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Péter Vida†and Helmuts Āzacis‡
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Abstract

We present an extension to any finite complete information game with
two players. In the extension, players are allowed to communicate directly
and, additionally, send private messages to a simple, detail-free mediator,
which, in turn, makes public announcements as a deterministic function of
the private messages. The extension captures situations in which people
engage in face-to-face communication and can observe the opponent’s face
during the conversation before choosing actions in some underlying game.
We prove that the set of Nash equilibrium payoffs of the extended game
approximately coincides with the set of correlated equilibrium payoffs of
any underlying game.
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1 Introduction

In games of complete information, with the help of a mediator, 2 players can
achieve payoffs, which give them higher welfare than any Nash equilibrium. As an
example, consider the well known chicken game, introduced by Robert Aumann
and interpreted by Cavaliere (2001) as the provision of discrete public good with
a positive externality.1 Figure 1 shows the payoff matrix of our example.

Player 1

Player 2
0 1

0 6, 6 2, 7
1 7, 2 0, 0

Figure 1: The chicken game

We refer to the above defined game as Γ. The players would like to play the
action profile (0, 0), which gives them the highest utilitarian welfare, but it is
not a Nash equilibrium of the game. In the mixed strategy Nash equilibrium,
(0, 0) has probability 4/9 but the profile (1, 1) is also played with probability 1/9.
Hence, the bad outcome cannot be avoided in Nash equilibrium if the players
wish to play (0, 0) with a positive probability.

The Nash equilibrium outcomes can be improved if one extends Γ to a two
stage game Γµ, where in the first stage a trusted third party, called mediator,
randomizes over the action profiles according to some distribution µ, called corre-
lation device, and sends private messages to the players. These private messages
can be interpreted as suggested actions that the players should take in Γ. An
example of µ is provided in Figure 2.

0 1
0 1/3 1/3
1 1/3 0

Figure 2: The distribution µ.

In the second stage, the players choose actions in Γ. If it is a Nash equilibrium
of Γµ that players obediently follow the suggestions received according to µ then µ
is called a correlated equilibrium distribution of Γ (Aumann, 1974). Let CE(Γ) =

1Indeed, suppose there is a public good project to be implemented and two players can
decide whether to contribute (action 0) or not to contribute (action 1) to the project. For
example, in Section 4.1, we interpret the players as students who are working on a joint project
to be submitted to the university. The project is carried out successfully if at least one of the
players has contributed. The payoffs in Figure 1 reflect the contributor’s cost and benefit from
the public good compared to those of the free-rider. The payoffs enjoyed by the players when
both contribute can be interpreted as a positive externality from the joint contribution to the
project’s quality.
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∪µNE(Γµ) be the set of correlated equilibrium payoffs, where NE stands for the
set of Nash equilibrium payoffs of some game. CE(Γ) is the largest set of non-
cooperative outcomes achievable when arbitrary means of communication are
available to the players. For many games, NE(Γ) ( CE(Γ).

Our main concern is that the correlation device, µ has to be tailor-made to
the game and to the desired outcome. More precisely, it can be that:

1. µ is a correlated equilibrium distribution for Γ but not for Γ′.

2. A payoff profile in CE(Γ) is achievable with µ but not with µ′.

Thus, the mediator in charge of the correlation device must essentially know the
underlying game Γ and the distribution µ, which, in certain circumstances, can
be a very strong requirement.

Instead, we may think that, prior to taking actions in Γ, players are explic-
itly communicating with each other. This communication is carried out through
some communication technology that defines what messages the players can send
and receive. To avoid the criticism mentioned in the previous paragraph, this
communication technology must not vary with the underlying game Γ and dis-
tribution µ, in which case we say that the communication technology is detail
free. However, by varying their strategies, the players may still induce different
distributions over the action profiles in Γ. Furthermore, one would normally pre-
fer a communication technology that employs simple input and output messages.
We are interested in the following question: Does there exist a simple, detail-free
communication technology, with which the players can generate any correlation
device in a Nash equilibrium of extended game just by varying their strategies?

The posed question has been answered positively for games with more than
two players. See the constructions in Bárány (1992), Ben-Porath (2003), and
Gerardi (2004). It is shown that it is sufficient if any two players can directly
communicate with each other in such a way that a third player cannot eavesdrop
their conversation. In the two player case, however, having only direct communi-
cation is clearly not sufficient because it cannot generate uncertainty about the
opponent’s action, which is an inherent feature of most of the correlation devices.
For example, given µ in Figure 2, if the action 0 is recommended to a player,
he is uncertain what action has been recommended to the other player. It is
well known that in two players games, only payoffs in the convex hull of Nash
equilibria can be generated with direct communication.2

To generate the necessary uncertainty, we consider the following mediated
communication, which is a natural extension to direct communication: besides
talking to each other directly, players may also observe each other’s face during

2See Urbano and Vila (2002, 2004) on implementation of the entire set of CE with unmedi-
ated pre-play communication when players are computationally restricted, that is, they cannot
perform certain hard operations. Another solution is if players are allowed to use physical
devices such as urns with balls or envelopes as in Ben-Porath (1998) or in Krishna (2004).
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the conversation. We call it face-to-face communication. The uncertainty is
generated in the following way. The players may or may not look in each other’s
face during their conversation. If a player looks in his opponent’s face, then he
knows whether the other has looked in his face or not. However, if a player
does not look in his opponent’s face, then he is uncertain whether the other has
observed his face or not.

More specifically, the ability to observe opponent’s face can be modeled with
the following communication device:

0 1
0 0 0
1 0 1

Figure 3: The AND communication device

The AND communication device in Figure 3 receives private inputs of 0 (do not
look) or 1 (do look) from each of the two players, and produces public output of
1 if both inputs were 1, and public output of 0 otherwise.3 An attractive feature
of the AND device is that the output messages are a deterministic function of
input messages and, additionally, these output messages are public. This could
be important, for example, if the players wished to check if the communication
device (more generally, the mediator) behaves as intended.

As mentioned above, direct communication cannot always generate all cor-
related equilibrium distributions of a game. However, a similar observation also
applies to the AND device. Gossner and Vieille (2001) have shown that any
communication strategy involving a repeated use of the AND device alone either
generates no correlation or the strategy is not secure in the sense that there exists
a game in which at least one of the players has incentives to deviate from the
given communication strategy, even if the distribution generated by that strat-
egy is a correlated equilibrium distribution of the game. Thus, the set of possible
payoffs that the players can achieve in equilibrium using only the AND device is,
in general, strictly included in the convex hull of Nash equilibria. Therefore, we
allow for both direct communication and the communication through the AND
device.

