
Kleinow, Torsten; Lehmann, Heiko

Working Paper

Client/server based statistical computing

SFB 373 Discussion Paper, No. 2002,49

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Kleinow, Torsten; Lehmann, Heiko (2002) : Client/server based statistical
computing, SFB 373 Discussion Paper, No. 2002,49, Humboldt University of Berlin, Interdisciplinary
Research Project 373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10049074

This Version is available at:
https://hdl.handle.net/10419/65367

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10049074%0A
https://hdl.handle.net/10419/65367
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Client/Server based Statistical Computing

Torsten Kleinow1, and Heiko Lehmann1

1 Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche
Fakultät, Institut für Statistik und Ökonometrie, Spandauer
Strasse 1, 10178 Berlin, Germany

Summary

We propose a client server architecture for statistical computing. The main
feature of our approach is the possibility to connect various client programs
via a TCP/IP connection to a powerful statistical engine. This offers the
opportunity to include the statistical engine into a number of software pack-
ages and to empower the user of these packages to access a modern statistical
programming environment. It also allows for the development of specialized
client programs for particular tasks. TCP/IP permits a client/server con-
nection with the client and server running on different hosts (remote host)
as well as running both applications on the same computer (local host). To
have a large flexibility we suggest adding a middleware program managing
the communication between Server and Client. This avoids the need to
implement TCP/IP communication methods on the server side. The paper
provides an overview of the desired environment and illustrates the general
structure by the implementation of the XploRe Quantlet Client and XploRe
Quantlet Server.

Keywords: Client/server, Java, Statistical computing, XploRe



2

1 Introduction

An enormous number of statistical methods have been developed during
the last decades, e.g. nonparametric methods, bootstrapping time series,
wavelets, estimation of diffusion coefficients. To implement these new meth-
ods the method developer usually uses a programming environment he is
familiar with. Thus, such methods are only available for a certain software
package, but not for widely used standard software packages like MS Excel.
To apply these methods to empirical analyses a potential user may be facing
a number of problems or it may even be impossible for him to use the meth-
ods without rewriting them in a different programming language. Even if one
wants to apply the new method to simulated data in order to understand the
methodology he is confronted with the same drawbacks. A similar problem
occurs in teaching statistics. Since students usually do not have the same
statistical software packages as their teacher, illustrating examples have to
be executable with standard tools.

In general, two kinds of statisticians are involved in the distribution process of
newly implemented methods, the provider and the user. The aim of our work
is to close the gap between them. To merge their interests we introduce a
statistical middleware, a software environment that provides the opportunity
to connect user and provider with reasonable effort. For this reason such an
environment should have the following features:

1. a sophisticated statistical software including a high level programming
language, a developing environment to implement and test methods
and a large set of numerical methods

2. distribution techniques for new methods, i.e. a mechanism that makes
the new method available to many users in a short period of time avoid-
ing any extra effort

3. an interface for the user, that can be integrated in standard software
packages in an easy way

4. documentation tools

A lot of statistical programming environments provide features 1 and 4, e.g.
Gauss, XploRe.

If we formulate the second feature for data instead of methods, database
servers are supporting it. Data stored in the database are immediately avail-
able to all clients of the database server without any distribution effort. This
feature is based on the client/server architecture of database applications.
We propose to apply the same technology to statistical methods. This leads
us to a client/server architecture, where the new methods are stored in a



3

methodbase on the server. In addition we propose to extend the server by
the ability to execute the methods, which shifts the computational burden
from the client side to a powerful server. Both aspects guide us to a com-
bination of a methodbase and a powerful statistical engine and to use this
combination as a statistical computing server.

The user interface is the client part of the client/server architecture. To offer
a method to a large community of users Java applets, which allow for inte-
gration into web browsers, can be used. They are platform independent and
modern browsers already support them without the need for installing addi-
tional software. It is the flexibility of Java that makes it useful for teaching
statistics. A lot of Java applets are already available to illustrate statistical
content. But most of these applets are primarily developed for particular
tasks, e.g. visualization. To extend their features new Java programs have to
be implemented. To combine the advantages of Java with the client/server
concept we propose to implement clients in Java. Our Java client supports
interactive teaching of statistics as illustrated by Rönz (2001).

Besides the client described in this paper the client/server technology of
XploRe was used in the GraphFitI software developed at Ludwig-Maximilians-
Universität München. GraphFitI (http://www.stat.uni-muenchen.de/) is
a Java program that provides model selection methods in graphical chain
models. It uses the XploRe Quantlet Server for statistical computation.

n addition to Java our general concept allows the implementation of other
clients that integrate the methods stored at the server into standard software.
An example of a non-Java client is the ReX project described by Aydinli et
al. (2001) that integrates the statistical engine into MS Excel.

