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Economics Department, Cardiff Business School, CF10 3EU, email: tziogkidisp@cf.ac.uk 

  

Abstract 

 

Since the introduction of bootstrap DEA there is a growing literature on applications 

which use this method, mainly for hypothesis testing. It is therefore important to 

establish the consistency and evaluate the performance of bootstrap DEA. The few 

Monte Carlo experiments in the literature perform this exercise on the basis of 

coverage probabilities, using a certain population assumption and usually they analyze 

the simple case of 1 input and 1 output. However, it has been argued recently that 

coverage probabilities are not a good tool of assessment. In our study we evaluate the 

performance of bootstrap DEA using the standard approach of comparing moments. 

We use three different data generating processes over three different dimensions 

while for each case we compare results from both the smooth and “naïve” bootstrap. 

Our results are not in accordance with previous studies, as we find that the smooth 

bootstrap performs overall worse while we highlight the cases where the researcher 

should be cautious when using these techniques. 

 

Key words: Data Envelopment Analysis, Efficiency, Bootstrap, Bootstrap DEA, Monte Carlo 
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1 Introduction 

 

The implementation of the bootstrap in the non-parametric data envelopment analysis (DEA) 

models is a relatively recent and increasingly popular practice in DEA applications. It was 

introduced by Simar and Wilson (1998) and is now almost a requirement when statistical 

inference needs to be applied on DEA, especially hypothesis testing. Therefore, it is crucial to 

establish that the bootstrap provides consistent results and explore the conditions that might 

affect its performance. 
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However straightforward it seems to perform Monte Carlo simulations, great care needs to 

be taken in designing the experiment, especially the data generating process (DGP). And the 

most important point is to ensure that the DGP is theoretically consistent with the assumptions 

of bootstrap DEA and at the same time consistent with some economic interpretation. Some of 

these assumptions have been stated in Simar and Wilson (1998), however Tziogkidis (2012) has 

provided a deeper insight regarding their implications and has proposed refinements on the 

application of bootstrap DEA. Moreover, there is a clear motivation in Tziogkidis (2012) to 

explore certain aspects of bootstrap DEA with Monte Carlo experiments which have not been 

previously examined. 

In this paper we perform the Monte Carlo experiments suggested by Tziogkidis (2012) to 

examine whether the performance of bootstrap DEA is affected by sample size and dimensions 

(number of inputs and outputs), by smoothing or not smoothing the empirical distribution of 

DEA scores as well as by introducing model biases such as specification and measurement 

biases. We also illustrate the different nature between the bootstrap bias and DEA bias which 

was thoroughly discussed in Tziogkidis (2012) while we provide empirical support to the 

author’s theoretical arguments about the potential inconsistency of Simar and Wilson’s (2000) 

method of confidence interval construction. 

To perform our analysis we compare the moments of the efficiency score distribution of 

three hypothesized populations and various randomly drawn samples from them, where DEA 

and bootstrap DEA is applied. Previous studies on the performance of bootstrap DEA, assess the 

performance of the algorithm on the basis of “coverage probabilities” which, as explained in 

Tziogkidis (2012), might provide inconsistent results. However, we also compute coverage 

probabilities and we obtain different results for the particular cases examined in this paper, 

which is quite puzzling. 

Our results suggest that bootstrap DEA is asymptotically consistent with satisfactory rates of 

convergence. However, as the dimensions of the linear program increase or at the presence of 

model biases, the rates of convergence reduce significantly. Another interesting result is that 

the “naïve” or non-smoothed bootstrap seems to perfom better compared to the smooth 

bootstrap, which contradicts the inconsistency arguments of Simar and Wilson (1998). Actually, 

this result also suggests that we could avoid using the complicated smoothing techniques which 

are also very sensitive to the choice of the smoothing parameter. 
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The remainder of the paper is structured as follows: section 2 reviews the relevant literature 

on the performance of bootstrap DEA, section 3 outlines the Monte Carlo experiments 

performed in this study, section 4 presents and discusses the simulation results, section 5 

performs an extra exercise comparing coverage probabilities while section 6 concludes the 

paper.  

 

2 Literature review 

 

Data envelopment analysis (DEA) is a non-parametric technique which is used to assess the 

relative performance of decision making units (DMUs), introduced by Charnes, Cooper and 

Rhodes (1978). It uses linear programming to attach optimal weights to a set of inputs and 

outputs that DMUs use in their production process. The major advantage of DEA is that it does 

not require the specification of a production function, due to its non-parametric nature. On the 

other hand, its major disadvantage is that it is not possible to apply statistical inference due to 

the lack of stochastic elements. 

To mitigate this disadvantage of DEA, Simar and Wilson (1998) introduced bootstrap DEA as a 

tool of extracting the sensitivity of DEA scores towards the randomness which is attributed to 

the distribution of (in)efficiency. This is a quite strong assumption; however, Tziogkidis (2012) 

has suggested that if the sample is homogeneous enough, then this assumption is quite 

reasonable. Moreover, the statistical properties of DEA scores have been explored [Korostelev 

et al. (1995), Kneip et al. (1998)], suggesting that they converge asymptotically with rates of 

convergence that depend on sample size and dimensions (number of inputs and outputs). This 

implies that bootstrap DEA should also perform asymptotically well; however, we should be 

clear about how good performance is defined. 

Usually, to assess the performance of any bootstrap algorithm, Monte Carlo simulations are 

used where a true model and population is defined. Then, the assessed model is said to perform 

well if the moments of the bootstrapped models asymptotically converge towards the “true” or 

population moments of the population. Another aspect of good performance, usually in 

parametric models, is by modeling a null hypothesis and checking whether the hypothesized 

“true” value lies within the bootstrapped confidence intervals and whether the percentage of 

successes (known as coverage) converges towards the nominal level of confidence. 



