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Nonparametric Specification Testing for Continuous-Time Models with Application to

Spot Interest Rates

Abstract

We propose two nonparametric transition density-based speciÞcation tests for continuous-time

diffusion models. In contrast to marginal density as used in the literature, transition density can

capture the full dynamics of a diffusion process, and in particular, can distinguish processes with

the same marginal density but different transition densities. To address the concerns of the Þnite

sample performance of nonparametric methods in the literature, we introduce an appropriate

data transformation and correct the boundary bias of kernel estimators. As a result, our tests

are robust to persistent dependence in data and provide reliable inferences for sample sizes often

encountered in empirical Þnance. Simulation studies show that our tests have reasonable size and

good power against a variety of alternatives in Þnite samples even for data with highly persistent

dependence. Besides the single-factor diffusion models, our tests can be applied to a broad class

of dynamic economic models, such as discrete time series models, time-inhomogeneous diffusion

models, stochastic volatility models, jump-diffusion models, and multi-factor term structure mod-

els. When applied to daily Eurodollar interest rates, our tests overwhelmingly reject some popular

spot rate models, including those with nonlinear drifts that some existing tests can not reject after

correcting size distortions. We Þnd that models with nonlinear drifts do not signiÞcantly improve

the goodness-of-Þt, and the main source of model inadequacy seems to be the violation of the

Markov assumption. We also Þnd that GARCH, regime switching and jump diffusion models

perform signiÞcantly better than single-factor diffusion models, although they are far from be-

ing adequate to fully capture the interest rate dynamics. Our study shows that nonparametric

methods are a reliable and powerful tool for analyzing Þnancial data.

Key words: Boundary bias, Continuous-time model, Hellinger metric, Kernel method, Parameter

estimation uncertainty, Probability integral transform, Quadratic form, Short-term interest rate,

Transition density.

JEL ClassiÞcations: C4, E4, G0.



Continuous-time diffusion models have been widely used in Þnance to capture the dynamics of

important economic variables, such as interest rates, exchange rates and stock prices. The well-

known option pricing model of Black and Scholes (1973), and the term structure models of Cox,

Ingersoll and Ross (1985) and Heath, Jarrow and Morton (1992), for example, all assume that the

underlying state variables follow a diffusion process. Economic theories typically do not suggest

functional forms for diffusion models, and researchers often consider parametric speciÞcations that

are convenient for deriving closed-form solutions for various security prices.

The last decade has seen the development of a large and still growing academic literature on

estimation and testing of continuous-time models.1 One major focus in the literature is to de-

velop rigorous econometric methods to estimate continuous-time models using discretely-sampled

data. This is largely motivated by Lo�s (1988) Þnding that estimating the discretized version of a

continuous-time model can result in inconsistent parameter estimates. Available estimation proce-

dures include the nonparametric methods of Ait-Sahalia (1996) and Stanton (1997), the simulated

method of moments of Duffie and Singleton (1993), the efficient method of moments of Gallant

and Tauchen (1996,2001), the generalized method of moments of Hansen and Scheinkman (1995),

and the maximum likelihood methods of Lo (1988) and Ait-Sahalia (2001), among many others.

Asymptotic properties of these estimators have been well established and inference procedures

based on the asymptotic theory have been developed.

The validity of these asymptotic theories and inference procedures, however, crucially depends

on the maintained assumption that the underlying model is correctly speciÞed. In the present

context, model misspeciÞcation generally renders inconsistent estimators of parameters and their

variance-covariance matrices, which could lead to misleading conclusions in inference and hy-

pothesis testing. Furthermore, a misspeciÞed model can yield large errors in pricing derivatives

and measuring Þnancial risk (e.g., values at risk). It is therefore important to develop reliable

speciÞcation tests for continuous-time diffusion models.

In contrast to the rapid development of parameter estimation methods, there is relative little

effort on speciÞcation analysis for continuous-time models (cf. Ait-Sahalia 1996, Gallant and

Tauchen 1996, Conley, Hansen, Luttmer and Scheinkman 1997). In a pioneering paper, Ait-

Sahalia (1996) develops probably the Þrst nonparametric test for time-homogeneous single-factor

diffusion models. Observing the fact that the drift and diffusion functions completely characterize

the stationary (or marginal) density of a diffusion model, Ait-Sahalia (1996) compares a model-

implied marginal density estimator with a nonparametric kernel density estimator based on a

1Sundaresan (2001) states that �perhaps the most signiÞcant development in the continuous-time Þeld during

the last decade has been the innovations in econometric theory and in the estimation techniques for models in

continuous time.� For other reviews of the recent literature, see, e.g., Melino (1994), Tauchen (1997, 2000), and

Campbell, Lo and MacKinlay (1997).
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discretely sampled data. The parametric model is rejected if the difference between the two

estimators is sufficiently large. The nonparametric test does not make restrictive assumptions

on the data generating process and can detect a wide range of alternatives. This appealing

power property is not shared by parametric approaches such as conditional moment tests. The

latter has optimal power against certain alternatives (depends on the choice of moment functions)

but may be completely silent against other alternatives. In an application to daily Eurodollar

interest rates, Ait-Sahalia (1996) rejects all existing one-factor spot rate models and Þnd that �the

principal source of rejection of existing models is the strong nonlinearity of the drift.� Stanton

(1997), using nonparametric kernel regression, also Þnds evidence of a nonlinear drift. These

Þndings have motivated the development of nonlinear term structure models such as that of Ahn

and Gao (1999).

The evidence of a nonlinear drift, however, has been recently challenged by Chapman and

Pearson (2000). They Þnd that the nonparametric methods of Ait-Sahalia (1996) and Stanton

(1997) produce biased estimates near the boundaries of the observations, which could have pro-

duced spurious nonlinear drifts. Pritsker (1998), on the other hand, documents that the size

performance of Ait-Sahalia�s (1996) test appears inadequate even for rather large samples: it re-

quires 2,755 years of daily interest rate data generated by an empirically relevant Vasicek (1977)

model to attain the accuracy of a kernel density estimator implied by its asymptotic distribution.

The main reasons, as pointed out in Pritsker (1998), are the highly persistent dependence of

the interest rate data and the slow convergence of nonparametric estimators. The asymptotic

distribution of Ait-Sahalia�s (1996) test statistic remains the same whether the sample is inde-

pendent and identically distributed (i.i.d.) or persistently dependent, but the level of dependent

persistence severely affects the Þnite sample distribution. The Þndings of Chapman and Pearson

(2000) and Pritsker (1998) thus cast serious doubts on the applicability of nonparametric methods

in Þnance, since persistent dependence is a stylized fact for interest rates and many other high

frequency Þnancial data.

Gallant and Tauchen (1996) propose a minimum chi-square speciÞcation test for diffusion

models using the Efficient Method of Moment (hereafter EMM). They examine the simulation-

based expectation of a semi-nonparametric density derivative under the model-implied distribu-

tion, which takes the value of zero under correct model speciÞcation. Among other things, the

greatest appeal of Gallant and Tauchen�s EMM method is that it applies to both single factor and

multi-factor diffusion models and in addition to the minimum chi-square test, it also provides a

spectrum of constructive individual t-statistics that are informative in revealing possible sources of

model misspeciÞcation. While the EMM test can detect a wide range of model misspeciÞcations,

it may still have no power against certain alternatives, because the semi-nonparametric density

derivative may still have zero expectation under the distribution of a misspeciÞed model. Thus,
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as pointed out by Gallant and Tauchen (1998, p.), one still cannot conclude that a diffusion model

is correctly speciÞed even when the minimum chi-square EMM test statistic is insigniÞcant.

In this paper, we propose two new nonparametric transition density-based speciÞcation tests

for diffusion models that share the appealing features of both Ait-Sahalia (1996) and Gallant and

Tauchen (1996). By using an appropriate data transformation and correcting the boundary bias

of kernel estimators, our tests are robust to persistent dependence in data and provide reliable

inferences for sample sizes often encountered in empirical Þnance, with superior Þnite sample

performances. Our results indicate that nonparametric methods remain a reliable and powerful

tool for studying Þnancial data. SpeciÞcally, our tests contribute to the literature in several

directions.

First, unlike Ait-Sahalia�s (1996) marginal density-based test, our tests are based on transition

density, which, under the maintained Markov assumption, captures the full dynamics of a diffusion

process. The use of the marginal density is computationally convenient and can detect a wide

range of alternatives. However, it may easily miss the alternatives that have the same marginal

density as the null model but have different transition densities. In contrast, the transition density

can effectively pick them up. Our tests are computationally more expensive than marginal density-

based tests, because the transition density usually has no closed-form solution for most diffusion

models. One can approximate the transition density using the simulation methods developed by

Pedersen (1995), Brandt and Santa-Clara (2001), and Elerian, Chib, and Shephard (2000). The

recent important work of Ait-Sahalia (2001) provides a more convenient method that allows us

to obtain an accurate closed-form approximation of the transition density.

Second, to achieve robustness to persistent dependence, we transform the data via a dynamic

probability integral transform using the model-implied transition density. The dynamic probabil-

ity integral transform has been well known in statistics (e.g., Rosenblatt 1952) and is more recently

used in out-of-sample density forecasts in discrete time series analysis (e.g., Diebold, Gunther and

Tay 1998). In the present continuous-time context, the transformed sequence is i.i.d. U [0, 1]

under correct model speciÞcation, irrespective of the dependence structure of the original data.

We propose two tests for the joint hypothesis of i.i.d. and U [0, 1] by comparing a kernel estimator

of the joint density of the transformed data with the product of two U [0, 1] densities. As there is

no serial dependence in the transformed series under correct model speciÞcation, nonparametric

density estimators and related tests are expected to perform well in Þnite samples.

Third, we introduce a boundary-modiÞed kernel that effectively eliminates the important

�boundary bias� of nonparametric kernel estimators as documented in Chapman and Pearson

(2000). Surprisingly, the boundary bias has important impact on not only the Þnite sample

performance but also the asymptotic behavior of the test statistics. Simulation studies show that,

with the help of the probability integral transform and the boundary-modiÞed kernel, our tests
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have reasonable size and good power against a variety of alternatives in Þnite samples even for

data with highly persistent dependence.

Fourth, our transition density-based tests are omnibus tests for model misspeciÞcation. After

rejecting a misspeciÞed model, our methods can provide additional diagnostics about the possible

sources for the rejection by using the probability integral transformed series, which constitutes

a �generalized residual� of the model. SpeciÞcally, our tests contain information of the auto-

corregrams in all the moments of the generalized residuals. Thus, to check for possible sources

of the rejection, we can construct a spectrum of autocorregram-based tests in every moment of

the residuals, which are very informative. Thus, our approach shares the appeals of Gallant and

Tauchen�s (1996) EMM method in providing constructive diagnostic tests for the possible sources

of model misspeciÞcation.

