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Patrick Minfordy(Cardi� University and CEPR)
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Abstract

We investigate the relative roles of monetary policy and shocks in causing the

Great Moderation, using indirect inference where a DSGE model is tested for its

ability to mimic a VAR describing the data. A New Keynesian model with a Taylor

Rule and one with the Optimal Timeless Rule are both tested. The latter easily

dominates, whether calibrated or estimated, implying that the Fed's policy in the

1970s was neither inadequate nor a cause of indeterminacy; it was both optimal and

essentially unchanged during the 1980s. By implication it was largely the reduced

shocks that caused the Great Moderation|among them monetary policy shocks

the Fed injected into in
ation.
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1 Introduction

John Taylor suggested in Taylor (1993) that an interest rate rule for well-conducted

monetary policy �tted the Fed's behaviour since 1987 rather well in a single equation

regression. Since then a variety of similar studies have con�rmed his �nding|most of

these have focused on a data sample beginning in the early-to-mid 1980s. For the period

from the late 1960s to the early 1980s the results have been more mixed. Thus Clarida,

Gali and Gertler (2000) reported that the Taylor Rule �tted but with a coe�cient on

in
ation of less than unity; in a full New Keynesian model this fails under the usual criteria

to create determinacy in in
ation and they argue that this could be the reason for high

in
ation and output volatility in this earlier post-war period. They concluded that the

reduction in macro volatility between these two periods (the `Great Moderation') was

due to the improvement in monetary policy as captured by this change in the operative

Taylor Rule.

This view of the Great Moderation has been widely challenged in econometric studies

of the time series. These have attempted to decompose the reduction in macro variance

into the e�ect of parameter changes and the e�ect of shock variances. Virtually all have

found that the shock variances have dominated the change and that the monetary policy

rule operating therefore did not change very much.

A further questioning of the Taylor Rule account of the post-war monetary policy has

come from Cochrane (2011) and others (Minford, Perugini and Srinivasan, 2002) who

argue that the Taylor Rule is not identi�ed as a single equation because a DSGE model

with a di�erent monetary policy rule (such as a money supply rule) could equally well

2



generate an equation of the Taylor Rule form. Therefore much of the work that estimates

the Taylor Rule could be spurious.

A way of dealing with this identi�cation problem is to specify the Taylor Rule as one

equation in a full DSGE model; in this case the overidentifying restrictions of the model

should ensure identi�cation. However, there then remains the question of whether such a

model is as good a representation as one that is in general the same but has an alternative

monetary policy rule. While some authors have estimated Taylor Rules as part of such a

model, none of them to our knowledge has tested such a model against one with a rival

rule.

That is precisely our interest in this paper. We wish to investigate whether when

identi�ed as part of a DSGE model the Taylor Rule or alternative rules perform best in

matching the US data. Having established a valid representation of monetary policy in

the post-war US, we would like then to revisit the cause of the Great Moderation.

We look at a particular rival to the Taylor Rule, the Optimal Timeless Rule. This

is of interest because in it the Fed is playing a more precisely optimising role than it

does in the Taylor Rule which is a simple rule that can be operated with limited current

information, namely for output and in
ation. The Optimal Timeless Rule assumes that

the Fed can solve the DSGE model for all the shocks and so choose in a discriminating

way its reaction to each shock. Other than this Optimal Timeless Rule we also look at

variants of the Taylor Rule, including one that closely mimics the Optimal Timeless Rule.

To make our testing bounded and tractable we use the monetary rule in conjunction

with the most widely-accepted DSGE model representation|where the model is reduced

to two equations, a forward-looking `IS' curve and a New Keynesian Phillips curve, plus

the monetary rule. We allow each rule/model combination to be calibrated with the best

chance of matching the data and then test on that best calibration, using the method

of Indirect Inference under which the model's simulated behaviour is formally tested

for congruence with the behaviour of the data. Our e�orts here join others that have

brought DSGE models to bear on this issue|notably, Ireland (2007), Smets and Wouters
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(2007) and the related Le et al. (2011) and Fernandez-Villaverde et al. (2009, 2010).

These authors have all used much larger DSGE models, in some cases data that was

non-stationary, and in most cases Bayesian estimation methods. Their work is largely

complementary to ours and we discuss it, its �ndings and their relation to ours below.

Bayesian estimation is a method for improving on calibrated parameters but our method

of Indirect Inference takes matters further and asks if the �nally estimated parameters

are consistent overall with the data behaviour; if not it searches for some set permissible

within the theory that is consistent, getting as close to consistency as possible given the

model and the data. This method is the major innovation we introduce for the treatment

of the topic here; it is a method based on classical statistical inference which we explain

and defend carefully below.

In section 2 we review the work on the Great Moderation; in section 3 that on the

Taylor Rule. In section 4 we set out the model and the rules to be tested, and in section

5 our test procedure. In section 6 we show the results; in section 7 we draw out the

implications for the Great Moderation; section 8 concludes.

2 Causes of the Great Moderation

The Great Moderation refers to the period during which the volatility of the main eco-

nomic variables was relatively modest. This began in the US around the early 1980s

although there is no consensus on the exact date. Figure 1 below shows the time paths

of three main US macro variables from 1972 to 2007: the nominal Fed interest rate,

output gap and CPI in
ation. It shows the massive 
uctuation of the 1970s ceased after

the early 1980s, indicating the economy's transition from the Great Acceleration to the

Great Moderation.

Changes in the monetary policy regime could have produced the Great Moderation.

This is typically illustrated with the three-equation New Keynesian framework, consist-

ing of the IS curve derived from the household's optimization problem, the Phillips curve
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Figure 1: Time Paths of Main Macro Variables of the US Economy
(Quarterly data, 1972-2007)

Nominal Fed rate Output gap CPI In
ation

Data source: the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2/, accessed Nov. 2009).

Fed rate and in
ation un�ltered; the output gap is the log deviation of real GDP from its HP trend.

derived from the �rm's optimal price-setting behaviour, and a Taylor Rule approximat-

ing the Fed's monetary policy. Using simulated behaviour from models of this sort, a

number of authors suggest that the US economy's improved stability was largely due to

stronger monetary policy responses to in
ation (Clarida, Gali and Gertler, 2000; Lubik

and Schorfheide, 2004; Boivin and Giannoni, 2006 and Benati and Surico, 2009). The

contrast is between the `passive' monetary policy of the 1970s, with low Taylor Rule

responses, and the `active' policy of the later period in which the conditions for a unique

stable equilibrium (the `Taylor Principle') are met, these normally being that the in
a-

tion response in the Taylor Rule be greater than unity. Thus it was argued that the

indeterminacy caused by the passive 1970s policy generated sunspots and so the Great

Acceleration; with the Fed's switch this was eliminated, hence the Great Moderation.

By contrast other authors, mainly using structural VAR analysis, have suggested that

the Great Moderation was caused not by policy regime change but by a reduction in the

variance of shocks. Thus Stock and Watson (2002) claimed that over 70% of the reduction

in GDP volatility was due to lower shocks to productivity, commodity prices and forecast

errors. Primiceri (2005) argued that the stag
ation in the 1970s was mostly due to

non-policy shocks. A similar conclusion was drawn by Gambetti, Pappa and Canova

(2008), while Sims and Zha (2006) found in much the same vein that an empirical model

with variation only in the variance of the structural errors �tted the data best and that

alteration in the monetary regime|even if assumed to occur|would not much in
uence
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the observed in
ation dynamics.

The logic underlying the structural VAR approach is that, when actual data are

modelled with a structural VAR, their dynamics will be determined both by the VAR

coe�cient matrix that represents the propagation mechanism (including the monetary

regime) and by the variance-covariance matrix of prediction errors which takes into ac-

count the impact of exogenous disturbances. Hence by analysing the variation of these

two matrices across di�erent subsamples it is possible to work out whether it is the change

in the propagation mechanism or in the error variability that has caused the change in

the data variability. It is the second that these studies have identi�ed as the dominant

cause. Hence almost all structural VAR analyses have suggested `good shocks' (or `good

luck') as the main cause of the Great Moderation, with the change of policy regime in a

negligible role.

Nevertheless, since this structural VAR approach relies critically on supposed model

restrictions to decompose the variations in the VAR between its coe�cient matrix and

the variance-covariance matrix of its prediction errors, there is a pervasive identi�cation

problem. As Benati and Surico (2009) have pointed out, the problem that `lies at the

very heart' is the di�culty in connecting the structure of a DSGE model to the structure

of a VAR. In other words one cannot retrieve from the parameters of an SVAR the

underlying structural parameters of the DSGE model generating it, unless one is willing

to specify the DSGE model in detail. None of these authors have done this. Hence

one cannot know from their studies whether in fact the DSGE model that produced the

SVAR for the Great Acceleration period di�ered or did not di�er from the DSGE model

producing the SVAR for the Great Moderation period. It is not enough to say that

the SVAR parameters `changed little' since we do not know what changes would have

been produced by the relevant changes in the structural DSGE models. Di�erent DSGE

models with similar shock distributions could have produced these SVARs with similar

coe�cients and di�erent shock distributions.

Essentially it is this problem that we attempt to solve in the work we present below.
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We estimate a VAR for each period and we then ask what candidate DSGE models could

have generated each VAR. Having established which model comes closest to doing so, we

then examine how the di�erence between them accounts for the Great Moderation. Since

these models embrace the ones put forward by the authors who argue that policy regime

change accounts for it, we are also able to evaluate these authors' claims statistically.