To summarize our approach, the fundamental concept of client/server com-
puting is the separation of a large piece of software into its constituent parts.
It thus is creating the opportunity for easier development – for our pur-
poses to integrate new statistical methods – and better maintainability, to
have clients and servers running on the appropriate hardware and software
platforms for their functions. The client/server architecture is intended to
improve flexibility, interoperability, usability and scalability as compared to
common software packages.

2 XploRe Quantlet Client/Server Model

The general XploRe Quantlet Client/Server (XQC/XQS) architecture is based
on a common three level client/server model as shown in Figure 1. It consists
of the main components server, middleware and client (Kleinow & Thomas
2000, Härdle et al. 2001).



4

A server is offering services to one or more client(s). The server of the
XQC/XQS architecture consists of the XploRe Quantlet Server (XQS) rep-
resenting the powerful statistical engine. For server side communication pur-
poses the middleware MD*Serv is attached to the XQS. Both components
are described below.

The server offers access to a data- and methodbase, which contains a va-
riety of methods and data. This easy extendible database ensures the pos-
sibility to add newly developed statistical methods and to use them via the
client without any changes on the client side.

XploRe Quantlet Client

CLIENT 1

MD*Crypt Package

Internet/Intranet via TCP/IP

MD*Serv

XploRe Quantlet Server

SERVER

XploRe Quantlet Client

CLIENT 2

MD*Crypt Package

Internet/Intranet via TCP/IP

XploRe Quantlet Server

Methods
& Data

Methods
& Data

Methods
& Data

Figure 1: XploRe Quantlet Client/Server architecture

The client is the part of the architecture requesting a service. Using the
client the user is able to access the statistical methods, data and computing
power offered by the server. The XploRe Quantlet Client (XQC) responsible
for presenting the statistical results represents the client of the XQC/XQS
architecture. For client side communication purposes the MD*Crypt package
is attached to the client. This package implements the MD*Crypt protocol
which is used as the basis for communication between XQC and XQS. All
components are described in the following sections.

2.1 XploRe Quantlet Server

The heart of the client/server architecture is the XploRe Quantlet Server. It
represents the back end of the system. The XQS is a powerful computing



5

engine written in C++ that provides a sophisticated statistical programming
language. It is based on the statistical computing environment XploRe, which
is available for Windows workstations as well as for UNIX platforms (Härdle
et al. 1999). Because the XQS is written in native code it enables a fast
computation on both platforms. Running on a remote computer the XQS
can offer a magnitude of computer power, which many users would not be
able to access in other ways. Having access to the method- and database the
XQS and the method- and database respectively is easily extendible by new
statistical methods via XploRe programs (Quantlets) as well as native code
methods, e.g. dll and so. The Communication with MD*Serv is realized via
standard I/O streams - the XQS reads from the standard input and writes
to the standard output.

2.2 Middleware MD*Serv

MD*Serv works as the “/” (slash) in the XQC/XQS architecture. Being the
middleware it provides the communication between the XQS and possible
clients, offering the services of the XQS to the clients. MD*Serv is imple-
mented in Java and relies on the MD*Crypt protocol which is necessary for
the user to access the network services. This protocol dictates the manner in
which the client requests services from the server and how the server replies
to that requests.

Middleware

ServerSocket
accept()

ServerThread

RequestHandler

ServerToClientThreadClientToServerThread

ClientHandler

Starting XQS

Figure 2: MD*Serv structure

Due to the design of the client/server model XQS and MD*Serv can be run
as part of a wide area network (WAN) or/and a local area network (LAN) –



6

remote host – as well as on the same computer as the client - local host.

Figure 2 visualizes the MD*Serv structure. Right after MD*Serv has been
started it binds a socket to a specific port stated in the configuration file on
the server. MD*Serv is listening to the socket for client requests. If a client
knows the host name of the machine on which the server is running and the
port number to which the server is connected it tries to rendezvous with
the server. MD*Serv will start a new ServerThread to handle the request.
MD*Serv works as a parallel application and is ready for another client re-
quest. After successfully identifying the client via the arranged protocol a
new XQS process is started. This process works exclusively for the request-
ing client. A ClientToServerThread transmits data coming from the client via
TCP/IP to the XQS using its standard input stream. The other way around,
a ServerToClientThread transmits data read from the standard output of the
XQS via TCP/IP to the client. The current version of MD*Serv is able to
handle up to 50 clients at the same time.