Finally, we assume that the private messages that players are sending to the
AND communication device can be recorded and, if necessary, recalled. For

3One can attach various interpretations to the AND device. For example, an internet com-
munity offers its members the possibility to establish links for reasons of common interests,
common friends etc. Each member has the possibility to accept or reject the link formation.
The link forms if and only if both parties consent it. More generally, one can think of me-
diated negotiation process where the mediator only makes an announcement in the case of
mutual (dis-)agreement. See another example in Ponsati, Jarque, and Sakovics (2003) for a
mediated bargaining game, where the mediator announces agreement if and only if the offers
are compatible.
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example, imagine that their face-to-face conversation is recorded with a video
camera! Later, prior to taking actions, this conversation can be replayed. We refer
to this property of the communication technology as revelation of past messages.
It plays an important role in detecting deviations. While communicating through
the AND, if a player sends 1, he learns what message the other player has sent.
Therefore, the player might have incentives to send the message 1, when 0 should
have been sent, and as a result, learn something more about the opponent. The
revelation of past messages allows to detect and punish such deviations. The
assumption that past messages can be revealed is not new and has been already
used in the literature by Bárány (1992) and Ben-Porath (2003). An alternative
approach entails restricting the space of permissible messages as it is done in
Lehrer (1996).4

In the benchmark game, for simplicity, we assume that it is nature that decides
whether or not to reveal the past messages of players. To justify it, we could think
of the players as politicians who are scrutinized by media. If politicians lie then
with some probability journalists catch them in their lies and report on that. Or
alternatively, the politicians can be involved in a lengthy negotiation process, and
news editors decide to report on some parts of negotiations but ignore other parts.
In either case, the politicians may decide to peg their decisions on communication
that has not been reported in the news. Later we argue that the assumption of
nature is not necessary and instead the players themselves can decide on the
revelation of messages through the so-called jointly controlled lottery.

Given the described communication technology, we now outline the two-player
extended game that we are going to study. Prior to choosing actions in Γ, two
players communicate. The communication proceeds in rounds. During each
round, the players first repeatedly communicate through the AND device, and
next make direct simultaneous announcements. At the end of each communica-
tion round, nature randomly decides whether or not to reveal the private messages
sent to the AND. After that, the players decide whether to carry out another
round of communication or instead to choose actions in Γ.

The main result of the paper is as follows: For any finite two-player game Γ
with complete information5 and any correlated equilibrium µ of Γ with rational
entries that gives strictly individually rational payoffs to both players, there exists
a Nash equilibrium strategy profile in the extended game that generates the same
distribution µ over the actions. Consequently, any strictly individually rational

4We elaborate on this more in Section 6.
5Our equilibrium construction is also useful for games of incomplete information. Vida and

Forges (2012) have shown that almost any communication equilibrium payoff can be imple-
mented in correlated equilibrium of an extended game where players, before choosing actions
in the underlying game, engage in possibly infinitely long direct communication. Hence, using
our construction, the players can dispense not only of the correlation devices but also of canon-
ical communication devices and obtain any communication equilibrium payoff with face-to-face
communication.
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correlated equilibrium payoffs can be obtained in some Nash equilibrium of the
game with face-to-face communication and the revelation of past messages.

The qualification that both players must expect strictly individually rational
payoffs is necessary for our equilibrium construction. Some deviations during the
communication cannot be detected with probability 1 but only arbitrarily close
to it. To prevent such deviations, the players are threatened with their minmax
payoffs if caught cheating. But this threat will only be effective if the players
expect strictly individually rational payoffs when sticking to the given strategy
as shown by examples in Section 6.3.

The paper is structured as follows. In Section 2 we introduce notation and
provide necessary definitions. Section 3 formally describes the extended game
that the players are playing, and states the main result of the paper. Section 4
contains a detailed example. It also gives an interpretation different from face-to-
face communication to our extended game. The proof of theorem is in Section 5.
Section 6 concludes the paper with a discussion. The proof of lemma is relegated
to the Appendix.

2 Preliminaries

Consider a finite normal form game with 2 players, named 1 (the row player)
and 2 (the column player), and complete information, Γ = (g, A), where A =
A1 × A2 is a finite set of action profiles, and gi : A → R is a payoff function
of player i ∈ I = {1, 2}. The opponent of player i is denoted by −i. The
action spaces of players 1 and 2 are defined as A1 = {0, 1, . . . , a1, . . . , N1 − 1}
and A2 = {0, 1, . . . , a2, . . . , N2 − 1}. Sometimes we use k instead of a1 and l
instead of a2 to denote generic actions of the players. Given a finite set E, denote
by ∆E the set of probability distributions over the set E. For ν ∈ ∆E, let
supp ν = {e ∈ E|ν(e) > 0} be the support of ν. We say that ν is rational if
for all e ∈ E, ν(e) is a rational number. We extend linearly gi for ρ ∈ ∆A as
gi(ρ) = Eρgi(a). For any set X denote by idX : X → X the identity map.

Definition 1 An information structure on a finite set E = E1×E2 is a probabil-
ity distribution ν over E. If an element e = (e1, e2) ∈ E is chosen with probability
ν(e), then player i is informed of the component ei.

Consider the following extended game Γν for ν ∈ ∆E:

1. An element e ∈ E is chosen with probability ν(e).

2. Player i is informed of the component ei.

3. Player i chooses an action from Ai.

4. Payoffs are realized as in Γ.
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A pure strategy for player i in Γν is a function ri : Ei → Ai and let r = (r1, r2).

Definition 2 (ν, r) is a correlated equilibrium of Γ if and only if r is a Nash
equilibrium of Γν.

By the revelation principle we can restrict attention to information structures µ ∈
∆A. Denote the set of correlated equilibrium payoffs by CE(Γ) = ∪µ∈∆ANE(Γµ) ⊆
R2, where NE(.) denotes the set of Nash equilibrium payoffs of an arbitrary game.
Let G(µ) = {Γ|(µ, idA) is correlated equilibrium of Γ}. Sometimes we will write
simply µ when referring to (µ, idA).

Definition 3 A payoff of Γ generated by some µ ∈ ∆A is (strictly) individually
rational if and only if

gi(µ) ≥ (>)wi = min
ρ−i∈∆A−i

max
ρi∈∆Ai

gi(ρi, ρ−i)

for all i ∈ I.

Let (S)IR(Γ) be the set of (strictly) individually rational payoffs of Γ. Notice
that CE(Γ) ⊆ IR(Γ) for any Γ. Also note that player i’s expected payoff after
learning his action is still in IR(Γ) if µ is a correlated equilibrium distribution.

3 The Game with Communication

In this section we describe a game, in which before choosing actions in some
underlying game Γ, players are allowed to communicate. The players can send
private messages repeatedly to the AND communication device, which in turn
produces public messages according to the table in Figure 3.

Consider the extension of Γ, denoted by Γ(p, z), which unfolds as follows:

1. The players communicate repeatedly for p stages using the AND commu-
nication device, that is, at each stage the players send private messages of
0 or 1 to the AND, which in turn produces a public message of 0 or 1.

2. In stage p + 1, the players simultaneously and publicly announce numbers
from the set N0.

3. With probability 1−z nature reveals all the private messages that have been
sent in the stages of point 1. With probability z nature reveals nothing.

4. After the move of nature, the players decide whether to continue to com-
municate or not.

5. If at least one of the players decides to stop the communication, then players
choose actions in Γ and receive their payoffs accordingly.
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6. Otherwise, the extended game continues as in point 1.

We do not define strategies (σ̃, r̃) in Γ(p, z) formally; the strategy space must be
clear from the timing above. We only observe that any strategy consists of two
parts:

σ̃i : The communication strategy, according to which the players communicate
and decide whether to stop or continue communication.

r̃i : The decision rule, which determines how to choose actions in Γ given the
communication history.