Thus we bring evaluative statistics to bear on the authors who claim policy regime change,

while we bring identi�cation to bear on the authors who use SVARs.

We describe our methods in detail below. But �rst we discuss the empirical evidence

from single equation estimates for the Taylor Rule.

3 Taylor Rules, Estimation and Identi�cation

Taylor (1993) suggested that a good rule for monetary policy would set the Federal funds

rate according to the following equation:

iAt = �At + 0:5xt + 0:5(�
A
t � ��) + g (1)

where xt is the percentage deviation of real GDP from trend, �At is the annual rate of

in
ation averaged over the past four quarters, with in
ation target �� and real GDP

growth rate g both set at 2 percent.

Known as the original `Taylor Rule', equation (1) was found to have predicted the

movement of actual Fed rates well for much of the period from 1987 until the early 1990s.

This success convinced many economists that the Fed's policy at the time could be

conveniently described by this equation. A number of variants have also been proposed;

for example, one with policy inertia as in Clarida, Gali and Gertler (1999):

iAt = (1� �)[�+ 
�(�
A
t � ��) + 
xxt] + �iAt�1 (2)

with � showing the degree of `interest rate smoothing'. Others have introduced backward-
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or forward-looking behaviour, with in
ation and output gap treated as lagged or expected

future variables|such as Rotemberg and Woodford (1997, 1998) and Clarida, Gali and

Gertler (2000). In most cases the focus is on the period between the early 1980s and

some time before the banking crisis of the late 2000s.

Rules of these types are generally found to �t the data well, either as a stand-alone

equation in regression analysis, or as part of a full model in DSGE analysis. Giannoni and

Woodford (2005) is a recent example of the former, whereas Smets and Wouters (2007)

and Ireland (2007) are examples of the latter. However, besides the usual di�culties en-

countered in applied work (e.g., Castelnuovo, 2003 and Carare and Tchaidze, 2005), these

estimates face an identi�cation problem pointed out in Minford, Perugini and Srinivasan

(2002) and Cochrane (2011)|see also Minford (2008) which we use in what follows.

Lack of identi�cation occurs when an equation could be confused with a linear com-

bination of other equations in the model. In the case of the Taylor Rule, DSGE models

give rise to the same correlations between interest rate and in
ation as the Taylor Rule,

even if the Fed is doing something quite di�erent, such as targeting the money supply.

For example, Minford et al. show this in a DSGE model with Fischer wage contracts.

In e�ect, unless econometricians know from other sources of information that the

central bank is pursuing a Taylor Rule, they cannot be sure they are estimating a Taylor

Rule when they specify a Taylor-type equation because under other possible monetary

policy rules a similar relationship to the Taylor Rule is implied1.

The point can be illustrated using a popular DSGE model with a money supply rule

instead of a Taylor Rule as follows:

(IS curve): yt = 
Et�1yt+1 � �rt + vt

(Phillips curve): �t = �(yt � y�) + �Et�1�t+1 + (1� �)�t�1 + ut

(Money supply target): �mt = m+ �t

1While one may argue that various announcements, proposals and reports published by the central
bank directly reveal to econometricians the bank's reaction function. However, what the Fed actually
does is not necessarily the same thing as what its o�cials and governors say it does. So these documents,
while illuminating, can complement but cannot substitute for econometric evidence.

8



(Money demand): mt � pt =  1Et�1yt+1 �  2Rt + "t

(Fisher identity): Rt = rt + Et�1�t+1

The model above implies a Taylor-type relation that looks like: Rt = r� + �� +


��1(�t���)+ 1��1(yt�y�)+wt, where � =  2
� 1�, and the error term, wt, is both

correlated with in
ation and output and autocorrelated; it contains the current money

supply/demand and aggregate demand shocks and also various lagged values (the change

in lagged expected future in
ation, interest rate, the output gap, the money demand

shock, and the aggregate demand shock). This particular Taylor-type relation was created

with a combination of equations- the solution of the money demand and supply curves for

interest rate, the Fisher identity and the IS curve for expected future output2. But other

Taylor-type relations could be created with combinations of other equations, including

the solution equations, generated by the model. They will all exhibit autocorrelation

and contemporaneous correlation with output and in
ation, clearly of di�erent sorts

depending on the combination used.

All the above applies to identifying a single equation being estimated; thus one cannot

distinguish a Taylor Rule equation from the equations implied by the model and alter-

native rules when one just estimates that equation. One could attempt to apply further

restrictions but such restrictions are hard to �nd. For example, one might restrict the

error process of a Taylor Rule in some distinct way, say to being serially uncorrelated.

But the error in a Taylor Rule, which represents `monetary judgement' based on factors

other than the two gaps, may well be autocorrelated because those factors are persistent.

However, when a `monetary rule' is chosen for inclusion in a complete DSGE model

with rational expectations, then the model imposes over-identifying restrictions through

2From the money demand and money supply equations,  2�Rt = �t�m+ 1�Et�1yt+1+�"t��t.
Substitute for Et�1yt+1 from the IS curve and then inside that for real interest rate from the Fisher
identity giving  2�Rt = �t�m+ 1( 1
 )f'(�Rt��Et�1�t+1)+�yt��vtg+�"t��t; then, rearrange
this as ( 2 �

 1'

 )�(Rt �R�) = (�t �m)�  1'


 �Et�1�t+1 +
 1

 �(yt � y

�)�  1

 �vt +�"t � �t, where

the constants R� and y� have been subtracted from Rt and yt respectively, exploiting the fact that when
di�erenced they disappear. Finally, Rt = r� + �� + 
��1(�t � ��) +  1�

�1(yt � y�) + f(Rt�1 � R�) �
 1'�

�1�Et�1�t+1 �  1�
�1(yt�1 � y�) �  1�

�1�vt + 
��1�"t � 
��1�tg, where we have used the
steady state property that R� = r� + �� and m = ��.
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the expectations terms which involve in principle all the model's parameters. Thus a

model with a particular rule is in general over-identi�ed so that estimation by full infor-

mation methods of that particular model as speci�ed (as in Rotemberg and Woodford,

1997, 1998, Smets and Wouters, 2007, Onatski and Williams, 2004 and Ireland, 2007) is

possible. One way of putting this is that there are more reduced-form parameters than

structural parameters. Another is to note that the reduced form will change if the struc-

tural description of monetary policy changes; this was a point �rst made by Lucas (1976)

in his critique of conventional policy optimization at that time. So if econometricians

posit a Taylor Rule then they will retrieve its coe�cients and those of the rest of the

model under the assumption that it is the true structural monetary rule. They could

then compare the coe�cients for a model where they assume some other rule. They can

distinguish between the two models via their di�erent reduced forms and hence their

di�erent �ts to the data. Thus it is possible to identify the di�erent rules of monetary

policy behavior via full information estimation.

However, the identi�cation problem does not go away, even when a model is over-

identi�ed in this way. The problem is that the decision to include the Taylor Rule in such

a model has been justi�ed by the fact that it �ts the data in single equation estimation;

but as we have seen such a choice could be the victim of identi�cation failure as the

rule could be mimicking the joint behaviour of the rest of the model and some other

(true) monetary rule. If so, including it in the model will produce a mis-speci�ed model

whose behaviour will not �t the data as well as the properly-speci�ed model with the

true monetary policy equation. To detect this and also to �nd the true model we need

not only to test this model but also to test possible well-speci�ed alternatives. Thus we

need to check whether there is a better model which with its over-identifying restrictions

may �t the data more precisely.

This points the way to a possible way forward. One may specify a complete DSGE

model with alternative monetary rules and use the over-identifying restrictions to deter-

mine their di�ering behaviours. One may then test which of these is more acceptable
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from the data's viewpoint and hence comes closest to the true model. This is precisely

the approach taken here.

4 A Simple New Keynesian Model for Interest Rate,

Output Gap and In
ation Determination

We follow a common practice among New Keynesian authors of setting up a full DSGE

model with representative agents and reducing it to a three-equation framework consisting

of an IS curve, a Phillips curve and a monetary policy rule.

Under rational expectations the IS curve derived from the household's problem and

the Phillips curve derived from the �rm's problem under Calvo (1983) contracts can be

shown to be:

xt = Etxt+1 � (
1

�
)(~{t � Et�t+1) + vt (3)

�t = �Et�t+1 + 
xt + �uwt (4)

where xt is the output gap, ~{t is the deviation of interest rate from its steady-state

value, �t is the price in
ation, and vt and u
w
t are the `demand shock' and `supply shock',

respectively3.

We consider three monetary regime versions widely suggested for the US economy.

These are the Optimal Timeless Rule when the Fed commits itself to minimizing a typical

quadratic social welfare loss function; the original Taylor Rule (1); and its interest-rate-

smoothed version (2).

In particular, the Optimal Timeless Rule is derived following Woodford (1999)'s idea

of ignoring the initial conditions confronting the Fed at the regime's inception. It implies

that, if the Fed was a strict, consistent optimizer, it would have kept in
ation always

3Note 
 and � are functions of other structural parameters and some steady-state relations (See table
2 for calibrations in what follows). Full derivation of equations (3) and (4) can be found in our Supporting
Annex.
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equal to a �xed fraction of the �rst di�erence of the output gap, ensuring

�t = �
�



(xt � xt�1) (5)

where � is the relative weight it puts on the loss from output variations against in
ation

variations and 
 is the Phillips curve constraint (regarding stickiness) it faces4.

