range
and long-range dependence. AsY20r is asymptotically distributed as the range of a standargvibian
bridge under the Null of short-range dependence the lattiebe tested against the alternative of long-range
dependence.
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The bias test of Davidson and Sibbertsen [2009] is basEdlbar@l testslo : f*(A) = consvs. Hy : *(A) #
cons The test statistic is given by
7o di=d (6.5)
SE(d; —d2)

whered; andd, denote alternative estimators of the fractional differeg@arameter witlSE(-) being a suit-
able estimation for the difference’s standard deviaticingpelerived irl Davidson and Sibbert5én [2009]. The

authors further proved in their paper tiTefB—g N(0,1) under certain conditions. Choositdgto be the estima-
tor regressing(Ax) onto(Xy, 1) in[6.2 whilstd, is derived ifl (Ay) is regressed ont@¢, 1, hi(A), - .. ,hpt (Ak)),
whereh; (A\y) = cogjAx)/+/Ttis the jth order Fourier frequency, one can test the Null ofA&FIMA(0,d, 0)
process against the alternative of@RFIMA(p,d, q) process with eithep > 0 and/org > 0. Note thaE):B is
a simple type of thMM?S} test as under the uils consistent and asymptotically efficient, but
biased and inconsistent under the alternative, whetemsconsistent under both hypotheses.

With a p-value being very close to zero the Lo test clearlgats the Null of short-range dependence. The
p-value of the bias test equals 0.045 indicating that thesdRMAcomponents in the process at the 5% level.
Having in mind the result ad being actually different from zero we can now be relativeisesthat the presence
of the fractional differencing parameter is due to longgadependence and not spuriously causeAR¥MA
components although the latter are indeed present. Thireindxt step we estimated the parameters of the
ARFIMA(p,d,q) model simultaneously by the meth0d|_o_f_—B_érmg95] afteect@rlg the lag orders via the
Schwarz information criterion leading to the values repadit Tali.4 for M4.

Once a linear model has been specified and estimated it ézltagainst remaining nonlinearity. Note that
there are several linearity tests in the literature (foreeraiew cf. Granger and Terasviria [1993]). We focused
on testing against unspecified remaining nonlinearity@asfa practical point of view it is not fea3|ble to carry
out different types of tests for every kind of nonlinear mioddaus we applied the popular tes 986]
performing considerably well in small samples as has beewsln simulation studies (cf. e.f. T$ 86]
orlPena and Rodriguez [2005]). The test can be describedlasso

At first a linear model (in our case M4) is fitted to the time esrand the residuals of the lineargjtare
computed. Secondllp = M(M + 1)/2 proxy variables, wher® stands for the autoregressive order of the
process, are defined. The proxy variables are represenmd:byecr(Y{Yt) whereY; = (yt-1,...,%t—m) and
vech(-) denotes the column stacking operator using only those elenoa or below the main diagonal of each
column. Hence; consists of several squares and cross products of the sgrigsng the nonlinearity. Thirdly
each of the proxy variables is regressed agafnahd theh corresponding residuals are denotedipyFinally
the model

=& -0+t (6.6)

wheren is white noise and = (&;,...,&,) denotes a vector of coefficients._16.6 is estimated by OLS and
Ho:& ==& =0vs.Hy:§ #0, for at least oné=1,...,his tested consulting a conventional F-test.
Under the Null no remaining nonlinearity covered by the groariables can be detected. Having utilized the
test we do not find remaining nonlinearity4 as the Tsay test reported a p-value aforM = 38

7 Interest Rates

Until now the interest rate scenarios have been modeledesxasly, i.e. without regard of its reaction to the
inflation scenarios. Furthermore its duration was givenhmptetical considerations leading to the fact that

8M was determined by information criteria. Choosing différerters did not alter the test’s outcome.
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model risk was solely determined by the inflation model. lis thapter the economic scenario generator is
extended taking the impact of the interest rate’s duratromodel risk into account.

Note that there are mainly two approaches of modeling isteades in the literature. The first marks the
finance approach where affine no-arbitrage term structuidefador the interest rate are utilized. The main
disadvantage of this approach is that it is not economigalyivated. That is little can be stated about the
economic processes causing movements in the interestitateshortcoming can be avoided by modeling the
interest rate by macro models being specified as the intextess reaction function to changes in economic
variables such as e.g. inflation. Hence by noting that thetm@ark economic scenario generators imply
cascade structures with the inflation rate being the drifange, that is causality exclusively flowing from the
inflation rate into interest rates without any feedbackditrre, modeling the interest rates via a macro model
seems more appropriate for our analysis.

