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In recent work Le et al (2011) have developed a method, based on indirect inference, for testing a
calibrated or already estimated DSGE macroeconomic model where the data are stationary. As macro
data may be non-stationary, it is usual to filter the data to make it stationary before calibrating or
estimating the model. In this paper we extend their discussion of testing to when the data are non-
stationary but not made stationary.
The null hypothesis is that the model to be tested, which has already been estimated or calibrated,

is correct even if the equation residuals are non-stationary. The test procedure is based on comparing
the properties of an auxiliary model estimated on actual data with those obtained using simulated data
from the given model. On the null hypothesis that the given model is correct, the properties of the two
sets of estimates of the auxiliary model should be the same. In this test procedure the residuals of the
given model, which are calculated from the given estimates and may be stationary or non-stationary, are
treated as observable. The critical factor in performing this test is that the auxiliary model is chosen in
such a way that the distribution of the test statistic has good size and power characteristics.
We begin by describing the testing procedure we and various coauthors have developed for testing

models on stationary data before going on to explain how this might be extended to non-stationary
data. Since these methods are numerical in nature, they can only be explored in application. A testing
method has to have power but not excessive power. Thus it is not practically useful if either a) it rejects
everything that is slightly untrue or b) it rejects nothing at all. To determine the power of such a method
therefore requires experience in application.We have developed a substantial amount of experience with
our coauthors on this method applied to models of stationary data; we have found that it does have
substantial power but that models can be found that pass the test for features of the data that are of
major interest for policymakers – such as the volatility and interrelations of the major macro variables
like GDP, inflation and interest rates. We would like to know whether corresponding results hold for
models based on non-stationary data. We explore this issue using a Real Business Cycle model of the
UK. Montecarlo experiments show that our test procedure performs well; it has both good size and
power. We complete the paper by drawing some provisional conclusions.

1 Model evaluation by indirect inference

Indirect inference provides a classical statistical inferential framework for judging a calibrated or already,
but possibly, partially estimated model whilst maintaining the basic idea employed in the evaluation of
the early RBC models of comparing the moments generated by data simulated from the model with actual
data. Using moments for the comparison is a distribution free approach. Instead, we posit a general
but simple formal model (an auxiliary model) – in effect the conditional mean of the distribution of the
data – and base the comparison on features of this model estimated from simulated and actual data.
Indirect inference on structural models may be distinguished from indirect estimation of structural

models. Indirect estimation has been widely used for some time, see Smith (1993), Gregory and Smith
(1991,1993), Gourieroux et al. (1993), Gourieroux and Monfort (1995) and Canova (2005). In estimation
the parameters of the structural model are chosen so that when this model is simulated it generates
estimates of the auxiliary model similar to those obtained from actual data. In the use of indirect
inference for model evaluation the parameters of the structural model are taken as given. The aim is
to compare the performance of the auxiliary model estimated on simulated data derived from the given
estimates of a structural model – which is taken as the true model of the economy, the null hypothesis
– with the performance of the auxiliary model when estimated from actual data. If the structural model
is correct then its predictions about the impulse responses, moments and time series properties of the
data should match those based on actual data. The comparison is based on the distributions of the two
sets of parameter estimates of the auxiliary model, or of functions of these estimates.
Le et al (2011) discuss issues that arise in the choice of a VAR as the auxiliary model and in the

comparison of a DSGE model with it – see also Canova (2005), Dave and DeJong (2007), Del Negro
and Schorfheide (2004, 2006) and Del Negro et al (2007a,b) together with the comments by Christiano
(2007), Gallant (2007), Sims (2007), Faust (2007) and Kilian (2007). The a priori structural restrictions
of the DSGE model impose restrictions on the VAR; see Canova and Sala (2009) for an example of lack
of identification, however DSGE models are generally over-identified via the cross-equation restrictions
implied by rational expectations – see Minford and Peel (2002, pp.436—7).
A formal statement of the inferential problem is as follows. Using the notation of Canova (2005) which

was designed for indirect estimation, we define yt an m× 1 vector of observed data (t = 1, ..., T ), xt(θ)
an m× 1 vector of simulated time series of S observations generated from the structural macroeconomic
model, θ a k × 1 vector of the parameters of the macroeconomic model. xt(θ) and yt are assumed to
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be stationary and ergodic. We set S = T since we require that the actual data sample be regarded as
a potential replication from the population of bootstrapped samples. The auxiliary model is f [yt, α]; an
example is the V AR(p) yt = Σpi=1Aiyt−i + ηt where α is a vector comprising elements of the Ai and of
the covariance matrix of yt. On the null hypothesis H0: θ = θ0, the stated values of θ whether obtained
by calibration or estimation; the auxiliary model is then f [xt(θ0), α(θ0)] = f [yt, α]. We wish to test
the null hypothesis through the q × 1 vector of continuous functions g(α). Such a formulation includes
impulse response functions. On H0 g(α) = g[α(θ0)].
Let aT denote the estimator of α using actual data and aS(θ0) the estimator of α based on simulated

data for θ0. We may therefore obtain g(aT ) and g[aS(θ0)]. Using N independent sets of simulated
data obtained using the bootstrap we can also define the bootstrap mean of the g[aS(θ)], g[aS(θ0)] =
1
NΣNk=1gk[aS(θ0)]. The Wald test statistic is based on the distribution of g(aT )− g[aS(θ0)] where we

assume that g(aT )− g[aS(θ0)]
p→ 0. The resulting Wald statistic may be written as

WS = (g(aT )− g[aS(θ0)])
′W (θ0)

−1(g(aT )− g[aS(θ0)]) (1)

where W (θ0)
−1 is the inverse of the variance-covariance matrix of the distribution of g(aT )− g[aS(θ0)].

W (θ0) can be obtained from the asymptotic distribution of g(aT )− g[aS(θ0)] and the asymptotic
distribution of the Wald statistic would then be chi-squared. Instead, we obtain the empirical distribution
of the Wald statistic by bootstrap methods based on defining g(α) as a vector consisting of the VAR
coeffi cients and the variances of the data or the VAR disturbances.
The following steps summarise our implementation of the Wald test by bootstrapping:

Step 1: Estimate the errors of the economic model conditional on the observed data and θ0.
Estimate the structural errors εt of the DSGE macroeconomic model, xt(θ0), given the stated values

θ0 and the observed data. The number of independent structural errors is taken to be less than or equal
to the number of endogenous variables. The errors are not assumed to be normally distributed. Where
the equations contain no expectations the errors can simply be backed out of the equation and the data.
Where there are expectations estimation is required for the expectations; here we carry this out using
the robust instrumental variables methods of McCallum (1976) and Wickens (1982), with the lagged
endogenous data as instruments – thus effectively we use the auxiliary model V AR.