Unlike Taylor Rules that specify a systematic policy instrument response to economic

changes, this Timeless Rule sets an optimal trade-o� between economic outcomes|here,

it punishes excess in
ation with a fall in the output growth rate. It then chooses the

policy instrument setting to achieve these outcomes; thus the policy response is implicit.

Svensson and Woodford (2004) categorized such a rule as `high-level monetary policy';

they argued that by connecting the central bank's monetary actions to its ultimate policy

objectives this rule has the advantage of being more transparent and robust5.

Thus, in order to implement the Optimal Timeless Rule the Fed must fully understand

the model (including the shocks hitting the economy) and set its policy instrument (here

the Fed rate) to whatever supports the Rule. Nevertheless, the Fed may make errors of

implementation that cause the rule not to be met exactly|`trembling hand' errors, �t.

Here, since (5) is a strict optimality condition, we think of such policy mistakes as due

either to an imperfect understanding of the model or to an inability to identify and react

to the demand and supply shocks correctly. This di�ers from the error in typical Taylor

Rules, (1) and (2), which consist of the Fed's discretionary departures from the rule .

Thus the three model economies with di�ering monetary policy settings are readily

comparable. These are summarised in table 16.

4See also Clarida, Gali and Gertler (1999) and McCallum and Nelson (2004). This is based on
de�ning social welfare loss as `the loss in units of consumption as a percentage of steady-state output'
as in Rotemberg and Woodford (1998)|also Nistico (2007); it is conditional on assuming a particular
utility function and zero-in
ation steady state|more details can be found in our Supporting Annex.

5Svensson and Woodford (2004) also comment that such a rule may produce indeterminacy; however
this does not occur in the model here.

6Note all equation errors are allowed to follow an AR(1) process when the models are tested against
the data so omitted variables are allowed for. We also transform the Taylor Rules to quarterly versions so
the frequency of interest rate and in
ation is consistent with other variables in the model. All constant
terms are dropped as demeaned, detrended data will be used, as the `data' section explains below.
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Table 1: Competing Rival Models

Baseline framework

IS curve xt= Etxt+1�( 1� )(~{t�Et�t+1) + vt

Phillips curve �t= �Et�t+1+
xt+�u
w
t

Monetary policy versions

Optimal Timeless Rule
(model one)

�t= ��


(xt�xt�1) + �t

original Taylor Rule
(model two)

iAt = �At +0:5xt+0:5(�
A
t �0:02) + 0:02 + �t

& transformed equation ~{t= 1:5�t+0:125xt+�
0
t

`IRS' Taylor Rule (2)
(model three)

iAt = (1� �)[�+ 
�(� � ��) + 
xxt] + �iAt�1+�t

& transformed equation ~{t= (1� �)[
��t+

0
xxt] + �~{t�1+�

0
t

Since these models di�er only in the monetary policies being implemented, by com-

paring their capacity to �t the data one should be able to tell which rule, when included

in a simple New Keynesian model, provides the best explanation of the facts and there-

fore the most appropriate description of the underlying policy. We go on to investigate

this in what follows.

5 The Method of Indirect Inference

We evaluate the models' capacity in �tting the data using the method of Indirect Inference

originally proposed in Minford, Theodoridis and Meenagh (2009) and subsequently with

a number of re�nements by Le et al. (2011) who evaluate the method using Monte Carlo

experiments. The approach employs an auxiliary model that is completely independent

of the theoretical one to produce a description of the data against which the performance

of the theory is evaluated indirectly. Such a description can be summarised either by the
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estimated parameters of the auxiliary model or by functions of these; we will call these

the descriptors of the data. While these are treated as the `reality', the theoretical model

being evaluated is simulated to �nd its implied values for them.

Indirect inference has been widely used in the estimation of structural models (e.g.,

Smith, 1993, Gregory and Smith, 1991, 1993, Gourieroux et al., 1993, Gourieroux and

Monfort, 1996 and Canova, 2005). Here we make a further use of indirect inference, to

evaluate an already estimated or calibrated structural model. The common element is

the use of an auxiliary time series model. In estimation the parameters of the structural

model are chosen such that when this model is simulated it generates estimates of the

auxiliary model similar to those obtained from the actual data. The optimal choices of

parameters for the structural model are those that minimise the distance between a given

function of the two sets of estimated coe�cients of the auxiliary model. Common choices

of this function are the actual coe�cients, the scores or the impulse response functions. In

model evaluation the parameters of the structural model are taken as given. The aim is to

compare the performance of the auxiliary model estimated on simulated data derived from

the given estimates of a structural model|which is taken as a true model of the economy,

the null hypothesis|with the performance of the auxiliary model when estimated from

the actual data. If the structural model is correct then its predictions about the impulse

responses, moments and time series properties of the data should statistically match those

based on the actual data. The comparison is based on the distributions of the two sets

of parameter estimates of the auxiliary model, or of functions of these estimates.

The testing procedure thus involves �rst constructing the errors implied by the previ-

ously estimated/calibrated structural model and the data. These are called the structural

errors and are backed out directly from the equations and the data7. These errors are then

bootstrapped and used to generate for each bootstrap new data based on the structural

7Some equations may involve calculation of expectations. The method we use here is the robust
instrumental variables estimation suggested by McCallum (1976) and Wickens (1982): we set the lagged
endogenous data as instruments and calculate the �tted values from a VAR(1)|this also being the
auxiliary model chosen in what follows.
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model. An auxiliary time series model is then �tted to each set of data and the sampling

distribution of the coe�cients of the auxiliary time series model is obtained from these

estimates of the auxiliary model. A Wald statistic is computed to determine whether

functions of the parameters of the time series model estimated on the actual data lie in

some con�dence interval implied by this sampling distribution.

Following Minford, Theodoridis and Meenagh (2009) we take a VAR(1) for the three

macro variables (interest rate, output gap and in
ation) as the appropriate auxiliary

model and treat as the descriptors of the data the VAR coe�cients and the variances

of these variables. The Wald statistic is computed from these8. Thus e�ectively we are

testing whether the observed dynamics and volatility of the chosen variables are explained

by the simulated joint distribution of these at a given con�dence level. The Wald statistic

is given by:

(�� �)0
�1X
(��)

(�� �) (6)

the squared `Mahalanobis distance', where � is the vector of VAR estimates of the chosen

descriptors yielded in each simulation, with � and
P

(��) representing the correspond-

ing sample means and variance-covariance matrix of these calculated across simulations,

respectively9.

Figure 2 illustrates the whole testing procedure. While panel A of the �gure sum-

marises the main steps just described, the `mountain-shaped' diagram in the second panel

gives an example of how the `reality' is compared to model predictions using the Wald

8Note that the VAR impulse response functions, the co-variances, as well as the auto/cross correla-
tions of the left-hand-side variables will all be implicitly examined when the VAR coe�cient matrix is
considered, since the former are functions of the latter.

9Smith (1993), for his demonstration of model estimation, originally used VAR(2) as the auxiliary
model. His VAR included the logged output and the logged investment and he tried to maximize the
model's capacity in �tting the dynamic relation between these. To this end he included the ten VAR
coe�cients (including two constants) in his vector of data descriptors. Here, since a VAR(1) is chosen
to provide a parsimonious description of the data and the models are tested against their capacity in
�tting the data's dynamic relations and size, the vector of chosen data descriptors includes nine VAR(1)
coe�cients and three data variances. No constant is included since the data are demeaned and detrended.
In the Supporting Annex we show our results that follow are robust to the choice of VAR: it turns

out that using a VAR of higher orders, though strengthening the test's rejection power, will not cause
change in the ranking between the models.
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Figure 2: The Principle of Testing using Indirect Inference

Panel A:

Model(s) to be tested

# (Bootstrap simulations)

Actual data Simulated data

# #
VAR representation VAR representation

# #
Inference from VAR (the `reality') vs|{z} Distribution(s) of inference from VAR

Wald statistic

Panel B:

test when two parameters of the auxiliary model are considered. Suppose the real-data

estimates of these are given at R and there are two models to be tested; each implies a

joint distribution of these parameters shown by the mountains (� and �). Since R lies

outside the 95% contour of �, it would reject this model at 95% con�dence level; the

other model that generated � would not be rejected, however, since R lies inside. In

practice there are usually more than two parameters to be considered; to deal with the

extra dimensions the test is therefore carried out with the Wald statistic (6).

The joint distribution described above is obtained by bootstrapping the innovations

implied by the data and the theoretical model; it is therefore an estimate of the small

sample distribution10. Such a distribution is generally more accurate for small samples

than the asymptotic distribution; it is also shown to be consistent by Le et al. (2011)

10The bootstraps in our tests are all drawn as time vectors so contemporaneous correlations between
the innovations are preserved.

16



given that the Wald statistic is asymptotically pivotal. They also showed it had quite

good accuracy in small sample Montecarlo experiments11.

This testing procedure is applied to a set of (structural) parameters put forward as

the true ones (H0, the null hypothesis); they can be derived from calibration, estimation,

or both. However derived, the test then asks: could these coe�cients within this model

structure be the true (numerical) model generating the data? Of course only one true

model with one set of coe�cients is possible. Nevertheless we may have chosen coe�cients

that are not exactly right numerically, so that the same model with other coe�cient values

could be correct. Only when we have examined the model with all coe�cient values that

are feasible within the model theory will we have properly tested it. For this reason

we later extend our procedure by a further search algorithm, in which we seek other

coe�cient sets that could do better in the test.