Recalling the shape of the pension function in [Big.3 it sHcwg clear that model risk depends on the
dynamics of the interest rate’s forecast distribution. &tethe objective is to derive conclusions about the
behavior of model risk in dependence on the forecast homZahe interest rates. That is once the dynamics
of the first two moments in dependencehafould be derived, statements about model risk can be deduced

As a typicall macro model for interest rates we utilized the modél of @met al. [2000] being given by

Yo = (1-p)X+pY-1+&, Wwhere (7.1)

y: denotes the funds rate at tih@ describes a coefficiers; is a normally distributed white noise term axds

the desired funds rate. The latter however depends on tieeatite of the one quarter ahead expected inflation
E(x-+1) and the inflation target &s well as on the expected output gaf& -1 — Z) measured as the deviation
of log real gross domestic product from trend (cf. e.g. T 1). With Q; denoting the information set
consisting of all relevant information up to and includiimgét the desired funds rate can be written as

X = J+OEMX1—XQ) +@E(z+1—ZQ),

wherey denotes the long term target for the funds rate. Hénde 7.&ldev according tg; = (1—p)(¥+
GE(Xr1— X Q) + @E(z41— Q1)) + pYt-1+ &

It can now be shown (cE_Al1) that under non-consideratichefoutput gap’s dynamics, i.e. fB(zr k) =
consvk € {1,...,H} the dynamics of the expectéd-step ahead forecast value of the funds rate are given by

AE(Yr+h) = E(Yr4h) —E(Y14h-1) 2 0 for @+ @1 (E[X7+h — X|Q7]) 2 E[yr4n-1—YQ1], (7.2)

Deviation Inflation Deviation Interest

whereqy denotes a constant term being defineldin A1l 7.2 can be ietegbas follows. If the inflation target
deviation exceeds more thqlﬁl times the previous period’s interest rate target deviatiamus a constant, the
expected value of the interest rate increases. If the iofiatirget deviation does not exceed more tipgh
times the previous period’s interest rate target deviatiorus a constant, the expected value of the interest rate
decreases.

In order to gain more detailed results the inflation modeldthbe specified and the dynamic$ofl7.2 should
be further analyzed. If the inflation is again modeled withllenchmark inflation modeli@bS] being
given by the simpléAR(1) modelx; = ap + 01%_1 + U the condition if”Z2 can be written as (Cf_A.2)

h-1 h—i ~
ay Y1 — Qo — QuXt
AE Qr)=0 for — = -1, 7.3
Orrmlr) 2 i; ( P ) = (0o + (ay— 1)xr) (7:3)
— _
=g(h) =P

°In his influential article{ Tayld)l{ 19§3] developed the Taytale by modeling the funds rate as a function of inflation #weloutput

gap. This model was refined by several authorsM@],Mr@]MﬁM&ﬂs@Qmmﬂj@] or

4], where the basic structure of Tayloiiimal model has been maintained.
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whereq denotes a constant being definefInlA.2.

Obviouslyg(h) rises withh for a:= a1 /p > 0 whilst b remains unaltered. This means that one might
find one 0< h* < « after which the expected forecast value of the funds ratateedly increases. In other
words forh < h* the development diE(yr,) depends on the initial conditions, i.e. on the size of théower
parameters in 713 whereas for- h* AE(y74n) > 0.