4 

 

The performance evaluation of bootstrap DEA should be based on its uses, apart from the 

evaluation of moments or coverage. Using the distribution of bootstrapped efficiency scores and 

the observed bootstrap bias, Simar and Wilson (1998) suggest that it is possible to approximate 

the “true” efficiency scores of DMUs by correcting twice for bootstrap bias. Moreover, using the 

distribution of bootstrap bias, Simar and Wilson (2000) construct confidence intervals where the 

“true” efficiency scores of DMUs are supposed to lie. However, as Tziogkidis (2012) has argued, 

both of the aforementioned uses of bootstrap DEA require that the bootstrap bias is equal to 

the DEA bias, while he proves that using Simar and Wilson’s (2000) confidence intervals for 

hypothesis testing might lead to inconsistent results and suggests that the assessment on the 

basis of coverage probabilities might be an invalid approach for bootstrap DEA.  

The literature on bootstrap DEA performance is quite narrow and seems to be focusing only 

on coverage and confidence interval widths, while moments are not considered in Monte Carlo 

simulations. To our knowledge, Löthgren (1998) and Simar and Wilson (2000, 2004) are the only 

well known simulation studies which assess the performance of Simar and Wilson’s (1998, 2000) 

approaches and in both studies this is done using coverage probabilities. Moreover, these 

simulations are only based on a single population specification under the assumption of one 

input and one output. Regarding moment comparisons, we are not aware of any simulation 

exercise; hence our study is further motivated. 

In Löthgren (1998) the Monte Carlo experiment is used to compare the performance of three 

different bootstrap DEA procedures, including that of Simar and Wilson (1998). Coverage 

probabilities are calculated for the simple case of 1 input and 1 output (under both CRS and VRS) 

over a range of levels of significance and number of DMUs. Table 1 summarizes the results of 

Löthgren (1998) for the bootstrap DEA method of Simar and Wilson (1998). In many cases 

coverage probabilities fall as sample size increases,  however Löthgren (1998) does not provide 

any explanation as to why this behavior is observed. 
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Table 1. Löthgren Monte Carlo results on Simar and Wilson (1998) 

 
Source:  Löthgren (1998), Table 5.2 

 

The results in Simar and Wilson (2000) are quite different as the reported coverage 

probabilities, based on the “enhanced” confidence intervals introduced in the same paper
1
, 

behave ideally as they converge towards the nominal probabilities surprisingly well. Moreover, 

confidence intervals narrow down which is expected since the bootstrap bias reduces with 

sample size. Their Monte Carlo exercise involves a one-input, one-output specification under the 

assumption of output orientation and under both CRS and VRS
2
. Their results for the CRS 

technology assumption are summarized in Table 2 below. Column 1 reports the sample sizes, 

columns 2 to 6 present the coverage probabilities for the 80%, 90%, 95%, 97.5% and 99% levels 

of confidence, respectively, while the last column reports the average 95% confidence interval 

widths. One interesting result is that smaller samples exhibit lower coverage although their 

width is quite large, giving the impression that the sample descriptives massively change as 

sample size increases. More information about the moments of the samples used and of the 

bootstrap results would have provided a deeper insight. 

 

                                                           
1
 In their previous paper (Simar and Wilson, 1998) the confidence interval construction was based on the 

percentiles of bootstrap distribution of bias-corrected efficiency scores. In Simar and Wilson (2000) it was 

suggested that this approach introduced unnecessary noise and it was proposed to use the percentiles of 

the distribution of bootstrap biases instead. The resulting confidence intervals have 4 times less variance 

and their efficiency is the same to the previously used ones. 

2
 We would like to note that it is not clear to us whether they employ the homogeneous bootstrap of their 

1998 paper or the heterogeneous one introduced in 2000. In either case, the results are worthwhile to 

present. 

0.8 0.9 0.95 0.975 0.99

20 0.758 0.853 0.860 0.865 0.869

30 0.715 0.886 0.892 0.894 0.900

60 0.617 0.900 0.914 0.914 0.919

120 0.400 0.833 0.947 0.952 0.953

250 0.245 0.501 0.890 0.968 0.972

500 0.091 0.226 0.481 0.836 0.974

n

Nominal Coverage Levels
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Table 2. Simar and Wilson (2000) Monte Carlo results: CRS case 

 
Source:  Simar and Wilson (2000), Table 1 

 

Similar evidence are found in Simar and Wilson (2004), who perform Monte Carlo 

experiments to compare their smooth bootstrap procedure against two variants of the “naïve” 

bootstrap, under a simple, one input and one output setup. The first of the two “naïve” 

procedures draws from the empirical distribution of inputs and outputs (known as case or pairs 

resampling) whereas the latter draws from the empirical distribution of efficiency scores (known 

as fixed or “residual” resampling). They find that the smooth bootstrap outperforms the other 

two, while the “naïve” bootstrap which draws from the input and output data provides better 

results than the other one. However, drawing directly from the data would be computationally 

more intensive in applied research as it would require applying the bootstrap procedure for 

each DMU separately (i.e. it can be only applied for one reference DMU at a time), while it 

would be more intuitive in the case of non-oriented models (Tziogkidis, 2012). Their results for 

the CRS case and for a 95% level of significance are summarized in Table 3. In particular, Table 3 

reports the coverage probabilities and the average confidence interval widths for the three 

different cases; the Simar and Wilson (2000) enhanced method (“SW2000”), the “naïve” 

bootstrap with pair resampling (“Pairs”) and the “naïve” bootstrap with fixed resampling 

(“Fixed”). Again, the results indicate that the proposed method of Simar and Wilson (1998, 

2000) performs well, in terms of coverage, and that it is superior compared to the non-smooth 

or “naïve” bootstrap.  

In this simulation study we assess the performance of bootstrap DEA, both smooth and 

“naïve”, on the basis of moments although we also provide results for comparison purposes. 