Thus we calculated the minimum-value full Wald statistic for each period using a

powerful algorithm based on Simulated Annealing (SA) in which search takes place over

a wide range around the initial values, with optimising search accompanied by random

jumps around the space12. In e�ect this is Indirect Inference estimation of the model;

however here this estimation is being done to �nd whether the model can be rejected

in itself and not for the sake of �nding the most satisfactory estimates of the model

parameters. Nevertheless of course the method does this latter task as a byproduct so

that we can use the resulting unrejected model as representing the best available estimated

11Speci�cally, they found that the bias due to bootstrapping was just over 2% at the 95% con�dence
level and 0.6% at the 99% level. They suggested possible further re�nements in the bootstrapping
procedure which could increase the accuracy further; however, we do not feel it necessary to pursue these
here.
12We use a Simulated Annealing algorithm due to Ingber (1996). This mimics the behaviour of the

steel cooling process in which steel is cooled, with a degree of reheating at randomly chosen moments
in the cooling process|this ensuring that the defects are minimised globally. Similarly the algorithm
searches in the chosen range and as points that improve the objective are found it also accepts points
that do not improve the objective. This helps to stop the algorithm being caught in local minima. We
�nd this algorithm improves substantially here on a standard optimisation algorithm. Our method used
our standard testing method: we take a set of model parameters (excluding error processes), extract the
resulting residuals from the data using the LIML method, �nd their implied autoregressive coe�cients
(AR(1) here) and then bootstrap the implied innovations with this full set of parameters to �nd the
implied Wald value. This is then minimised by the SA algorithm.
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version. The merit of this extended procedure is that we are comparing the best possible

versions of each model type when �nally doing our comparison of model compatibility

with the data.

The principle of estimation using indirect inference is illustrated in �gure 3: suppose,

as in the case of testing, that we have chosen two parameters of the auxiliary model to

describe the reality and the real-data estimates of these are given at R. Suppose for now

the structural model under estimation has two potential sets of parameter values (vectors

A and B), each accordingly implies a joint distribution of the descriptive parameters of the

auxiliary model shown by the mountains (� and �). The contours of these distributions

show that the mean of �, compared to that of a, is closer to R, B is therefore the more

preferred parameter set compared to A from the structural model's viewpoint. Again,

in practice one would normally consider for description of the reality more than two

parameters of the auxiliary model so that the Wald statistic (6) is used in practice. The

SA algorithm is then applied to search for the structural parameters that minimize the

Wald value.

Figure 3: The Principle of Estimation using Indirect Inference

One may get several possible outcomes when two models are being compared with

the same auxiliary model estimated on a data sample:

a) one model is rejected, the other is not rejected. In this case only one model is

compatible with the behaviour in the data, and the other can be disregarded.

b) both models are rejected; but the Wald statistic of one is lower than the other's.
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c) neither model is rejected but the Wald statistic of one is lower than the other's.

In cases b) and c) we can convert the Wald into a p-value, which can loosely be

described as the probability of the model being true given the data. The models can be

ranked by these p-values in terms of their probability or `closeness' to the data behaviour.

In case b) this ranking is merely information about possible misspeci�cations. In case c)

one can regard the model with the lower p-value as an approximation to the `true' model

with the higher p-value; thus both are `true' in this method (i.e. not rejected), but one

is a poorer approximation to the true causal structure.

6 Data and Results

We evaluate the models against the US experience since the breakdown of the Bretton

Woods system using quarterly data published by the Federal Reserve Bank of St. Louis

from 1972 to 200713. This covers both the Great Acceleration and the Great Moderation

episodes of the US history.

The time series involved for the given baseline model include ~{t, measured as the

deviation of the current Fed rates from its steady-state value, the output gap xt, approx-

imated by the percentage deviation of real GDP from its HP trend, and the quarterly

rate of in
ation �t, de�ned as the quarterly log di�erence of the CPI
14.

13http://research.stlouisfed.org/fred2/.
14Note by de�ning the output gap as the HP-�ltered log output we have e�ectively assumed that the

HP trend approximates the 
exible-price output in line with the bulk of other empirical work. To estimate
the 
exible-price output from the full DSGE model that underlies our three-equation representation, we
would need to specify that model in detail, estimate the structural shocks within it and �t the model to
the un�ltered data, in order to estimate the output that would have resulted from these shocks under

exible prices. This is a substantial undertaking well beyond the scope of this paper, though something
worth pursuing in future work.
Le et al. (2011) test the Smets and Wouters (2007) US model by the same methods as we use here.

This has a Taylor Rule that responds to 
exible-price output. It is also close to the timeless optimum
since, besides in
ation, it responds mainly not to the level of the output gap but to its rate of change
and also has strong persistence so that these responses cumulate strongly. Le et al. �nd that the best
empirical representation of the output gap treats the output trend as a linear or HP trend instead of
the 
exible-price output|this Taylor Rule is used in the best-�tting `weighted' models for both the full
sample and the sample from 1984. Thus while in principle the output trend should be the 
exible-price
output solution, it may be that in practice these models capture this rather badly so that it performs
less well than the linear or HP trends.
We have also purposely adjusted the annual Fed rates from the Fred R
 to quarterly rates so the
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We should �nd a break in the VAR process re
ecting the start of the Great Moder-

ation. Accordingly we split the time series into two subsamples and estimate the VAR

representation before and after the break; the baseline model is then evaluated against

the VAR of each subsample separately. We set the break at 1982Q3. Most discussions of

the Fed's behaviour (especially those based on Taylor Rules) are concerned with periods

that begin sometime around the mid-1980s but we chose 1982 as the break point here be-

cause many (including Bernanke and Mihov, 1998, and Clarida, Gali and Gertler, 2000)

have argued that it was around then that the Fed switched from using non-borrowed re-

serves to setting the Fed Funds rate as the instrument of monetary policy. Such a choice

is consistent with the Qu and Perron (2007) test which gives a 95% con�dence interval

between 1980Q1 and 1984Q415.

For simplicity, the data we use are demeaned so that a VAR(1) representation of them

contains no constants but only nine autoregressive parameters in the coe�cient matrix; a

linear trend is also taken out of the interest rate series for the post-1982 sample to ensure

stationarity (See plots and unit root test results in appendix).

The model is calibrated by choosing the parameters commonly accepted for the US

economy in the literature. These are summarised in table 2.

The table sets the quarterly discount factor at 0.99, implying a 1% quarterly (or

equivalently 4% annual) rate of interest in the steady state. � and � are set to as high

as 2 and 3 respectively as in Carlstrom and Fuerst (2008), who emphasized the values'

consistency with the inelasticity evident in the US data for both intertemporal consump-

tion and labour supply. The Calvo price stickiness (!) of 0.53 and the price elasticity (�)

frequencies of all time series kept consistent on quarterly basis. The quarterly interest rate in stead state
is given by iss =

1
� � 1.

15The Qu-Perron test suggests 1984Q3 as the most likely within the range. We show in the Supporting
Annex that our tests are robust to this later choice of switch date.
16We have assumed Y = C+G and used the steady-state G=Y ratio to calculate the steady-state Y=C

ratio.
17Nistico (2007) found that the relative weight � could be shown as the ratio of the slope of the Phillips

curve to the price elasticity of demand, and so � = 
=�.
18We discuss below (section 6.1.2) the problems with testing the pre-break case and the parameters

we therefore use to do so.
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Table 2: Calibration of Parameters

Parameters De�nitions Calibrated Values

� time discount factor 0.99

� inverse of intertemporal consumption elasticity 2

� inverse of labour elasticity 3

! Calvo contract price non-adjusting probability 0.53
G
Y

steady-state gov. expenditure to output ratio 0.23
Y
C

steady-state output to consumption ratio16 1
0:77

(implied value)

� � = (1�!)(1�!�)
!

0.42 (implied value)


 
 = �(� + � Y
C
) 2.36 (implied value)

� price elasticity of demand 6
�


�1
�

optimal trade-o� rate on the Timeless Rule17 1
6

(implied value)

Parameters on post-break interest-rate-smoothed Taylor Rule18

� interest rate smoothness 0.76


� in
ation response 1.44


0x output gap response 0.14

�v demand shock persistence pre-break 0.88 (sample estimate)

post-break 0.93 (sample estimate)

�uw supply shock persistence pre-break 0.91 (sample estimate)

post-break 0.80 (sample estimate)

�� policy shock persistence

-model one (Opt. Timeless)
pre-break

post-break

0.59

0.38

(sample estimate)

(sample estimate)

-model two (Stdd. Taylor) post-break18 0.39 (sample estimate)

-model three (IRS Taylor) post-break18 0.39 (sample estimate)

of demand of 6 are both taken from Kuester, Muller and Stolting (2009); these values

imply an average contract length of more than three quarters19, while the constant price

mark-up over marginal cost is 1.2. The implied steady-state output-consumption ratio

of 1/0.77 is calculated based on the steady-state government-expenditure-to-output ratio

of 0.23 calibrated by Foley and Taylor (2004). The second half of table 2 reports the au-

toregressive coe�cients of the model errors extracted from the data given the calibrated

parameters; it shows that in both the Great Acceleration and the Great Moderation the

192(1� !)�1 � 1 � 3:26, to be more precise.
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demand and supply shocks are highly persistent compared to the policy shock.