In order to determind* the cases of & a < 1 as well asa > 1 ought to be discriminated (cfi_A.3
in the following). In the former casAE(yrh|Qt) marks a convex function di leading to the fact that
AE(yrn|Q7) < O0forh < hi =In(a+b(a— 1)) andb > 0 whilst AE(yrn|Q1) > 0 for h > hj. However in
case O< a < 1, AE(yr4+n|Q1) marks a concave function &fwith Ai_fROAE(ynthT) =a/(1—a). Hence for

b > a/(1— a) the expected forecast value of the funds rate permanenthedses. Note that there are two
conditions in order for the latter condition to hold. Firtste enumerator and the denominator of the right-hand

~ !
side term ir_.ZB should feature the same sign and secdydly @ — @1x7| > (1—a) @ (0o + (a1 — 1)x7)|.
This behavior is illustrated in Fig.7
Note however that these statements do not suffice in ordesrteedmplications concerning model risk as we

(@) (b) ©

© < DetaE<0 ! DeltaE>0 o o

a(h)
9(h)
2
9(h)
2
L

Figure 6: illustrates the behavior AE (yr ) depending omg(h) := (a" —a)/(1— a) and the boundarl. In
panel (aJa= 1.1 andb = 5 resulting inh; = 5. Hence forh < 5 the expected forecast value of the funds rate
decreases whereas it increasedfor5. The same dynamics can be detected in panel (b)awitl0.75,b = 2
andhf = 5. In panel (c) the case of a permanently decreasing expscisillustrated as agaia = 0.75 but
b=3.5>a/(1—a). Inthe latter case there is no intersectiomy@f) andb and consequently always exceeds
(a"-a)/(a-1).

additionally have to regard the forecast variance of the$uate being given by (yr ) = 0?51, p?"1) (cf.
[AZ). Straightforwardly

AV (yr 1) = 0%p? MY, (7.4)

Forp > 0 as is the case in the existing literature (cf. Taylor [19@rida et al.[2000] dr Orphanides [2004])

the forecast variance marks a monotonically increasingdqaee) function oh. In other words the interest
rate’s volatility increases with the forecast horizon, iéth the implied duration.

These results lead to the following statements.a&srl model risk increases if firstly < hi and secondly
b > 0 as in this case the expected forecast value of the funddeateases while at the same time the forecast

10This condition should always hold as neitfogrnor p are negative in empirical applications.
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variance increases withindicating an inflation / interest rate combination in theaof the steeper ascend of
the pension function. Fdr > hj no distinct statement about the behavior of model risk coriog h can be
made since the increase of the forecast variance might veltyoe/overcompensated by an increasing expected
value of the funds rate. For@a < 1 the same conclusions hold with one exception.tFsra/(1—a), h > hj

can never be fulfilled indicating that model risk always sases with rising.

These findings illustrate and elaborate three very imporapects of model risk. Firstly the forecast
distribution of the funds rate is driven by the models beisgumed for the interest rate as well as for the
inflation. I.e. the model risk of the company model dependkerspecification of the statistical models flowing
into the ESG (cf. Fif]1). The second and third crucial congms of model risk are given by the estimation
procedure as well as the data. This becomes clear by regakinditiond 7.8 and_7.4 which determine the
behavior ofF (y1.1|Q7). Both conditions merely include parameters to be estim@igzh, a1, ¢1,0) and data
values &r,yr1). Whereas the estimated parameters depend on numeroudaratisns such as the estimation
procedure, the choice of the sample period, as well as ttee xlandyt are exclusive components of the
sample at hand. Note that these three aspects are linkedlessly with each other as naturally the model
specification determines possible estimation proceduhéshwdepend on the data while the latter again drive
the model specification process. Hence when it comes to thAlgsas of model risk it seems reasonable to
first consider several aspects of model risk such as spédificastimation and data rather than examine the
components unconnectedly whilst secondly the interaatfdhose components should not be neglected.

8 Conclusion

In this paper we exemplified the interaction of an econometrddel and the corresponding pension liabili-
ties under the focus of induced model risk. For this purposeanedeled the inflation rate with 15 different
economic scenario generators representing most of theentiomal time series models in the literature. We
then looked at the impact of model risk on capital reserveh tie former functioning as a multiplication
factor concerning market risk. We differentiated modek iigto estimation risk, model risk functional form
and model risk in distribution. The first striking result rkathe fact that between the models the distribution
of the inflation rate most substantially differs in its tailEspecially the class dGARCH models exhibits a
high range as well as high kurtosis. This leads to a high esiim risk as well as considerable model risk in
distribution for these kinds of models. The remaining medwwever feature rather decent (between 5 and 10
%) estimation risk. With model risk in distribution also bgirather small total model risk is mainly caused by
model risk in functional form. By using real insurance datathven determined the corresponding pension lia-
bilities finding that induced model risk differs remarkablgpending on the economic scenario generator that
is applied. In general the model risk rises if the range anttiv® kurtosis of the inflation scenarios increases.
Concretely the discrepancy between the models might add sgveral million€ concerning capital reserves.