Fifth, in addition to a test based on a quadratic form, we also propose a test based on the

Hellinger metric to reduce the impact of parameter estimation uncertainty. It is well-known in

the literature (e.g., Merton 1980) that drift parameters are much more difficult to estimate than

diffusion parameters: the drift parameter estimates may be imprecise even for relatively large

samples. These imprecise estimates may have signiÞcant impact on the Þnite sample distribution

of the test statistics, though not on their asymptotic distribution. The Hellinger metric is well

known in statistics for its robustness to outliers in data, and we expect that it will alleviate the

impact of parameter estimation uncertainty on the Þnite sample distribution of our test statistics.

Finally, the idea of probability integral transform is very general and as a result our tests

can be applied to a wide variety of time series models in addition to the strictly stationary,

single-factor diffusion models covered by Ait-Sahalia�s (1996) test. For example, our tests are

applicable to time-inhomogeneous diffusion models,2 discrete time series models such as GARCH

and regime-switching models,3 partially observable nonlinear dynamic models, such as stochastic

volatility models (both in discrete and continuous time) and multi-factor term structure models.4

The integral transformed data via the model-implied transition density in all the above models

2Time-inhomogeneous models for stock prices and interest rates have been proposed in the literature. Examples

include Black, Derman and Toy (1990), Derman and Kani (1994), Hull and White (1990, 1993), and Rubinstein

(1994), among others. Ait-Sahalia�s (2001) Hermite approximation approach, which has been extended by Egorov,

Li and Xu (2001) to time-inhomogeneous diffusions, can be used to obtain an accurate closed-form approximation

of the transition density of those models.
3These models have been widely used in the literature to model important economic and Þnancial time series.

The probability integral transform is very easy to perform for discrete time series models, as their conditional

probability distribution are typically known in closed form.
4Stochastic volatility models have been widely used to model interest rate and stock return dynacmics (e.g. see

Ghysels, Harvey, and Renault 1995). In those models, the dynamics of the economic variables that we are interested

in depend on some underlying latent factors. To obtain the model transition density of the observable variables

conditional only on its past history, we need to integrate out the laten variables.
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should be i.i.d. U [0, 1] if the model is correctly speciÞed. Any deviation from i.i.d. U [0, 1] would

indicate model misspeciÞcation, and can be tested by our procedures.

As an application of our new tests, we apply them to the daily Eurodollar interest rates to

examine the adequacy of a wide variety of spot rate models including the single-factor diffusion

models considered in Ait-Sahalia (1996) and some popular discrete time series models. Based on

the same data, Ait-Sahalia (1996) rejects all the diffusion models with linear drift using asymptotic

critical values. However, using the empirical critical values obtained through simulation in Pritsker

(1998), Ait-Sahalia�s (1996) test would not reject certain linear drift models. In contrast, all

diffusion models are overwhelmingly rejected by our more reliable procedures. Unlike Ait-Sahalia

(1996), we Þnd that to include nonlinear drift does not signiÞcantly improve the goodness of

Þt. Moreover, we Þnd that model misspeciÞcation is mainly due to the underprediction of the

movements of interest rates around the mean and the violation of the Markov assumption.

Besides the continuous-time diffusion models, a large number of discrete time series interest

rate models have also been proposed in the literature. For example, GARCH models have been

widely used to capture volatility clustering in the data, regime-switching models have been used

to model the potential structural breaks in the data generating process, and jumps have been

shown to be essential to model excess kurtosis in interest rate data. We show that these more

complex models provide improvements over the single-factor diffusion models, especially in terms

of modeling the marginal density of the data and the conditional variance, skewness, and kurtosis

for the generalized residuals. Despite these improvements, all the discrete time models are still

overwhelmingly rejected by our tests. Our results show that we need to consider more complicated

interest rate models in the future.

The rest of the paper is organized as follows. In Section I, we state the hypotheses of interest

and review the related literature. In Section II, we introduce our tests and discuss their asymptotic

properties. In Section III, we discuss the extensions of our methods. In Section IV, we examine

the Þnite sample size and power performance of the proposed tests via empirically relevant Monte

Carlo simulations. In Section V, we apply our tests to daily Eurodollar interest rates to evaluate

some popular spot rate models. Section VI concludes. In the Appendix, we provide the regularity

conditions and mathematical proofs for the asymptotic theory. A GAUSS code for implementing

the proposed tests is available from the authors upon request.

I. Hypotheses and Literature Review

As our tests are most closely related to that of Ait-Sahalia (1996), we Þrst follow Ait-Sahalia

(1996) and consider single-factor diffusion processes, for ease of comparison. In Section III, we

will discuss the applications of our tests to other dynamic economic models. Suppose that a state
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variable {Xt} follows a diffusion process

dXt = µ0(Xt, t)dt+ σ0(Xt, t)dWt, (1)

where µ0(Xt, t) and σ0(Xt, t) are the (possibly time-inhomogeneous) drift and diffusion functions

respectively, and Wt is a standard Brownian motion. (Ait-Sahalia (1996) considers single factor

stationary time-homogeneous diffusion processes.) Often it is assumed that µ0(Xt, t) and σ0(Xt, t)

belong to some parametric families; that is,

µ0 ∈ Mµ ≡ {µ(·, ·, θ), θ ∈ Θ},
σ0 ∈ Mσ ≡ {σ(·, ·, θ), θ ∈ Θ},

where Θ is a Þnite-dimensional parameter space. We say that the models Mµ and Mσ are

correctly speciÞed for the drift and diffusion µ0(Xt, t) and σ0(Xt, t) respectively if

H0 : P [µ(Xt, t, θ0) = µ0(Xt, t),σ(Xt, t, θ0) = σ0(Xt, t)] = 1 for some θ0 ∈ Θ. (2)

Various econometric methods have been developed in the literature to estimate the unknown

parameter θ0, taking (1) as given. However, these methods generally cannot deliver consistent

parameter estimates if the modelMµ orMσ is misspeciÞed in the sense that

HA : P [µ(Xt, t, θ) = µ0(Xt, t),σ(Xt, t, θ) = σ0(Xt, t)] < 1 for all θ ∈ Θ. (3)

Under HA, there exists no parameter value θ such that the drift model µ(Xt, t, θ) and the diffusion

model σ(Xt, t, θ) coincide with the true drift µ0(Xt, t) and the true diffusion σ0(Xt, t) respectively.

As a result, misleading conclusions in inference and hypothesis testing can be reached based on

the biased parameter estimates. In addition, a misspeciÞed model can also produce large errors

for pricing derivatives and calculating Þnancial risk. In this paper, we are interested in testing

whether a continuous-time diffusion model is correctly speciÞed using a discrete sample of Xt

observed over a time span T at interval of ∆, {Xτ∆}nτ=1, where n = T/∆.
In an inßuential paper, Ait-Sahalia (1996) observes that for a stationary time-homogeneous

diffusion process

dXt = µ0(Xt)dt+ σ0(Xt)dWt, (4)

a pair of drift and diffusion models µ(Xt, θ) and σ(Xt, θ) uniquely determines the stationary (or

marginal) density of Xt,

π (x, θ) =
ξ (θ)

σ2 (x, θ)
exp

·Z x

x0

2µ (u, θ)

σ2 (u, θ)
du

¸
, (5)

where the standardization factor ξ(θ) ensures that π(x, θ) integrates to 1 for every θ ∈ Θ, and
x0 is the lower bound of the support of Xt. Ait-Sahalia (1996) compares a parametric marginal
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density estimator π(x, �θ) with a nonparametric density estimator �π0(x) via a quadratic form

M ≡
Z x1

x0

h
�π0(x)− π(x, �θ)

i2
�π0(x)dx, (6)

where x1 is the upper bound for Xt, �θ is a minimum distance estimator

�θ ≡ argmin
θ∈Θ

n−1
nX
τ=1

[�π0 (Xτ∆)− π (Xτ∆, θ)]2 , (7)

and �π0(x) is a kernel density estimator

�π0(x) ≡ n−1
nX
τ=1

Kh(x−Xτ∆) (8)

with Kh(x− y) ≡ h−1k
¡x−y
h

¢
. The kernel function k(u) is a prespeciÞed symmetric probability

density function, and h = h(n) is a bandwidth such that h→ 0, nh→∞ as n→∞. Ait-Sahalia
(1996) uses a Gaussian kernel.

The marginal density-based test is simple and easy to implement. It also has power against a

wide range of misspeciÞcations that render the model-implied marginal density π(x, θ) different

from the true marginal density π0(x). However, recent studies have pointed out several limitations

of this test that may make its empirical applicability questionable.

First, as already pointed out in Ait-Sahalia (1996), the marginal density cannot capture the

full dynamics of the underlying process. In particular, it cannot distinguish two diffusion models

that have the same marginal density but different transition densities.5

Second, subject to some regularity conditions on the temporal dependence in Xt, the asymp-

totic distribution of the quadratic formM in (6) remains the same whether the sample {Xτ∆}nτ=1
is i.i.d. or highly persistently dependent (Ait-Sahalia 1996). This convenient asymptotic prop-

erty unfortunately results in a substantial discrepancy between the asymptotic and Þnite sample

distributions, as documented in Pritsker (1998). This discrepancy and the slow convergence of

nonparametric kernel estimators are the main reasons identiÞed by Pritsker (1998) for the poor

Þnite sample performance of the test.

Third, as pointed out by Chapman and Pearson (2000), a conventional kernel density estimator

produces biased estimates near the boundaries of the observations, due to the asymmetric coverage

of the kernel for the data in the boundary regions. This phenomenon has been well documented in

econometrics and statistics literature (e.g. see Härdle 1990). Among other things, the boundary

bias can generate spurious nonlinear drifts, giving misleading conclusions on the dynamics of Xt.

While the Þrst two features have been well understood in the literature, we are surprised to Þnd

that the boundary bias has signiÞcant impact on not only the Þnite sample performance but also

5A simple example is the Vasicek model, in which if we vary the speed of mean reversion and the scale of diffusion

in the same proportion, the marginal density will remain unchanged, but the transition density will be different.
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the asymptotic behavior of the test statistics such asM in (6), although the boundary regions are

of size h, which vanishes as n→∞. For ease of exposition, suppose that the kernel k(u) is a sym-
metric bounded probability density with support [−1, 1] so that R 1−1 k(u)du = 1, R 1−1 uk(u)du = 0,
and

R 1
−1 u

2k(u)du <∞. One example is the quartic kernel:

k(u) =
15

16
(1− u2)21(|u| ≤ 1), (9)

where 1(|u| ≤ 1) is the indicator function, taking value 1 if |u| ≤ 1 and value 0 otherwise.