We are ready to state our main result:

Theorem 1 Given any finite 2 player game Γ with complete information and
any correlated equilibrium (µ, idA) of Γ such that g(µ) ∈ SIR(Γ) and µ is ra-
tional, there exist a pair (p, z) and a Nash equilibrium (σ̃, r̃) of Γ(p, z) such that
players’ equilibrium payoffs are equal to g(µ). In equilibrium, the players stop
communication with probability 1.

From the construction of the equilibrium strategies it will be clear that the players
not only expect the payoffs g(µ) but in fact the induced distribution on the action
profiles will coincide with µ. Other variants of the result will be discussed in
Section 6.

4 Example

Suppose the players face the chicken game given in Figure 1. Consider its exten-
sion as described in the previous section. We wish to construct a Nash equilibrium
for the extended game, such that the equilibrium payoffs coincide with those of
the correlated equilibrium given in Figure 2.

Let p = 4 and z ≤ 3
5
. In order to specify the equilibrium strategies, we start

by defining several auxiliary tables. First, we multiply the entries in the table
of Figure 2 with the common denominator and rewrite the table in the following
form:

0 1
0 Q00 Q01

1 Q10 Q11

where Q00 = Q01 = Q10 = 1 and Q11 = 0.6 The following table is constructed by

6More generally, Qkl is a square matrix whose elements are 0’s and 1’s, and the ratio of 1’s
in Qkl to the total number of 1’s in the above table is equal to the probability that a correlating
device assigns to action pair (k, l), and the number of 0’s and 1’s in each row and column of
Qkl is the same. The general construction for any rational µ is given in Lehrer (1991) and it is
recalled in the proof of Lemma 1.
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row and column concatenations of cyclical permutations of the rows and columns
of the above table:

0,0 0,1 1,0 1,1
0,0 Q00 Q01 Q10 Q11

0,1 Q10 Q11 Q00 Q01

1,0 Q01 Q00 Q11 Q10

1,1 Q11 Q10 Q01 Q00

Finally, let us arbitrarily index all 0’s in the above table.

0,0 0,1 1,0 1,1
0,0 Q00 Q01 Q10 01

0,1 Q10 02 Q00 Q01

1,0 Q01 Q00 03 Q10

1,1 04 Q10 Q01 Q00

Figure 4: Auxiliary table Q.

Define player i’s strategy as follows:

1. Let t = −1.

2. t
.
= t+ 1.

3. Choose a row or column with equal probabilities in Figure 4. Let denote
the choice of player i by (n−i, n

′
i).

4. For s = 1, ..., 4 send message 1 in stage 5t + s if 0s is in the chosen row or
column; send 0 otherwise.

5. In stage 5t+ 5 announce the number n−i.

6. If nature reveals the private messages sent in stages 5t+ 1 to 5t+ 4 then:

(a) if player −i’s revealed messages contain exactly one 1, and these mes-
sages and number ni announced by player −i in stage 5t+ 5 are com-
patible (according to Figure 4) then continue communication, and

i. if player −i also chose to continue communication then go to step
2;

ii. otherwise punish player −i by taking action 1;

(b) otherwise stop communication and punish player −i by taking action
1.

7. If nature does not reveal the private messages sent in stages 5t+ 1 to 5t+ 4
then:

9



(a) if all public messages were 0 in stages 5t + 1 to 5t + 4 then stop
communication and choose action (ni + n′i) mod 2 given that player
−i’s announced number was ni in stage 5t+ 5;

(b) otherwise continue communication, and

i. if player −i also chose to continue communication then go to step
2;

ii. otherwise punish player −i by taking action 1.

We will refer to stages 5t+1 to 5t+5 for t = 0, 1, . . . jointly as communication
round t. Note that for each chosen row or column, step 4 defines a unique sequence
of 0’s and 1’s of length 4 and a unique number n−i for player i in stage 5(t+ 1).
Also observe that the actions chosen in Γ only depend on the messages sent and
received during the round of communication after which the communication is
terminated.

First, suppose that the players follow the prescribed strategies. Then the
communication will be terminated in the first round in which nature does not
reveal the private messages sent by the players and all public messages made by
the AND are 0. The latter will occur if the cell corresponding to chosen row
(n2, n

′
1) and column (n1, n

′
2) does not contain 0. We refer to this round as a

successful round. In this case, player i selects action (ni + n′i) mod 2. Suppose
that the entry in row (n2, n

′
1) and column (n1, n

′
2) is Qkl in the table of Figure

4. One can verify that the strategy tells the players to play exactly action pair
(k, l), that is, k = n1 + n′1 and l = n2 + n′2.

As an example, suppose that in step 3, players 1 and 2 have chosen, respec-
tively, row (1, 0) and column (1, 1) in Figure 4. Then, in step 4, players 1 and
2 send messages 0, 0, 1, 0 and 1, 0, 0, 0, respectively. As a result, all four public
announcements by the AND are 0. In step 5, both players publicly announce
number 1. If nature does not reveal their private messages to the AND and the
players stop communication, then in step 7a players 1 and 2 choose actions (0+1)
mod 2 = 1 and (1 + 1) mod 2 = 0, respectively. These actions correspond to
the subscript of Q10, which appears in the cell of row (1, 0) and column (1, 1) in
Figure 4.

Hence, if the players follow the specified strategies, it is clear that each of the
action pairs (0, 0), (0, 1), and (1, 0) is indeed selected with a probability of one
third. Furthermore, conditional on information acquired during the successful
round, player i’s belief about the opponent’s action coincides with the one that
would be derived from µ by conditioning on action (ni + n′i) mod 2. This is
achieved through the construction of the table in Figure 4.

For example, suppose player 1 has chosen row (1, 0). If at the end of the
successful round player 1 learns that he must take action 1, then it must be that
player 2’s announcement in stage 5t+5 was 1. Since player 1 has sent the message
1 in stage 5t + 3 and the round was successful, he can infer that player 2 has
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chosen column (1, 1) and that player 2 will take action 0. If instead player 1 learns
that he must take action 0 then it must be that 2’s announcement in stage 5t+ 5
was 0. Again, since player 1 has sent the message 1 only in stage 5t+ 3 and the
round was successful, he can infer that player 2 has chosen either column (0, 1)
or (0, 0), and attaches probability 0.5 to each of these events. Correspondingly,
player 1 is unsure whether player 2 will take action 0 or 1, and he assigns equal
probabilities to both of these actions of player 2.

Since µ given in Figure 2 is a correlated equilibrium, no player has incentives to
change his action from the calculated one at the end of successful communication
round if the player sent messages in that round according to the above strategy.
It remains to argue that no player has incentives to deviate from his strategy
during any of the communication rounds. Since the problem is symmetric, we
focus on player 1.