Step 2: Derive the simulated data
On the null hypothesis the {εt}Tt=1 are the structural errors. The simulated disturbances are drawn

from these errors. In some DSGE models, including the model here, many of the structural errors are
assumed to be generated by autoregressive processes rather than being serially independent. If they
are then, under our method, we need to estimate them. We derive the simulated data by drawing
the bootstrapped disturbances by time vector to preserve any simultaneity between them, and solving
the resulting model using a projection method due to Minford et al. (1984, 1986) and similar to Fair
and Taylor (1983). To obtain the N bootstrapped simulations we repeat this drawing each sample
independently. We set N = 1000.

Step 3: Compute the Wald statistic
We estimate the auxiliary model – a VAR(1) – using both the actual data and the N samples

of simulated data to obtain estimates aT and aS(θ0) of the vector α. The distribution of aT − aS(θ0)
and its covariance matrix W (θ0) are found by estimating the auxiliary VAR on each of the boostrapped
simulations from Step 2, thus obtaining N values of aS(θ0); we obtain the covariance of the simulated
variables directly from the bootstrap samples. The resulting set of ak vectors (k = 1, ...., N) represents
the sampling variation implied by the structural model from which estimates of its mean, covariance
matrix and confidence bounds may be calculated directly. Thus, the estimate of W (θ0) is

1

N
ΣNk=1(ak − ak)′(ak − ak) (2)

where ak = 1
NΣNk=1ak. We then calculate the Wald statistic for the data sample; we estimate the

bootstrap distribution of the Wald from the N bootstrap samples.
As noted, the auxiliary model used is a VAR(1) and is for a limited number of key macro variables.

By raising the lag order and increasing the number of variables, the stringency of the overall test of the
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model is increased. If we find that the structural model is already rejected at order 1, we do not proceed
to a more stringent test based on a higher order1 .
Rather than focus our tests on just the parameters of the auxiliary model or the impulse response

functions, we also attach importance to the ability to match data variability, hence the inclusion here of
the VAR residuals in α. As highlighted in the debates over the Great Moderation and the recent banking
crisis, a major macroeconomic issue also concerns the scale of real and nominal volatility. In this way
our test procedure is within the traditions of RBC analysis.
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Figure 1: Bivariate Normal Distributions (0.1, 0.9 shaded) with correlation of 0 and 0.9.

The idea of the test can be seen usefully with a simple example, with just two VAR coeffi cients being
assessed. Figure 1 shows the joint distribution of the two coeffi cients under two assumptions: the top
illustrates the case where the two are uncorrelated, the bottom where they are highly correlated. Two
data points are shown, one in blue, the other in red. The Wald statistic would not reject the blue point

1This point is illustrated in Le et al (2011) for the model dealt with in that paper with the results for varying the lag
order of the VAR used there on stationary data:

Wald stat. Mah. Dis.
VAR(1) 100 2.8
VAR(2) 100 4.55
VAR(3) 100 5.1
Notice how the normalised Mahalanobis Distance (a transform of the Wald value – see below for the full definition)

gets steadily larger, indicating a steadily worsening fit, as the lag order is increased.
In fact the general representation of a stationary loglinearised DSGE model is a VARMA, which would imply that the

true VAR should be of infinite order, at least if any DSGE model is the true model. However, for the same reason that
we have not raised the VECM order above one, we have also not added any MA element. As DSGE models do better in
meeting the challenge this could be considered.
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in the top case, but reject it in the bottom case. It would reject the red point in the top case but not in
the bottom case. In the top case the covariance matrix of the coeffi cients has zero off-diagonal elements,
whereas in the bottom case they are non-zero. It is unusual to find zero off-diagonal elements because
different features of the data to be correlated across the samples generated by the DSGE model2 .
We refer to the Wald statistic based on the full set of variables as the Full Wald test; it checks whether

the a vector lies within the DSGE model’s implied joint distribution and is a test of the DSGE model’s
specification in a wide sense. We use the Mahalanobis Distance based on the same joint distribution,
normalised as a t-statistic, as an overall measure of closeness between the model and the data. In effect,
this conveys the same information as in the Wald test but is in the form of a t-value3 .

We also consider a second Wald test, which we refer to as a ‘Directed Wald statistic’. This focuses
on more limited features of the structural model. Here we seek to know how well a particular variable or
limited set of variables is modelled and we use the corresponding auxiliary equations for these variables
in the VAR as the basis of our test. For example, we may wish to know how well the model can reproduce
the behaviour of output and inflation by creating a Wald statistic based on the VAR equation for these
two variables alone.
A Directed Wald test can also be used to determine how well the structural model captures the

effects of a particular set of shocks. This requires creating the joint distribution of the IRFs for these
shocks alone. For example, to determine how well the model deals with supply shocks, we construct
the joint distribution of the IRFs for the supply shocks and calculate a Wald statistic for this. Even if
the full model is misspecified, a Directed Wald test provides information about whether the model is
well-specified enough to deal with specific aspects of economic behaviour.
In this paper we focus on testing a particular specification of a DSGE model and not on how to

respecify the model should the test reject it. Rejection could, of course, be due to sampling variation
in the original estimates and not because the model is otherwise incorrect. This is an issue worth
following up in future work. For further discussion of estimation issues see Smith (1993), Gregory and
Smith (1991,1993), Gourieroux et al. (1993), Gourieroux and Monfort (1995), Canova (2005), Dridi et
al (2007), Hall et al (2009), and Fukac and Pagan (2010).

1.1 Handling non-stationary data

It is common practice when estimating a DSGE model to first filter the data to ensure that they are
stationary. As a result the model residuals derived from the estimated model are also stationary. It is
well-known that using filtered data may distort the dynamic properties of the model in ways that are
not easy to uncover. For example, the popular HP filter alters the lag dynamic structure, generating
cycles where possibly none exist. Because the filter is two-sided, it also transforms the forward-looking
properties of the model. These are serious defects in the estimation of a DSGE model where both the
expectations structure and the impulse response functions are usually matters of considerable interest.
For these reasons we prefer not to filter the data, but to use the original data.
The data generated by a DSGE model are often non-stationary. This could be either because the

model structure generates non-stationarity (e.g. by making state variables functions of predetermined
variables that depend on accumulated shocks, such as net foreign assets, as here), or because the model

2To understand why DSGE models will typically produce high covariances and so distributions like those in the bottom
panel of Figure 1, we can give a simple example in the case where the two descriptors are the persistence of inflation and
interest rates. If we recall the Fisher equation, we will see that the persistence of inflation and interest rates will be highly
correlated. Thus in samples created by the DSGE model from its shocks where inflation is persistent, so will interest rates
be; and similarly when the former is non-persistent so will the latter tend to be. Thus the two estimates of persistence
under the null have a joint distribution that reflects this high correlation.
In Figure 1, we suppose that the model distribution is centred around 0.5 for each VAR coeffi cient; and the data-based

VAR produced values (the blue ones) for their partial autocorrelations of 0.1 and 0.9 respectively for inflation and interest
rates – the two VAR coeffi cients. We suppose too that the 95% range for each was 0− 1.0 (a standard deviation of 0.25)
and thus each is accepted individually. If the parameters are uncorrelated across samples, then the situation is as illustrated
in the top panel. They will also be jointly accepted.
Now consider the case where there is a high positive covariance between the parameter estimates across samples, as

implied by the DSGE model (with its Fisher equation). The lower panel illustrates the case for a 0.9 cross-correlation
between the two parameters. The effect of the high covariance is to create a ridge in the density mountain; and the joint
parameter combination of 0.1, 0.9 will be rejected even though individually the two parameters are accepted.
The red data values (0, 0) analogously reject the model in the top case but do not reject it in the more usual bottom

case of high correlation.