Further suppose that Xt has bounded support [0, 1].
6 Then the kernel density estimator �π0(x)

is not asymptotically unbiased in the boundary regions [0, h) and (1 − h, 1] in the sense that
supx∈[0,h)∪(1−h,1] |E�π0(x) − π0(x)| does not vanish as n → ∞. This occurs due to the lack of
symmetric coverage of observations for k(·) in the boundary regions. For any interior point

x ∈ [h, 1−h], by using change of variable and the identities that R 1−1 k(u)du = 1, R 1−1 uk(u)du = 0,
and assuming that π0(·) is twice continuously differentiable on [0, 1], we obtain the bias

E�π0(x)− π0(x) =

Z 1

0
Kh(x− y)π0(y)dy − π0(x)

=

Z 1

−1
k(u)π0(x+ hu)du− π0(x)

=
1

2
h2π000(x)

Z 1

−1
u2k(u)du[1+ o(1)] = O(h2), (10)

which vanishes as h→ 0. For a boundary point x ∈ [0, h), however,

E�π0(x)− π0(x) =

Z 1

0
Kh(x− y)π0(y)dy − π0(x)

=

Z 1

−x/h
k(u)π0(x+ hu)du− π0(x)

= π0(x)

"Z 1

−x/h
k(u)du− 1

#
+ hπ00(x)

Z 1

−x/h
uk(u)du[1+ o(1)]

= π0(x)

"Z 1

−x/h
k(u)du− 1

#
+O(h). (11)

Because
R 1
−x/h k(u)du 6= 1 for x/h < 1, �π0(x) is not asymptotically unbiased if π0(x) ≥ ε > 0,

where ε is an arbitrarily small but Þxed constant. A similar result holds for x ∈ (1− h, 1].
One may argue that although �π0(x) is not consistent in the boundary regions, these regions

are asymptotically negligible and dominated by the interior region, because they are of size h and

6The boundary bias problem remains as long as the support of Xt is bounded or half-bounded (e.g., Xt has the

support [0,∞), as is the case with interest rates). This occurs no matter whether the kernel function has bounded
or unbounded support.
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thus shrink to zero as n → ∞. Unfortunately, as shown below, this is not the case for statistics
such as the quadratic form M in (6). To see this, we decompose

M =

·Z h

0
+

Z 1

1−h

¸ h
�π0(x)− �π(x, �θ)

i2
�π0(x)dx+

Z 1−h

h

h
�π0(x)− �π(x, �θ)

i2
�π0(x)dx, (12)

where the Þrst term is the contribution from the kernel estimator in the boundary regions and

the second from the interior region. Because �θ is
√
n-consistent for θ0, π(x, �θ) converges to π0(x)

under H0 faster than �π0(x). Consequently, �θ has no impact on the asymptotic distribution of M,

which solely depends on �π0(x). For an interior point x ∈ [h, 1− h] , the convergence rate of �π0(x) is
OP (n

−1h−1+h4), where OP (n−1h−1) is the variance of �π0(x) and OP (h4) is the squared bias (cf.

(10)).7 Thus, the convergence rate of the second term is OP (n
−1h−1+h4). For a boundary point

x ∈ [0, h) or x ∈ (1 − h, 1], the convergence rate of �π0(x)− π0(x) is OP (n−1h−1) + π20(x)OP (1),
where OP (n

−1h−1) is the variance of �π0(x) and π20(x)O(1) is the order of the squared bias.

Consequently, the convergence rate of the Þrst term in (12) is hOP (n
−1h−1 + 1) = OP (n−1 + h)

when π(x) ≥ ε > 0 and thus dominates that of the second term in (12), although the boundary

regions shrink to zero. This could be another reason for the poor performance of Ait-Sahalia�s

(1996) test even for relatively large sample sizes, as the asymptotic distribution theory developed

there is essentially based on the second term only.8

To avoid the boundary bias problem of kernel estimation, one could simply ignore the data in

the boundary regions and only use the data in the interior region. Such a trimming procedure is

simple and popular in practice, but in the present context, it would lead to the loss of signiÞcant

amount of information. If h = sn−
1
5 where s2 = var(Xt), for example, then about 23%, 20% and

10% of a U [0, 1] sample will fall into the boundary regions when n = 100, 500, and 5, 000. For

Þnancial time series, one may be particularly interested in the tail distribution of the underlying

process, which is exactly contained in (and only in) the boundary regions!

Another solution is to use a kernel that adapts to the boundary regions and can effectively

eliminate the boundary bias. One possible choice is the so-called jackknife kernel, as used in

Chapman and Pearson (2000).9 In the present context, the jackknife kernel, however, has some

undesired features in Þnite samples. For example, it may generate negative density estimates

in the boundary regions because the jackknife kernel can be negative in these regions.10 It also

7For the convergence rate of nonparametric lernel density estimators in a time series context, see (e.g.) Robinson

(1983).
8The asymptotic theory for Ait-Sahalia�s (1996) test is valid when Xt has unbounded support on R. For bounded

support (say, [0, 1]), Ait-sahalia�s (1996) asymptotic distribution theory still holds when π0(x) = o(x
3/2) as x→ 0

and π0(x) = o((1− x)3/2) as x→ 1. For the half-bounded support [0,∞), it holds when π0(x) = o(x3/2) as x→ 0.
9See Härdle (1990) for further discussion on the jackknife kernel.
10Chapman and Pearson (2000) do not encounter this problem because they estimate regression functions for the

drift and diffusion functions.
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induces a relatively large variance in the boundary regions, adversely affecting the power of the

test in Þnite samples. To avoid these problems, we use the following modiÞed kernel. For x ∈ [0, 1],
deÞne

Kh(x, y) ≡


h−1k

¡x−y
h

¢
/
R 1
−(x/h) k(u)du, if x ∈ [0, h),

h−1k
¡x−y
h

¢
, if x ∈ [h, 1− h],

h−1k
¡x−y
h

¢
/
R (1−x)/h
−1 k(u)du, if x ∈ (1− h, 1].

(13)

The weighting functions in the denominators account for the asymmetric coverage of the kernel for

the data in the boundary regions. They ensure that �π0(x) is asymptotically unbiased uniformly

over the entire support [0, 1]. Moreover, it always produces nonnegative density estimates with a

smaller variance in the boundary regions than a jackknife kernel. With this kernel, the convergence

rate of the Þrst term in (12) will be hOP (n
−1h−1 + h2) = OP (n

−1 + h3) when π0(x) ≥ ε > 0.

This rate is still slower than the convergence rate of the second term in (12). However, we will

work with a dynamic probability integral transformed series, which has a uniform density under

H0. Consequently, the OP (h
3) term disappears because the uniform density is a constant and so

has a zero bias. We thus do not encounter any problem in asymptotic analysis.

II. New Approach and Test Statistics

The limitations of marginal density-based tests prompt us to develop nonparametric tests

based on the transition density, which can capture the full dynamics of the underlying diffusion

process. Let p0(x, t|y, s) be the true transition density of the diffusion process Xt; that is, the
conditional density of Xt = x given Xs = y, s < t. For a given pair of drift and diffusion models

µ(Xt, t, θ) and σ(Xt, t, θ), a certain family of transition densities {p(x, t|y, s, θ)} is characterized.
When (and only when) H0 in (2) coincides with the true data generating process, there exists

some θ0 ∈ Θ such that p(x, t|y, s, θ0) = p0(x, t|y, s) almost everywhere for all t > s. Hence, the

hypotheses of interest H0 in (2) vs. HA in (3) can be written as follows:

H0 : p(x, t|y, s, θ0) = p0(x, t|y, s) almost everywhere for some θ0 ∈ Θ (14)

versus the alternative hypothesis

HA : p(x, t|y, s, θ) 6= p0(x, t|y, s) for some t > s and for all θ ∈ Θ. (15)

A natural approach to test H0 vs. HA would be to follow Ait-Sahalia (1996) and compare

a model-implied transition density estimator p(x, t|y, s, �θ) with a nonparametric transition esti-
mator, say �p0(x, t|y, s).11 From Pritsker�s (1998) analysis, however, we expect that the size per-

formance of such a nonparametric test might be even worse than Ait-Sahalia�s (1996) marginal

11In addition to the marginal density-based test, Ait-Sahalia (1996) also develops a nonparametric test based on

transition density under the important assumption of stationarity.
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density-based test, because the convergence rate of the nonparametric transitional density esti-

mator �p0(x, t|y, s) is even slower than the nonparametric marginal density estimator �π0(x), due
to the well-known �curse of dimensionality�.12 Moreover, the Þnite sample distribution of the

resulting test statistic is expected to be sensitive to the level of persistent dependence in data.

Instead of comparing p(x, t|y, s, �θ) and �p0(x, t|y, s) directly, we Þrst transform {Xτ∆}nτ=1 via
a probability integral transform. DeÞne a transformed sequence

Zτ (θ) ≡
Z Xτ∆

−∞
p
£
x, τ∆|X(τ−1)∆, (τ − 1)∆, θ

¤
dx, τ = 1, 2, ..., n. (16)

Under (and only under) H0, there exists some θ0 ∈ Θ such that p(x, τ∆|X(τ−1)∆, (τ − 1)∆, θ0) =
p0(x, τ∆|X(τ−1)∆, (τ−1)∆) almost surely for all∆ > 0. Consequently, the series {Zτ ≡ Zτ (θ0)}nτ=1
is i.i.d. U [0, 1] under H0. This result is Þrst proven, in a simpler context, by Rosenblatt (1952),

and more recently used for evaluation of out-of-sample density forecasts by Diebold, Gunther

and Tay (1998) among others in discrete time series contexts. Intuitively, we may call Zτ a

�generalized residual� of the diffusion model p(x, t|y, s, θ). The i.i.d. U [0, 1] property captures
two important aspects of the model speciÞcation: i.i.d. characterizes the correct speciÞcation of

the model dynamics, and uniformity characterizes the correct speciÞcation of the model marginal

distribution.

To test H0, we can check whether {Zτ}nτ=1 is i.i.d. U [0, 1]. This is not a trivial task, because
i.i.d. U [0, 1] is a joint composite hypothesis. One may suggest the well-known Kolmogorov-

Simonov test. This test, however, checks U [0, 1] under the i.i.d. assumption rather than tests

i.i.d. and U [0, 1] jointly. Consequently, it would miss the alternatives whose marginal distribution

is uniform but not i.i.d.

Instead in this paper, we develop two nonparametric tests of the i.i.d. U [0, 1] hypothesis by

comparing a kernel estimator �gj(z1, z2) for the joint density gj(z1, z2) of {Zτ , Zτ−j} with unity,
the product of two U [0, 1] densities. Our approach has at least two advantages. First, since there

is no serial dependence in {Zτ} under H0, nonparametric joint density estimators and related test

statistics are expected to perform much better in Þnite samples. We expect that the Þnite sample

distribution of the resulting tests will be robust to the level of persistent dependence in data.