2.3 MD*Crypt Package

The MD*Crypt package supports the client side communication between
client and server in the XQC/XQS model. It is implemented in a single
Java package to make it available to different clients, e.g. XQC and Graph-
FitI, without double programming effort. Besides the Java package there also
exists a MS Windows dynamic link library (dll) for the use in native Windows
applications like Excel (Aydinli et al. 2001). The MD*Crypt package gets in
and keeps contact to MD*Serv using the MD*Crypt protocol. Via TCP/IP
incoming data are prepared to be available to the client in an easy accessible
way.

XploRe

Client
Quantlet

XQServerThread
XQSObjects

Protocol

ClientSocketXQServer

XQSListener

Figure 3: MD*Crypt structure

The MD*Crypt package being set up in between the XQS respective the
MD*Serv middleware and clients mimics a server to possible front-end clients



7

(see Figure 3). After the acceptance of a connection request by MD*Serv
the MD*Crypt package creates a client side socket that is used for further
communication between both applications and starts an XQServerThread to
handle the connection. The communication to the XQC takes place via a
common listener interface implemented by the client. The exchange of data
is based on the MD*Crypt protocol that is based on TCP/IP. Depending
on the kind of data that arrives a new XQSObject is created and passed
to the client. This XQSObject contains methods to access the content of
the object. Each client class that has implemented the XQServerListener
and is also registered receives the information about the arrived object and
can thus process it. For further details regarding the MD*Crypt package
(Feuerhake 2001).

2.4 XploRe Quantlet Client

The XploRe Quantlet Client (XQC) represents the front end – the graphical
user interface (GUI) of the discussed XQC/XQS architecture. The XQC is
fully programmed in Java2 to make use of the advanced graphical features
(e.g. line thickness, anti aliasing). Using a pure Java solution the XQC
does not depend on a certain computer platform. Running as an application
or a certified applet the XQC can access its own local database containing
statistical methods and data.

The GUI is based on the MS Windows XploRe version to ensure an easy
handling and a familiar look. As shown in Figure 4 the XQC consists of the
following main components.

The Desktop Frame is contains all graphical components. It offers a menu
bar for basic features like connecting and disconnecting to the XploRe Quant-
let Server, program exit, opening editor and data window and online help
access.

The Output/Result Frame displays text output and information trans-
mitted from the server.

The Console offers direct access to the XploRe Quantlet Server. Users can
enter single line XploRe commands. In addition it keeps a history of the last
20 executed commands.

The Editor Frame offers a text area for editing and executing more than
just a single line command. It can be used to work on and execute a complete
XploRe program (Quantlet).

The Data Frame is also programmed as a text area for handling datasets
and uploading the data to the XploRe Server in order to use them within
programs. If run as an application or a certified applet it is possible to open
and save programs and data locally. In addition the copy and paste features



8

Figure 4: Screen shot of the XQC

of the underlying operating system are usable, too.

Display Frames visualize graphical output. Three-dimensional plots can
be rotated for recognizing structures within the data. A print routine allows
for either printing the whole display or just a single plot.

To ensure user interaction within a running program the XQC also contains
dialog frames for functions such as read value and select item based on the
XQS dialog structure.

The technical structure of the XQC is mainly based on the GUI structure
shown in Figure 5. Each of the described components is implemented in its
own Java class. The main class XQClient represents the desktop itself. It
holds and manages the other classes and components respectively. Since a
display can consist of more than one plot, the XQDisplay class manages all
plots.

From the XQC’s point of view the MD*Crypt package behaves like a server.
To send data to the XQS the XQClient uses the XQServer.sendQuantlet
method provided by the MD*Crypt package. XQConsole, XQEditorFrame
and XQDataFrame send their content using the XQServer.sendQuantlet



9

XQOutputFrame

XQConsole

XQDataFrame

XQEditorFrame

XQDisplay

XQClient

XQPlot

XQSListener

XQServer

MD*Crypt

xqc.ini

Figure 5: XQC structure

method via the XQClient. To receive information and data from the XQS
the appropriate classes implement MD*Crypt’s XQSListener. This listener
works just like a common listener in the Java programming language. If any
results from the XQS are available, each of the classes gets notified. The
MD*Crypt package also sends the result as a certain object (e.g. XQSOut-
putObject, XQSGraphicsObject) depending on the information received from
the XQS. Each of the XQC classes handles only the objects intended for this
class.