6.1 Results for calibrated models

The test results for the models considered are presented in what follows; these are based

on the nine autoregressive coe�cients of a VAR(1) representation and three variances of

the model variables, the chosen descriptors of the dynamics and volatility of the data as

discussed above. Our evaluation is based on the Wald test, and we calculate two kinds

of Wald statistic, namely, a `directed Wald' that accounts either only for dynamics (the

VAR coe�cients) or only for the volatility (the variances) of the data, and a `full Wald'

where these features are jointly evaluated. In both cases we report the Wald statistic

as a percentile, i.e. the percentage point where the data value comes in the bootstrap

distribution. The models' performance in each subsample follows.

6.1.1 Model performance in the Great Moderation:

We start with the post-1982 period, the Great Moderation subsample, as this has been

the main focus of econometric work to date. Table 3 summarises the performance of

model one with the Optimal Timeless Rule20.

Panel A shows while two out of the nine VAR(1) coe�cients (i.e., the interest rate's

response to the lagged output gap and the output gap's response to its own lagged value)

estimated with the actual data are found to lie beyond their respective model-implied

20The VAR(1) notation is as follows:

24 ~{t
xt
�t

35 =
24 �11 �12 �13
�21 �22 �23
�31 �32 �33

3524 ~{t�1
xt�1
�t�1

35+�t, with the variable
order being interest rate (1), output gap (2) and in
ation (3).
Although the Wald statistics provide us with our tests, we also report for this �rst case only the

calculated 95% bounds for each individual estimate of our descriptors. These show where the data
estimate for each descriptor lies within the model distribution for that descriptor alone. These may
give clues about sources of model misspeci�cation. These comparisons are similar to the widespread
comparison of moments (including cross-moments) in the data with those simulated from the model.
However, these comparisons do not take account of these moments' joint distribution which is relevant
to whether the data is compatible with the model on all these features simultaneously. Unfortunately
the individual data moment comparisons taken as a group are not a reliable guide to whether the data
moments will lie inside the model's joint distribution for them|see Le, Minford and Wickens (2010).
For this the Wald must be used.
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Table 3: Performance of the Optimal Timeless Rule Model in the Great Moderation

Panel A: Directed Wald- data dynamics

VAR(1) 95% 95% Values estimated In/Out

coe�cients lower bound upper bound with real data

�11 0.7408 0.9689 0.8950 In

�12 -0.0316 0.0329 0.0395 Out

�13 -0.0709 0.0896 0.0315 In

�21 -0.2618 0.8132 -4.28e-05 In

�22 0.4102 0.7617 0.8243 Out

�23 -0.3954 0.3056 -0.0657 In

�31 -0.3197 0.2122 0.0105 In

�32 0.0050 0.1735 0.0979 In

�33 0.1090 0.5052 0.2353 In

Directed Wald percentile
for dynamics

86.4

Panel B: Directed Wald- data volatilities

Volatilities of 95% 95% Values calculated In/Out

endogenous variables lower bound upper bound with real data

V ar(~{) 0.0042 0.0264 0.0156 In

V ar(x) 0.0686 0.1627 0.1620 In

V ar(�) 0.0095 0.0204 0.0149 In

Directed Wald percentile
for volatilities

89.6

Note: Estimates reported in panel B are magni�ed by 1000 times as their original values.

Panel C: Full Wald statistic

Chosen data features Full Wald percentile

Dynamics+Volatilities 77.1

95% upper bound, the test returns a directed Wald percentile of 86.4. This means at

95% (or even at 90%) con�dence level the real-data-based estimates are easily explained

by their joint distribution generated from model simulations, indicating that the model

has in general captured the dynamic features of the data pretty precisely.

Panel B then examines the model's capacity to explain the data's volatility. It shows

the observed data variances not only lie individually within the 95% bounds but are also

jointly explained by the model at the 95% level (indeed, also marginally at 90%), since

the directed Wald is 89.6. Thus compared to the data the Timeless Rule model is also
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correctly sized.

The model's overall �t to data is then evaluated in panel C, where the full Wald

jointly considers the two aspects just assessed. The full Wald percentile reported is 77.1.

Such a low Wald percentile indicates that what we observe in reality is fairly close to the

model's implication on average; thus even at the 90% con�dence level the data fail to

reject the model jointly on both dynamics and size. The conclusion is that the US facts

do not reject the Timeless Rule model as the data-generating process post-1982.

This is not the case, however, when Taylor Rules of the standard sort are substituted

for it. Table 4 suggests when the original Taylor Rule (1) or the interest-rate-smoothed

Taylor Rule (2) is combined with the same IS-Phillips curve framework on these commonly

accepted calibrations, from all perspectives the post-1982 data strongly reject the model

at 99%.

Table 4: Wald Statistics for Typical Taylor Rule Models in the Great Moderation

Baseline model with

Tests for chosen data features original Taylor Rule

(model two)

`IRS' Taylor Rule

(model three)

Directed Wald for dynamics 100 99.8

Directed Wald for volatilities 99.2 99

Full Wald for dyn. & vol. 100 99.7

6.1.2 Model performance in the Great Acceleration:

We now proceed to evaluate how the models behave before 1982, the Great Acceleration

period. Table 5 reveals the performance of the Optimal Timeless Rule model.

We can see that although the model does not behave as well here as it did in the

Moderation subsample in explaining the data dynamics, with a directed Wald of 98.2 the

directed Wald for data volatilities at 89.6 lies within the 90% con�dence bound. Overall,

the full Wald percentile of 97.3 falls between the 95% and the 99% con�dence bounds. So
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Table 5: Performance of the Optimal Timeless Rule Model in the Great Acceleration

Tests for chosen data features Wald percentiles

Directed Wald for dynamics 98.2

Directed Wald for volatilities 89.6

Full Wald for dyn. & vol. 97.3

while the model �ts the facts less well than in the case of the Great Moderation, it just

about �ts those of the turbulent Great Acceleration episode if we are willing to reject at

a higher threshold. As we will see next, it also �ts them better than its rival Taylor Rule

models.

Unfortunately we are unable to test the DSGE model with the generally proposed

pre-1982 Taylor Rules because the solution is indeterminate, the model not satisfying the

Taylor Principle. Such models have a sunspot solution and therefore any outcome is pos-

sible and also consistent formally with the theory. The assertion of those supporting such

models is that the solutions, being sunspots, accounted for the volatility of in
ation. Un-

fortunately there is no way of testing such an assertion. Since a sunspot can be anything,

any solution for in
ation that occurred implies such a sunspot|equally of course it might

not be due to a sunspot, rather it could be due to some other unspeci�ed model. There

is no way of telling. To put the matter technically in terms of indirect inference testing

using the bootstrap, we can solve the model for the sunspots that must have occurred

to generate the outcomes; however, the sunspots that occurred cannot be meaningfully

bootstrapped because by de�nition the sunspot variance is in�nite. Values drawn from

an in�nite-variance distribution cannot give a valid estimate of the distribution, as they

will represent it with a �nite-variance distribution. To draw representative random values

we would have to impose an in�nite variance; by implication all possible outcomes would

be embraced by the simulations of the model and hence the model cannot be falsi�ed.

Thus the pre-1982 Taylor Rule DSGE model proposed is not a testable theory of this
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period21.

However, it is open to us to test the model with a pre-1982 Taylor Rule that gives a

determinate solution; we do this by making the Taylor Rule as unresponsive to in
ation

as is consistent with determinacy, implying a long-run in
ation response of just above

unity. Such a rule shows considerably more monetary `weakness' than the rule typically

used for the post-1982 period, as calibrated here with a long-run response of interest rate

to in
ation of 1.5 in (1).

We implement this weak Taylor Rule across a spectrum of combinations of smoothing

coe�cient and short-run response to in
ation, with in all cases the long-run coe�cient

equalling 1.001. The Wald test results are shown in table 6.

What we see here is that with a low smoothing coe�cient the model encompasses the

variance of the data well, in other words picking up the Great Acceleration. However,

when it does so, the data dynamics reject the model very strongly. If one increases the

smoothing coe�cient, the model is rejected less strongly by the data dynamics and also

overall but it is then increasingly at odds with the data variance. In all cases the model

is rejected strongly overall by the data, though least badly with the highest smoothing

coe�cient. Thus the testable model that gets nearest to the position that the shift in US

post-war behaviour was due to the shift in monetary regime (re
ected on Taylor Rule

coe�cients) is rejected most conclusively.

21We could use the approach suggested in Minford and Srinivasan (2011) in which the monetary
authority embraces a terminal condition designed to eliminate imploding (as well as exploding) sunspots.
In this case the model is forced to a determinate solution even when the Taylor Principle does not hold.
However in our sample here we �nd that the model only fails to be rejected with in
ation response
parameters well in excess of unity|see below|while as we see from table 6 being consistently rejected
for parameters that get close to unity. So parameter values below unity, where the Taylor Principle does
not apply, seem unlikely to �t the facts and we have not therefore pursued them here using this terminal
condition approach.
22T-value normalization of the Wald percentiles is calculated based on Wilson and Hilferty (1931)'s

method of transforming chi-squared distribution into the standard normal distribution. The formula

used here is: Z = f[(2Msqu)1=2� (2n)1=2]=[(2Msqu95th)1=2� (2n)1=2]g� 1:645, where Msqu is the square

of the Mahalanobis distance calculated from the Wald statistic equation (6) with the real data, Msqu95th

is its corresponding 95% critical value on the simulated (chi-squared) distribution, n is the degrees of
freedom of the variate, and Z is the normalized t value; it can be derived by employing a square root
and assuming n tends to in�nity when the Wilson and Hilferty (1931)'s transformation is performed.
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Table 6: Wald Percentiles for `Weak' Taylor Rule Models in the Great Acceleration (with
`weak' rule de�ned as having a long-run interest rate response to in
ation equalling 1.001)

Taylor Rule: ~{t = �~{t�1 + 
��t + �t Wald percentiles for chosen features

(Normalized t-values in parenthesis22)

Parameter versions Error dynamics Directed Wald Directed Wald Full Wald

for dynamics for volatilities for dyn. & vol.