Apart from evaluating moments, we examine the behavior of certain variables to assess the 

validity of certain assumptions or suggestions expressed in Simar and Wilson (1998, 2000) and 

were criticized by Tziogkidis (2012). The results of this study provide a better understanding of 

0.8 0.9 0.95 0.975 0.99

10 0.693 0.814 0.886 0.919 0.942 0.911

25 0.772 0.883 0.935 0.973 0.983 0.586

50 0.784 0.894 0.940 0.970 0.985 0.351

100 0.794 0.911 0.946 0.973 0.988 0.187

200 0.810 0.899 0.946 0.970 0.994 0.095

400 0.807 0.903 0.953 0.977 0.995 0.047

n

Nominal Coverage Levels Av. CI width 

(95%)
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bootstrap DEA and suggest another approach of performance evaluation which has been 

unexplored until now.  

 

Table 3. Simar and Wilson (2004) Monte Carlo CRS  results (95%) 

 
Source:  Simar and Wilson (2004), Tables 10.1 and 10.3 

 

3 The Monte Carlo experiments 

 

3.1 The experiment outline 

 

We perform our Monte Carlo experiments using three different population assumptions of 

size N=10,000, which are assumed to reflect one theoretically consistent case and two cases 

which are associated with model biases. The efficiency scores of the three populations and their 

distributions are unobservable and are expected to be approached by the samples only 

asymptotically. The simulations are run over sample sizes of 10, 15, 20, 25, 30, 60 and 120 and 

three different dimensions: 1 input and 1 output (1I/1O), 2 inputs and 1 output (2I/1O), and 2 

inputs and 2 outputs (2I/2O). Each bootstrap DEA model involves � = 2000  replications while 

the Monte Carlo experiment is run � = 1000  times. Our experiments were applied once using 

the smooth bootstrap
3
 and once the “naïve” bootstrap. All calculations were performed in 

                                                           
3
 In our simulation study we choose the least squares cross validation (LSCV) method to determine the 

smoothing parameter (after correcting for sample size). Compared to “plug-in” methods, LSCV has the 

advantage of performing well, even when the target distribution has a non-standard shape. A nice 

comparison is provided in Loader (1999). 

SW2000 Pairs Fixed SW2000 Pairs Fixed

10 0.916 0.899 0.899 0.1384 0.2018 0.2018

25 0.932 0.894 0.890 0.0551 0.0664 0.0693

50 0.920 0.896 0.891 0.0283 0.0320 0.0315

100 0.921 0.889 0.891 0.0146 0.0154 0.0157

200 0.937 0.879 0.888 0.0076 0.0078 0.0074

400 0.936 0.883 0.889 0.0039 0.0037 0.0038

800 0.950 0.886 0.871 0.0019 0.0019 0.0019

1600 0.957 0.876 0.868 0.0010 0.0009 0.0009

3200 0.951 0.897 0.864 0.0005 0.0005 0.0005

6400 0.960 0.878 0.868 0.0003 0.0002 0.0002

Av. CI Width (95%)

n

Coverage Probabilities (95%)
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Matlab using a Monte Carlo code written by the author, which repeatedly calls an appropriately 

modified bootstrap DEA MatLab code written by L. Simar (last updated in Nov. 2002). The 

computational costs in seconds, using a standard PC Intel i3 2.8MHz processor, are presented 

for each case in Table 4 below, while the cumulative runtime is 56.6 days. 

 

Table 4. Computational costs (seconds) of Monte Carlo simulations 

 

 

3.2 The data generating processes 

 

The data generating processes (DGPs) are similar to the ones used in previous Monte Carlo 

studies; however, we apply small variations in order to examine more cases and to attach an 

economic interpretation to the cases examined. We generate three different types of 

populations, the intuition of which is explained in the next subsection, which we call as 

“Standard”, “Alternative A”, and Alternative “B”. All experiments are performed over three 

different dimensions: 1 input and 1 output, 2 inputs and 1 output and 2 inputs and 2 outputs. 

For the 1 input and 1 output case, the true production function is a simple case of CRS 

technology where the efficient levels of input ��	

� are uniformly distributed on the [10,20] 

interval: � = �	

~�(10,20). Regarding the case of 2 inputs and 1 output, we use again a 

standard Cobb Douglas CRS production function to generate output: � = ���
	

�

�.�
���

	

�
�.�

. It 

is assumed that the efficient levels of inputs are uniformly distributed with ��
	

~�(10, 20) and 

��
	

~�(20, 30). Finally, for the case of 2 inputs and 2 outputs, the CRS production function is 

Cobb Douglas for both outputs: �� = ���
	

�

�.�
���

	

�
�.�

 and �� = ���
	

�

�.�
���

	

�
�.�

. It is 

assumed that efficient levels of inputs are normally distributed with ��
	

~�(10,20) and 

��
	

~�(20,30). 

In all previous cases actual inputs (��) are assumed to deviate from their efficient levels in 

three different ways which reflect three different assumptions on the assumed error (the three 

DGP assumptions): 

 

1I/1O 2I/1O 2I/2O 1I/1O 2I/1O 2I/2O 1I/1O 2I/1O 2I/2O

Smooth 145717 277203 420790 153163 257373 358620 150952 298104 448240

Naïve 142347 265474 410790 146450 240212 356740 146802 247749 424690

Standard Alternative A Alternative B
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Standard:   �� = ��	

��.�
|�|   where   �~�(0,1)     

Alternative A:   �� = ��	

��.��     where   �~�(0,1) 

Alternative B:  �� = ��	

��. �     where   �~�(0,1) 

A necessary clarification for the cases where 2 inputs are used is that the error term (u) is a 

common vector used by both inputs. The logic for this specification lies in the definition of DEA 

efficiency scores in input orientation which are actually contraction factors applied to all inputs 

simultaneously. For example, if a DMU has an efficiency score of 0.8, then it will need to use 

only 80% of all its inputs in order to become technically efficient. Therefore our experiment 

design is consistent with DEA principles. 