Figure 6 shows an example of how to work with the XQC. After upload-
ing the dataset (“decathlon.dat”) from the data window a simple Xplore
program is executed. It generates a BoxPlot for the third column of the
dataset by using the Quantlet “grbox” out of the XploRe library “graphic”.
A help system and introduction to the XploRe language is available online
at http://www.i-xplore.de/help/_Xpl_Start.html.

A configuration file allows for customizing the XQC to meet special needs and
thus to manage the appearance and behavior of the XQC. Using the settings
it is possible to easily embed the XQC into multimedia contents. It could
be started with executing a certain Quantlet stated in the configuration file
without displaying console or output frame. In this case the XQC behaves like
a Java applet programmed for a particular task. It could also be started with
just opening a certain Quantlet that can be edited and manually executed.
Because of these attributes and the platform independence the XQC recom-
mends itself for the integration into HTML and PDF contents for visualizing



10

Figure 6: XQC working example

statistical and mathematical coherences (Rönz 2001, Klinke 2001).

3 XQS/XQC Compared to Other Web-based

Statistical Solutions

Searching the Internet for net-based statistical solutions leads to three dif-
ferent approaches:

1. CGI techniques

2. “standalone” Java applets

3. java based distributed computing

Using CGI techniques the user enters data or the location of a data file via
a CGI interface. A statistical program on the server side calculates and
sends back the results to the user. The user will get the results either right
away - shown in the browser window or the result will be sent to the user



11

by e-mail. Examples are given by Inoue et al. (2001), the MMM project
(http://macke.wiwi.hu-berlin.de/mmm/) the Rweb project (http://www.
math.montana.edu/Rweb/). The advantage of the CGI approach is the use
of an architecture that is similar to the client/server architecture. With the
statistical program running on the server side the user can access resources
of a powerful computing system as offered by our XQC/XQS approach. The
disadvantage of the CGI is the lack of interactivity. A CGI program works as
a new individual process against a HTTP request without any communication
taking place between different processes.

Interactivity is an advantage offered by the use of Java applets. Most statis-
tical (standalone) applets available via the World Wide Web have two things
in common – they are completely programmed in Java and integrated in
one single applet. Therefore, the user has to download the whole program
containing the computation algorithm as well as routines for presenting the
results. Examples of such statistical applets are the Internet Statistical Com-
puting Center (http://www.statlets.com) and the WebStat project of the
University of South Carolina (http://www.stat.sc.edu/webstat/). Our
XQC/XQS architecture on the other hand splits the load between the client
and the server. The Java client only has to present the output computed by
the server. Therefore it can be a relatively slim application.

For calculating just a simple histogram of a small dataset the use of a single
Java applet would be an appropriate way. But the more complex a statistical
algorithm gets and the larger the datasets are the more difficult is a pure
Java implementation of these algorithms and the more load lies on the client
computer. Computing a nonparametric time series process that contains
about a thousand observations within a single Java applet is hardly possible.
The computational load of the XQC/XQS model lies on the server side that
can take advantage of a powerful underlying computer architecture. This
speeds up the computational process significantly. Due to the communication
process between client and server which takes place the XQC might take a
little longer for calculating simple statistical problems compared to a pure
Java applet. But with increasing complexity the time saved using the server
power exceeds the time needed for the communication process.

Extending an existing Java applet with a new statistical method implies a
high effort for reprogramming the method. The new method, usually devel-
oped using a statistical software package, would have to be reprogrammed in
Java. Extending the XQC/XQS model just means to add the new method
programmed in XploRe to the server’s or to the client’s methodbase without
any reprogramming effort on the client or server side.

Besides our XQC/XQS project there exist other projects using client/server
approaches for statistical computing via the Internet. One example is the
Jasp project (http://jasp.ism.ac.jp/index-e.html), see Kobayashi et



12

al. (2001). Jasp is a statistical system whose language is based on Pnuts
(http://javacenter.sun.co.jp/pnuts/). Like the XQC/XQS model the
Jasp approach uses the advantages of Java and Java applets respectively to
implement a user interface. The user interface – a mixed user interface con-
sisting of a CUI as well as a GUI – is an advantage of the JASP project
over the current version of the XploRe Quantlet Client. It only offers a CUI,
where knowledge of the programming language XploRe is required to per-
form statistical computing. But the XQC is not only meant to work like a
“conventional” program - the advantage of the XQC is the possibility to cus-
tomize its behavior via a configuration file. This characteristic offers a way
to extend the features of electronically enhanced books (e-books) towards
interactive examples. The Jasp approach allows for distributed computing
on several servers whereas in the XQC/XQS model a client chooses a certain
server that computes the data of this (and possible other) client(s) during
the entire session.