� =0; 
�=1.001 �t~AR(1)
100

(39.81)

78.9

(0.22)

100

(40.24)

� =0.3, 
�=0.7007 �t~AR(1)
100

(30.26)

92

(1.08)

100

(28.01)

� =0.5, 
�=0.5005 �t~AR(1)
100

(22.69)

95.9

(1.77)

100

(21.98)

� =0.7, 
�=0.3003 �t~iid
100

(19.26)

98.2

(2.73)

100

(18.24)

� =0.9, 
�=0.1001 �t~iid
100

(9.09)

99

(3.56)

100

(9.03)

6.1.3 Ireland's alternative Taylor Rule representation of Fed policy:

In a recent paper Ireland (2007), unlike the other New Keynesian authors we have cited

above, estimates a model in which there is a non-standard Taylor Rule that is held con-

stant across both post-war episodes. His policy rule always satis�es the Taylor Principle

because unusually it is the change in the interest rate that is set in response to in
ation

and the output gap so that the long-run response to in
ation is in�nite. He distinguishes

the policy actions of the Fed between the two subperiods not by any change in the rule's

coe�cients but by a time-varying in
ation target which he treats under the assumptions

of `opportunism' largely as a function of the shocks to the economy. Ireland's model

implies that the cause of the Great Moderation is the fall in shock variances. However,

since these also cause a fall in the variance of the in
ation target, which in turn lowers

the variance of in
ation, part of this fall in shock variance can be attributed to monetary

policy.
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Table 7: Performance of the Model with the Unrestricted Ireland Rule

Ireland's rule in unrestricted form: ~{t = ~{t�1 + 
��t + 
g(gt � g) + �t
& equivalent transformation23: ~{t = ~{t�1 + 
��t + 
g(xt � xt�1) + �t

Tests for chosen data features pre-1982 sample post-1982 sample

Directed Wald

for dynamics

98.9 79

Directed Wald

for volatilities

78.8 89.4

Full Wald

for dynamics & volatilities
98.1 71.1

Note: 1. Ireland (2007)'s ML estimates suggest 
� =0.91; 
g =0.23.
2. All equation errors follow AR(1) process according to the data and model.

It turns out that Ireland's model is hardly distinguishable from our Optimal Timeless

Rule model. His Taylor Rule changes interest rate until the Optimal Timeless Rule is

satis�ed, in e�ect forcing it on the economy. Alternatively we can write his rule as a rule

for in
ation determination (i.e. with in
ation on the left hand side), which reveals that it

is identical to the Timeless Rule's setting of in
ation apart from the term in the change

in interest rate and some slight di�erence in the coe�cient on output gap change24. Since

the Ireland rule is so similar to the Optimal Timeless Rule, it is not surprising that its

empirical performance is also similar. We embedded his rule in the same model and

obtained Wald percentiles for it that are hardly di�erent: 71.1 in the Great Moderation

(against 77.1 for the Timeless Rule model) and 98.1 in the Great Acceleration (against

97.3).

23While Ireland originally speci�ed ~{t = ~{t�1 + 
��t + 
g(gt � g) � 
��
�
t � ���t + 
t, the exercise

here tests its unrestricted form: ~{t = ~{t�1 + 
��t + 
g(gt � g) + �t, where �t = �
���t ����t + 
t. In
particular, this unrestricted Ireland rule is rewritten as ~{t = ~{t�1 + 
��t + 
g(xt � xt�1) + �t so it can
be evaluated within our baseline framework; such an equivalent transformation is derived by writing:
gt � g = ln yt � ln yt�1 � (ln yhptrt � ln yhptrt�1 ) = ln yt � ln y

hptr
t � (ln yt�1 � ln yhptrt�1 ) = xt � xt�1.

24Note the transformed Ireland rule can be rewritten as �t =
1

�
(~{t � ~{t�1) �


g

�
(xt � xt�1) � 1


�
�t

to resemble the Optimal Timeless Rule; its coe�cient on the output gap change according to Ireland's
estimation is 0.25, close to that of 0.17 on the Timeless Rule we used above.
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Ireland's Taylor Rule can in principle be distinguished from the Optimal Timeless Rule

via his restriction on the rule's error. As noted earlier we cannot apply this restriction

within our framework here so that Ireland's Taylor Rule in its unrestricted form here only

di�ers materially from the Optimal Timeless Rule in the interpretation of the error. But

from a welfare viewpoint it makes little di�erence whether the cause of the policy error

is excessive target variation or excessively variable mistakes in policy setting; the former

can be seen as a type of policy mistake. Thus both versions of the rule imply that what

changed in it between the two subperiods was the policy error.

It might be argued that the success of Ireland's rule reveals that a type of Taylor Rule

does after all �t the data well. This would be true. But in the context of the debate over

the cause of the Great Moderation it is to be �rmly distinguished from what we call the

`standard Taylor Rule' under which shifts in the rule's parameters are regarded as the

cause. In Ireland's rule there are no such shifts and as we have seen the behaviour under

it is essentially identical to that under the Optimal Timeless Rule setting.

6.2 Simulated Annealing and model tests with �nal parameter

selection

The above results based on calibration thus suggest that the Optimal Timeless Rule,

when embedded in our IS-Phillips curves model, outperforms testable Taylor Rules of

the standard sort in representing the Fed's monetary behaviour since 1972. In both

the Great Acceleration and the Great Moderation the only model version that fails to be

strongly rejected is the one in which the optimal timeless policy was e�ectively operating.

However, �xing model parameters in such a way is a excessively strong assumption in

terms of testing and comparing DSGE models. This is because the numerical values of a

model's parameters could in principle be calibrated anywhere within a range permitted

by the model's theoretical structure, so that a model rejected with one set of assumed

parameters may not be rejected with another. Going back to what we have just tested,
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this could mean that the Taylor Rule models were rejected not because the policy speci�ed

was incorrect but because the calibrated IS and Phillips curves had failed to re
ect the

true structure of the economy. Thus, to compare the Timeless Rule model and Taylor

Rule models thoroughly one cannot assume the models' parameters are �xed always at

particular values; rather one is compelled to search over the full range of potential values

the models can take and test if these models, with the best set of parameters from their

viewpoints, can be accepted by the data.

Accordingly we now allow the model parameters to be altered to achieve for each

model the lowest Wald possible, subject to the theoretical ranges permitted by the model

theory25. This estimation method is that of Indirect Inference; we use the Simulated

Annealing (SA) algorithm for the parameter search. In this process we allow each model to

be estimated with di�erent parameters for each episode. Thus we are permitting changes

between the episodes in both structural parameters and the parameters of monetary

policy; in so doing we are investigating whether either structural or policy rule changes

were occurring and so contributing to the Great Moderation26.

6.2.1 The estimated Optimal Timeless rule model:

The SA estimates of the timeless rule model in both the post-war subperiods are reported

in table 8. We can see that this estimated model is not very di�erent from its calibrated

version in the Great Moderation. However for the Great Acceleration period the esti-

mation now suggests substantially lower elasticities of intertemporal consumption (the

inverse of �) and labour supply (the inverse of �), and a much higher Calvo contract non-

adjusting probability (!); with lower 
 the latter implies a much 
atter Phillips curve.

25We �x the time discount factor � and the steady-state consumption-output ratio C
Y as calibrated in

table 2; other parameters are allowed to vary within �50% of the calibrated values|which are set as
initial values here|unless stated otherwise.
26It could be argued that deep parameters such as the elasticity of intertemporal substitution and

Calvo price-change probabilities should remain �xed across the two periods. However, with such radically
di�erent environments these parameters could have di�ered; for example Le et al (2011) �nd evidence
that the degree of nominal rigidity varied across periods and interpret this as a response to changing
variability. Here therefore we allow the data to determine the extent of change.
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The estimation also suggests the Fed had a low relative weight on output variations (�)

pre-1982 but that high nominal rigidity forced it to reduce in
ation more strongly in

response to output growth (due to higher �=
). The shocks' persistence is not much

altered in either period from that in the calibrated model.

Table 8: SA Estimates of the Optimal Timeless Rule Model

Parameters De�nitions Calibrations SA estimates

Pre-1982 Post-1982

� time discount factor 0.99 �xed �xed

� inverse of intertemporal consumption elasticity 2 1.01 1.46

� inverse of labour elasticity 3 2.04 3.23

! Calvo contract price non-adjusting probability 0.53 0.79 0.54
G
Y

steady-state gov. expenditure to output ratio 0.23 �xed �xed
Y
C

steady-state output to consumption ratio 1
0:77

�xed �xed

� � = (1�!)(1�!�)
!

0.42 0.06 0.40


 
 = �(� + � Y
C
) 2.36 0.19 2.06

� relative weight of loss assigned to output 0.39 0.20 0.58

variations against in
ation
�


�1
�

optimal trade-o� rate on the Timeless Rule 1
6

1
0:95

1
3:6

� price elasticity of demand 6 0.95 3.6

�v demand shock persistence pre-break 0.88 0.92 |

�uw supply shock persistence pre-break 0.91 0.86 |

�� policy shock persistence pre-break 0.59 0.14 |

�v demand shock persistence post-break 0.93 | 0.94

�uw supply shock persistence post-break 0.80 | 0.79

�� policy shock persistence post-break 0.38 | 0.42

Table 9 shows that estimation brings the model substantially closer to the data. This

is particularly so for the pre-1982 period where the calibrated model was rejected at 95%

con�dence; here the necessary parameter changes were substantial to get the model to

�t, as we have just seen. The Full Wald percentile in both episodes is now around 70%,

so that the model easily fails to be rejected at 95%.