Furthermore we tried to objectively specify an inflation rabdy a data driven approach. By discrimi-
nating between short and long memory in the first place aned#fier testing for spurious long memory we
predetermined the model class empirically. It was found filathe data set at hand long memory is indeed
existent. Spurious long memory caused by nonlinearitieddgcdowever, not be detected. Hence the specifi-
cation procedure signaled &RFIMA process to be most appropriate. Remarkably the fitted psanesks
the model with the lowest induced model risk for the pensiahbilities. Thus it can be stated that the task of
model specification exhibits great influence on the relatedehrisk.

Finally we examined the role of the interest rate model caoming model risk. By especially concentrating
on the forecast horizon i.e. on the interest rate’s durdtieing utilized in the pension function we find that
there is a strong relation between model risk and the fotdwagzon. Whether or not the former increases or
decreases cannot be derived generally but mainly depentie aata.

Our analysis might be refined in two respects. First, we mpdoalused on cascade models as economic
scenario generators. Here our work might easily be extewidadtilization of (structural) multivariate models
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covering topics such as cointegration or causality. Funtleee consulting an alternative company model being
dependent of more than two economic variables offers thigsisaf the cascade structure of the Wilkie model
in general and possible improvements thereof.

Secondly as was briefly mentioned in secfibn 3, we did notwihlerrors which might occur by leveraging
the pension function. l.e. the selection of model points ab &s the calibration of the pension function was
neglected. Especially the first aspect is worth considexiigis still unclear which scenarios should be selected
such that an appropriate fit of the pension function is agdeConsidering that an unrepresentative selection
might lead to a bad fit misleading statements concerning émsipn liabilities and the induced model risk
might be concluded.
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A Proofs

A.1 Deriving[7.2

Considering_ 711 the—step forecast value of the interest rate is given as

h h
yrin = (1-p) S p" oy + S " rer ik (A1)
=] =]
Thus it follows that
h
E(yrsnlQr) = (1-p) Y P " E(Xr4klQr) +p"yr
=

= PE(Yr+h-1/Qr) + (1= p)E(Xr+n|Q7), since
E(yr+h-1/Q7) (1-p) [p“‘zE(Xm) +P"PE(Rri2) + ...+ PE(Xrih-2) + E(>—<T+h,1)} +p" My

Hence

AE(yr+h|Qr) = E(yr4+n/Qr) — E(yr4n-1/Q7)
(P1— DE(YT+h-1/Q7) + (1 - p)E(Rr1n|QT)
(1—P)(E(Xr4n|Q1) — E(yrn-1/QT1))

= AE(yr4n|Qr) = 0 for E(Xr4n|Qr) 2 E(yr+h-1/Qr). (A.2)
Under non-consideration of the output gap’s dynamicsfoeE (zrx) = consvk € {1,...,H}

Vv

Xtk = Y+ @EXrk—XQr) + @E(zrk—ZQr)
= @E(ZrQ) - ) +@E(Xr 4k —K|Q1) +§
=@

which immediately results in7.2.

A.2 Deriving[7.3

Utilizing the Wilkie inflation modell(Wilkie[1995]) beingigen by the simpleAR(1) modelx = oo+ 1% 1+
U leads to

k )
E(xrk/Q1) = 0o 210(‘{_' +afxr. (A.3)
i=
Recursively inserting into Al 2 yields for
h=2:
E(Xr+2(Qr) = ¥—X+@®E(Zri2—ZQ1) +@E(X742|QT)
=@
= Qo+ @u(0o(1+0a) + ofxr)
E(yr+1/Qr) = pyr+(1-p)E(Xr+1/Q1) = pyr + (1 —p)(Po+ @r(00 + 01XT7))
= AE(yr2|Q1) = @ag(ao+ (01— 1)x7) +p(@+ @ (0o + a1xr) — Y1)

=E(Xr12)—E(Xr+1)
= E(Xr42) —E(Xr+1) +PE(X741) +pyT
= AEXr42)+p(E(Rr41) — Y1)
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E(Xr+3|Qr)
E(yr+2/QT)