First, we argue that player 1 is indifferent at the beginning of communication
round which row to choose in Figure 4, as long as he sends messages as prescribed
by his strategy once he has chosen a row. Given that the opponent randomizes
uniformly between the columns, and given that each Qkl appears exactly once in
each row (and column) in Figure 4, if the round is successful, each of the action
pairs (0, 0), (0, 1), and (1, 0) is still selected with a probability of one third, and
player 1 still has the same conditional beliefs about the action chosen by the
opponent no matter which row player 1 has chosen. Even more, when selecting
a row, player 1 cannot affect the probability that the round will be successful or
not. Hence, player 1 is indeed willing to randomize uniformly between the rows.

Next, it is also easy to see that player 1 will not want to stop communica-
tion when the strategy calls for the continued communication. If player 1 stops
communication, he will be punished and his payoff will be equal to 2 in this case.
Instead if he continues to communicate, he expects a payoff of g1(µ) = 5, which
is clearly higher.

Finally, suppose player 1 deviates in round t by sending messages different
from the ones prescribed by the above strategy. That is, there is no possible
choice of row by player 1, which would justify the messages he sends. Let v1 be
the expected payoff of player 1 from such a deviation. Note that as long as the
player does not deviate, his expected payoff is g1(µ) = 5 at the beginning of all
5 stages of round t. His expectation might only change after stage 5t + 5 when
he learns his possible action but then there is no more possibility for player 1 to
deviate in that round. Hence, the deviation is not profitable if v1 ≤ 5. Three
outcomes can happen. First, if nature reveals messages sent by the players at the
end of round t, then player 1 will be punished, in which case the payoff of player
1 will be equal to 2. Second, the round is successful and, consequently, player 2
chooses action (n2 + n′2) mod 2. The highest payoff that player 1 can achieve
in this case is 7 corresponding to action profile (1, 0). (For example, player 1
can choose row (1, 0) in Figure 4 and send private messages 0, 1, 1, 1, followed
by direct public announcement of 1. Then the round can only be successful if
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player 2 has chosen column (1, 1). In this case, player 1 will know that player 2
will play action 0, and he himself can choose action 1 to maximize his payoff.)
Third, the AND produced an output message of 1 at one of the stages 5t+ 1 to
5t + 4. In this case, the players will proceed to the communication round t + 1.
If player 1 has a profitable deviation in round t, he also has one in round t + 1.
Therefore, the expected payoff of player 1 if the third outcome happens is again
v1. Therefore, the expected payoff of player 1 from deviating in round t is given
by

v1 = (1− z) · 2 + z · (x · 7 + (1− x) · v1),

where x is the probability that all public messages by the AND were 0 in round
t. Since v1 ≤ 7 the above expression can be upper bounded by

v1 ≤ 2(1− z) + 7z

and if z ≤ 3
5
, which indeed holds, the deviation is not profitable because

v1 ≤ 2(1− z) + 7z ≤ 5.

Hence, the constructed strategy profile indeed forms a Nash equilibrium.

4.1 An Alternative Interpretation

To provide additional motivation to the game we study, we now discuss an al-
ternative interpretation of our example. The two players are students that are
required to work together on a project. Suppose that the project consists of four
tasks. A professor wants, first, that all four tasks are completed and, second, that
each student works on three of these tasks in order to promote an interaction by
the students. To facilitate the division of tasks, the professor acts as a mediator.
He asks each student to privately submit in a single message a list of tasks that
the student wants to work on. For example, if student 1 (the row player) tells
that he wishes to work on tasks 1, 2, and 4 it is equivalent to choosing the third
row in Figure 4 and sending a message sequence 0, 0, 1, 0 to the AND in Γ(p, z).
We assume that the message spaces of students are restricted. That is, a student
cannot tell to the professor that he wants to work, for example, only on tasks 1
and 2 (send message sequence 0, 0, 1, 1). If the students’ choices are such that
each task is selected by at least one of the students, then the professor tells them
to go ahead with the project, meaning that the round of communication has been
successful. Otherwise, they are asked to submit new lists of tasks they wish to
work on.

Suppose now that before embarking on the project, the students tell each other
simultaneously, which two of the tasks they have selected. Student 1 announces
one of the following: he is going to work for sure either on tasks 1 and 2 (announce
n2 = 0 at stage 5) or on tasks 3 and 4 (announce n2 = 1). Student 2 announces
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one of the following: he is going to work for sure either on tasks 1 and 3 (announce
n1 = 1) or on tasks 2 and 4 (announce n1 = 0). These announcements need not to
be compatible with the ones sent to the professor. However, below we show that
the students will not lie about the messages that they have sent to the professor.

Finally, we assume that each student must work on the tasks that he has
submitted to the professor, but he has a choice between exerting high effort
(action 0 in Figure 1) or low effort (action 1). Depending on their chosen effort
levels, the students realize payoffs as in Figure 1. One can verify that this game
has a Nash equilibrium, in which each student chooses uniformly 3 out of 4 tasks
to perform, announces honestly to the other student about the 2 tasks that he is
going to work on, and then decides on the effort level as follows. If a student can
infer what are the 3 tasks that the other student works on, then he exerts low
effort, and otherwise he exerts high effort.

Compared to the game Γ(p, z), here we have dispensed of nature that reveals
the messages sent by the players. We can do it because we have restricted the
message spaces of the players. Note, however, that the public announcement by
a student needs not to be compatible with his private message submitted to the
professor. We now argue that the students will make honest announcements to
each other.7 Without loss of generality, suppose student 1 has chosen tasks 1, 2,
and 4, and the professor has told them to proceed with the project. If student
1 reports honestly that he is going to work on tasks 1 and 2 then, as before, his
expected payoff is 5. Suppose he lies and tells that he is going to work on tasks 3
and 4. It is equivalent to announcing n2 = 1 instead of n2 = 0 in Γ(p, z). Hence,
student 2 is going to take the action that is opposite to the one that he would
have taken if student 1 did not lie. Thus, if under honest announcement, student
1 had learned that student 2 exerts high effort, then now he would know that
student 2 exerts low effort. As a result, student 1 is better off to exert high effort
and receive a payoff of 2 if he has lied. If instead under honest announcement,
student 1 was unsure whether student 2 exerts high or low effort, then now he
would still be unsure about the opponent’s effort. Consequently, he still prefers
to exert high effort and expect a payoff of 4. Hence, in ex ante terms, student 1
expects 10

3
if he makes dishonest public announcement. Thus, we conclude that

student 1 wants to make an honest announcement to the other student.

5 Proof of the Theorem

Pick a finite two-player game Γ and a distribution µ with rational values such
that Γ ∈ G(µ) and g(µ) ∈ SIR(Γ). Consider now the game Γ(p, z), where the
values of p and z will be specified later. We first construct a strategy of player i,

7This might not be true for another game Γ′ or another correlated equilibrium distribution
µ′.
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(σ̃i, r̃i), for i = 1, 2 in Γ(p, z). Next we show that the defined strategy profile is
a Nash equilibrium of Γ(p, z) and the players expect g(µ) in the equilibrium.

As demonstrated in the example, players’ communication strategies are de-
fined to be the same mixed strategies in each round of communication and players’
action choices on the equilibrium path only depend on the communication history
of the round, in which the communication has been terminated by the players.
To define these “round”-strategies and state some of their properties, which will
be useful when constructing and proving equilibrium in Γ(p, z), we consider a
simple finite horizon game associated with Γ(p, z).