Second, there is no asymptotic bias for nonparametric density estimators under H0, because the

conditional density of Zτ given {Zτ−1, Zτ−2, ...} is uniform (i.e., a constant function).13

12Under certain regularity conditions, the optimal converegence rates of �π0(x) and �p0(x, t|y, s) are O(n−2/5) and
O(n−1/3) respectively. See Silverman (1986) and Hardle (1990) for relevant discussion in the i.i.d. context, and

Robinson (1983) in the time series context.
13Of course, the boundary bias problem still exists for kernel estimation based on the transformed series {Zτ} if

the kernel function is not modiÞed in the boundary regions.
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Our kernel joint density estimator is

�gj(z1, z1) ≡ (n− j)−1
nX

τ=j+1

Kh(z1, �Zτ )Kh(z2, �Zτ−j), (17)

where Kh(z1, z2) is as deÞned in (13), �Zτ = Zτ (�θ), and �θ is a
√
n-consistent estimator for θ0. We

permit but do not require the minimum distance estimator �θ in (7), which is used in Ait-Sahalia

(1996). Any
√
n-consistent estimator �θ can be used. In practice, the choice of bandwidth h is

much more important than the choice of the kernel k(u). Similarly to Scott (1992), we choose

h = �SZn
− 1
6 , where �SZ is the sample standard deviation of { �Zτ}nτ=1. This simple bandwidth rule

attains the optimal rate for bivariate kernel density estimation, and it minimizes the asymptotic

mean squared error of the kernel density estimator for a certain distribution of the underlying

variable.

Analogous to Ait-Sahalia (1996), our Þrst test is based on a quadratic form between �gj(z1, z2)

and 1, the product of two U [0, 1] densities:

�M1(j) ≡
Z 1

0

Z 1

0
[�gj(z1, z2)− 1]2 dz1dz2. (18)

Note that the integration range is [0,1], because {Zτ} has support [0,1]. Also, we do not use any
density estimator to weight the squared difference between �gj(x, y) and 1.

Our Þrst test statistic is a properly centered and scaled version of �M1(j) :

�Q(j) ≡
h
(n− j)h �M1(j)−A0h

i
/V

1/2
0 , (19)

where

A0h ≡ (h−1 − 2)
Z 1

−1
k2(u)du+ 2

Z 1

0

Z b

−1
k2b (u)dudb, (20)

V0 ≡ 2

"Z 1

−1

·Z 1

−1
k(u+ v)k(v)dv

¸2
du

#2
, (21)

and kb(u) ≡ k(u)/
R b
−1 k(v)dv. Note that the modiÞcation of the kernel k(u) near the boundary

regions affects the centering constant A0h. Such impact is not negligible as n→∞. The asymptotic
variance V0, however,does not depend on the modiÞcation of k(u) in the boundary regions.

Under H0, we can show (see Theorem 1 in the Appendix) that as n→∞,

�Q(j)→ N(0, 1) in distribution.

In the present context, the Þrst lag j = 1 is the most informative and important. We also have

under H0

cov
h
�Q(i), �Q(j)

i
→ 0 in probability for i 6= j
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as n → ∞. Thus, �Q(i) and �Q(j) are asymptotically independent under H0 whenever i 6= j (cf.

Theorem 2 in the Appendix). Thus, we can use a set of test statistics { �Q(j)} with different lags
jointly. Our simulation study shows that in a simulation experiment mimicking the dynamics of

U.S. interest rates via the Vasicek model, �Q(j) has rather reasonable sizes for n ≥ 500 (i.e., about
two year daily data).

Under the alternative HA, we can show that as n→∞,

�Q(j)→∞ in probability

whenever {Zτ , Zτ−j} are not independent or U [0, 1] (See Theorem 3 in the Appendix.)

The quadratic form test, though convenient and quite accurate when the true parameter θ0

were known, might be adversely affected by any imprecise estimate for �θ in Þnite samples. This

is particularly relevant in the present context because it is well-known that the drift parameters

are difficult to estimate (e.g., Merton 1980). To alleviate this problem, we consider a second test

based on the squared Hellinger metric

�M2(j) ≡
Z 1

0

Z 1

0

·q
�gj(z1, z2)− 1

¸2
dz1dz2, (22)

which is a quadratic form between
p
�gj(z1, z2) and

√
1 · 1 = 1. The Hellinger metric is well-known

in statistics for its robustness to outliers. The associated test statistic is

�H(j) ≡
h
4(n− j)h �M2(j)−A0h

i
/V

1/2
0 , (23)

where A0h and V0 are the same as in (20) and (21). Under H0, this test has the same asymptotic

distribution as �Q(j) and is asymptotically equivalent to �Q(j) in the sense that �Q(j)− �H(j)→ 0

in probability. This occurs because under H0, he quadratic form �M1(j) is the dominant term in

a Taylor series expansion of 4 �M2(j). Under HA, we also have �H(j) → ∞ as n → ∞ whenever

{Zτ , Zτ−j} are not independent or U [0, 1]. However, �Q(j) and �H(j) are not equivalent under HA,

because the quadratic norm and the squared Hellinger metric are not the same. This suggests

that they may have different powers under HA in Þnite samples, but the difference will vanish as

n→∞.
We note that the Hellinger metric test �H(j) may not dominate the quadratic form test �Q(j)

in Þnite samples, because its asymptotic distribution is based on the dominant quadratic form

in a Taylor expansion, and the remaining asymptotically negligible higher order terms may have

important impact in small and Þnite samples. Indeed, our simulation study shows that �H(j)

displays some overrejection in size when n < 1, 000. It has reasonable sizes when n ≥ 1, 000 (i.e.,
about four years of daily data). The main reason to include �H(j) is that with an extremely

imprecise parameter estimate in �θ, �H(j) may have better sizes than �Q(j) if n is sufficiently large,
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because the Hellinger metric is more robust to parameter estimation uncertainty and the beneÞt

from such robustness may overwhelm the effect of the asymptotically negligible higher order terms.

A technical issue that complicates our tests is that the closed-form solution for the transition

density of a diffusion model is generally not available, which makes the probability integral trans-

form {Zτ (θ)} in (16) difficult to compute. In empirical applications, fortunately, we can apply
Ait-Sahalia�s (2001) method to construct an accurate closed-form approximation of the model

transition density via Hermite expansion with a sufficiently large order. Following Ait-Sahalia�s

(2001) proof, we could show that under proper regularity conditions, the use of a Hermite poly-

nomial approximation has no impact on the asymptotic distribution of our test statistics. For the

details on the Hermite approximation, see Ait-Sahalia (1999, 2001) or Egorov, Li and Xu (2002).

We summarize our testing procedures as follows: (i) estimate the continuous-time model

using any method that yields a
√
n-consistent estimator �θ; (ii) compute the dynamic probability

integral transformed series { �Zτ = Zτ (�θ)}nτ=1 via the model implied transition density, where
Zτ (θ) is given in (16). If there is no closed-form solution for the model-implied transition density,

use Ait-Sahalia�s (2001) method to obtain an approximation for the model-implied transition

density; (iii) compute the boundary-modiÞed kernel joint density estimator �gj(z1, z2) in (17) for a

prespeciÞed lag j, using a kernel (e.g., the quartic kernel in (9)) and the bandwidth h = �SZn
− 1
6 ,

where �Sz is the sample standard deviation of the transformed series { �Zτ}nτ=1; (iv) compute the
test statistics �Q(j) in (19) and �H(j) in (23); (v) compare the value of �Q(j) or �H(j) with the

upper-tailed N(0,1) critical value Cα at level α (e.g., α0.05 = 1.645). If �Q(j) or �H(j) exceeds Cα,

reject the null hypothesis H0 at level α. The use of upper-tailed (rather than two-sided) N(0,1)

critical values is suitable because negative values of �Q(j) and �H(j) occur only under H0 when n is

sufficiently large. Both of the test statistics diverge to +∞ when{Zτ , Zτ−j} are not independent
or U [0, 1] under HA.

It should be noted that some other nonparametric or semi-nonparametric speciÞcation tests

for diffusion models or applicable to diffusion models have been available in the literature. Corradi

and Swanson (2001) and Thompson (2001) consider tests for diffusion models using an empir-

ical distribution function.14 The use of the empirical distribution function is computationally

convenient, because there is no need to choose a smoothing parameter (e.g., bandwidth h). How-

ever, these tests are based on the marginal distribution function, and therefore cannot distinguish

the diffusion processes that have the same marginal density but different transition densities.

Moreover, the asymptotic distribution of these tests is data-dependent, and so no tabulation is

available. To obtain the critical values, Thompson (2001) uses some upper bounds, and Corradi

14In addition to the test based on the empirical distribution function, Thompson (2001) also considers a test for

serial dependence using periodogram. The periodogram can detect any autocorrelation, but it can easily miss any

nonlinear sequence that has zero autocorrelation but not serially dependent. Such processes are not uncommon in

nonlinear time series (cf. Granger and Terasvirta 1993).
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and Swanson (2001) use a stationary bootstrap procedure. Use of upper bound critical values

may be too conservative. The bootstrap procedure gives accurate sizes, but it is computationally

demanding, especially for a large data set. Chen, Härdle and Kleinow (2000) also develop an

empirical likelihood goodness of Þt test for time series models. One advantage of this method is

that the asymptotic distributions of the test statistic are free of unknown parameters.

III. Extensions

We emphasize that the nonparametric testing procedures just developed are a general method-

ology that can be applied to wide range of dynamic models used in economics and Þnance. This

is because the idea of probability integral transform is very general: the transformed data via

model-implied conditional density should be i.i.d. U [0, 1] if the model is correctly speciÞed. This

fact should hold for not only the single-factor diffusion models as considered in Ait-Sahalia (1996),

but also for other dynamic models, such as the discrete time series models, stochastic volatility

models, and multi-factor term structure models. In this section, we explain how to apply our

methods to other existing models in the literature.

In addition to single-factor diffusion models, our tests can be easily applied to many discrete

time series models that have been proposed in the literature for spot interest rate. For example,

GARCH models have been widely used in the literature to capture volatility clustering in interest

rate data (e.g. Brenner, Harjes and Kroner (1996)); regime-switching models have also been

proposed to capture the potential structural breaks in interest rate process (e.g. Gray (1996),

Ang and Bekaert (1998), and Li and Xu (2000)); the importance of jumps in modeling the tail

behavior of interest rate distribution has also been studied (e.g. Das (2002) and Johannes (2000)).

These models are either discrete time in nature, such as the GARCH and regime-switching models,

or discretized version of continuous-time models, such as the discretized jump-diffusion models

considered in Das (2002). As a result, the speciÞcation of all these models can be summarized by

p
¡
Xt∆|I(t−1)∆

¢
, the conditional density of Xt∆, given I(t−1)∆, the information set at (t− 1)∆. If

the model is correctly speciÞed, then the integral transformed data via p
¡
Xt∆|I(t−1)∆

¢
should be

i.i.d. U [0, 1]. The integral transform is actually much easier to conduct for discrete time series

models than for diffusion models, as the conditional density is typically known in closed-form. As

a result, most existing discrete time interest rate models can be examined by our tests.