Once we have obtained the pairs of inputs and outputs we apply DEA on the assumed 

populations and the resulting efficiency scores are treated as the “true” ones which, however, 

we call them “population scores” to avoid confusion. After constructing the hypothesized 

populations we produce the 1000 samples where both DEA and bootstrap DEA will be applied 

on. In order to avoid discriminating against the smooth or the “naïve” bootstrap we randomly 

draw these samples in advance and use exactly the same ones in the smooth and “naïve” 

bootstrap evaluation. Hence, any error imposed by the randomness of the Monte Carlo exercise 

is mitigated since both procedures have the same base of comparison. 

 

3.3 The intuition behind the DGPs 

 

The population distribution of efficiency scores is presented in Figure 1 for the case of 1 input 

and 1 output
4
. The first histogram corresponds to the “Standard” case, while the second and the 

third histograms correspond to “Alternative A” and “Alternative B”, respectively. It is obvious 

that the standard case is associated with a half-normal distribution, alternative A with a slightly 

skewed normal distribution and alternative B mostly with a uniform distribution.  

The choice of the three different populations is intentional and aims in assessing bootstrap 

DEA under different conditions. In particular, the standard case uses the absolute normal 

deviations of inputs from their efficient levels. Indeed, a theoretically consistent exercise should 

use only positive deviations of efficient levels, which respect the DEA assumption in input 

orientation that � > �	

, hence we named it “Standard”. Also, it is consistent with a perfectly 

                                                           
4
 The histograms for the higher dimensions look almost exactly the same and are not presented here to 

conserve space. 
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competitive market as it consists of quite homogeneous firms which exhibit constant returns to 

scale and have access to the same technology in order to produce the same output. All firms are 

expected to perform efficiently, however, due to random exogenous factors some firms use 

proportionately more outputs than the efficient level. 

 

Figure 1. Population distribution of efficiency scores for each of the three alternatives 

  

Alternative A, exhibits an inconsistency with DEA: the input deviations may also be negative 

which implies that the input levels might be lower than the efficient input levels. We deem this 

inconsistency as a possible source of DEA bias which is associated with technology. In particular, 

in the DEA world it would be a model specification bias to include in a sample DMUs which have 

access to unique technology, while the reference technology is believed to be homogeneous for 

all firms. That would result in an unfair comparison while the few efficient DMUs would be the 

technologically privileged ones. Hence, Alternative A aims in demonstrating the effects of 

specification bias in DEA and bootstrap DEA and examines the consequences of not respecting 

the requirement of homogeneity in technology. 

Finally, Alternative B exhibits no such inconsistency as the assumed deviations are by 

definition positive (they are positively uniformly distributed). Although it looks similar to the 

standard case, the assumption of uniform deviations imposes a more random structure in the 

market, which is no longer associated with perfect competition. This is due to the fact that mean 

deviation is no longer zero, as in the “Standard” case. Hence, this could imply a market with no 

particular or unclear competitive conditions, but it could also be due measurement errors which 

result in such structures. Indeed, even in a perfectly competitive market, an error in 

measurement of input, either due to misreporting or due to methodological mistakes in 

measuring inputs, would largely affect the distribution of efficiency scores. However, such an 
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error would not affect results on average as much as in the previous case of the model 

specification bias. 

 

4 Simulation results 

 

As with every Monte Carlo exercise, the most interesting moment is the mean. We therefore 

first present a graph which summarizes our Monte Carlo results on mean convergence. In 

particular, Figure 2 presents the 9 different combinations of DGPs and model dimensions 

examined, plotted against sample size. The black dotted line represents the population mean 

efficiency score, the red dotted line corresponds to the center of the distribution of sample DEA 

means, while the green and the blue lines represent the centers of the distributions of the 

smooth and “naïve” bootstrap DEA means, respectively
5
.  

The results in Figure 2 are quite intuitive. First and foremost, they suggest that the DEA 

means converge towards the population mean quite fast, with the exception of Alternative A 

where the rates of convergence are very low which is attributed to the hypothesized model 

specification bias. The model (or DEA) bias, reflected by the distance between the black dotted 

line and the red dotted line, is therefore affected significantly by the inclusion of DMUs with 

access to different technology of production. Especially in this case it is obvious that the 

bootstrap bias is very different compared to the DEA bias for both bootstrap DEA procedures, 

which provides further support to the arguments in Tziogkidis (2012) against the practice of 

correcting twice for bootstrap bias to obtain an approximation of the population score. 

Regarding bootstrap DEA results, the bootstrap means converge towards the DEA means, 

which is the expected behavior. The rate of convergence is not affected by model biases but is 

only affected by the dimensions of the program. This is also expected as the sample DEA scores 

are assumed to be free of any external biases when bootstrap DEA is applied and the bootstrap 

mimics the behavior of the target distribution of DEA scores. The evaluation of performance of 

bootstrap DEA should therefore focus on bootstrap bias, which is represented by the distance 

between the green or the blue line and the red dotted one. Indeed, bootstrap bias decreases 

                                                           
5
 To be precise, by center we mean the median. Also for bootstrap DEA means we calculate the mean of 

every bootstrapped sample and then its median reflects the bootstrap mean. From the Monte Carlo 

experiment a distribution of bootstrap means is computed and the values reported here are the medians 

of these distributions. 



12 

 

Figure 2. Monte  Carlo results on mean convergence 
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with sample size, however it increases with the number of inputs and outputs. It is obvious from 

our results that the bootstrap bias of the “naïve” bootstrap is smaller compared to the bias of 

the smooth bootstrap, which contradicts the claims of Simar and Wilson (1998) that the “naïve” 

bootstrap is inconsistent; in fact it performs quite better than the smooth, while in some cases 

the bootstrap bias is almost zero. 