6.2.2 Taylor Rule model under estimation:

In estimating the Taylor Rule model alternative we substitute the smoothed version

(equation (2) in section 3 above) for the Optimal Timeless Rule in the identical IS-Phillips
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Table 9: Performance of the Timeless Rule Model under Calibration and Estimation

Tests for Pre-1982 under Post-1982 under

chosen features calibration estimation calibration estimation

Directed Wald
for dynamics

98.2 81.9 86.4 77.7

Directed Wald
for volatilities

89.6 32.5 89.6 90.3

Full Wald
for dynamics & volatilities

97.3 71.7 77.1 68.6

curves framework. This speci�cation covers all Taylor Rule versions we considered in the

earlier evaluation, as when � is zero it reduces to the original Taylor Rule while when 
�

is just above unity it turns to be a weak Taylor Rule variant.

As with the Optimal Timeless Rule model the estimation process achieves a substan-

tial improvement in the closeness of the Taylor Rule model to the data in both episodes.

Pre-1982 the best weak Taylor Rule version was strongly rejected; after estimation it is

still rejected at the 95% level but not at the 99% level. Most importantly, the estimates

include a much stronger Taylor Rule response to in
ation than the calibrated version for

this early episode; hence the evidence supports the view that the Taylor Rule principle

was easily satis�ed in this period. The response is essentially the same as that found

in the later period by this estimation process: the weaker the response, the further the

model is from �tting the data. Table 10 shows the details. The elasticity of intertemporal

consumption and that of labour are found to be fairly similar to those estimated with

the Optimal Timeless Rule, as is the Calvo rigidity parameter which is again higher in

the �rst episode. For the model to get close to the data there needs to be interest rate

smoothing in both episodes.

The resulting Wald statistics in table 11 thus show that the Taylor Rule model is now

close to passing at 95% pre-1982 and passes comfortably post-1982. However relative to

the Timeless Rule it is substantially further from the data, as summarized in table 12
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Table 10: SA Estimates of the Taylor rule Model

Parameters De�nitions Calibrations SA estimates

Pre-1982 Post-1982

� time discount factor 0.99 �xed �xed

� inverse of intertemporal consumption elasticity 2 1.15 1.16

� inverse of labour elasticity 3 2.66 3.85

! Calvo contract price non-adjusting probability 0.53 0.79 0.61
G
Y

steady-state gov. expenditure to output ratio 0.23 �xed �xed
Y
C

steady-state output to consumption ratio 1
0:77

�xed �xed

� � = (1�!)(1�!�)
!

0.42 0.06 0.25


 
 = �(� + � Y
C
) 2.36 0.23 1.33


� interest-rate response to in
ation 1.44 2.03 2.06


0x interest-rate response to output gap 0.14 0.001 0.06

� interest rate smoothness 0.76 0.42 0.89

�v demand shock persistence pre-break n/a 0.91 |

�uw supply shock persistence pre-break n/a 0.87 |

�� policy shock persistence pre-break n/a 0.58 |

�v demand shock persistence post-break 0.93 | 0.95

�uw supply shock persistence post-break 0.80 | 0.77

�� policy shock persistence post-break 0.39 | 0.40

where the p-values are also reported. This suggests that, although it is possible to �t the

post-1982 period with a Taylor Rule model, policy is better understood in terms of the

Timeless Rule model.

6.2.3 The identi�cation problem revisited in the light of our results

Having established that the Optimal Timeless Rule model gives the best representation

of the key features of the US post-war data, we can now ask whether this model can also

account for the single-equation �ndings for the Taylor Rule.

The above suggests that the widespread success reported in single-equation Taylor

Rule regressions on US data could simply represent some sort of statistical relation emerg-

ing from the model with the Optimal Timeless Rule. To examine this possibility, we treat

the Optimal Timeless Rule model as the true model and ask whether the existence of

empirical Taylor Rules would be consistent with that. Technically this is again a process

27The results for the best testable weak Taylor Rule version as in table 6.
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Table 11: Performance of Taylor Rule Model under Calibration and Estimation

Tests for Pre-1982 under Post-1982 under

chosen features calibration27 estimation calibration estimation

Directed Wald
for dynamics

100 98 99.8 89.6

Directed Wald
for volatilities

99 40.6 99 94.9

Full Wald
for dynamics & volatilities

100 96.1 99.7 87.6

Table 12: Summary of Model Performance with Estimated Parameters

Tests for Pre-1982 with Post-1982 with

chosen features Timeless rule Taylor Rule Timeless rule Taylor Rule

Directed Wald for dynamics
(and p-value)

81.9

(0.26)

98

(0.01)

77.7

(0.30)

89.6

(0.12)

Directed Wald for volatilities
(and p-value)

32.5

(0.76)

40.6

(0.75)

90.3

(0.13)

94.9

(0.05)

Full Wald for dyn. & vol.
(and p-value)

71.7

(0.38)

96.1

(0.03)

68.6

(0.41)

87.6

(0.15)

of model evaluation basing on indirect inference; but instead of a VAR here Taylor Rule

regression coe�cients are used as the data descriptors for the model to �t.

Table 13 shows the OLS estimates of several popular Taylor Rule variants when these

are �tted, respectively, to data for both the post-war episodes. To compare the regression

results here with those commonly found in the US Taylor Rule literature where un�ltered

interest rate data is normally used we must emphasize that here for the post-82 subsample

a linear trend is taken out of the interest rate series so that stationarity is ensured. These

Taylor Rules, when estimated on the stationary data we have used here, generally fail to

satisfy the Taylor Principle, in much the same way as in pre-1982. Thus econometrically

the standard estimates of the long-run Taylor Rule response to in
ation post-1982 are
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Table 13: `Taylor Rules' in the Data (with OLS): consistency with the estimated Timeless
Rule Model

Panel A: `Taylor Rules' in the Great Acceleration

`Taylor Rule' versions 
� 
x � Adj.R2 Wald percentiles

~{t= 
��t+
xxt+�~{t�1+�t 0.09 0.06 0.90 0.84 31.9

~{t= 
��t+
xxt+�t
�t= ���t�1+"t

0.30 0.07 0.92 0.85 69.1

~{t= 
��t�1+
xxt�1+�t 0.60 -0.01 n/a 0.24 36.9

~{t= 
��t�1+
xxt�1+�~{t�1+�t -0.11 0.06 0.82 0.83 68.5

Panel B: `Taylor Rules' in the Great Moderation

`Taylor Rule' versions 
� 
x � Adj.R2 Wald percentiles

~{t= 
��t+
xxt+�~{t�1+�t 0.08 0.05 0.89 0.92 11.5

~{t= 
��t+
xxt+�t
�t= ���t�1+"t

0.07 0.06 0.93 0.90 95.6

~{t= 
��t�1+
xxt�1+�t 0.26 0.13 n/a 0.24 17.1

~{t= 
��t�1+
xxt�1+�~{t�1+�t 0.03 0.04 0.89 0.91 89.7

biased by the non-stationarity of the interest rate. There is little statistical di�erence in

the estimates across the two periods. The reported Wald percentiles indicate that these

empirical 'Taylor Rules' are indeed consistent with what the Timeless Rule implies: in

both panels the Taylor Rule regressions estimated are all within or on the 95% con�dence

bounds implied by the estimated Timeless Model.

This illustrates the identi�cation problem with which we began this paper: a Taylor

Rule regression having a good �t to the data may well be generated by a model where

there is no structural Taylor Rule at all. Here we suggest that the Timeless Rule model

we have found gets closest to �tting US data in each episode is also generating these

Taylor Rule single-equation relationships.
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6.2.4 The `interest rate smoothing' illusion: a further implication

Another issue on which the above sheds light is the phenomenon of `interest rate smooth-

ing'. Clarida, Gali and Gertler (1999) noted that the Optimal Timeless Rule required

nominal interest rate to be adjusted in a once-and-for-all manner, but that empirical

evidence from Taylor Rule regressions usually displayed clear interest rate smoothing.

This they argued created a `puzzle': that sluggish interest rate movements could not be

justi�ed as optimal.

While various authors have tried to explain such a discrepancy either from an economic

(e.g., Rotemberg and Woodford, 1997, 1998; Woodford, 1999, 2003a, b) or from an

econometric (e.g., Sack and Wieland, 2000; Rudebusch, 2002) viewpoint, the Taylor Rule

regressions above show that `smoothing' is a regression result that is generated by the

Optimal Timeless Rule model, in which there is no smoothing present. The source of

inertia in the model is the persistence in the shocks themselves.

7 What Caused the Great Moderation?

We have found that the Optimal Timeless Rule is the best guide to US monetary policy

since the Bretton Woods; we have also obtained estimates of the model under a Taylor

Rule, which though �tting the data considerably less well nevertheless fail to be rejected

in absolute terms by the data. These models enable us �nally to examine the causes of the

Great Moderation. We have made a number of empirical �ndings about changes in the

structural parameters, the parameters of the monetary rule trade-o�, and the behaviour

of the shocks. We now examine the contribution of each of these changes to the Great

Moderation.