Our tests can also be applied to partially observable nonlinear dynamic models, such as the

stochastic volatility models. For example, Kim, Shephard, and Chib (1998) consider the following

stochastic volatility model

Xt∆ = βeht∆/2²t∆, t ≥ 1
h(t+1)∆ = µ+ φ (ht∆ − µ) + σηηt∆,
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h1 ∼ N
µ
µ,

σ2

1− φ2
¶
,

where Xt∆ is the mean corrected return on holding an asset at time t∆, ht∆ is the log volatility

at time t∆ which is assumed to follow a stationary process (|φ| < 1) with ht∆ drawn from the

stationary distribution, ²t∆ and ηt∆ are uncorrelated standard normal white noise shocks and

N (·, ·) is the normal distribution. The model is estimated using Markov Chain Monte Carlo
(hereafter MCMC) simulation method in a Bayesian framework. After obtaining model parameter

estimates bθ, i.e., bθ = ³bβ, bµ, bφ, bση´ , Kim, Shephard and Chib (1998) show (see Section 4.2 on page
380) that the conditional density of X(τ+1)∆, given X

(τ) = (X∆,X2∆, ...,Xτ∆) is given by

p
³
X(τ+1)∆|X(τ), bθ´ = Z p

³
X(τ+1)∆|X(τ), hτ , bθ´ p³hτ |X(τ), bθ´dhτ ,

where p
³
X(τ+1)∆|X(τ), hτ , bθ´ = R p³X(τ+1)∆|X(τ), h(τ+1)∆, bθ´ p³h(τ+1)∆|X(τ), hτ∆, bθ´ dh(τ+1)∆,

and p
³
hτ |X(τ), bθ´ can be obtained through a MCMC Þltering algorithm as described in Kim,

Shephard and Chib (1998). The whole integral in general can be obtained by simulation. Un-

der the null hypothesis, the probability integral transformed data via p
³
X(τ+1)∆|X(τ), bθ´ should

follow an i.i.d. U [0, 1] distribution. While Kim, Shephard and Chib (1998) use this fact to con-

duct certain model diagnostic tests, they do not conduct a formal test of the joint hypothesis of

i.i.d. and U [0, 1]. Our tests can be easily applied to the stochastic volatility model considered in

Kim, Shephard and Chib (1998). In a more recent paper, Chib, Nardari, and Shephard (2001),

using similar methodology, consider more complicated stochastic volatility models. For example

they allow ²t∆ to follow a Student-t instead of standard normal distribution, to approximate the

continuous-time Levy process; they also include jumps in the return process. The conditional

density of these more complex stochastic volatility models (with jumps) can also be obtained

in similar way as shown in the above equation and as a result, our nonparametric tests can be

applied to those models.

Kim, Shephard and Chib (1998) consider only discretized versions of continuous-time stochas-

tic volatility models. Anderson and Lund (1997), on the other hand, study a continuous-time

stochastic volatility model for the spot interest rate:

dXt = κ1 (µ−Xt) dt+ σtXγ
t dW1t,

d log σ2t = κ2
¡
α− log σ2t

¢
dt+ ηdW2t,

where γ ≥ 0, W1t and W2t are independent Brownian motions, and σt is the unobservable instan-

taneous volatility. Likelihood function for the above model is hard to obtain and as a result it

is often estimated using the Efficient Method of Moments of Gallant and Tauchen (1997). Af-

ter obtaining the model parameters, we can proceed to calculate the model transition density of
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X(τ+1)∆ conditional on the past observable information, X
(τ) = (X∆,X2∆, ...,Xτ∆). The repro-

jection technique of Gallant and Tauchen (1998) can be used to obtain the conditional density

of στ given all the past history of X
(τ), i.e., p

³
στ |X(τ), bθ´ . We can calculate the transition den-

sity of X(τ+1)∆ conditional only on past interest rate levels by integrating out the unobservable

stochastic volatility; that is

p
³
X(τ+1)∆|X(τ), bθ´ = Z p

³
X(τ+1)∆|X(τ),στ , bθ´ p³στ |X(τ), bθ´ dστ ,

where the transition density p
³
X(τ+1)∆|X(τ),στ , bθ´ in general does not have closed-form solution

and has to be obtained through simulations. If the stochastic volatility model is correctly speciÞed,

then the probability integral transformed data with respect to p
³
X(τ+1)∆|X(τ), bθ´ will be i.i.d.

U [0, 1]. Any deviation from i.i.d. U [0, 1] will indicate model misspeciÞcation and can be detected

using our testing procedures.

The models we have discussed so far focus on the time series behavior of the spot interest

rate and are estimated using only the spot rate data. There are also many multi-factor diffusion

models in the existing literature that focus on explaining the dynamics of the whole yield curve,

such as the famous affine term structure models of Duffie and Kan (1995). In affine models, it is

typically assumed that the spot rate is a linear (affine) function of the underlying state variables,

i.e.,

Rt = δ0 +
NX
i=1

δiXit,

where Rt is the instantaneous riskfree borrowing and lending rate, and Xit, for i = 1, ..., N are

the state variables and evolve over time as a multi-dimensional affine diffusion process

dXt = κ (Θ−Xt)dt+Σ
p
StdWt,

where κ and Σ are N ×N matrices, St is a N ×N diagonal matrix whose i-th diagonal element is

[St]ii = αi +
NX
j=1

βijXjt,

and Wt is an N-dimensional vector of independent Brownian motions. In affine models, zero-

coupon bond price is given by the following formula

P (Xt, t, T ) = EQ
·
exp

½
−
Z T

t
R (s)ds

¾
|Ft
¸

= exp

"
A (t, T ) +

NX
i=1

Bi (t, T )Xit

#
,

where EQ [·] is the expectation under the risk-neutral probability measure, and A (t, T ) and
Bi (t, T ) can be solved from a system of ordinary differential equations. Therefore bond yields in
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affine models are a linear (affine) function of the underlying state variables

Y (t, T ) = − 1

T − t lnP (Xt, t, T )

= − 1

T − t

"
A (t, T ) +

NX
i=1

Bi (t, T )Xit

#
.

Consequently, affine models are typically estimated using time series observations of the yields

of N zero coupon bonds with different maturities {Y (τ∆, Tk)}nτ=1 , k = 1, ...,N. These yields

are assumed to be observed without error and can be used to infer the underlying state variables

{Xi,τ∆}nτ=1 , i = 1, ...,N. The transition density ofX(τ+1)∆ givenXτ∆, p
¡
X(τ+1)∆|Xτ∆

¢
in general

is not known in closed form and the models are often estimated using the Efficient Method of

Moments or Quasi-Maximum Likelihood (e.g. Dai and Singleton 1999, and Duffee 2001). Given

estimates of model parameters bθ, the probability integral transform of the yields Y ((τ + 1)∆, Tk) ,
k = 1, ...,N, can be calculated in the following way

Z
³
(τ + 1)∆, Tk, bθ´ =

Z Y ((τ+1)∆,Tk)

p
³
y|Xτ∆, bθ´dy

= Pr

"
NX
i=1

Bi ((τ + 1)∆, Tk)Xi,(τ+1)∆ ≤ Y ((τ + 1)∆, Tk)−A ((τ + 1)∆, Tk) |Xτ∆, bθ
#
,

where p
³
y|Xτ∆, bθ´ is the conditional density of Y ((τ + 1)∆, Tk) given Xτ∆. This transition

density and thus the above integral in general has to be obtained using simulation. If the affine

term structure model is correctly speciÞed, then Z
³
(τ + 1)∆, Tk, bθ´ should follow an i.i.d. U [0, 1]

distribution, a fact can be easily tested using our nonparametric tests.

The above examples illustrate the wide applicability of our nonparametric tests. Our asymp-

totic theory directly applies to the models we have discussed, because we assume a general model

speciÞcation in terms of the transition density rather than the stochastic differential equation. Of

course, continuous-time stochastic volatility models and multi-factor term structure models are

much more difficult to estimate and the probability integral transform is also computationally

more demanding to implement. To keep the paper within reasonable length, in the application

section, we only focus on testing the single-factor diffusion models and some discrete time series

models and leave the more complicated continuous-time models for future research.

Gallant and Tauchen (1996), in an inßuential paper, propose a minimum chi-square test for

both single-factor and multi-factor diffusion models. The basic idea is to check whether the

following moment condition holds:Z
∂ log f(x|y,β)

∂β
p(x, y, θ)dxdy = 0,

where p(x, y, θ) is the model stationary density, and f(x|y,β) is a semi-nonparametric density
model, which is free of model misspeciÞcation in an asymptotic sense because the dimension β is
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allowed to grow to inÞnity. Gallant and Tauchen (1996) use a Hermite polynomial approximation,

with the dimension of β determined by such data-driven methods as AIC or BIC criteria. The

above integration can be computed accurately using simulation methods.

Our tests complement Gallant and Tauchen�s EMM tests (1996). Both approaches are non-

parametric: our tests are based on a nonparametric (kernel) transition density estimator, while

Gallant and Tauchen (1996) use a semi-nonparametric (Hermite polynomial-based) transition

density. However, while we use the nonparametric transition density estimator directly, Gallant

and Tauchen (1996) use the derivative of the semi-nonparametric density estimator. As a con-

sequence, at least in single-factor diffusion contexts, our tests are consistent against any model

misspeciÞcation. However, the EMM tests may still have no power against some alternatives,

because the semi-nonparametric density derivative may still have zero expectation under the dis-

tribution of a misspeciÞed model. Indeed, as pointed out by Gallant and Tauchen (1998, p.), one

still cannot conclude that a diffusion model is correctly speciÞed even when the minimum chi-

square EMM test statistic is insigniÞcant. In addition, Gallant and Tauchen (1996) only consider

stationary diffusion processes, while we allow for both time-homogeneous and inhomogeneous

diffusion processes, thanks to our use of the probability integral transform.

When they reject a misspeciÞed model, one may like to go further to explore what are possible

sources for the rejection. For example, is the rejection due to misspeciÞcation in the drift, such

as the ignorance of mean shifts or jumps? Or is it due to the ignorance of GARCH effects

or stochastic volatility? Among other things, the greatest appeals of Gallant and Tauchen�s

EMM method is that in addition to the minimum chi-square test, it also provides a spectrum

of constructive individual t-statistics that are informative in revealing possible sources of model

misspeciÞcation.