The latter is not clear in Figure 2 where there are 3 cases (the 1 input and 1 output cases) 

where the naïve bootstrap means coincide with the DEA ones. We have therefore summarized 

the results on moments (mean, standard deviation, skewness and kurtosis) in Table 5, where the 

names in each column and row are self explanative. Regarding the standard case, all moments 

of the bootstrap DEA procedures converge towards the DEA ones, which, in turn, converge 

towards the population moments. In fact, even for small samples the results for both DEA and 

bootstrap DEA are quite satisfactory. However, for " = 10, where the rule of thumb for the 

minimum number of DMUs is violated, we observe excess skewness and kurtosis, although the 

first two moments behave well. Comparing the smooth and the “naïve” bootstrap we see that 

their higher moments (skewness and kurtosis) perform quite closely, while the “naïve” is closer 

to the DEA mean and variance, implying that it performs better. 

Exactly the same conclusions are reached for Alternative B. Moments converge to their 

“true” values while very small samples might be problematic in terms of higher moments. The 

“naïve” bootstrap still performs better regarding mean and variance.  

However, the results are different for Alternative A. In the presence of model specification 

bias, we observe that the DEA higher moments are far from the population ones. This also 

affects the higher moments of the bootstrap DEA procedures, which, however, still perform 

quite close to the true ones. This implies that the performance of the bootstrap is not affected 

by the DEA bias, hence applying hypothesis testing to compare two DMUs of the same sample 

would give consistent results. On the other hand, comparing a DMU from the “biased” sample 

to a DMU from another sample would be inappropriate, which confirms the relevant argument 

in Tziogkidis (2012).  

The simulation results indicate that bootstrap DEA is a consistent procedure, which performs 

well even under the existence of model biases. However, care needs to be taken when 

comparing different samples as the results would be inconsistent. Moreover, comparing the 

smooth bootstrap of Simar and Wilson (1998) and the non-smooth or “naïve” bootstrap, we find 
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that the latter performs better; hence, the term “naïve” seems to be quite an unfair 

characterization.  

 

Table 5. Moments of the Monte Carlo simulations 

 

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.860 0.097 -0.682 2.919 0.860 0.097 -0.688 2.927 0.858 0.098 -0.656 2.836

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.854 0.125 -0.875 2.970 0.880 0.118 -0.862 2.762 0.879 0.117 -0.825 2.660

n = 15 0.855 0.116 -0.866 3.086 0.876 0.111 -0.843 2.891 0.876 0.112 -0.817 2.807

n = 20 0.856 0.111 -0.837 3.141 0.873 0.109 -0.781 2.844 0.871 0.109 -0.745 2.729

n = 25 0.859 0.108 -0.858 3.239 0.872 0.106 -0.791 2.891 0.871 0.107 -0.738 2.793

n = 30 0.857 0.107 -0.802 3.155 0.872 0.105 -0.760 2.883 0.870 0.106 -0.719 2.805

n = 60 0.858 0.102 -0.754 3.030 0.867 0.101 -0.716 2.854 0.865 0.102 -0.670 2.743

n = 120 0.858 0.100 -0.712 2.937 0.864 0.099 -0.699 2.877 0.863 0.100 -0.666 2.765

Smooth Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.919 0.134 -1.038 3.912 0.948 0.128 -0.919 3.436 0.952 0.130 -0.871 3.315

n = 15 0.908 0.123 -0.966 3.663 0.934 0.120 -0.875 3.336 0.937 0.121 -0.820 3.214

n = 20 0.903 0.117 -0.906 3.555 0.927 0.116 -0.800 3.127 0.929 0.117 -0.743 2.989

n = 25 0.899 0.114 -0.914 3.578 0.921 0.113 -0.796 3.118 0.922 0.114 -0.729 3.010

n = 30 0.895 0.111 -0.844 3.415 0.916 0.111 -0.765 3.078 0.916 0.112 -0.713 2.987

n = 60 0.887 0.106 -0.773 3.140 0.902 0.105 -0.715 2.938 0.902 0.107 -0.668 2.822

n = 120 0.881 0.102 -0.721 2.986 0.890 0.102 -0.700 2.922 0.890 0.103 -0.665 2.803

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.854 0.125 -1.038 3.912 0.891 0.121 -0.931 3.475 0.891 0.122 -0.880 3.305

n = 15 0.855 0.116 -0.966 3.663 0.885 0.114 -0.885 3.346 0.886 0.115 -0.823 3.212

n = 20 0.856 0.111 -0.906 3.555 0.881 0.111 -0.801 3.132 0.881 0.112 -0.741 2.987

n = 25 0.859 0.108 -0.914 3.578 0.879 0.108 -0.800 3.121 0.879 0.109 -0.729 3.015

n = 30 0.857 0.107 -0.844 3.415 0.878 0.107 -0.768 3.080 0.877 0.108 -0.720 2.981

n = 60 0.859 0.102 -0.773 3.140 0.872 0.102 -0.718 2.938 0.870 0.103 -0.672 2.820

n = 120 0.858 0.100 -0.721 2.986 0.867 0.100 -0.699 2.923 0.866 0.100 -0.667 2.801

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.450 0.091 0.629 3.651 0.527 0.107 0.562 3.435 0.500 0.101 0.608 3.640