Another example for a java based statistical computing environment is the
Omega project (http://www.omegahat.org/). The aim of this project is to
provide a variety of different modules (GUI, Graphics, CORBA, language,
numerical methods, etc.) that can be combined by the user to meet his par-
ticular needs. Distributed computing is supported by the integration of the
CORBA interface, which provides access to remote servers. Of particular
interest for the Java programmer is the org.omegahat.R.Java package, which
provides several methods to evaluate R code directly in Java and to get back
the results of the evaluation. For an overview of the available features see
Duncan (2002). An integration of this package into the Middleware MD*Serv
can extend our architecture to handle R requests. In addition to the interac-
tion between R and Java, omegahat offers another way to access R resources
via the Web, namely the R-plug-in for Netscape. This plug in allows call-
ing R from JavaScript. Unfortunately it is only available for Unix operating
systems.

Pure web-based client/server approaches suffer from well-known problems of
the Internet - the security of data transferred via the Internet, the stability
and the speed of the network/modem connection that may represent the
bottleneck of the client/server architecture. Encrypting the data could solve
the security problem. To take advantage of the server’s speed a fast and
stable network/modem connection is required for the transport of data and
results. The quite fast technical development in this area should help to solve
this problem in the future.



13

4 Conclusion

Our approach combines the possibilities of a powerful statistical software
environment with the advantages of distributed applications and the oppor-
tunities offered by the Internet. The result is a statistical package usable
via the World Wide Web that behaves like a traditional statistical software
package without the need of installing the whole software package.

The XQC/XQS architecture offers a sophisticated statistical software includ-
ing a high level programming language easily accessible via the Internet, a
distributed computing environment for balancing the load between client and
server and an easy way of distributing new statistical methods using the con-
figuration possibilities of the XQC. Nevertheless it should not be seen as a
substitute for “traditional statistical software packages but as an additional
tool for statistical computing.

Right now the XQC represents itself mainly as a programming environment.
For access to the methodbase the user has to know the name of the needed
method - have to be familiar with the XploRe language. One of our next
planned steps is an extension of the XQC for an easier access of the existing
methods of the server’s methodbase via the XQC GUI.

Further developments will be presented at http://www.i-XploRe.de.

Acknowledgements

Financial Support was received by the Deutsche Forschungsgemeinschaft,
SFB 373 (“Quantification und Simulation Ökonomischer Prozesse”),Humboldt-
Universität zu Berlin.

References

Aydinli, G., Härdle, W., Kleinow, T. & Sofyan, H. (2001), Rex: Modern sta-
tistical tools in office applications, Proceedings of the ISM symposium
“Statistical software in the Internet age”, 101–109, Institute of Statisti-
cal Mathematics, Tokyo.

Feuerhake, J. (2001), MD*CRYPT - the XQS/XQC protocol, http://www.
md-crypt.com.

Härdle, W., Kleinow, T. & Tschernig, R. (2001), Web quantlets for time
series analysis, Annals of the Institute of Statistical Mathematics 53(1),
179–188.



14

Härdle, W., Klinke, S. & Müller, M. (1999), XploRe – Learning Guide, Berlin:
Springer (http://www.xplore-stat.de/).

Inoue, T., Asahi, Y., Yamamoto, Y. & Yadohisa, H. (2001), A prototype of
Data Representation System, Proceedings of the ISM symposium “Statis-
tical software in the Internet age”, 85–90, Institute of Statistical Math-
ematics, Tokyo.

Kleinow, T. & Thomas, M. (2000), Computational resources for extremes,
Measuring Risk in Complex Stochastic Systems (Franke, J., Härdle, W.
& Stahl, G. eds.) number 147 in Lecture Notes in Statistics, New York:
Springer-Verlag.

Klinke, S. (2001), MD*book - a tool for creating interactive documents, Pro-
ceedings of the ISM symposium “Statistical software in the Internet age”,
75–84, Institute of Statistical Mathematics, Tokyo.

Kobayashi, I., Fujiwara, T., Yamamoto, Y. & Nakano, J. (2001), The Lan-
guage and the Extendibility of the Statistical System Jasp, Proceedings
of the ISM symposium “Statistical software in the Internet age”, 65–73,
Institute of Statistical Mathematics, Tokyo.

Lang, D.T. (2002), Calling R from Java, http://www.omegahat.org/
RSJava/RFromJava.pdf.

Rönz, B. (2001), The multimedia-project mm*stat for teaching statistics,
Proceedings of the ISM symposium “Statistical software in the Internet
age”, 27–31, Institute of Statistical Mathematics, Tokyo.