For our tests, the transformed data via the dynamic probability integral transform constitutes

a �generalized residual� for the null diffusion model. Intuitively, our transition density-based

omnibus tests contain information of the autocorregrams in all the moments of the generalized

residuals. It is an omnibus test. To check possible sources for the rejection, we can use the

generalized residual series to construct a spectrum of autocorregram-based tests in every moment

of Zτ (θ), which are very informative. In particular, the autocorregram cov(Zτ , Zτ−j) can reveal

information about the adequacy of the mean/drift model, and the autocorregram cov(Z2τ , Z
2
τ−j)

can reveal information about the adequacy of the diffusion or volatility model. Thus, our approach

also shares the appeal of Gallant and Tauchen�s (1996) EMM method in providing constructive

diagnostic tests for possible sources of model misspeciÞcation.

IV. Finite Sample Performance

We now study the Þnite sample performance of our tests via Monte Carlo experiments. Pritsker
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(1998) has conducted a simulation study on Ait-Sahalia�s (1996) marginal density-based test for

time-homogeneous diffusion models. For comparison, we adopt similar simulation designs.

A. Size of the Tests

To examine the size of the tests, we follow Pritsker (1998) simulate data from Vasicek�s (1977)

model:

dXt = κ (α−Xt)dt+ σdWt, (24)

where α represents the long run mean and κ represents the speed of mean reversion to the long

run mean.15 The smaller κ is, the higher the level of persistence of dependence in data, and

consequently, the slower the convergence to the long run mean.

Like Pritsker (1998), we are particularly interested in the impact of the level of dependent

persistence in the data generating process. Given that the Þnite sample performance of the tests

may depend on both the marginal density and the persistence of dependence of the diffusion

process, we follow Pritsker (1998) and keep the marginal density unchanged while varying the

speed of mean reversion. This is achieved by changing κ and σ2 in the same proportions. Thus,

we can focus on the impact of persistent dependence. We consider the Vasicek model in (24) with

both low and high levels of persistent dependence and adopt the same parameter values used in

Pritsker (1998): (κ,α,σ2) = (0.85837, 0.089102, 0.002185) for the low persistent dependence case,

and (κ,α,σ2) = (0.214592, 0.089102, 0.000546) for the high persistent dependence case.

For each parameterization of the Vasicek model, we simulate 1,000 data sets of a random

sample {Xτ∆}nτ=1, where the sample size n = 250, 500, 1, 000, 2, 500, 5, 500 respectively. These

sample sizes correspond to about one year of daily data to twenty-two years of daily data. For each

data set, we estimate the model parameters θ = (κ,α,σ2)0 using the maximum likelihood method.

After obtaining the probability integral transformation of the data {Xτ∆}nτ=1 by (quadrature)
numerical integrations, we apply our tests to the transformed data. We consider the empirical

rejection rates using the asymptotic critical values (1.28, 1.65, 2.33) at the 10%, 5% and 1% levels

respectively.

Figure 1 reports the empirical sizes of the quadratic form test �Q(j), as a function of lag order

j from 1 to 20, for sample sizes n = 250, 500, 1, 000, 2, 500, and 5, 500. The Þrst (second) column

of Figure 1 is the rejection rates of �Q(j) at the 10%, 5% and 1% levels under a correct Vasicek

model with low (high) persistence of dependence. Overall, �Q(j) has reasonable sizes for sample

sizes as small as n = 500 (i.e., about two years of daily data), particularly at the 10% and 5%

15Put VE = σ2/2κ and δ = t − s. Then the Vasicek model has a marginal density: π (x; θ) =

(2VE)
−1/2 exp[− (x− α)2 /2VE] and a transition density

pX (x, t|y, s; θ) =
h
2πVE(1− e−κδ)

i−1/2
exp

"
−
¡
x− ¡α+ (y − α) e−κδ¢¢2

2VE (1− e−κδ)

#
.
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levels. The most important difference from Ait-Sahalia�s (1996) test is that the impact of the level

of dependent persistence on the size of �Q(j) is minimal. The sizes of �Q(j) are virtually the same

in both the low and high persistent case. There is no evidence of a poorer performance under a

higher level of persistent dependence. This suggests that our probability integral transformation is

indeed at work in achieving robustness to persistent dependence. In contrast, Pritsker (1998) Þnds

that under the same simulation setting, Ait-Sahalia�s (1996) test still shows strong overrejection

under H0 when n = 5, 500, and it becomes worse when dependence becomes stronger.

The Þrst (second) column of Figure 2 reports the rejection rates of the Hellinger metric test

�H(j) at the 10%, 5% and 1% levels under a correct Vasicek model with low (high) persistence

of dependence. The �H(j) test shows some overrejections when n = 250, 500. This is apparently

due to the impact of the asymptotically negligible higher order terms of a Taylor expansion of

�H(j) that are absent in �Q(j). However, �H(j) becomes reasonable, particularly at the 10% and

5% levels, when n ≥ 1, 000 (about four years of daily data), indicating that the adverse impact of
the asymptotically negligible higher order terms has diminished. Again, the performance of �H(j)

is essentially the same under both low and high persistence of dependence.

In summary, the �Q(j) test has reasonable sizes for n ≥ 500. The �H(j) test show some over-
rejections for n < 1, 000, but are reasonable and accurate for n ≥ 1, 000, particularly at the 10%
and 5% levels. The performance of both the tests are robust to persistent dependence in data.

Overall, the asymptotic theory for our tests provide reliable inferences in Þnite samples.

B. Power of the Tests

To investigate the power of the tests, we simulate data from the following four diffusion

processes. Below, we denote δ ≡ t− s and φ(·) for the standard normal density.

1. Cox, Ingersoll and Ross�s (1985, CIR) Model:

dXt = κ (α−Xt)dt+ σ
p
XtdWt. (25)

Note thatXt is distributed on R+ ≡ [0,+∞) provided that q ≡ 2κα/σ2−1 ≥ 0. Its transition
density pCIR0 (x, t|y, s) = ce−u−v (v/u)q/2 Iq[2 (uv)1/2], where c ≡ 2κ/{[σ2(1 − e−κδ)], u ≡
cye−κδ, v ≡ cx, and Iq is the modiÞed Bessel function of the Þrst kind of order q (e.g.,

Abramowitz and Stegun 1970) . In our simulation, we choose the same parameter values as

in Pritsker (1998): (κ,α,σ2) = (0.89218, 0.090495, 0.032742).

2. Ahn and Gao�s (1999) Inverse-Feller Model:

dXt = Xt
£
κ− ¡σ2 − κα¢Xt¤ dt+ σX3/2

t dWt. (26)

Its transition density is p0 (x, t|y, s) =
¡
1/x2

¢
pCIR0 (1/x, t|1/y, s) . For this and next two

models, we use the parameter values given in Table VI of Ait-Sahalia (1999), which are

estimated from U.S. interest rate series. Here, we have (κ,α,σ2) = (0.181, 15.157, 0.032742).
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3. Chan, Karolyi, Longstaff and Sanders� (1992, CKLS) Model:

dXt = κ (α−Xt) dt+ σXρ
t dWt. (27)

We set (κ,α,σ2, ρ) = (0.0972, 0.0808, 0.52186, 1.46).

4. Ait-Sahalia�s (1996) Nonlinear Drift Model:

dXt =
¡
α−1X−1

t + α0 + α1Xt + α2X
2
t

¢
dt+ σXρ

t dWt. (28)

We set (α−1,α0,α1,α2,σ2, ρ) = (0.00107,−0.0517, 0.877,−4.604, 0.64754, 1.50).

For each of these four alternatives, we generate 500 realizations of a random sample {Xτ∆}nτ=1,
where n = 1, 000, 2, 500, 5, 500 respectively. For the CIR and Ahn and Gao�s (1999) models, the

transition density is a noncentral chi-square; we simulate data as the sum of i.i.d. normal random

variables. For the CKLS and Ait-Sahalia� (1996) nonlinear drift models, the transition density

has no a closed form solution; we simulate data using the convenient Milstein scheme:

Xt+δ = Xt + µ (Xt) δ + σ (Xt)
√
δεt +

1

2
σ2 (Xt) δ

¡
ε2t − 1

¢
,

where δ > 0. While more accurate schemes are now available in the literature (e.g., Kloeden et.

al. 1991), the Miltstein scheme provides sufficient precision for our purpose. We simulate Þve

observations each day but sample the data at only daily frequency (δ = ∆/5 and ∆ = 1).

To examine the power, we need not estimate the four alternative models. In our applications to

interest rates in Section IV, we will estimate these models as well as the Vasicek model via MLE.

For the CKLS and Ait-Sahalia�s (1996) nonlinear drift models, we will use Ait-Sahalia�s (2001)

Hermite expansion to obtain an accurate closed-form approximation of the transition density:

p0 (x, t|y, s) = φ (v)

xρ
√
δ

JX
k=0

β
(m)
k Hk (v) ,

where v ≡ (x1−ρ − y1−ρ)/√δ (1− ρ)σ,Hk(·) is the Hermite polynomial of order k, β(m)k is the

coefficient of the Hermite expansion, J represents the number of Hermite polynomials included in

the expansion, and m represents the highest order of δ in approximation of βk.
16 (see Ait-Sahalia

2001 for explicit expressions for β
(m)
k ).

For each data set, we test the null hypothesis that the data is generated from the Vasicek

model in (24). We Þt the Vasicek model to the data and compute the two test statistics in

16The Hermite approximation of the transition densities of CKLS and Ait-Sahalia�s nonlinear drift model are

used later in this paper to estimate model parameters using maximum likelihood method. Previous studies such

as Ait-Sahalia (1999, 2001) and Egorov, Li and Xu (2001) have shown that the approximation works very well for

J = 6 and m = 3, which are also used in our paper. We also try m = 1 and 2 and obtain very similar test statistics.
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(19) and (23). Because the results using empirical critical values are very similar for both �Q(j)

and �H(j) when n ≥ 1, 000, we only report the power using asymptotic critical values, for n =

1, 000, 2, 500, 5, 500.17 Figure 3 reports the power of our tests at the 5% level using asymptotic

critical values. The power patterns at the 10% and 1% levels are very similar to those at the

5% level and thus are not reported for space. The Þrst column of Figure 3 reports the rejection

rates of the quadratic form test �Q(j) at the 5% level. The test has all-round good power in

detecting misspeciÞcation of the Vasicek model against the four alternatives. When n = 5, 500,

�Q(j) rejects the CIR model at a rate of about 90%. For comparison, Pritsker (1998) reports that

the size-corrected power of Ait-Sahalia�s (1996) test in detecting the Vasicek model against the

CIR alternative is about 38% when n = 5, 500. Thus, our test is at least twice as powerful as

Ait-Sahalia�s (1996) test against the CIR model under the same simulation setting. The �Q(j) test

has virtually unit power against the other three alternatives when n = 5, 500. It appears that our

transition density-based test Q(j) is more powerful than marginal density-based tests.

The second column of Figure 3 reports the rejection rates of the Hellinger metric test �H(j) at

the 5% level. The power is similar to that of �Q(j).