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.738 0.160 -0.012 2.555 0.772 0.157 -0.113 2.320 0.774 0.157 -0.119 2.365

n = 15 0.711 0.151 0.168 2.690 0.741 0.151 0.058 2.398 0.748 0.150 0.026 2.472

n = 20 0.697 0.145 0.265 2.778 0.729 0.146 0.124 2.530 0.734 0.147 0.119 2.503

n = 25 0.686 0.142 0.311 2.808 0.717 0.145 0.214 2.521 0.721 0.143 0.187 2.568

n = 30 0.680 0.140 0.327 2.838 0.705 0.141 0.239 2.616 0.711 0.141 0.259 2.566

n = 60 0.645 0.132 0.464 3.061 0.669 0.135 0.377 2.816 0.676 0.136 0.371 2.775

n = 120 0.619 0.125 0.524 3.214 0.643 0.129 0.442 2.970 0.646 0.129 0.445 2.988

Smooth Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.813 0.177 -0.015 3.177 0.872 0.183 -0.034 2.875 0.870 0.184 -0.016 3.015

n = 15 0.773 0.166 0.188 3.094 0.818 0.172 0.157 2.810 0.826 0.172 0.135 2.941

n = 20 0.751 0.157 0.287 3.083 0.795 0.164 0.220 2.907 0.799 0.165 0.202 2.895

n = 25 0.734 0.153 0.331 3.047 0.778 0.161 0.297 2.831 0.780 0.160 0.275 2.925

n = 30 0.725 0.149 0.345 3.038 0.763 0.156 0.323 2.902 0.769 0.156 0.347 2.921

n = 60 0.683 0.139 0.476 3.174 0.717 0.146 0.427 3.027 0.723 0.147 0.435 3.002

n = 120 0.647 0.132 0.531 3.275 0.682 0.137 0.480 3.112 0.686 0.138 0.483 3.162

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.738 0.160 -0.015 3.177 0.794 0.168 -0.046 2.887 0.870 0.184 -0.017 2.961

n = 15 0.712 0.151 0.188 3.094 0.763 0.161 0.154 2.813 0.826 0.172 0.133 2.906

n = 20 0.697 0.145 0.287 3.083 0.750 0.154 0.220 2.904 0.799 0.165 0.203 2.872

n = 25 0.686 0.142 0.331 3.047 0.736 0.152 0.298 2.830 0.780 0.160 0.275 2.894

n = 30 0.680 0.140 0.345 3.038 0.727 0.149 0.326 2.911 0.769 0.156 0.347 2.883

n = 60 0.645 0.132 0.476 3.174 0.689 0.140 0.429 3.022 0.723 0.147 0.434 2.971

n = 120 0.619 0.125 0.531 3.275 0.659 0.133 0.478 3.107 0.686 0.138 0.483 3.142

Standard 1/1 Standard 2/1 Standard 2/2

Alternative A 1/1 Alternative A 2/1 Alternative A 2/2
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Table 5. Moments of the Monte Carlo simulations (continued) 

 

 

5 Coverage results 

 

Evaluating the bootstrap DEA procedures on the basis of coverage has been argued to be 

counter-intuitive, while results may not be reliable (Tziogkidis, 2012). However, since the 

existing literature has been using coverage probabilities thus far, we have also provided relevant 

results. Coverage probabilities evaluate the probability that the true efficiency score of a DMU 

lies within confidence intervals which have been determined using one of the available 

methodologies.  

Simar and Wilson (2000), as already mentioned, construct these intervals using the 

percentiles of the distribution of bootstrap bias. Then the standard method to calculate 

coverage in Monte Carlo experiments is to fix a DMU to appear in every replication. We follow 

the literature and we fix the DMU to have as inputs and outputs the average values of the 

relevant input and output variable. Thus, for each bootstrap DEA run (or each Monte Carlo 

repetition) we construct the Simar and Wilson (2000) confidence intervals and we observe 

whether the population score of the “fixed” DMU lies within it. Applying the same procedure for 

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.688 0.158 0.270 1.886 0.689 0.157 0.271 1.901 0.689 0.157 0.271 1.901

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.714 0.179 0.150 2.162 0.742 0.175 0.046 2.050 0.742 0.175 0.046 2.050

n = 15 0.709 0.172 0.176 2.093 0.732 0.172 0.117 2.005 0.732 0.172 0.117 2.005

n = 20 0.704 0.168 0.175 2.081 0.724 0.170 0.177 2.008 0.724 0.170 0.177 2.008

n = 25 0.697 0.166 0.228 2.071 0.721 0.167 0.178 1.983 0.721 0.167 0.178 1.983

n = 30 0.697 0.165 0.237 2.025 0.715 0.166 0.222 1.985 0.715 0.166 0.222 1.985

n = 60 0.693 0.162 0.247 1.952 0.707 0.163 0.239 1.930 0.707 0.163 0.239 1.930

n = 120 0.691 0.160 0.260 1.930 0.700 0.161 0.261 1.922 0.700 0.161 0.261 1.922

Smooth Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.807 0.202 0.178 2.482 0.849 0.206 0.133 2.377 0.849 0.206 0.133 2.377

n = 15 0.780 0.190 0.196 2.236 0.814 0.195 0.184 2.207 0.814 0.195 0.184 2.207

n = 20 0.760 0.182 0.190 2.175 0.791 0.189 0.242 2.153 0.791 0.189 0.242 2.153

n = 25 0.746 0.178 0.242 2.139 0.782 0.184 0.227 2.093 0.782 0.184 0.227 2.093

n = 30 0.738 0.175 0.250 2.071 0.768 0.180 0.264 2.069 0.768 0.180 0.264 2.069

n = 60 0.713 0.167 0.253 1.966 0.737 0.172 0.260 1.972 0.737 0.172 0.260 1.972

n = 120 0.701 0.162 0.264 1.936 0.718 0.165 0.270 1.943 0.718 0.165 0.270 1.943

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.714 0.179 0.178 2.482 0.762 0.186 0.131 2.372 0.767 0.191 0.124 2.314

n = 15 0.709 0.172 0.196 2.236 0.748 0.178 0.182 2.202 0.754 0.181 0.173 2.125

n = 20 0.704 0.168 0.190 2.175 0.737 0.175 0.240 2.148 0.738 0.178 0.243 2.071

n = 25 0.697 0.166 0.242 2.139 0.733 0.172 0.228 2.091 0.733 0.174 0.241 2.043

n = 30 0.697 0.165 0.250 2.071 0.725 0.169 0.262 2.064 0.728 0.173 0.248 1.985

n = 60 0.693 0.162 0.253 1.966 0.713 0.165 0.259 1.972 0.714 0.168 0.266 1.937

n = 120 0.691 0.160 0.264 1.936 0.705 0.162 0.270 1.941 0.705 0.164 0.276 1.905

Alternative B 1/1 Alternative B 2/1 Alternative B 2/2
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all � = 1000 Monte Carlo replications we calculate the proportion of times where our 

condition is satisfied, which is the coverage probability.  