Let us denote by mi ∈ M i = {0, 1}p the actual private messages sent by
player i in stages 1, . . . , p of Γ(p, z) and by h ∈ H = {0, 1}p the public messages
received by the players from the AND device in stages 1, . . . , p of Γ(p, z). Let
n = (n1, n2) ∈ N2

0 be the message profile sent by the players directly, hence
publicly to each other in stage p + 1 of Γ(p, z). We have seen in the example
that in equilibrium the players decide to terminate communication after a round
if nature does not reveal the private messages of that round and that round is
successful in the sense that all public messages produced by the AND device are
0. Let h0 = (0, . . . , 0) ∈ H denote the p-long sequence of output messages where
all coordinates are 0.

5.1 The game Γ(p, µ, h0)

To facilitate the proof of the theorem, we now define an auxiliary, finite horizon
game Γ(p, µ, h0), which is as follows:

1. The players communicate repeatedly for p stages using the AND commu-
nication device.

2. In stage p + 1, the players simultaneously and publicly announce numbers
from the set N0.

3. If h = h0 then the players choose actions in Γ and receive their payoffs
accordingly.

4. If h 6= h0 then instead of the players, nature chooses an action profile a
according to µ and the players receive payoffs of g(a).

Let (σ, r) denote a strategy profile in this game, where σ = (σ1, σ2) are
possibly mixed communication strategies of the players and r = (r1, r2) are pure
decision rules, that is, ri : M i × N2

0 → Ai and σi = (σis)1≤s≤p+1, where σis :
{0, 1}s−1 × {0, 1}s−1 → ∆{0, 1} for 1 ≤ s ≤ p and σip+1 : M i × H → ∆N0.
Clearly, a strategy profile induces a distribution rσ on M ×H × N2

0 × A, where
M = M1 ×M2. Let cσ ∈ ∆(M ×H × N2

0) be the marginal of rσ.
Given a communication strategy σi in Γ(p, µ, h0), let us define another com-

munication strategy, which ignores the public messages announced by the AND
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and instead specifies for player i to send a message in stage s according to σi

assuming that all the public announcements up to stage d by the AND were
0. It is easy to see that this strategy is equivalent with choosing an element of
M i × N0 according to some distribution σ̇i ∈ ∆(M i × N0), which can be derived
from σi. It is clear that σ̇i and σi are equivalent strategies in the game Γ(p, µ, h0)
in the sense that rσ(·|h0) = r(σ̇i,σ−i)(·|h0) for all r and σ. (Note, however, that
rσ 6= r(σ̇i,σ−i) in general.) Hence, without loss of generality, we can identify the set
of pure communication strategies for player i in Γ(p, µ, h0) with the set M i×N0,
and when we write σ, we mean the associated σ̇. Also, we write suppσ instead
of supp cσ(·|h0).

To facilitate the exposition of the proof, next we define certain properties of
strategies.

Definition 4 (σ, r) mimics µ for player i if and only if for all a ∈ A, all a−i ∈
A−i, and all (mi, n) ∈ suppσ:

1. rσ(a|mi, h0) = µ(a),

2. rσ(a−i|mi, h0, n) = µ(a−i|ri(mi, n)).

(σ, r) mimics µ if it mimics µ for both players.

In words, the first condition says that the generated distribution on A con-
ditional on h0 and on any mi ∈ suppσ equals to µ. As a consequence, if the
players communicate according to σ, play according to r and given that h = h0

then in every stage 1, . . . , p prior to exchanging their last messages in stage p+1,
the players expect a payoff of g(µ). The second conditions says that ri(mi, n)
is a sufficient statistic for a−i. Thus, if the players have followed σ then player
i’s information about the other’s action given (mi, h0, n) is the same as had he
received the recommendation to take action ri(mi, n) from µ.

The statement of the following remark follows simply from the definition of
correlated equilibrium and from the definition of mimicking.

Remark 1 Let ν = cσ(·|h0) ∈ ∆(M × N2
0) and let Ei = M i × N2

0 be player i’s
private information. Then, (E1 × E2, ν) defines an information structure. If
(σ, r) mimics µ then for all Γ ∈ G(µ), (ν, r) is a correlated equilibrium of Γ.8

Or alternatively, if (σ, r) mimics µ then for all Γ ∈ G(µ), for any player i and for
any profitable deviation (σi

′
, ri
′
) in Γ(p, µ, h0) it must be that (σi

′
, σ−i, r) does

not mimic µ. That is, to have a profitable deviation, player i must change his
communication strategy.

8The remark also follows from Gossner (2000). By comparing the information structures
(A,µ) and (E, ν), it is easy to see that (E, ν) is richer than (A,µ) and that r is a faithful
interpretation from (E, ν) to (A,µ).
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Definition 5 (σ, r) simulates µ if and only if for all i and for any (mi, ni) ∈
suppσi, ((mi, ni), σ−i, r) mimics µ for player i.

Definition 5 together with Remark 1 lead to the following observation.

Remark 2 If (σ, r) simulates µ then for all i and for any profitable deviation
((mi, ni), ri

′
) in the game Γ(p, µ, h0), (mi, ni) /∈ suppσi.

Lemma 1 For any µ with rational entries there is a value of p and a strategy
profile (σ, r) in Γ(p, µ, h0), which simulates µ.

The proof of Lemma 1 is relegated to the Appendix.
We now define Nash equilibrium strategies for the game Γ(p, z). Let (σ, r)

be a strategy profile in Γ(p, µ, h0), which simulates µ. The strategy of player i,
(σ̃i, r̃i), in Γ(p, z) is as follows:

1. Let t = −1.

2. t
.
= t+ 1.

3. Play according to σi in communication round t (consisting of p+ 1 stages).

4. If nature reveals the private messages m = (m1,m2) sent in round t then:

(a) if (m−i, n−i) ∈ suppσ−i then continue communication, and

i. if player −i also chose to continue communication then go to step
2;

ii. otherwise punish player −i;
(b) otherwise, if (m−i, n−i) 6∈ suppσ−i then stop communication and pun-

ish player −i.

5. If nature does not reveal the private messages sent in round t then:

(a) if h = h0 then stop communication and choose action in Γ according
to ri;

(b) otherwise, if h 6= h0 then continue communication, and

i. if player −i also chose to continue communication then go to step
2;

ii. otherwise punish player −i.

Given that the players follow the strategy profile (σ̃i, r̃i), the communication
will be terminated in the first round, in which all the public messages announced
by the AND are 0, that is, h = h0 and nature does not reveal the private messages
of that round. Hence, by Lemma 1, and condition 1 of Definition 4 in all stages
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t(p+1)+1, . . . , t(p+1)+p the players expect the payoff of g(µ) given that round
t is reached. In particular, the players expect the payoff of g(µ) at the start of
the game.

We verify that no profitable deviation from (σ̃, r̃) exists for either player. First
of all, we observe that no player will stop communication when the strategy calls
for the continued communication. If player i stops communication, he will be
punished and his payoff will be equal to wi. If he continues to communicate, he
expects a higher payoff of gi(µ) > wi. Hence, in the continuation we only consider
deviation strategies, in which the players choose to continue communication when
(σ̃, r̃) calls for the continued communication.