3The Mahalanobis Distance is the square root of the Wald value. As the square root of a chi-squared distribution, it can
be converted into a t-statistic by adjusting the mean and the size. We normalise this here by ensuring that the resulting
t-statistic is 1.645 at the 95% point of the distribution.
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incorporates non-stationary exogenous variables such as a technology shock in the production function
(an unobservable variable), or world income in the export function (an observable variable).
We assume that, after linearisation, the solution of the model can be represented by a vector error

correction model. If there are unobservable non-stationary variables, such as a technology shock, then
the number of cointegrating vectors will be less than the number of endogenous variables. Put another
way, one or more of the long-run structural equations will have a non-stationary residual. As we have
estimates of all of the coeffi cients of the model we can construct these residuals from the data. If we treat
these residuals as observable variables then we would have as many cointegrating relations as endogenous
variables. This allows us to represent the solution of the estimated model as a VECM in which the non-
stationary residuals appear as observable variables, and to use an unrestricted version of this VECM as
our auxiliary model.
In order to use this method we must include in the auxiliary model these nonstationary residuals

derived from the DSGE model. If we did not then the auxiliary model will not contain key variables
required for cointegration; thus there would not be cointegration and the VECM would not be stationary
after allowing for error correction. It follows that the auxiliary model is partly conditioned by the DSGE
model, this latter being the null hypothesis. We can express this as saying that the VECM is constructed
under the null hypothesis. This by no means implies non-rejection by the data-generated VECM of the
DSGE model because the data picks a variety of parameters that may well be inconsistent with the DSGE
model. All that the constraint of the null does is to guarantee that the VECM achieves cointegration
under the null. The residual assumption guarantess that the DSGE model achieves cointegration.
It might seem attractive to test for the existence of cointegration for each equation of the DSGE

model. However, as we have seen, this is not possible because a) any non-stationary residual is treated
as a legitimate cointegrating variable b) with a lack of cointegration the DSGE model would not have
a solution and hence no simulation and Wald test would be possible. The testing we carry out here in
effect imposes cointegration and tests at the later stage of the model’s simulation performance.

1.1.1 The auxiliary equation

After log-linearisation a DSGE model can usually be written in the form

A(L)yt = BEtyt+1 + C(L)xt +D(L)et (3)

where yt are p endogenous variables and xt are q exogenous variables which we assume are driven by

∆xt = a(L)∆xt−1 + d+ c(L)εt. (4)

The exogenous variables may contain both observable and unobservable variables such as a technology
shock. The disturbances et and εt are both iid variables with zero means. It follows that both yt and xt
are non-stationary. L denotes the lag operator zt−s = Lszt and A(L), B(L) etc are polynomial functions
with roots outside the unit circle.
The general solution of yt is

yt = G(L)yt−1 +H(L)xt + f +M(L)et +N(L)εt. (5)

where the polynomial functions have roots outside the unit circle. As yt and xt are non-stationary, the
solution has the p cointegration relations

yt = [I −G(1)]−1[H(1)xt + f ]

= Πxt + g. (6)

The long-run solution to the model is

yt = Πxt + g

xt = [1− a(1)]−1[dt+ c(1)ξt]

ξt = Σt−1i=0εt−s

Hence the long-run solution to xt, namely, xt = xDt + xSt has a deterministic trend x
D
t = [1− a(1)]−1dt

and a stochastic trend xSt = [1− a(1)]−1c(1)ξt.
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The solution for yt can therefore be re-written as the VECM

∆yt = −[I −G(1)](yt−1 −Πxt−1) + P (L)∆yt−1 +Q(L)∆xt + f +M(L)et +N(L)εt

= −[I −G(1)](yt−1 −Πxt−1) + P (L)∆yt−1 +Q(L)∆xt + f + ωt (7)

ωt = M(L)et +N(L)εt

Hence, in general, the disturbance ωt is a mixed moving average process. This suggests that the VECM
can be approximated by the VARX

∆yt = K(yt−1 −Πxt−1) +R(L)∆yt−1 + S(L)∆xt + g + ζt (8)

where ζt is an iid zero-mean process.
As

xt = xt−1 + [1− a(1)]−1[d+ εt]

the VECM can also be written as

∆yt = K[(yt−1 − yt−1)−Π(xt−1 − xt−1)] +R(L)∆yt−1 + S(L)∆xt + h+ ζt (9)

Either equations (8) or (9) can act as the auxiliary model. Here we focus on (9); this distinguishes
between the effect of the trend element in x and the temporary deviation from its trend. In our models
these two elements have different effects and so should be distinguished in the data to allow the greatest
test discrimination.
It is possible to estimate (9) in one stage by OLS. Even though there are other methods that may

achieve more accurate VECM parameter estimates4 , this method is simple and may be effective in the
test procedure; this is an aspect we review below.

2 The Model

Consider a home economy populated by identical infinitely lived agents who produce a single good as
output and use it both for consumption and investment; all variables are in per capita terms. It coexists
with another, foreign, economy (the rest of the world) in which equivalent choices are made; however
because this other country is assumed to be large relative to the home economy we treat its income as
unaffected by developments in the home economy. We assume that there are no market imperfections.
At the beginning of each period t, the representative agent chooses (a) the commodity bundle necessary
for consumption, (b) the total amount of leisure that it would like to enjoy, and (c) the total amount of
factor inputs necessary to carry out production. All of these choices are constrained by the fixed amount
of time available and the aggregate resource constraint that agents face. During period t, the model
economy is influenced by various random shocks.
In an open economy goods can be traded but for simplicity it is assumed that these do not enter

in the production process but are only exchanged as final goods. The consumption, Ct in the utility
function below, is composite per capita consumption, made up of agents consumption of domestic goods,
Cdt and their consumption of imported goods, C

f
t . We treat the consumption bundle as the numeraire

so that all prices are expressed relative to the general price level, Pt. The composite consumption utility
index can be represented as an Armington (1969) aggregator of the form

Ct =

[
ω
(
Cdt
)−%

+ (1− ω) ςt

(
Cft

)−%](−1% )
(10)

4The auxiliary model could also be estimated in two stages. In the first stage we may obtain a super consistent estimate
of Π using OLS on the set of cointegrating regressions (i.e. the long-run reduced form)

yt = Πxt + g + ut.