= AE(y143|Q71) =

h=H:

= AE(Yr+nQr) =

AE ()_(T+h—i+l)

= Qo+ @EXTihoiz1) —

@+ @1(0o(1+ag+a?) 4+ adxr)
PE(Yr+1) + (1 —p)E(Xr42|QT)

P2yT +p(1— P)(Qo+ @u(do + arxr)) +
— Y1)

AE(Xr43) + PAE (X 42) + PP(E(XT11)

AE (X7 4h) + PAE (Rr4n-1) + P?AE (Rrn_2) +...+p"*

(1—p)(Qo+@u(ao(1+01) +adxr))

(E(Xr+1) — Y1)

he1
Zl P AE Ry hoiva) + " H(E(Rr 1) —yr),  with

E(Xr+h—i+1) — E(Rr+n-i)

h—i+1

hoit1-
= @ (ao Z afl ity

= (Pl(aoal

h l-l—((]? i+1 GP:E I)XT)

= (plal "o+ (a1 — 1)xr)

and thus

AE(yr4h|QT)

Hence it follows that

AE(YT+h|QT) 20
Zpl 1 h i 2 _phfl
h—i
@Zpl h h— IZZI(Gpl>

A.3 Deriving h*

Defininga:= a1 /p andb:= (yr — @ —

with a # 1 yields for

(iya>1:

AE(y7r4n|QT) 2
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for

(Go+ Qu(0o + azxr) —

YT — @ — @u(do+a1xy)

(Go+ @uE (Xr+n— '))

0(020(*1" ol ixr))

@1(ao + (ay — 1)xr) Zp' Yo+ " (@ + @u (a0 + arxr) — yr).

yr)/(@(ao+ (01— 1)xT))

A%

h-1

@ (ap+ (01— 1)xT)

@1x7)/(P(0p+ (01 — 1)xT

D L. Rkt Y
@(ao+ (0p — 1)xr)

)) — 1 and determining

h-i_ & —4@a
i;a ~a-1
h
a'—a
>
0 & 1 < b
In(a+b(a—1)) —a
h > — —— "/ _h wh —
<h 2 ina 1 Wwhere b> —



and(i)0<a<1:

a'—a
AE(yr+nlQr)20 & —— 2 D
In(a+ba-1)) ., I —a
< ST A i
<h < ina hs where b<a—1

Note that for the unlikely case @f= 1, AE(y14n|Q71) =Z0forh=b+1.

A.4 Forecast Variance
By consideration df Al

>
=

p'ﬂkink) ( p?k€T+k>] .
1 K=1

V(yrsh) = E[(p2718T+1+92728T+2+~~~+plsT+h71+5T+h)2}

V(yr+h) = E[(Yr+h—E(yr+n)(Yr+n—E(yr4n))] =E l(k

With € being white noise the forecast variance is given as

o2 (pf‘h‘” 42y g2y 1)

h
2« 2(h-i)
9 p
2,

resulting inCZ.# since

AV(yrin) = V(yren) =V(yren-1) =a%r" Y.



B Tables

B.1 Tabl[4
Model
Statistic M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
Minimum -0.18 -0.21 -0.33 -0.09 -0.21 -0.16 -0.14 -0.16 -0.25 -1.09.19 -0.20 -1.70 -0.15 -1.24