Suppose there exists a profitable deviation for player i. Then there must
necessarily exist a communication round t such that the communication will be
terminated at the end of that round with a positive probability, and conditional on
that event, the expected payoff of player i strictly exceeds gi(µ). This payoff only
depends on the round-communication strategy (mi, ni) and the round-decision
rule ri

′
that player i follows in round t. That is, player i’s deviations from (σ̃i, r̃i)

in rounds other than round t will not matter, once round t is reached. It means
that we can construct another profitable deviation for player i, denoted (σ̂i, r̂i),
whereby in round 0 he communicates according to (mi, ni) and takes an action
according to ri

′
if h = h0 and nature does not reveal his messages to the AND,

and follows the original strategy in all other rounds. Since (σ̂i, ρ̂i) is a profitable
deviation for player i in Γ(p, z), it must be that ((mi, ni), ri

′
) is also a profitable

deviation from (σi, ri) in Γ(p, µ, h0) when the opponent plays (σ−i, r−i). By
Remark 2, it follows that (mi, ni) 6∈ suppσi.

Three outcomes can happen. First, if nature reveals the messages sent by the
players at the end of round 0, then player i will be punished, in which case his
payoff will be equal to wi. Second, nature does not reveal the messages sent by
the players and the output messages of round 0 are h = h0. The highest payoff
that player i can possibly attain is wi = maxa∈A g

i(a). Third, nature does not
reveal the messages sent by the players and the output messages of round 0 are
h 6= h0. In this case, the players will proceed to the next communication round.
Whatever payoff player i expects from continued communication, it can be upper-
bounded by wi. Hence, the expected payoff of player i from the deviation (σ̂i, r̂i)
is

(1− z) · wi + z · wi.

If z ≤ min(z1, z2) where

zi =
gi(µ)− wi

wi − wi
,

then the expected payoff of player i from deviation (σ̂i, r̂i) is less than the expected
payoff from strategy (σ̃i, r̃i). Thus, we have obtained a contradiction: (σ̂i, r̂i) is
not a profitable deviation, which also means that player i does not have any
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profitable deviation from (σ̃i, r̃i) given that the opponent follows the strategy
(σ̃−i, r̃−i).

6 Discussion

We conclude the analysis by discussing several modifications and extensions of
game Γ(p, z), and how these would affect our results.

6.1 Replacing Nature’s Random Choice

We have assumed in the game Γ(p, z) that after each round t nature decides
whether or not to reveal m, that is, the players’ private messages from stages
t(p+1)+1, . . . , t(p+1)+p. The assigned probabilities are (1−z, z) and z is chosen
such that the players are deterred from deviating during any communication
round t. We discuss now how we can dispense of nature and instead allow the
players themselves securely to replicate nature’s randomization. Basically, we
show how the players can jointly toss a fair coin. It is known as the jointly
controlled lottery due to Aumann, Maschler, and Stearns (1995).

6.1.1 Jointly controlled lottery

Here we follow the discussion in Aumann and Hart (2003, Section 4.3). Recall
that in our example z ≤ 3/5 must hold. Therefore, we can set z = 1/2. The
players can easily replicate nature’s randomization if they have access to a pub-
licly observable fair coin. However, the players can also perfectly generate the
desired randomness even if each player has only access to his own fair coin and he
does not trust the fairness of the opponent’s coin. The randomness is generated
as follows. At the end of each round, the players each send either message 0 or
1 to the other player simultaneously. Suppose they agree (in equilibrium) that if
the messages coincide then the private messages of the round are revealed, and
if messages differ then the private messages are not revealed. Now, if each player
sends either message 0 or 1 with equal probabilities of 0.5 then the probability
that messages coincide is exactly 0.5 and the revelation of past private messages
is induced with a probability of 0.5. Furthermore, if one of the players follows
the prescribed randomization then the other player, by randomizing differently,
cannot affect the probabilities of the events that the announced messages are the
same or different. Hence, no player has a profitable deviation. Aumann and Hart
(2003) also discuss in footnote 10 how to produce a lottery for any (1− z, z).

Remember that we can think of the revelation of past messages as the ability
of players to replay the film that the video camera has recorded. In this case,
it also does not matter whether the players press a “replay” button jointly or
unilaterally. If a player replays the film when he should not, or to the contrary,

18



a player does not replay the film when he should, the other player can stop the
conversation and punish the deviator.

6.2 Binary Message Spaces

It has been assumed that the players publicly announce numbers in N0 in stages
t(p+ 1) for t = 1, 2, . . .. We can reduce their message spaces by instead requiring
the players to use simple binary messages as in Aumann and Hart (2003). Of
course, in order to announce number ni in binary messages, player i will need more
than one stage in general. Therefore, it can happen that player i’s expectation
about his payoff can differ from g(µ) while (ni, n−i) are transmitted in public
binary messages. As a result, player i might find it optimal to announce a number
different from ni = n−i (if the round has been successful). One can, however,
argue that with a sufficiently low value of z such deviations can be deterred. To
see it, suppose that the players still publicly announce numbers from the set N0

but they do it sequentially. In particular, suppose that player 1 has already sent
n1 = n2 to player 2. Hence, player 2 learns his action n′2 + n2 mod N2 and
updates his belief about his expected payoff before he has announced n2. In the
worst case, player 2 expects a payoff of w2 if nature does not reveal their messages
of that round. We check if player 2 will still send message n2 = n1 in this case.
He will not deviate if

(1− z)g2(µ) + zw2 ≥ (1− z)w2 + zw2.

The inequality holds if

z ≤ g2(µ)− w2

w2 + g2(µ)− 2w2
.

that is, if z is chosen to be sufficiently small.

6.3 A Universal Extension

Consider now another extended game of Γ, denoted by Γext:

1. At each stage two players are allowed to send both private messages of
0 or 1 to the AND device and direct messages of 0 or 1 to each other
simultaneously.

2. After each stage the players decide first whether or not to reveal the pri-
vate messages of all previous stages and then whether or not to stop the
communication.

3. If the communication is stopped, the players choose actions in Γ and receive
their payoffs accordingly.

4. Otherwise, the players proceed to the next stage of communication.
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Unlike Γ(p, z), where p and z are chosen appropriately for Γ and µ, this ex-
tension of Γ neither depends on the underlying game itself nor on the distribution
µ. Hence, in this sense it is universal (see Forges, 1990). Furthermore, by play-
ing the game Γext, players can always replicate game Γ(p, z) as there is nothing
“physical” about p and z. As discussed in Section 6.1, the players themselves can
select z through a jointly controlled lottery. Similarly, the players can specify the
length of each communication round and, in particular, the value of p through
their strategies. Also, it is irrelevant whether the players send private and public
messages simultaneously as in Γext or sequentially as in Γ(p, z). To see it, as an
example, suppose that the players are required to communicate through the AND
device at some stage in Γ(p, z). Then any public messages made at the same stage
can take the form of babbling and be ignored by the players. Even if one of the
players deviates and tries to convey meaningful information through his public
announcement, such deviation will not be profitable as the other player’s strategy
will not depend on this announcement.