A method that estimates Π with better small sample properties is to estimate by IV the model

yt = Πxt + g + Γ(L)∆yt + Λ(L)∆xt + ut

where the instruments are yt−1, ∆yt−1, ∆yt−2...... and xt, ∆xt, ∆xt−1, ∆xt−2..... In the second stage we could use this
estimate of Π to construct the cointegrating residual vt = yt−1 − Πxt−1 and treat this as an observable variable in the
auxiliary model which can be then be estimated by OLS. This two-stage method could give gains in effi ciency which in
turn could increase the power of the Wald test. This is an area that can be pursued in further work.
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where ω is the weight of home goods in the consumption function, σ, the elasticity of substitution is
equal to 1

1+% and ςt is a preference error.

The consumer maximises this composite utility index, given that an amount C̃t has been chosen for
total expenditure, with respect to its components, Cdt and C

f
t subject to C̃t = pdtC

d
t + QtC

f
t where p

d
t

is the domestic price level relative to the general price level and Qt is the foreign price level in domestic
currency relative to the general price level (the real exchange rate)5 . The resulting expression for the
home demand for foreign goods is

Cft
Ct

= [(1− ω)ςt]
σ(Qt)

−σ (11)

We also note that:

1 = ωσ
(
pdt
)σ%

+ [(1− ω)ςt]
σ
Qσ%t (12)

Hence we can obtain the logarithmic approximation:

log pdt = −
(

1− ω
ω

)σ
log (Qt)−

1

%

(
1− ω
ω

)σ
log ςt + constant (13)

In a stochastic environment a consumer is expected to maximise expected utility subject to the budget
constraint. Each agent’s preferences are given by

U = MaxE0

[ ∞∑
t=0

βtu (Ct, Lt )

]
, 0 < β < 1 (14)

where β is the discount factor, Ct is consumption in period ‘t’, Lt is the amount of leisure time
consumed in period ‘t’and E0 is the mathematical expectations operator. Specifically, we assume a
time-separable utility function of the form

U (Ct, 1−Nt ) = θ0 (1− ρ0)
−1
γtC

(1−ρ0)
t + (1− θ0) (1− ρ2)

−1
ζt (1−Nt)(1−ρ2) (15)

where 0 < θ0 < 1, and ρ0, ρ2 > 0 are the substitution parameters; and γt, ξt are preference errors.
This sort of functional form is common in the literature for example McCallum and Nelson (1999a).
Total endowment of time is normalised to unity so that

Nt + Lt = 1 or Lt = 1−Nt (16)

Furthermore for convenience in the logarithmic transformations we assume that approximately L = N
on average.
The representative agent’s budget constraint is

Ct +
bt+1

1 + rt
+

Qtb
f
t+1(

1 + rft

) + ptS
p
t = (vt)Nt − Tt + bt +Qtb

f
t + (pt + dt)S

p
t−1 (17)

where pt denotes the real present value of shares (in the economy’s firms which they own), vt = Wt

Pt
is the real consumer wage (wt, the producer real wage, is the the wage relative to the domestic goods
price level; so vt = wtp

d
t ). Households are taxed by a lump-sum transfer, Tt; marginal tax rates are not

included in the model explicitly and appear implicitly in the error term of the labour supply equation,

ζt. b
f
t denotes foreign bonds, bt domestic bonds, S

p
t demand for domestic shares and Qt =

P ft
Pt
is the real

exchange rate.

5We form the Lagrangean L =

[
ω
(
Cdt
)−%

+ (1− ω)
(
Cft

)−%](−1% )
+ µ(C̃t − Pdt

Pt
Cdt −

P
f
t
Pt
Cft ). Thus ∂L

∂C̃t
= µ; also

at its maximum with the constraint binding L = C̃t so that ∂L

∂C̃t
= 1. Thus µ = 1 – the change in the utility index

from a one unit rise in consumption is unity. Substituting this into the first order condition 0 = ∂L

∂C
f
t

yields equation

(11) . 0 = ∂L
∂Cdt

gives the equivalent equation: Cdt
Ct

= ωσ(pdt )−σ where pdt =
Pdt
Pt
. Divide (10) through by Ct to obtain

1 =

[
ω

(
Cdt
Ct

)−%
+ (1− ω)

(
C
f
t
Ct

)−%](−1% )
; substituting into this for

C
f
t
Ct
and Cdt

Ct
from the previous two equations gives us

equation (12).
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In a stochastic environment the representative agent maximizes the expected discounted stream of
utility subject to the budget constraint. The first order conditions with respect to Ct, Nt, bt, b

f
t and S

p
t

are (where λt is the Lagrangean multiplier on the budget constraint):

θ0γtC
−ρ0
t = λt (18)

(1− θ0) ζt (1−Nt)−ρ2 = λt (1− τ t) vt (19)

λt
1 + rt

= βEtλt+1 (20)

λtQt

(1 + rft )
= βEtλt+1Qt+1 (21)

λtpt = βEtλt+1(pt+1 + dt+1) (22)

Substituting equation (20) in (18) yields :

(1 + rt) =

(
1

β

)
Et

(
γt
γt+1

)(
Ct
Ct+1

)−ρ0
(23)

Now substituting (18) and (20) in (19) yields

(1−Nt) =

{
θ0C

−ρ0
t vt

(1− θ0) ζt

}−1
ρ2

(24)

Substituting out for vt = wtp
d
t and using (13) equation (24) becomes

(1−Nt) =

θ0C
−ρ0
t

[
(1− τ t) exp

(
logwt − ( 1−ωω )σ(logQt + 1

% log ςt)
)]

(1− θ0) ζt


−1
ρ2

(25)

Substituting (20) in (22) yields

pt =

(
pt+1 + dt+1

1 + rt

)
(26)

Using the arbitrage condition and by forward substitution the above yields

pt =

∞∑
i=1

dt+i

(1 + rt)
i

(27)

i.e. the present value of a share is discounted future dividends.
To derive the uncovered interest parity condition in real terms, equation (20) is substituted into (21)(

1 + rt

1 + rft

)
= Et

Qt+1
Qt

(28)

In logs this yields

rt = rft + logEt
Qt+1
Qt

(29)

Thus the real interest rate differential is equal to the expected change in the real exchange rate. Finan-
cial markets are otherwise not integrated and are incomplete, though assuming completeness makes no
difference to the model’s solution in this non-stationary world (see Appendix 3).