Our simulation results show that with the help of the probability integral transform and the

boundary bias correction for kernel density estimator, our transition density-based tests perform

rather well even for highly persistently dependent data with sample sizes often encountered in

empirical Þnance.

V. Application to Spot Interest Rates

The transition density-based nonparametric tests developed in the previous sections provide

empirical researchers with a useful tool to study the dynamic behavior of important economic

variables, such as stock prices, interest rates, exchange rates, commodity prices, and macroeco-

nomic variables. As an illustration of the merits of our tests, in this section we apply them to

test a wide variety of spot interest rate models.

Despite a large number of empirical studies, the evidence on the performance of different in-

terest rate models is still not conclusive (see e.g. Chapman and Pearson 2001 for an excellent

survey of the existing literature). In general, it is not easy to compare the performance of existing

models, as different studies use different model speciÞcations and estimation methods. For ex-

ample, some models are speciÞed in continuous time, while others in discrete time; some models

are estimated using the maximum likelihood method, while others using GMM or nonparamet-

ric methods. The nonparametric tests just developed provide a convenient way to compare the

performance of different models. Even though these models in general are not nested and are

estimated using different methods, their performance can still be compared against each other

17The results using empirical critical values are available from the authors upon request.
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using our nonparametric tests. By comparing the closeness of the distribution of the transformed

data under each model to the i.i.d. U [0, 1] distribution, we can determine which model provides

better description of the data. We can also use the diagnostic tools associated with our tests to

understand the possible sources of model misspeciÞcation.

In our study, we consider the single-factor diffusion models that have been studied in Ait-

Sahalia (1996), and some popular discrete time series models such as the GARCH models, regime-

switching models, and the discretized version of jump-diffusion models. For comparison with

existing studies, we use the same interest rate data as that used in Ait-Sahalia (1996). The

daily seven-day Eurodollar interest rate series used in Ait-Sahalia (1996) is from June 1, 1973 to

February 25, 1995, with n = 5, 505. Figure 4 displays the level and change series of Eurodollar

rates, as well as their histograms. The Eurodollar rates display excess volatility before 1983. The

marginal distribution of the level series is skewed to the right. There is a sharp peak around zero

for the change series, indicating that small daily changes occur most of time.

A. Single-factor Diffusion Models

Ait-Sahalia (1996), using his marginal density-based test with asymptotic critical values, over-

whelmingly rejects all the existing single-factor diffusion models for the spot rate. The main reason

for the rejection is that contrary to the assumptions in most models, the drift of the spot rate

appears to be a nonlinear function of the level of the interest rate: for the lower and middle ranges

of the interest rate, the drift is almost zero, but the spot rate exhibits strong mean-reversion when

the interest rate is high. Stanton (1997), using nonparametric kernel regression also reaches sim-

ilar conclusions. Due to the boundary bias and the Þnite sample problems of the nonparametric

methods used, however, the Þndings of nonlinear drift by Ait-Sahalia (1996) and Stanton (1997)

have been challenged by Pritsker (1998) and Chapman and Pearson (2000). As noted earlier,

Pritsker (1998) shows that Ait-Sahalia�s (1996) test tends to strongly overreject a correct model

using asymptotic critical values. With the empirical critical values provided in Pritsker (1998),

Ait-Sahalia�s (1996) test would fail to reject certain one-factor diffusion models for spot rate, such

as the CKLS model and the nonlinear drift model.

Given the reasonable Þnite sample performance of our tests, we now apply them to the daily

Eurodollar interest rates to re-examine the single-factor diffusion models considered in Ait-Sahalia

(1996). Interestingly, we Þnd that all the models are still overwhelmingly rejected by our new

procedures. Unlike Ait-Sahalia (1996), we Þnd that even the models with a nonlinear drift do not

signiÞcantly improve the goodness of Þt.

To compare with Ait-Sahalia�s (1996) study, we consider Þve popular models in this section:

the Vasicek, CIR, Ahn and Gao, CKLS and Ait-Sahalia�s (1996) nonlinear drift models, as given

in (24)�(28) respectively. For each model, we estimate parameters using the maximum likelihood

method. The true likelihood function is used when the model has a closed-form transition density
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(for the Vasicek, CIR and Ahn and Gao�s models); otherwise Ait-Sahalia�s (2001) Hermite expan-

sion is used to obtain a closed-form approximation of the likelihood function (for the CKLS and

Ait-Sahalia�s 1996 nonlinear drift models). Table 1 reports parameter estimates and their stan-

dard errors, which indicate that the drift parameter estimates are less precise than the diffusion

parameter estimates, as is expected.

Figure 5 reports the values of the test statistics as a function of lag order j from 1 to 20.

As shown in Figure 5(a), the �Q(j) values for the Þve models range from 349.81 to 1,574.02.

Compare to the upper-tailed N(0,1) critical values, (e.g. 2.33 at the 1% level), the large Q-

statistics are overwhelming evidence that all the Þve models are severely misspeciÞed at any

reasonable signiÞcance level. The Vasicek model performs the worst among the Þve models, with

�Q(j) values around 1,400 for all lags from 1 to 20. This is probably due to the fact that the Vasicek

model assumes interest rate volatility to a constant which is obviously not consistent with the

data. The CIR model dramatically reduces the �Q(j) values to around 620 and the goodness of Þt

is further improved, in their order, by Ahn and Gao�s (1999) inverse Feller model, Ait-Sahalia�s

(1996) nonlinear drift model, and the CKLS model. The CKLS model performs the best, with

the �Q(j) values around 370.

As shown in Figure 5(b), the �H(j) tests also overwhelmingly reject all the Þve models at

any conventional level. The �H(j) values are different from the �Q(j) values (as predicted by the

asymptotic theory), though the relative ranking among the Þve models remains the same. The

�H(j) values are around 570 for the Vasicek model, and are dramatically reduced to around 460

for the CIR model. The CKLS model has the smallest �H(j) statistics, which are around 360.

Although certain models perform better than others in the relative term, the extremely large

test statistics of all Þve models indicate that none of them can adequately capture the dynamics

of the spot rate. To include nonlinear drifts does not signiÞcantly improve the goodness of Þt.

There is obviously a long way to go before obtaining a correct model speciÞcation from any of

these single-factor models.

Next we explore the possible reasons for the rejection of the single-factor diffusion models. Fol-

lowing Diebold, et al. (1998), we study the i.i.d. and U [0, 1] properties of the generalized residuals

{ �Zτ}nτ=1, which provide rich information about the possible sources of model misspeciÞcations.
We compare the marginal densities of the Þve models with a nonparametric kernel estimator

of the marginal density. Figure 6(a) shows that all Þve models underpredict the likelihood of

small interest rate changes, or the values of the interest level around the mean: the model-

implied probability of the interest rates around the mean is always smaller than the nonparametric

counterpart. In contrast to most models for stock prices and exchange rates, all Þve models

overpredict the tail probabilities of interest rates. In other words, all models overestimate the

kurtosis of the interest rate level and underestimate the probabilities of the small movements of
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interest rates around the mean. This could be the consequence of underestimating the speed of

mean reversion (if any) or overestimating the magnitude of volatility. In Figure 6(b), we also plot

the kernel density estimates for the transformed series { �Zτ}nτ=1 for each of the Þve models. These
density estimates all have peaks near 0.5, which indicate, in an alternative but equivalent way,

that too many observations fall into the area near the mean of the interest rate level than predicted

by each model. How to improve the goodness-of-Þt in the tail and center of the distributions of

interest rates should be a primary concern for future research. Clearly, the smoothed histogram

of the generalized residuals { �Zτ}nτ=1 is informative in revealing the aspects of model inadequacy,
particularly the inadequacy of the model stationary or marginal density.

The U [0, 1] property of the generalized residuals, however, does not provide all the information

about model speciÞcation. To further understand the dynamic aspects of a diffusion model, we

examine the autocorrelations of {Zmτ }nτ=1, for m = 1, 2, 3, 4, which reveal important information

about the adequacy of the speciÞcation of the conditional mean, variance, skewness and kurtosis

of the generalized residuals. As shown in Figure 7, the autocorrelations of the Þrst four moments

of { �Zτ}nτ=1 in general are not zero, which indicate that none of the models can fully capture the
dynamics of the data. All models exhibit similar behavior in corr( �Zτ , �Zτ−j), which shows that

the introduction of nonlinear drift does not signiÞcantly improve the modeling of the conditional

mean of the generalized residuals. In terms of modeling the conditional variance, skewness and

kurtosis of the generalized residuals, the Vasicek model, which has a constant volatility, performs

the worst. The autocorrelations of {Zmτ }nτ=1, for m = 2, 3, 4, show that the CIR model provides

certain improvements, and the CKLS model provides the most signiÞcant improvements over the

Vasicek model. The three models have the same drift speciÞcation, thus the improvements must

have come from the difference in the way they model volatility. It appears that allowing volatility

to depend on the level of interest rate is an important part in modeling interest rate data. Our

results also conÞrm existing Þndings in the literature that the elasticity of volatility with respect

to the interest rate level should be close to 1.5. The Ahn and Gao and Ait-Sahalia�s nonlinear

drift model provide certain improvements over the CIR model. The improvement, however, is

mainly due to the speciÞcation of the volatility function, rather than the drift function, as the

nonlinear drift models still underperform the CKLS model, which has a linear drift.

The inadequacy of the above single-factor diffusion models could be due to the reason that the

interest rate simply does not follow a Markov process. We notice this possibility because the test

statistics �Q(j) and �H(j) of all Þve models do not decline as lag order j increases. In other words,

the generalized residuals { �Zτ}nτ=1 display highly persistent dependence for each model. This, of
course, may be due to the misspeciÞcation of the drift and/or diffusion functions. It may also

suggest that using interest rate level alone seems insufficient to capture interest rate dynamics.

In other words, the Markov property may not be a reasonable assumption. To check this, we
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Þrst estimate the transition density of data under the Markov assumption, using the following

nonparametric density estimator:

�p0(x, τ∆|y, (τ − 1)∆) ≡
Pn
τ=2Kh(x,Xτ∆)Kh(y,X(τ−1)∆),Pn

τ=2Kh(y,X(τ−1)∆)
(29)

where Kh(x, y) is as deÞned in (13), h = �SXn
− 1
6 , and �SX is the sample standard deviation of

the sample {Xτ∆}nτ=1, which has been scaled to have support on the unit interval [0,1]. Then we
compute the probability integral transform:

�Z0τ ≡
Z Xτ∆

x0

�p0(x, τ∆|X(τ−1)∆, (τ − 1)∆)dx, τ = 1, 2, ..., n. (30)

Under the Markov assumption, �p0(x, τ∆|y, (τ − 1)∆) is consistent for the transition density
p0(x, τ∆|y, (τ − 1)∆) of Xt. As a consequence, the transformed series { �Z0τ }nτ=1 will be approxi-
mately i.i.d.U [0, 1]. Any deviation from i.i.d. U [0, 1] will indicate violation of the Markov assump-

tion. Figure 8 displays the kernel density estimates of { �Z0τ }nτ=1 and the sample autocorrelations
of { �Z0τ }. There appears signiÞcant evidence that { �Z0τ } is not uniformly distributed. In particu-
lar, there is a mode near 0.5, indicating that too many observations fall into the area near the

mean of the interest rate than predicted by a Markovian model. Moreover, { �Z0τ } shows persistent
autocorrelation. Thus, the Markov assumption does not hold for the data.