1%-Quantile | -0.10 -0.11 -0.20 -0.04 -0.13 -0.10 -0.07 -0.08 -0.10 -0.18.16 -0.11 -0.22 -0.08 -0.2%
5%-Quantile | -0.07 -0.08 -0.13 -0.03 -0.09 -0.07 -0.04 -0.05 -0.06 -0.08.06 -0.07 -0.11 -0.05 -0.12
1st Quartile | -0.01 -0.02 -0.04 0.00 -0.03 -0.02 0.00 -0.01 -0.01 -0.010%0.-0.01 -0.02 -0.01 -0.03
Median 0.02 0.02 002 002 001 002 004 002 002 0.02 002 0.0220002 0.02
Mean 0.02 0.02 002 002 001 002 004 002 002 0.02 002 0.0220002 0.02
3rd Quartile | 0.06 0.06 0.09 0.04 005 005 0.07 005 0.05 0.05 0.06 0.066 0005 0.06
95%-Quantile| 0.11 0.12 0.18 0.07 0.11 0.0 0.11 009 0.10 0.12 0.1 0.115 0.D0.09 0.17
99%-Quantile| 0.15 0.15 0.24 0.09 0.15 0.14 0.14 0.12 014 021 0.14 0.156 0.D.12 0.36
Maximum 022 025 052 012 023 021 022 018 035 084 020 0.234 0.D.20 2.95
1stMoment | 0.02 0.02 0.02 0.02 001 002 0.04 002 0.02 0.02 0.02 0.022 0002 0.02
2nd Moment | 0.05 0.06 0.10 0.03 0.06 005 005 0.04 005 007 005 0.0590.004 0.11
3rd Moment | -0.02 -0.03 0.02 0.01 -0.03 -0.05 0.00 -0.03 0.07 -0.33 -0.6801 -14 -0.05 342
4th Moment | -0.04 -0.01 0.00 -0.01 -0.02 -0.05 -0.05 0.02 1.14 185 0.04150 27.2 0.06 78.53

Table 4: gives some descriptive statistics of she- 10,000 simulated inflation path according to the respectiveehothe 4th moment corresponds

to excess kurtosis compared to the normal distribution.
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B.2 Tab[B

Model
Statistic M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  M12 M13 M14 M15
Minimum 0 -15.2 -17.3 185.8 -14.3 12.4 54.0 9.8 -17.0 -17.3 -6.4 -11.017.3 27.6 -17.3
1%-Quantile | 0 -27.0 -131.1 2027 -542 -3.2 89.0 73.9 17.3 -89.5 4.2 -3.11194 64.0 -125.3
5%-Quantile 0 -35.2 -178.9 166.1 -71.2 9.1 84.1 64.5 38.9 -36.4 7.6 -7.21114 63.5 -117.0
1st Quatrtile 0 -23.0 -1375 86.6 -63.2 -17.7 976 38.2 29.4 9.5 9.8 -0.1  .6-35 357 -49.6
Median 0 -16.6 -8.5 -10.6 -54.6  -22.7 83.6 -5.1 -16.0 -6.8 -6.0 -8.2 11.2 -9.5 -34.3
Mean 0 -7.3 100.3 -42.7 449 -325 7.1 -21.5 -195 28.6 -65 -9.7 066 -26.3 168.5
3rd Quartile 0 3.9 215.5 -135.6 -36.3 -42.9 68.5 -59.9 -63.4 -34.6 -15.47.81 395 -68.8 14.7
95%-Quantile| 0 25.8 757.7 -376.9 5.1 -89.2 253 -1785 -112.6 117.4 -44.84.8- 377.3 -185.9 673.5
99%-Quantile| 0 84.2 1186.4 -563.9 724 -92.0 26 -266.7 -68.2 7559  -48.8.1 1 14119 -294.3 33584
Maximum 0 693.0 6148.0 -1011.0 129.0 -39.0 239.0 -52.02 2039.0 1000%#34.0 267.0 14417.0 -152.0 230937.0
1st Moment 0 -7.3 100.3 -427 449 -325 780 -215 -195 28.6 -6.5 -9.760.6 -26.3 168.5
2nd Moment 0 21.9 310.7 -169.6 25.9 -22.1  -20.1  -77.6 -37.1 247.0 -14.84.9 - 305.2 -79.8 2596.1
3rd Moment 0 0.1 0.6 -0.3 0.0 0.9 -0.1 -0.2 0.5 10.1 0.0 0.1 4.6 -0.2 56.8
4th Moment 0 0.3 3.1 -0.5 1.2 0.0 -0.1 -0.3 5.3 262.5 0.0 0.5 69.4 -0.2 4144
VaR 0.995 0 77.0 14055 -668.8 119.7 -80.0 9.0 -304.0 -3.2 1407.5 -4636.7 2201.3 -3349 5048.6
TVaR 0.995 0 1214 17287 -7685 128.2 -1150 -85 -3749 151.3 3758.%6.0- 64.9 3892.3 -381.9 17591.1

Table 5: gives some descriptive statistics of the distidrubf theN = 10,000 pension liabilities measured as the difference to tHki®inodel (M1).

The values are reported in 1e+#06The 4th moment corresponds to excess kurtosis comparkd teotmal distribution.
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