2.1 The Government

The government finances its expenditure, Gt, by collecting taxes on labour income, τ t. Also, it issues
debt, bonds (bt) each period which pays a return next period.
The government budget constraint is:

Gt + bt = Tt +
bt+1

1 + rt
(30)

where bt is real bonds

9



2.2 The Representative Firm

Firms rent labour and buy capital inputs, transforming them into output according to a production
technology. They sell consumption goods to households and government and capital goods to other
firms. The technology available to the economy is described by a constant-returns-to-scale production
function:

Yt = ZtNt
αKt

1−α (31)

where 0 ≤ α ≤ 1, Yt is aggregate output per capita, Kt is capital carried over from previous period
(t− 1), and Zt reflects the state of technology.
It is assumed that f(N,K) is smooth and concave and it satisfies Inada-type conditions i.e. the

marginal product of capital (or labour) approaches infinity as capital (or labour) goes to 0 and approaches
0 as capital (or labour) goes to infinity.

lim
K−→0

(FK) = lim
N−→0

(FN ) =∞

lim
K−→∞

(FK) = lim
N−→∞

(FN ) = 0 (32)

The capital stock evolves according to:

Kt = It + (1− δ)Kt−1 (33)

where δ is the depreciation rate and It is gross investment.
In a stochastic environment the firm maximizes the present discounted stream, V , of cash flows,

subject to the constant-returns-to-scale production technology and quadratic adjustment costs for capital,

MaxV = Et

T∑
i=0

diit[Yt+i −Kt+i(rt+i + δ + κt+i)− (wt+i + χt+i)Nt+i − 0.5ξ(∆Kt+i)
2] (34)

subject to the evolution of the capital stock in the economy, equation (33). Here rt and wt are the
rental rates of capital and labour inputs used by the firm, both of which are taken as given by the
firm. The terms κt and χt are error terms capturing the impact of excluded tax rates and other imposts
or regulations on firms’use of capital and labour respectively. The firm optimally chooses capital and
labour so that marginal products are equal to the price per unit of input. The first order conditions with
respect to Kt and Nd

t are as follows:

ξ(1 + d1t)Kt = ξKt−1 + ξd1tEtKt+1 +
(1− α)Yt

Kt
− (rt + δ + κt) (35)

Nt =
αYt

wt + χt
(36)

2.3 The Foreign Sector

From equation (11) we can derive the import equation for our economy

logCft = log IMt = σ log (1− ω) + logCt − σ logQt + σ log ςt (37)

Now there exists a corresponding equation for the foreign country which is the export equation for
the home economy

logEXt = σF log
(
1− ωF

)
+ logCFt + σF logQt + σF log ςFt (38)

Foreign bonds evolve over time to the balance payments according to the following equation

Qtb
f
t+1

(1 + rft )
= Qtb

f
t + pdtEXt −QtIMt (39)

Finally there is good market clearing:

Yt = Ct + It +Gt + EXt − IMt (40)

10



3 Calibration & Deterministic Simulation

The model is calibrated with the values familiar from earlier work and used in Meenagh et al. (2010)
– see Kydland and Prescott, (1982), Obstfeld and Rogoff (1996), Orphanides (1998), Dittmar, Gavin
and Kydland (1999), McCallum and Nelson (1999a, 1999b), McCallum (2001), Rudebusch and Svensson
(1999), Ball (1999) and Batini and Haldane (1999); Appendix 1 gives a full listing. Thus in particular the
coeffi cient of relative risk aversion (ρ0) is set at 1.2 and the substitution elasticity between consumption
and leisure (ρ2) at unity. Home bias (ω, ω

F ) is set high at 0.7. The substitution elasticity between home
and foreign goods (σ, σF ) is set at 1 both for exports and for imports, thus assuming that the UK’s
products compete but not sensitively with foreign alternatives; this is in line with studies of the UK (see
for example Minford et al., 1984).
Before testing the model stochastically against macro behaviour, we examine its implications in the

face of a sustained one-off rise in productivity. Figure 2 shows the model simulation of a rise of the
productivity level by 12% spread over 12 quarters and occurring at 1% per quarter (the increase in the
whole new path is unanticipated in the first period and from then on fully anticipated) – in other words
a three-year productivity ‘spurt’.
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Figure 2: Plots of a 1% Productivity increase each quarter for twelve quarters

The logic behind the behaviour of the real exchange rate, Q, can be explained as follows. The
productivity increase raises permanent income and also stimulates a stream of investments to raise the
capital stock in line. Output however cannot be increased without increased labour supply and extra
capital, which is slow to arrive. Thus the real interest rate must rise to reduce demand to the available
supply while real wages rise to induce extra labour and output supply. The rising real interest rate
violates Uncovered Real Interest Parity (URIP) which must be restored by a real appreciation (fall in
Q) relative to the expected future value of the real exchange rate. This appreciation is made possible by
the expectation that the real exchange rate will depreciate (Q will rise) steadily, so enabling URIP to
be established consistently with a higher real interest rate. As real interest rates fall with the arrival on
stream of suffi cient capital and so output, Q also moves back to equilibrium. This equilibrium however
represents a real depreciation on the previous steady state (a higher Q) since output is now higher and
must be sold on world markets by lowering its price.

3.1 Stochastic processes

The model contains 8 stochastic processes: 7 shocks and 1 exogenous variable (world consumption). Of all
these only one, the productivity shock, is treated as non-stationary and modelled as an ARIMA(1, 1, 0)
with a constant (the drift term, hence the deterministic trend). Since it is produced as an identity from
the production function it can be directly measured. This is also true of all but two of the other shocks,
which can be directly ‘backed out’of their equations since they contain no expectations terms. For the
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two error terms in equations containing expectations, viz consumption and the capital stock, the errors
are estimated by using a robust instrumental variables estimator for the expectations due to McCallum
(1976) and Wickens (1982).
Other than the productivity shock the other processes are all modelled as stationary or trend-

stationary ARMA(1, 0) processes plus a deterministic trend. These choices cannot be rejected by the
data, when they are treated as the null; however, it turns out that at the single equation level it is not
easy to distinguish the two treatments, in the sense that making the alternative the null also leads to
non-rejection. Hence we have used the results from the model-testing to help determine which choices
to make. The choices reported here – see Table 1 – were influenced by finding that the simulated
variances of key variables explode as more processes are treated as non-stationary. (Later we report the
result of even treating productivity as trend-stationary; it turns out to worsen the results substantially.)
An important implication of the deterministic components of the stochastic processes is that they

generate the balanced growth path (BGP) of the model. This is integrated into our simulations so that
the shock elements, be they stationary or non-stationary, are added onto this basic path. In the version
of the model here these deterministic components are fixed and so is therefore the BGP; of course if we
were investigating policies (such as tax) that affected growth, the BGP would respond to these, however
we do not do that in this paper.

Shock Process c trend AR(1)

Consumer Preference Stationary −0.039181∗∗ 0.470434∗∗

Productivity Non-Stationary 0.003587∗∗ 0.022902
Labour Demand Trend Stationary 0.263503∗∗ −0.002141∗∗ 0.854444∗∗