Based on the above observations, one can easily establish the following result:
for all finite 2 player games Γ with rational payoffs it is true that

CE(Γ) ∩ SIR(Γ) ⊆ NE(Γext).

Since Γ has rational payoffs then the extreme points of the correlated equilibrium
distributions are rational as well. Then any correlated equilibrium distribution
µ such that g(µ) ∈ SIR(Γ) can be obtained as a convex combination of some
correlated equilibrium distributions µj such that g(µj) ∈ SIR(Γ) for all j. Hence,
as a first step, let the players, using a jointly controlled lottery, select a µj with
the probability equal to the weight of µj in the convex combination. Next, let
them follow the strategies that are constructed in the proof of Theorem 1 to
simulate µj with the only difference that instead of sending natural numbers in
stages t(p+ 1), the players send binary codes corresponding to messages (n1, n2)
for sufficiently many stages. When the construction in the proof does not specify
what private or public messages to send at some stage then the players are allowed
to send arbitrary messages.

One could hope to establish more general result of the form CE(Γ) = NE(Γext).
However, in our construction, profitable deviations cannot be detected with prob-
ability 1. Therefore, we need the equilibrium payoffs to be strictly individually
rational as it allows to threaten a potential deviator with his minmax payoffs.
Figure 5 provides an example of correlated equilibrium µ such that g(µ) 6∈ SIR(Γ)
since player 1 receives his minmax payoff of 0. This player has incentives to ma-
nipulate his messages in a way that permits him to learn when player 2’s action
is 1, in which case player 1 will select action 2 and receive a payoff of 1. And he
cannot be punished for this deviation since in the worst case, he still receives the
same payoff as the one provided by µ.

The distribution µ in Figure 5 cannot be obtained in equilibrium with our
construction. However, it could still be that the associated payoffs g(µ) = (0, 5)
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Γ
0 1

0 0, 6 0, 7
1 0, 2 0, 0
2 −1, 0 1, 0

µ
0 1

0 1/3 1/3
1 1/3 0
2 0 0

Figure 5: Example of correlated equilibrium µ with g(µ) /∈ SIR(Γ)

might be obtained without the use of the AND device, say, as a convex combi-
nation of Nash equilibria. However, it is impossible because the highest payoff
for player 2 in any Nash equilibrium of Γ is only 14/3. On the other hand, one
can verify that CE(Γ)∩SIR(Γ) is not empty. This is illustrated in the graph on
the left hand side of Figure 7 below.9 Hence, we can get arbitrarily close to the
payoffs (0, 5) by constructing an equilibrium for a distribution resulting in payoffs
of (ε, 5). The previous observation is true in general: if CE(Γ) ∩ SIR(Γ) 6= ∅
then

CE(Γ) = NE(Γext),

where E denotes the closure of the set E. CE(Γ)∩SIR(Γ) can be empty, however,
as illustrated by the following example:

Γ
0 1

0 0, 6 0, 7 −1, 7
1 0, 2 0, 0 0, 1
2 −1, 7 1, 6 −1, 7

µ
0 1

0 1/3 1/3 0
1 1/3 0 0
2 0 0 0

Figure 6: Example of game with CE(Γ) ∩ SIR(Γ) = ∅

One can see from the graph on the right hand side of Figure 7, that the payoff
(0,5) cannot be approximated with correlated equilibrium payoffs in SIR(Γ).

6.4 Revelation of Past Messages

The idea of recording players’ private messages and revealing them under certain
circumstances has been first introduced in Bárány (1992). In particular, the
method of recording messages is formalized in footnote 5 in Bárány (1992). In
Bárány’s (and our) construction, players can push a “stop” bottom and then all
the past messages of the players are publicly revealed. For comparison, Ben-
Porath (2003) uses a different, more flexible revelation technology. He assumes
that players can define any interval of stages and only the messages which are

9The Nash equilibria of the examples are computed using a program by Rahul
Savani, and can be found at http://banach.lse.ac.uk/form.html. The graphs
are generated by Matlab code of Iskander Karibzhanov, and can be found at
http://www.mathworks.com/matlabcentral/fileexchange/25281.
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g(µ) /∈ SIR(Γ) CE(Γ) ∩ SIR(Γ) = ∅

Figure 7: The set of feasible, correlated and convex hull of Nash equilibrium
payoffs

sent in stages outside this interval are revealed. We have opted for the simpler
technology that with a certain probability reveals all messages after each round of
the communication. It can be shown that Ben-Porath’s technology can be applied
in our game only for correlated equilibria, where players’ expected payoffs, given
their actions, are still in SIR(Γ).

One can also dispense of recording and revealing of past messages if the set
of allowed messages is restricted. For example, in our students-professor story of
Section 4.1, the students are only allowed to send private messages that contain
a single 1. However, they are free to send direct messages to each other that
are independent of their private messages. We proved that the students have
no incentives to lie in this stage. We have pointed out that this is true only for
the given game and distribution. Now assume that instead of sending the direct
messages after the private ones, each student sends a single message containing
two parts, one of which is the private message mi to the professor and the other
is the direct message ni to the opponent. If the message space is restricted to
messages (mi, ni) ∈ suppσi then there is no need for the revelation technology at
all, no matter what the game and the distribution is. Of course, this extension
is not universal as the restriction on message space depends on the distribution.

This approach has been taken by Lehrer (1996). The mediator in Lehrer’s
construction, similar to ours, also uses matrix Q (defined in the proof of Lemma
1) but instead of sequential communication through the AND device, players
send a single private message to the mediator once they have chosen a row and
a column of Q. If the combination of messages are such that they “hit” a 0 in
Q then the players are asked to send new messages.10 If players’ chosen row and

10Lehrer and Sorin (1997) provide a construction for one-shot communication; it ensures that
players cannot “hit” a 0 and consequently it is enough with a single stage of communication,
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column do not cross at a 0 in Q, the mediator tells the players which sub-matrix
[Q]n2n1 they have chosen, by announcing different public messages for different
sub-matrices. On contrary, in our case, players themselves jointly select a sub-
matrix through their direct announcements (n2, n1) to each other in stage p+ 1.
In this sense, Lehrer’s mediator is somewhat more complicated.

References

Aumann, R. J. (1974): “Subjectivity and correlation in randomized strategies,”
Journal of Mathematical Economics, 1(1), 67–96.

Aumann, R. J., and S. Hart (2003): “Long Cheap Talk,” Econometrica,
71(6), 1619–1660.

Aumann, R. J., M. Maschler, and R. E. Stearns (1995): Repeated Games
With Incomplete Information. The MIT Press.

Ben-Porath, E. (1998): “Correlation without mediation: Expanding the set
of equilibria outcomes by “cheap” pre-play procedures,” Journal of Economic
Theory, 80, 108–122.

(2003): “Cheap talk in games with incomplete information,” Journal of
Economic Theory, 108(1), 45–71.
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Appendix

Proof of Lemma 1: Fix a rational µ ∈ ∆A and let µ(k, l) = ckl
d

.
Lehrer (1991) suggests the following construction. Let Qkl ∈ {0, 1}d×d for

0 ≤ k ≤ N1 − 1 and 0 ≤ l ≤ N2 − 1 be matrices such that in each row and each
column there are exactly ckl of ones and d − ckl of zeros. We have N1N2 such
matrices, which we put in a matrix Q as follows:

Q =

 Q00 . . . Q1(N2−1)
...