The results on coverage are presented in Table 6, for all cases examined, both for smooth 

and “naïve” bootstrap, for sample sizes of 10, 15, 20, 25, 30, 60 and 120 and for significance 

levels of 0.20, 0.10, 0.05 and 0.01. One of the findings is that in all cases, as the level of 

significance decreases the coverage probabilities increase which is reasonable as the confidence 

intervals widen. Moreover, coverage probabilities do not necessarily increase with sample size 

which is due to the fact that Simar and Wilson’s (2000) confidence intervals narrow down 

towards a different point than the population efficiency score. The decreasing coverage is also 

evident in the results of Löthgren (1998) and to a less extent in Simar and Wilson (2004) while 

the decreasing confidence interval width is due to the decreasing bootstrap bias and is also 

demonstrated in Simar and Wilson (2004). 

We also obtain different coverage probabilities across the three alternatives, with the 

significantly lower ones, overall, being those in Alternative A, which is subject to model 

specification biases. This highlights the fact that in the presence of such biases the bootstrap 

bias becomes very different compared to the model bias. The other two specifications exhibit 

similar results and the “performance” in terms of coverage is analogous to the performance in 

terms of moments, however the latter provides a more valid and accurate assessment of the 

methods.  

The most astonishing result, however, is the significantly worse performance of the smooth 

bootstrap compared to the “naïve”, which contradicts previous findings in the literature with 

the only exception of Löthgren (1998) where the coverage probabilities have similar behavior 

but quite different values. In fact, as sample size increases the smooth bootstrap always exhibits 

lower coverage while the lower values are reported for the standard case, which is an 

interesting result that requires further exploration
6
.  

The higher coverage for the naïve bootstrap can be easily justified by the convergence of the 

bootstrap and model biases (towards zero) which is a requirement for the consistency of the 

method of Simar and Wilson (2000). Still, the coverage probabilities do not converge towards 

the nominal levels. However, we would expect that both the smooth and the naïve bootstrap 

would exhibit the desirable results for very large sample sizes, where both the bootstrap and 

model biases would be negligible. 

                                                           
6
 This is also true in the moments comparison and can be easily verified by inspecting Figure 2. 
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Table 6. Monte Carlo results on coverage 

 

 

To acquire a better understanding of the behavior of Simar and Wilson’s (2000) smooth 

confidence intervals, we produced the graphs in Figure 3. Figure 3 the median lower and upper 

boundaries of the 95% confidence intervals (green and blue solid lines, respectively), along with 

Cov. Smooth p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.284 0.354 0.399 0.487 0.397 0.493 0.564 0.685 0.414 0.498 0.581 0.710

n = 15 0.171 0.209 0.242 0.307 0.327 0.403 0.464 0.563 0.275 0.358 0.419 0.529

n = 20 0.133 0.170 0.201 0.246 0.257 0.316 0.369 0.450 0.251 0.312 0.350 0.432

n = 25 0.124 0.151 0.171 0.202 0.225 0.277 0.310 0.379 0.206 0.257 0.286 0.346

n = 30 0.118 0.137 0.147 0.172 0.181 0.228 0.264 0.322 0.186 0.238 0.280 0.333

n = 60 0.069 0.082 0.086 0.095 0.111 0.130 0.146 0.171 0.112 0.140 0.152 0.168

n = 120 0.032 0.035 0.040 0.047 0.068 0.083 0.086 0.099 0.060 0.067 0.075 0.088

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.722 0.756 0.871 0.942 0.527 0.642 0.742 0.862 0.530 0.654 0.749 0.871

n = 15 0.740 0.744 0.864 0.943 0.525 0.674 0.777 0.894 0.575 0.722 0.810 0.913

n = 20 0.758 0.759 0.889 0.948 0.580 0.715 0.809 0.912 0.544 0.695 0.781 0.908

n = 25 0.755 0.755 0.870 0.928 0.563 0.688 0.783 0.907 0.559 0.714 0.833 0.937

n = 30 0.779 0.786 0.884 0.942 0.569 0.704 0.805 0.915 0.576 0.700 0.810 0.925

n = 60 0.768 0.804 0.893 0.951 0.587 0.709 0.818 0.923 0.582 0.723 0.812 0.935

n = 120 0.780 0.825 0.904 0.955 0.527 0.686 0.808 0.939 0.500 0.675 0.795 0.926

Cov. Smooth p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.107 0.152 0.215 0.367 0.184 0.258 0.338 0.473 0.152 0.208 0.266 0.396

n = 15 0.092 0.137 0.183 0.304 0.167 0.243 0.308 0.441 0.145 0.184 0.231 0.345

n = 20 0.090 0.122 0.167 0.270 0.176 0.238 0.281 0.419 0.121 0.158 0.193 0.305

n = 25 0.078 0.120 0.159 0.256 0.161 0.232 0.274 0.387 0.121 0.171 0.213 0.298

n = 30 0.080 0.100 0.150 0.240 0.195 0.245 0.296 0.385 0.104 0.145 0.180 0.281

n = 60 0.106 0.131 0.158 0.240 0.208 0.255 0.310 0.413 0.105 0.133 0.171 0.260

n = 120 0.098 0.125 0.155 0.199 0.234 0.287 0.338 0.422 0.131 0.164 0.187 0.254

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.143 0.162 0.234 0.333 0.159 0.199 0.267 0.370 0.152 0.209 0.268 0.398