Capital Stationary 0.086334∗∗ 0.870438∗∗

Labour Supply Trend Stationary 0.717576∗∗ −0.002946∗∗ 0.962092∗∗

Exports Trend Stationary −1.265935∗∗ 0.004288∗∗ 0.925119∗∗

Imports Trend Stationary 0.007662 0.002505∗∗ 0.836784∗∗

Foreign Consumption Trend Stationary −0.685495∗∗ 0.016268∗∗ 0.964308∗∗

Foreign Interest Rate Stationary 0.002844 0.917345∗∗

Note: ** is significant at 1%, * is significant at 5%

Table 1: Error Processes

4 Testing the model

The numerical methods we use to solve the model are set out in Appendix 2 of this paper. In what
follows we show how the model’s simulated behaviour matches up with that of the data. Our first results
are obtained using direct single stage OLS.
We note, to start with, that as usual in such studies when a wide set of variables are entered, the

model is totally rejected. For example including Y, Q, C, K and r leads to a normalised Mahalanobis
Distance (a t-statistic) of 7.6, massively beyond the 95% critical value of 1.645. We therefore looked for
Directed Wald statistics involving smaller subsets of key variables; we wish to know if the model can
replicate the behaviour of some such group, and thus define its contribution. It turns out that the model
can match the behaviour of a few small subsets from among the full set. Here we show the results for
the subset Y, Q and r and a summary of the subsets that get closest to the data.
Table 2 shows the results for Y, Q and r. The Wald percentile is 95.3 and the normalised distance 1.75,

approximately on the 95% confidence bound; given that our method slightly over-rejects according to the
Montecarlo experiment we can treat this as a borderline non-rejection. As part of the test we included
the variances of the VECM residuals; these were well outside the model’s 95% bounds individually
but inside the joint bounds with other aspects of the data. The relationships include those with the
lagged productivity trend (eYT) and with the lagged level of net foreign assets (Bf) (these being the
non-stationary exogenous variables) as well as the dynamic relationships with the lagged endogenous
variables, the vector of coeffi cients on t and the residual variances just noted. Apart from the residual
variances only one individual relationship (the partial coeffi cient of r on Y) lies very slightly outside
its 95% bound individually; good or bad individual performances do not necessarily imply that all the
relationships will lie jointly within or outside the bound as this depends crucially on the covariances
between the coeffi cients. As we see here very poor individual residual variance fits do not prevent the
model overall fitting the data-estimated VECM.
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ACTUAL LOWER UPPER IN/OUT

Y Y 0.921745 0.547557 0.944052 IN
Y Q 0.007201 −0.067114 0.189087 IN
Y r −0.130463 −0.123371 1.428657 OUT

Y eY T 0.076943 −0.089580 0.664761 IN
Y trend 0.000165 −0.000033 0.002030 IN
Y Bf −0.000001 −0.006984 0.001702 IN
QY 0.075864 −0.220678 0.168833 IN
QQ 0.964109 0.755039 1.030719 IN
Qr 0.540718 −0.232954 1.450536 IN

QeY T −0.074508 −0.269644 0.499025 IN
Qtrend −0.000257 −0.001527 0.000447 IN
QBf 0.000001 −0.007092 0.003458 IN
rY −0.021030 −0.028810 0.034483 IN
rQ −0.005892 −0.033588 0.012599 IN
rr 0.654505 0.585070 0.886870 IN

reY T 0.033472 −0.059237 0.054454 IN
rtrend 0.000023 −0.000245 0.000119 IN
rBf 0.000002 −0.000755 0.000348 IN

var(Y ) 0.000039 0.000356 0.002848 OUT
var(Q) 0.000327 0.000434 0.003845 OUT
var(r) 0.000008 0.000020 0.000037 OUT
Wald 95.2830

Transformed M-dist 1.7484

Table 2: VAR results

The table of subset results (Table 3) reveals that GDP and asset prices are well explained as we have
seen but that combining these with consumption or employment leads to being rejected at 99%. Also
GDP and the real exchange rate match the data when combined with either employment or consumption.
Summarising one can say that the model fits the data on GDP and the two main asset prices but cannot
also match the detailed behaviour of component real variables.

Subset Wald percentile Transformed M-dist

GDP + asset prices (+consumption or employment)
YQr 95.3 1.77
YQC 90.4 0.89
YQCr 99.4 4.16
YQNr 99.4 3.60

GDP + Labour market bloc
YQw 99.9 9.55
YQN 90.4 0.85
YQNw 99.9 7.58

Table 3: Table of summary results for various variable subsets

Thus the model passes well for a small set of key variables. That it fails for a broader set is a problem
this model appears to share with much more elaborate structures, such as the Smets-Wouters/Christiano
et al. model, with their huge efforts to include real rigidities such as habit persistence and variable
capacity utilisation, as well as Calvo nominal rigidities in both wages and prices. When these are tested
on stationarised data we find that invariably the inclusion of consumption wrecks the fit; however we
can find a good fit to US data post-1984 for output, real interest rates and inflation taken alone. On a
similar SW/CEE-style two-country model of the US and the EU, again on stationarised data, we find
that it can fit output and the real exchange rate on their own but no wider set of variables.
We interpret these tests to mean that this model performs rather well in the context of model

performance generally, at least in the present state of the DSGE modelling art.
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4.1 Could productivity be trend-stationary?

One issue we have not so far emphasised but one that is nevertheless of empirical importance concerns
our choice of error specification. Many of our error processes are not unambiguously either trend-
stationary or non-stationary: that is, when we test the null of trend-stationarity we cannot reject it (at
say 95% confidence) but neither can we reject the null of non-stationarity. Essentially this is because
the distribution of the autoregressive coeffi cient is different under the two nulls. Hence in entering these
errors into the DSGE model we need to make a choice that cannot be made on purely statistical grounds.
The way we treat this is the same way that we treat the rest of the DSGE model specification choice where
we have one; we reject one versus the other on the basis of indirect inference. We chose only to make
productivity non-stationary because making the other errors non-stationary induced massively excessive
variability in our key macro variables. However, this leaves the question whether even productivity should
be trend-stationary, rather than non-stationary. Here we test the DSGE model under the assumption
of trend-stationary productivity. Our findings are that the fit to the data worsens sharply, so that the
subset of key variables that can be matched shrinks to none at all: the nearest is Y,Q,r whose Wald
is 98.6 and M distance 3.65, hence rejected at 95% but accepted at 99% only. All others we looked
at above are rejected at the 99% level. This gives rather clear evidence that treating productivity as
non-stationary was the right choice. Thus we do not pursue this alternative representation of the model
further.

Subset Wald percentile Transformed M-dist

GDP + asset prices (+consumption or employment)
YQr 98.6 3.65
YQC 99.7 6.40
YQCr 99.8 8.57
YQNr 100 12.09

GDP + Labour market bloc
YQw 100 31.70
YQN 99.9 7.33
YQNw 100 24.00

Table 4: Table of summary results for various variable subsets (Productivity trend-stationary)

4.1.1 Monte Carlo experiment testing the bootstrapping procedure for indirect inference

We now report the result of a Monte Carlo experiment on our methods, to establish their degree of
accuracy and also their power. We treat the DSGE model as true and its error processes with their time-
series parameters and innovations’variance, skewness and kurtosis as estimated. With 1000 replications
Table 5 shows the true rejection rate at a nominal 5% confidence level is 5.7%; hence the procedure is
fairly accurate.

Nominal Rejection Rate Corresponding True Rejection Rate

10.0 10.1
5.0 5.7
1.0 1.6
Notes: The model used here was treated as the true model and the estimated

residuals as the true residuals. 1000 samples of data were created by random

draws from the innovations of these residuals, which were input into the model.

The innovations were bootstrapped for each sample to find the Wald distribution

for that sample and the Wald statistic calculated for that sample; the Table records

how often the test at the chosen nominal rejection rate rejects.