Table 14 shows that under our preferred model with the Optimal Timeless Rule the

Great Moderation is almost entirely the result of reduced volatility in the shocks. There

is a small contribution to lowered in
ation variance from the policy parameters; but oth-

erwise the contribution from both structural and policy parameters is slightly to increase
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macro variance in the later period. If one then examines which shocks' volatility fell, the

table (15) following shows that it did so for all three of our shocks, with a fall in standard

deviation of 60-70%.

If we look at the Taylor Rule model the story is essentially the same. As we saw above

the in
ation response of the Taylor Rule hardly changes across the two periods. The main

change is a doubling of the smoothing parameter which accordingly contributes about a

third of the reduction in interest rate variance. Otherwise structural and policy parameter

changes contribute negligibly to the variance reduction. Thus again the reduction in shock

variability dominates as the cause of the Great Moderation. Here too all the shocks have

large falls in standard deviation; the largest at 86% is the monetary shock (tables 16 and

17).

Table 14: Accountability of Factor Variations for Reduced Data Volatility
(Timeless Rule model)

Reduced data volatility
caused by

Interest rate Output gap In
ation

Reduced shocks 115.3% 106.9% 90%

Chg in policy paras -4.3% -2.5% 12.7%

Chg in structural para -11% -4.5% -2.7%

Thus what we �nd is that the Great Moderation is essentially a story of `good shocks'

as proposed in the time-series studies we cited earlier. Also we have found no evidence of

the weak monetary regime regarded by an earlier DSGE model literature as responsible for

the Great Acceleration and in the same vein no evidence of much change in the monetary

regime during the Great Moderation. However, what we do �nd about monetary policy

is that the `trembling hand' trembled enormously more in the earlier period than in the

later; thus monetary error is a large source of the Great Acceleration and its reduction

an important reason for the Moderation. For those that embrace a Taylor Rule model in

spite of its poorer data �t the story is the same|in this case monetary `judgement' was
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Table 15: Reduced Size of Shocks
(Timeless Rule model)

Standard deviation of Pre-1982 Post-1982 Reduction

Demand shock 0.0625

(0.0050)

0.02

(0.0012)

60%

Supply shock 0.4767
(0.0667)

0.1419
(0.0298)

70%

Policy shock 0.0148
(0.0127)

0.0055
(0.0032)

63%

Note: 1. Values in parentheses are sample estimates of standard deviation of innovations.

2. The standard deviation of the shocks is calculated using sd(err.)=sd(innov)/(1-rho);

rho is the sample estimate of shock persistence reported in table 8.

Table 16: Accountability of Factor Variations for Reduced Data Volatility (II)
(Taylor Rule model)

Reduced data volatility
caused by

Interest rate Output gap In
ation

Reduced shocks 66.7% 99% 99.9%

Chg in policy paras 34.2% 1.8% 3.9%

Chg in structural para -0.9% -0.8% -3.8%

substantially more erratic in its e�ect in the earlier period.

7.1 A comparison with other recent DSGE models

As we noted earlier, Ireland (2007), Smets and Wouters (2007), Le et al. (2011) and

Fernandez-Villaverde et al. (2009, 2010) have also estimated models of these periods

and we can compare their results in a general way with ours. Other than Ireland, these

models follow the model of Christiano et al. (2005). Smets and Wouters use this model

with some small modi�cations; they estimate it by Bayesian methods. Le et al. add a

competitive sector and reestimate the model using Indirect Inference, since they found
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Table 17: Reduced Size of Shocks (II)
(Taylor Rule model)

Standard deviation of Pre-1982 Post-1982 Reduction

Demand shock 0.0533

(0.0050)

0.0280
(0.0012)

48%

Supply shock 0.5777
(0.0751)

0.1474
(0.0339)

75%

Policy shock 0.0145
(0.0061)

0.0020
(0.0012)

86%

Note: 1. Values in parentheses are sample estimates of standard deviation of innovations.

2. The standard deviation of the shocks is calculated using sd(err.)=sd(innov)/(1-rho);

rho is the sample estimate of shock persistence reported in table 10.

the model was rejected quite badly overall by the data with the previously estimated ones.

When reestimated in this way they found that the model was accepted, at 99% for the

full post-war period and at 95% for the Great Moderation period, for the key subset of

variables, output, in
ation and interest rate when represented by a VAR(1). Fernandez-

Villaverde et al. add moving volatility in the errors and drift in the parameters of the

Taylor Rule; like Smets and Wouters they estimate the model by Bayesian methods.

What is striking about all these studies is that none of them �nd evidence of much dif-

ference in monetary regime between the two periods|interestingly, Fernandez-Villaverde

et al. �nd variations of `monetary toughness' within both periods, while not �nding much

di�erence on average across the two. Both Smets and Wouters and Le et al. in their

reworking of them �nd little change in the in
ation response coe�cient of the Taylor

Rule. In this these models echo Ireland, even though their Taylor Rule representations

di�er from his. Thus these studies agree with ours in �nding that it is the shocks that

account for the di�erence in volatility.

Nevertheless, all also agree with us that the scale of the monetary shock has declined

between the two periods. Thus a pattern is visible in ours, Ireland's and these other
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studies: while the monetary regime did not apparently change much, the scale of the

monetary `error' fell between the two periods. Ireland interprets this, based on his con-

nection of it with other shocks, as `opportunism', where the Fed was allowing the in
ation

target to drift with events, pushing it downwards when events allowed this to be done

with less perceived cost. Other studies, like ours, do not model it other than as a pure

error.

An important implication of the lack of regime change is that there is no evidence

of indeterminacy in the earlier period according to any of these studies including ours.

Thus all these studies that are based on full information system estimates cannot �nd

the evidence that appears to come out of single-equation studies that the earlier period's

Taylor Rule responded weakly to in
ation. As we have seen this is consistent with the

lack of identi�cation of the Taylor Rule as a single equation; indeed as we have seen the

models that �t the data overall could easily have `generated' single-equation Taylor Rules

of this `weak' type.

8 Conclusion

In this study we have used the method of Indirect Inference to estimate and test a

three-equation DSGE model against the data for the Great Acceleration and the Great

Moderation. The method has the advantage over alternatives that it tests the model

overall in its ability to �t the data's behaviour. Nevertheless, in spite of di�erences

in method, our results echo those of other recent work where DSGE models of greater

complexity than ours have been estimated by a variety of methods. We have found that

the monetary regimes being followed in the two periods are rather similar. We have also

found that, while these regimes can be represented by Taylor Rules of the usual sort,

they more closely �t the facts if represented by an Optimal Timeless Rule, essentially the

same as the Taylor Rule form suggested by Ireland, which he also �nds �ts the facts best.

A corollary of this �nding is that there is no evidence of indeterminacy due to the
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`weakness' of the monetary regime during the Great Acceleration. Previous �ndings to

this e�ect seem to have arisen from single-equation estimates that su�ered from a lack of

identi�cation and are quite consistent with the DSGE models estimated here.

By implication we also �nd, in common with these other studies using full DSGE

models, that the Great Moderation was mainly the result of `good shocks'|a fall in

the variance of the errors in the model. This reinforces the results of a large number

of time-series studies using Structural VARs, but it does so through �nding structural

DSGE parameters that can replicate these VARs and so allows them to be interpreted

structurally.

Nevertheless, the falling variance of shocks includes that of monetary shocks. Within

this fall lies the remedying of a failure of monetary policy. Whether this is due to

`opportunistic' pursuit of varying in
ation targets as in Ireland, to sheer ine�ciency, or

to some other reason, our work cannot say; this remains a fruitful avenue for future work.

Clearly and perhaps not surprisingly given the size and novelty of the shocks bombarding

the 1970s economy, monetary policy was far from perfect in this early period. But at

least we and other recent DSGE modellers are clear that it was not just plain stupid.
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Appendix

A Qu-Perron Test for Structural Break

Table A.1: Qu-Perron Test Result

Estimated 95% con�dence interval supLR test statistic 5% critical value

break date lower upper for �xed number of breaks

1984Q3 1980Q1 1984Q4 164.84 31.85

Note: a. Time series model: VAR(1) (without constant). b. H0: no structural break; H1: one structural break.

c. Observation sample (adjusted): 1972Q2|2007Q4.
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B Plots of Subepisode Time Series

Figure A.1: Demeaned, Detrended Time Series

Panel A: Pre-1982 sample (1972Q2-1982Q3)

~{t xt �t

Panel B: Post-1982 sample (1982Q3-2007Q4)

~{t xt �t

Note: ~{t � deviation of quarterly Fed rate from steady-state value; xt � log di�erence of

quarterly real GDP from HP trend; �t � quarterly CPI in
ation
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C Unit Root Test for Stationarity

Table A.2: Unit Root Test Result

Panel A: pre-break sample (1972Q3|1982Q3)

Time series 5% critical value 10% critical value ADF test statistics p-values*

~{t -1.95 -1.61 -1.71 0.0818

xt -1.95 -1.61 -1.67 0.0901

�t -1.95 -1.61 -2.86 0.0053

Panel B: post-break sample (1982Q4|2007Q4)

Time series 5% critical value 10% critical value ADF test statistics p-values

~{t -1.95 -1.61 -2.91 0.0040

xt -1.95 -1.61 -4.42 0.0000

�t -1.95 -1.61 -3.34 0.0010

Note: `*' denotes the Mackinnon (1996) one-sided p-values.
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