. . .
...

Q(N1−1)0 . . . Q(N1−1)(N2−1)

 .

Denote the entry in the kth row and lth column of a matrix by [·]kl. If entries
are also matrices then it will be made clear from their definitions. For example,
[Q]kl = Qkl. The number of zeros in Q is exactly p′ = d

∑
kl(d − ckl). Let

01, . . . , 0p′ be an arbitrary order of these zeros.
Define (σ, r) in Γ(p′, µ, h0) as follows:

F: The row player chooses a row of Q, that is, chooses a pair of numbers
(n1, d1) from A1 × {1, . . . , d} with equal probabilities; the column player
chooses a column, that is, a pair (n2, d2) from A2 × {1, . . . , d} with equal
probabilities. The chosen row is n1d+d1, and the chosen column is n2d+d2.
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mi: Send message 1 at stage s for 1 ≤ s ≤ p′ if 0s is in the chosen row (column)
of Q and send 0 otherwise.

ni: Send an uninformative message in stage p′ + 1, say, let ni = 0.

ri: The row player plays n1, the column player plays n2 in Γ.

(σ, r) does not mimic µ although it satisfies condition 2 of Definition 4 and it
is true that

rσ(a|h0) = µ(a). (L1)

Moreover, (σ, r) does not simulate µ since for any pure communication strategy
(mi, ni) of player i we have that in general

r((mi,ni),σ−i)(a|h0) 6= µ(a).

To fix Lehrer’s construction in a way that it satisfies condition 1 of the defi-
nition of mimicking and the definition of simulation consider the following aug-
mented matrix. Using the matrices Qkl as entries, we build a Latin square Q of
size N1N2 × N1N2, such that in each row and each column there is exactly one
instance of matrix Qkl for all (k, l) ∈ A. Here, we look at Q as an N1N2 ×N1N2

matrix whose entries are matrices of size d×d, that is, Q ∈ {{0, 1}d×d}N1N2×N1N2 .

Instead, Q can also be viewed as an element of {{{0, 1}d×d}N1×N2}
N2×N1

. That

is, the building blocks of Q are from {{0, 1}d×d}N1×N2 , meaning that Q has N2

rows and N1 columns and the entries are matrices of size N1 × N2 having N1

rows and N2 columns. Denote such an entry in the n2th row and n1th column
by [Q]n2n1 .

We require that the Latin square Q additionally satisfies the following prop-
erty: for all 0 ≤ n2 ≤ N2 − 1, 0 ≤ n1 ≤ N1 − 1, [Q]n2n1 can be obtained by
permuting the rows and the columns of Q. A Latin square satisfying this prop-
erty clearly exists: it is a Sudoku-like construction. Below we construct this Latin
square explicitly by specifying each [Q]n2n1 . To this end we write n1 +k

.
= n1 +k

mod N1 and n2 + l
.
= n2 + l mod N2. Define

[Q]n2n1 =


Qn1n2 . . . Qn1(n2+l) . . . Qn1(n2+N2−1)

...
. . .

...
. . .

...
Q(n1+k)n2 . . . Q(n1+k)(n2+l) . . . Q(n1+k)(n2+N2−1)

...
. . .

...
. . .

...
Q(n1+N1−1)n2 . . . Q(n1+N1−1)(n2+l) . . . Q(n1+N1−1)(n2+N2−1)

 .

That is,

[[Q]n2n1 ]kl = Q(n1+k)(n2+l)

for 0 ≤ k ≤ N1 − 1 and 0 ≤ l ≤ N2 − 1. For example, [Q]00 = Q.
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Finally, we can also view Q as an element of {0, 1}N1N2d×N1N2d. That is, Q
has N1N2d rows and columns and the elements of this matrix are 0’s and 1’s. The
total number of zeros in Q is exactly p = N1N2p

′. Let 01, . . . , 0p be an arbitrary
order of these zeros.

Define (σ, r) in Γ(p, µ, h0) as:

F: The row player chooses a row of Q, that is, a number between 1 and N1N2d
by choosing (n′1, n2, d1) from A1 ×A2 × {1, . . . , d} with equal probabilities.
The column player chooses a column of Q, that is, a number between 1
and N1N2d by choosing (n1, n

′
2, d2) from A1 × A2 × {1, . . . , d} with equal

probabilities. The chosen row is then n2N1d + n′1d + d1 and the chosen
column is n1N2d+ n′2d+ d2.

mi: Communicate for p stages through the AND by sending message 1 at stage
s if 0s is in the chosen row (column) of Q and sending 0 otherwise.

ni: In stage p + 1 the row player announces n1 = n2, the column player an-
nounces n2 = n1.

ri: The row player chooses action in Γ according to:

r1(m1, n) = r1(., n′1, n2, n1) = n1 + n′1,

while the column player chooses action according to:

r2(m2, n) = r2(., n′2, n2, n1) = n2 + n′2.

Notice that the selected actions are modulo N1 and N2, respectively. Through
their public announcements (n1, n2) = (n2, n1), the players jointly choose a matrix
[Q]n2n1 . Given this matrix, the row player plays according to the index k for which
Qk. = [[Q]n2n1 ]n′1., that is, Qk. is in the n′1th row of [Q]n2n1 . The column player
plays according to the index l for which Q.l = [[Q]n2n1 ].n′2 , that is, Q.l is in the
n′2th column of [Q]n2n1 . These decision rules are properly defined because [Q]n2n1

is obtained as row and column permutations of Q. Therefore, the first subindexes
of Qkl are constant in a row and the second subindexes are constant in a column
of [Q]n2n1 .

Once a player has chosen a row or column of Q in Lehrer’s construction, he
knows which action is to be taken if h = h0. Here, instead, the players do not
know their actions before the direct talk. For example, the choice of n′1 by player
1 (the row player) in step (F) does not determine his action if the communication
is successful, meaning, h = h0 since the action of player 1 also depends on the
column players’s random choice of n1 from a uniform distribution. Hence, player
1’s belief about his own action after stage p is µ(a1) no matter which pure strategy
he follows in the support of σ1. And conversely, player 1’s knowledge of n2 gives
no information to him about the action of player 2, since the latter also depends
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on the uniformly chosen n′2 which is unknown to player 1. Hence, player 1’s belief
after stage p about player 2’s action is µ(a2). Even more, not only player 1’s belief
about the marginal distributions stays the same after stage p, but also his belief
about the joint distribution of actions, µ(a) remains the same, that is, condition
1 of mimicking is satisfied whichever row has been chosen in Q. It follows from
property (L1) of Lehrer’s matrix, and the facts that each row of Q (when treated
as being of size N1N2 × N1N2) consists of “stretched-out” Lehrer’ matrix, and
that player 2 chooses a column of Q uniformly. Condition 2 of mimicking holds
trivially: by announcing (n2, n1), the players choose a sub-matrix of Q, which
is obtained by row and column permutations of Lehrer’s matrix but we already
know that condition 2 holds for Lehrer’s construction.
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