Table 5: Montecarlo Rejection Rates

Table 6 shows the rejection rates at the same 5% nominal rate. We create false models by moving
the parameters (of the DSGE model and of its error processes) away from their true values by + or
−x% for alternate values; we then ask how often these false models are rejected on the data from the
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true model. For this we use 10000 bootstraps on each false model. It can be seen that the method has
considerable power, as it rejects 95% of the time when x is only 1% for the full set of VECM coeffi cients
and residual variances; and 67% of the time when the coeffi cients on the deterministic and stochastic
trends are excluded. When x reaches 5% the rejection rate reaches 100% on both. It is clear that the
non-stationarity is being effectively dealt with by our VECM procedure. Thus it would appear that our
simple OLS VECM procedure has desirable testing properties.

Rejection Rate (at 5%)
Falseness Full VECM VECM ex. trends

1% 95.3% 67.1%
3% 99.9% 99.6%
5% 100% 100%

Table 6: False Model Rejection Rates

5 Conclusions

In this paper we have proposed a testing procedure for macro DSGE models on non-stationary data.
This procedure relies on Indirect Inference and bootstrapping to generate a Wald statistic for statsitical
inference about the model’s ability to fit key features of the data. To explore this procedure’s practical
applicability we applied it to a Real Business Cycle model of the UK. In this we found that the main
shock driving the economy was a unit root productivity pocess. We found that provided we require the
model only to replicate broad macro behaviour – i.e. here that of output, real interest rates and the real
exchange rate – it can meet the indirect inference test rather well. Though the data is non-stationary
our use of a VECM as the auxiliary equation appears to deal with the non-stationarity satisfactorily,
according to Monte Carlo experiment, showing both accuracy and high power.
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6 Appendix 1: Listing of the RBC Model

6.1 Behavioural Equations

Consumption Ct ; solves for rt:

(1 + rt) =
1

β
Et

(
Ct
Ct+1

)−ρ0 ( γt
γt+1

)
log(1 + rt) = rt = −ρ0(logCt − Et logCt+1) + log γt − Et log γt+1 + c0 (A1_1)

Here we use the property that for a lognormal variable xt, Et log xt+1 = logEtxt+1 − 0.5σ2log x. Thus
the constant c0 contains the covariance of (−ρ0 logCt+1) with (log γt+1).
UIP condition:

rt = rFt + Et logQt+1 − logQt + c1 (A1_2)

where rF is the foreign real interest rate.
Note that equations (A1_1) and (A1_2) are combined.
Production function Yt:

Yt = ZtNt
αKt

1−α or

log Yt = α logNt + (1− α) logKt + logZt (A1_3)

Demand for labour :

Nt =

(
αYt

wt(1 + χt)

)
or

logNt = c2 + log Yt − logwt + χt (A1_4)

Capital :

ξ(1 + d1t)Kt = ξKt−1 + ξd1tEtKt+1 +
(1− α)Yt

Kt
− (rt + δ + κt) or

logKt = c3 + ζ1 logKt−1 + ζ2Et logKt+1 + (1− ζ1 − ζ2) log Yt − ζ3rt − ζ3κt (A1_5)

The producer wage is derived by equating demand for labour, Nt, to the supply of labour given by
the consumer’s first order conditions:

(1−Nt) =

θ0C
−ρ0
t

[
exp

(
logwt − ( 1−ωω )σ(logQt + 1

ρ log ςt)
)]

(1− θ0) ξt


−1
ρ2

or

log(1−Nt) = − logNt = c4 +
ρ0
ρ2

logCt −
1

ρ2
logwt +

1

ρ2
(
1− ω
ω

)σ logQt

+
1

ρ2
(
1− ω
ω

)σ log ςt +
1

ρ2
log ξt (A1_6)
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where Qt is the real exchange rate, (1− ω)
σ is the weight of domestic prices in the CPI index.

Imports IMt:
log IMt = σ log (1− ω) + logCt − σ logQt − σ log ςt (A1_7)

Exports EXt:

logEXt = σF log
(
1− ωF

)
+ logCFt + σF logQt − σF log ςFt (A1_8)

6.2 Budget constraints, market-clearing and transversality conditions:

Market-clearing condition for goods:

Yt = Ct + It +Gt + EXt − IMt (A1_9)

where investment is :
It = Kt − (1− δ)Kt−1

and we assume the government expenditure share is an exogenous process. Loglinearised using mean
GDP shares, this becomes

log Yt = 0.77 logCt + 6.15(logKt − logKt−1) + 0.3 logGt + 0.28 logEXt − 0.3 log IMt

Evolution of bt ; government budget constraint:

bt+1 = (1 + rt)bt + PDt (A1_10)

Dividends are surplus corporate cash flow:

dtSt = Yt −Ns
t wt −Kt(rt + δ)

dt =
Yt −Ns

t wt −Kt(rt + δ)

St
(A1_11)

Market-clearing for shares, Spt+1:
Spt+1 = St (A1_12)

Present value of share:

pt = Et

∞∑
i=1

dt+i
(1 + rt)i

(A1_13)

where dt (dividend per share), pt (present value of shares in nominal terms).
Primary deficit PDt:

PDt = Gt − Tt (A1_14)

Tax process Tt designed to ensure convergence of government debt to transversality condition:

Tt = Tt−1 + γG
(PDt−1 + btrt)

Yt−1
(A1_15)

Evolution of foreign bonds bft :

Qtb
f
t+1

(1 + rft )
= Qtb

f
t + EXt −QtIMt (A1_16)

Evolution of household net assets At+1:

At+1 = (1 + rAt)At + Yt − Ct − Tt − It (A1_17)

where rAt is a weighted average of the returns on the different assets.
Household transversality condition as T →∞:

∆(
AT
YT

) = 0 (A1_18)

Government transversality condition T →∞:

∆(
bT
YT

) = 0 (A1_19)
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Coeffi cient Value – Single equation

α 0.70
β 0.97
δ 0.0125
ρ0 1.20
θ0 0.50
γG 0.05
ρ2 1.00
ω 0.70
ρ −0.50
ωf 0.70
h 0.80
ρ3 −0.50
σ 1
σF 1
ζ1 0.5
ζ2 0.475
ζ3 0.25