n = 15 0.125 0.125 0.218 0.304 0.167 0.213 0.275 0.385 0.145 0.184 0.230 0.347

n = 20 0.124 0.126 0.187 0.271 0.159 0.221 0.267 0.382 0.122 0.157 0.194 0.309

n = 25 0.110 0.111 0.178 0.250 0.142 0.195 0.256 0.356 0.120 0.170 0.209 0.296

n = 30 0.098 0.100 0.167 0.245 0.188 0.234 0.276 0.373 0.104 0.143 0.181 0.284

n = 60 0.114 0.125 0.162 0.243 0.200 0.261 0.309 0.406 0.105 0.135 0.171 0.262

n = 120 0.108 0.122 0.150 0.212 0.241 0.297 0.337 0.419 0.132 0.164 0.187 0.254

Cov. Smooth p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.348 0.420 0.487 0.573 0.429 0.524 0.601 0.711 0.429 0.524 0.601 0.711

n = 15 0.277 0.333 0.379 0.446 0.372 0.455 0.527 0.632 0.372 0.455 0.527 0.632

n = 20 0.266 0.317 0.349 0.400 0.383 0.467 0.517 0.596 0.383 0.467 0.517 0.596

n = 25 0.228 0.267 0.298 0.346 0.350 0.418 0.463 0.546 0.350 0.418 0.463 0.546

n = 30 0.238 0.284 0.318 0.366 0.349 0.422 0.460 0.526 0.349 0.422 0.460 0.526

n = 60 0.230 0.273 0.298 0.327 0.307 0.387 0.447 0.520 0.307 0.387 0.447 0.520

n = 120 0.275 0.317 0.347 0.374 0.343 0.393 0.425 0.478 0.343 0.393 0.425 0.478

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.748 0.788 0.866 0.937 0.635 0.720 0.806 0.899 0.607 0.718 0.820 0.903

n = 15 0.738 0.741 0.877 0.944 0.610 0.729 0.818 0.914 0.546 0.681 0.793 0.913

n = 20 0.758 0.761 0.889 0.946 0.574 0.715 0.807 0.919 0.587 0.729 0.836 0.939

n = 25 0.757 0.764 0.883 0.937 0.584 0.731 0.827 0.937 0.588 0.738 0.823 0.940

n = 30 0.755 0.764 0.890 0.952 0.575 0.721 0.825 0.934 0.581 0.719 0.821 0.934

n = 60 0.739 0.760 0.871 0.960 0.560 0.707 0.805 0.925 0.592 0.732 0.815 0.928

n = 120 0.714 0.761 0.845 0.950 0.608 0.734 0.821 0.942 0.611 0.747 0.837 0.944

Alternative B 1/1 Alternative B 2/1 Alternative B 2/2

Standard 1/1 Standard 2/1 Standard 2/2

Alternative A 1/1 Alternative A 2/1 Alternative A 2/2
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the population efficiency score of the DMU under evaluation (or fixed DMU represented by the 

black dotted line) as well as the median of the distribution of Simar and Wilson’s (1998) 

bootstrap bias (twice) corrected efficiency scores of the “fixed DMU” (represented by the thin 

red dotted line). The latter is used only to demonstrate that the confidence intervals in Simar 

and Wilson (2000) do cover the bootstrap bias corrected scores of Simar and Wilson (1998), 

since they have the same theoretical foundations and since they are constructed on the 

assumption that the bootstrap bias has to be approximately equal to the model bias. Therefore, 

if this assumption is not respected, they both provide inconsistent results. 

The plots in Figure 3 suggest that confidence intervals do narrow down with sample size, 

which is an expected property since the bootstrap bias decreases. However, they fail, on 

average to include the “fixed” DMU. However, inspecting the trend of the confidence intervals 

towards the “fixed” DMU, we observe that our previous point is correct: they will asymptotically 

return high coverage as the bootstrap and model biases converge to zero. 

It is always possible that our results are restricted to the specific cases examined, which is 

implied by the different results in the literature. However, a solid theoretical explanation should 

be given which justifies the behavior of the smooth bootstrap towards these DGPs. In order to 

mitigate the chance that our results are due to programming mistakes, we performed a Monte 

Carlo experiment using the R-package FEAR, which has been developed and is continuously 

updated by P. Wilson. In particular, we examined the case of " = 10 under our “Standard” 1 

input and 1 output specification and we obtained a coverage probability of 0.38 which is very 

close to our reported one (0.399).  

Comparing our coverage results with Simar and Wilson’s (2004) is not a straightforward task, 

since the  DGP used in their paper is different. We did not try to replicate their results since we 

trust the reported ones, but we instead explored different DGPs and tried to attach an economic 

interpretation for each. In their experiments they use the following CRS 1 input 1 output 

specification: � = ��#|$|  where %~�(0,1) and �~�(1,9) which returns the population of 

efficiency scores in Figure 4. The large differences in our results highlight the fact that the 

approach of Simar and Wilson (1998, 2000) might be more appropriate to be used in case where 

the population distribution of efficiency scores is believed to be similar to the one in Figure 4.   
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Figure 3. Simar and Wilson’s (2000) simulated confidence intervals 
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Figure 4. Simar and Wilson’s hypothesized population 

 

The results of this section indicate that for the cases examined the coverage probabilities do 
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coverage probabilities to evaluate the performance of bootstrap DEA might not be appropriate. 

This point is supported by the different results we obtained compared to previous studies, 

which could be due to the different DGPs used but there could also be a theoretical justification 
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our results support the arguments of Tziogkidis (2012) that the bootstrap bias can be quite 

different, in which cases the bootstrap bias corrected scores of Simar and Wilson (1998) as well 

as the confidence intervals in Simar and Wilson (2000) will only be consistent asymptotically. 

As a further exercise we calculated coverage probabilities and we compared our results with 

these of previous studies. The findings of our research are not in accordance with previous 

simulation exercises, which might be attributed to differences in the assumed DGPs or to other 

theoretically oriented reasons which need to be explored in the future.  
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