Table 7: Model Coeffi cients

6.3 Values of coeffi cients

7 Appendix 2: Model solution methods

The model is solved in the loglinearised form above using a projection method set out in Minford
et al. (1984, 1986); it is of the same type as Fair and Taylor (1983) and has been used constantly
in forecasting work, with programme developments designed to ensure that the model solution is not
aborted but re-initialised in the face of common traps (such as taking logs of negative numbers); the
model is solved by a variety of standard algorithms, and the number of passes or iterations is increased
until full convergence is achieved, including expectations equated with forecast values (note that as this
model is loglinearised, certainty equivalence holds). Terminal conditions ensure that the transversality
conditions on government and households are met- equivalent to setting the current account to zero).
The method of solution involves first creating a base run which for convenience is set exactly equal to
the actual data over the sample. The structural residuals of each equation are either backed out from
the data and the model when no expectations enter as the values necessary for this exact replication of
the data; or, in equations where expectations enter, they are estimated using a robust estimator of the
entering expectations as proposed by McCallum (1976) and Wickens (1982), using instrumental variables;
here we use as instruments the lagged variables in univariate time-series processes for each expectational
variable. The resulting structural residuals are treated as the error processes in the model and together
with exogenous variable processes, produce the shocks perturbing the model. For each we estimate a
low-order ARIMA process to account for its autoregressive behaviour. The resulting innovations are
then bootstrapped by time vector to preserve any correlations between them. Two residuals only are
treated as non-stochastic and not bootstrapped: the residual in the goods market-clearing equation
(the GDP identity) and that in the uncovered interest parity (UIP) condition. In the GDP identity
there must be mis-measurement of the component series: we treat these measurememt errors as fixed
across shocks to the true variables. In the UIP condition the residual is the risk-premium which under
the assumed homoscedasticity of the shocks perturbing the model should be fixed; thus the residuals
represent risk-premium variations due to perceived but according to the model non-existent movements
in the shock variances. We assume that these misperceptions or mismeasurements of variances by agents
are fixed across shocks perturbing the model- since, although these shocks are being generated by the
true variances, agents nevertheless ignore this, therefore making these misperceptions orthogonally.
To obtain the bootstraps, shocks are drawn in an overlapping manner by time vector and input into

the model base run (including the ARIMA processes for errors and exogenous variables). Thus for period
1, a vector of shocks is drawn and added into the model base run, given its initial lagged values; the
model is solved for period 1 (as well as the complete future beyond) and this becomes the lagged variable
vector for period 2. Then another vector of shocks is drawn after replacement for period 2 and added
into this solution; the model is then solved for period 2 (and beyond) and this in turn becomes the lagged
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variable vector for period 3. Then the process is repeated for period 3 and following until a bootstrap
simulation is created for a full sample size. Finally to find the bootstrap effect of the shocks the base
run is deducted from this simulation. The result is the bootstrap sample created by the model’s shocks.
We generate some 1500 of such bootstraps.
We add these bootstraps to the Balanced Growth Path implied by the model and the deterministic

trend terms in the exogenous variables and error processes. We find this BGP by solving for the effect of
a permanent change in each error/exogenous variable at the terminal horizon T; we then multiply this
steady-state effect by the deterministic rate of change of this variable. When this BGP is incorporated
in every bootstrap we have 1500 full alternative scenarios for the economy over the sample period; these
bootstrap samples are then used in estimation of the VECM auxiliary equation.
To generate the model-implied joint and individual distributions of the parameters of the VECM

estimated on the data, we carry out exactly the same estimation on each bootstrap sample. This gives
us 1500 sample estimates which provide the sampling distribution under the null of the model. The
sampling distribution for the Wald test statistic, [aT − αS ]′W [aT − αS ] , is of principal interest. We
represent this as the percentile of the distribution where the actual data-generated parameters jointly
lie. We also compute the value of the square root of this, the Mahalanobis distance, which is a one-sided
normal variate; we reset this so that it has the 95% value of the variate at the same point as the 95th
percentile of the bootstrap distribution (which is not necessarily normal). This ‘normalised Mahalanobis
Distance’we use as a measure of the distance of the model from the data under the bootstrap distribution.
Its advantage is that it is a continuous variable representation of the theoretical distribution underlying
the bootstrap distribution- which is made finite by the number of bootstraps.

8 Appendix 3: Model Solution with Complete Markets and
Non-stationary Shocks

It turns out that under non-stationary shocks the model solution is the same under complete contingent
asset contracts.
Consider contingent assets paying 1 consumption unit in specified states of the world (for example

when yt+T = ỹ)? Here we write the price of this asset, P , as

Pt =
βTu′t+T (yt+T = ỹ)prob(yt+T = ỹ)

u′t
(A3_1)

One, the first, problem here is to define this probability. Since GDP has an infinite variance at T as
T tends to infinity, we define the probability for a finite T . Such an asset will not be valued anyway for
an ‘infinite T’since as T tends to infinity βT tends to zero. In practice therefore an asset paying off in
‘infinite’time is not interesting to a household. For earlier finite periods however βT is non-zero and the
probabilities can be defined so that the asset is valued.
Now introduce a foreign country and allow trading of these contingent assets. We now let y stand for

the vector of states in both countries. The foreign country’s equivalent asset paying one unit of foreign
consumption at T would be

PFt =
βTu′Ft+T (yt+T = ỹ)prob(yt+T = ỹ)

u′Ft
(A3_2)

Now the price a home resident would pay for this foreign asset would be

PFt =
βTu′t+TQt+T (yt+T = ỹ)prob(yt+T = ỹ)

u′tQt
(A3_3)

while the price a foreigner would pay for the home asset would be

Pt =
βTu′Ft+T /Qt+T (yt+T = ỹ)prob(yt+T = ỹ)

u′Ft/Qt
(A3_4)

By equating these two values paid for each asset by home and foreign residents we obtain the Uncov-
ered Parity contingent asset condition:

1 =
u′t+TQt+T /u

′
Ft+T (yt+T = ỹ)

u′tQt/u
′
Ft

(A3_5)
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or

lnu′t+T − lnu′t = (lnu′Ft+T − lnu′Ft) + lnQt+T − lnQt (A3_6)

for any state of the world at T .
This ties together movements in consumption over time in the two countries with the movement in

the real exchange rate. Notice that under stationary shocks the probability of the future state at t+ T
could be defined independently of what t is, provided T is large enough so that the effects of any shocks
originating at t have died away. This allowed Chari et al (2002) to fix t at some arbitrary initial date 0
and rewrite the condition

lnu′T = lnu′FT + lnQT + lnu′0 − lnu′F0 − lnQ0 (A3_7)

We may then normalise the initial values at zero for convenience to obtain

lnu′T = lnu′FT − lnQT (A3_8)

However under non-stationary shocks such detachment of the condition from t is impossible because
the state at t+ T depends crucially on the state at t: the shocks at t are permanent and therefore alter
the state at t+ T .
We may now note that taking rational expectations at t of the condition we obtain:

Et(lnu
′
t+T − lnu′t) = Et(lnu

′
Ft+T − lnu′Ft) + Et(lnQt+T − lnQt) (A3_9)

The lhs (by our non-contingent asset first order condition in the text – eqs 18 and 20 there) is simply
T lnR,the first term on the rhs is from the foreign equivalent T lnRF ; if r is the net real interest rate
then lnR ≈ r so that we obtain UIP:

rt = rFt + T−1(Et lnQt+T − lnQt) (A3_10)

What we discover is that under non-stationary shocks contingent assets do not change the rational
expectations equilibrium of the model from that with merely non-contingent assets. The reason is that
contingent asset values depend critically on the shocks at t and so do not as with stationary shocks
produce a condition binding on the expected levels of variables independent of the date at which the
expectation is formed.
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