B. Discrete Time Series Models

The violation of the Markov property maybe due to the fact that we only consider single-factor

diffusion models whose conditional density only depends on previous level of interest rate. As

argued by many authors, the single-factor diffusion models are too simplistic to capture the rich

dynamics of interest rate data. As a result, many more complex interest rate models have been

developed in the literature.

For example, Brenner, Harjes, and Kroner (1996) and Andersen and Lund (1997) argue that it

is too restrictive to assume that interest rate volatility solely depends on the level of the interest

rate. It fails to capture those situations in which volatility is high but interest rate is low, or

vice versa. It also ignores the obvious volatility clustering in interest rate data. They show that

GARCH and/or stochastic volatility models provide signiÞcantly better Þt of the data. Other

authors, such as Gray (1996), Ang and Bekaert (1999), and Li and Xu (2000), point out that

it is unrealistic to assume that the interest rate follow a time-homogeneous process over a long

period of time, given the changes in business cycle and general macroeconomic conditions. These

authors show that Markov regime switching models perform much better than the single-factor

diffusion models. Das (2002) and Johannes (2000) also argue that surprises is a rule rather than

an exception in Þnancial markets. Interest rate, like other asset prices, exhibit infrequent jumps

due to discrete release of important information. They show that jumps play an important role

in capturing the marginal distribution of interest rate data.
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To examine whether the violation of the Markov property is due to the ignorance of stochastic

volatility, regime shifts, or jumps in interest rates, we consider the following discrete time non-

Markovian interest rate models: GARCH models with nonlinear drift, regime-switching models

with GARCH effects and state-dependent transition matrix, and the discretized jump-diffusion

models with ARCH/GARCH effects.

We Þrst consider a GARCH(1,1) model with both nonlinear drift and level effect:

∆Xt∆ = α−1X−1
(t−1)∆ + a1X(t−1)∆ + α2X

2
(t−1)∆ + σX

ρ
(t−1)∆

p
ht∆²t∆,

ht∆ = β0 + h(t−1)∆(β1 + β2²2(t−1)∆),

where ²t∆ ∼ N (0,∆) . This model is not Markov as h(t−1)∆ depends on X(t−2)∆. As shown by

Nelson (1990), in continuous time limit a GARCH model converges to a stochastic volatility model

which becomes Markov with the additional state variable, the unobservable stochastic volatility.

Therefore GARCH models can be considered as a discrete-time approximation of a continuous-

time stochastic volatility model, and Nelson (1990) shows that the approximation works well

for daily data. Hence, our analysis of GARCH models also has implications for continuous-time

stochastic volatility model, which is much more difficult to estimate (we leave the estimation and

testing of continuous-time stochastic volatility models for interest rate for future research).

Next, we consider regime switching models with GARCH and level effect

∆Xt∆ = α (st∆) + β (st∆)X(t−1)∆ + σ (st∆)X
ρ(st∆)
(t−1)∆

p
ht∆²t∆,

ht∆ = β0 + h(t−1)∆
³
β1²

2
(t−1)∆ + β2

´
,

where st follows a two-state Markov chain with time-varying transition matrix as speciÞed in Ang

and Bekaert (1998):

P
¡
st∆ = 1|s(t−1)∆ = 1

¢
=

exp(a01 + a11X(t−1)∆)
1+ exp(a01 + a11X(t−1)∆)

P
¡
st∆ = 0|s(t−1)∆ = 0

¢
=

exp(a00 + a10X(t−1)∆)
1+ exp(a00 + a10X(t−1)∆)

.

The above regime-switching model is slightly different from the speciÞcation used in Gray (1996).

Unlike Gray (1996) who assumes ρ = 0.5, we estimate this parameter from the data and allow it

to be regime dependent. Our GARCH speciÞcation is also different from that of Gray (1996), who

removes the path-dependence nature of GARCH models by averaging over regimes the conditional

and unconditional variances at every time point and allows the GARCH and ARCH parameters to

be regime dependent. We Þnd the estimation of Gray�s (1996) model speciÞcation is very unstable:

for instance, the sum of the GARCH parameters reaches 5. Ang and Bekaert (1998) also have

similar experience that the estimates of Gray�s model fail to converge. Our model speciÞcation
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on the other hand, turns out to have much better convergence properties. Due to the GARCH

effect and the fact that the ex ante probability P
¡
st∆ = 1|I(t−1)∆

¢
depends on I(t−2)∆, the above

model is also not Markov.

Finally, we consider the discretized version of the following jump-diffusion model:

dXt = µ(Xt)dt+ σ(Xt)dWt + J(Xt)dπ[λ(Xt)],

where J(Xt) is the jump size and λ(Xt) is the jump intensity. Das (2002) considers the discretized

version of the above model with nonlinear drift and ARCH effect. The only difference in our model

is that we also introduce level and GARCH effect in jump-diffusion models. Especially we consider

the following discretized jump-diffusion models:

∆Xt∆ = α−1X−1
(t−1)∆ + a1X(t−1)∆ + α2X

2
(t−1)∆ + σX

ρ
(t−1)∆

p
ht∆²t∆ + J(µ, γ

2)∆π(q),

ht∆ = β0 + β1[X(t−1)∆ −E(X(t−1)∆|X(t−2)∆)]2, (for ARCH model)

ht∆ = β0 + h(t−1)∆(β1 + β2²2(t−1)∆) (for GARCH model)

where the jump size J follows an i.i.d. N(µ, γ2) and ∆π(q) follows an i.i.d. Bernoulli (q) distri-

bution. While we estimate the discretized version of the jump-diffusion model, Das (2002) has

shown that the discretization bias is very small for daily data.

The above discrete time models can be easily estimated using the maximum likelihood method,

as their conditional distributions are known in closed-form. Parameter estimates of each model

are shown in Table 2. It is clear that the more complex models generally have higher likelihoods.

We conduct the probability integral transform of the data under each model using the model-

implied conditional probability density p
¡
Xτ∆|I(τ−1)∆

¢
, where I(τ−1)∆ is the information set at

τ − 1. After applying the nonparametric tests to the transformed data, we obtain test statistics
under Q-test and H-test which are shown in Figure 9 (a) and (b).

It is interesting to point out that although the above models have been demonstrated in the

literature to provide signiÞcant improvements over the single-factor diffusion models, they are

still overwhelmingly rejected by our tests. The GARCH(1,1) model with nonlinear drift and level

effect performs the worst among the four models, with Q-statistics above 1,000 and H-statistics

close to 400. Introducing regime-shifts signiÞcantly improve the performance over GARCH mod-

els under the Q-test, and some improvements under the H-test. Jump-diffusion models with

ARCH/GARCH effects perform the best among the four models. The jump-diffusion model with

ARCH effect has the smallest Q-statistics, while the jump-diffusion model with GARCH effect has

the smallest H-statistics. The difference in test statistics between the two jump-diffusion models is

not big under both tests. We also compare the performance of the four discrete time series models

with that of the single-factor diffusion models. The H-statistics of the jump-diffusion models with

ARCH/GARCH effects are signiÞcantly smaller than that of the best performing single-factor
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diffusion model, the CKLS model. While the improvements are obvious, the large test statistics

show that the jump-diffusion models are still grossly misspeciÞed. The Q-statistics of the jump-

diffusion models, however, are not signiÞcantly different from that of the CKLS model, which

maybe due to parameter estimation uncertainty.

Having demonstrated the failures of all the existing models, we examine the behavior of

the probability integral transformed data to understand the possible sources of rejections. We

Þrst examine the marginal density of { �Zτ}nτ=1 for the four different models in Figure 10. The
improvement from single-factor diffusion models to GARCH models is not signiÞcant. But it is

very clear that the introduction of regime shifts or jumps signiÞcantly improve the goodness of

Þt. The nonparametric density of { �Zτ}nτ=1 becomes much more uniform for the regime-switching

and the jump-diffusion models. This is consistent with the Þndings in Ang and Bekaert (1998),

Das (2001) and Johannes (2000) that regime shifts and jumps are important factors in modeling

the marginal density of interest rate data.

Then we examine in Figure 11 the autocorrelations of { �Zmτ }nτ=1form = 1, 2, 3, 4, under different

model speciÞcations. It is interesting to note that all four models behave similarly in capturing

the conditional mean of the generalized residuals. This is consistent with the Þndings in Ang

and Bekaert (1998) and Li and Xu (2000) that regime switching models with linear drift in each

individual regime provide similar description of the conditional mean as a model with nonlinear

drift. The four models also perform similarly in terms of capturing conditional variance, skewness

and kurtosis of the residuals, although the jump-diffusion models provide some improvements

over the other models. By comparing the autocorrelations of { �Zmτ }nτ=1 for m = 1, 2, 3, 4, of the

discrete time models with that of the single-factor diffusion models, we can see that the discrete

time models signiÞcantly improve the modeling of the conditional variance, skewness and kurtosis.

For example, we Þnd that the autocorrelations of �Z2τ , �Z
3
τ , and �Z

4
τ are signiÞcantly different from

zero for the Þve diffusion models, but are signiÞcantly reduced for the discrete time models. Our

calculation of Corr
h
�Z2τ ,

�Zτ−j
i
and Corr

h
�Zτ , �Z

2
τ−j
i
, which measures the so-called leverage effect

and the ARCH-IN-MEAN effect, also show the same results: the discrete time series models show

improvements over the diffusion models.

Our analysis of the i.i.d. U [0, 1] property of the transformed data { �Zτ}nτ=1 of all the models
reveal some interesting Þndings. First, we Þnd that in general linear and nonlinear drift models

perform similarly in modeling the conditional mean of { �Zτ}nτ=1. Second, introducing level effect is
important and models with the elasticity parameter closer to 1.5 perform better. Third, introduc-

ing GARCH effects, regime shifts and jumps improves the modeling of the conditional variance,

skewness and kurtosis of the generalized residuals. Fourth, including regime shifts and jumps

provide the most signiÞcant improvements in modeling the marginal density of interest rate data.

Fifth, even the complicated models that allow for changing volatility, regime shifts, and jumps
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are still not adequate to capture the rich dynamics of interest rate data.

VI. Conclusion

We have developed two nonparametric speciÞcation tests for continuous-time diffusion models.

Our tests extend Ait-Sahalia�s (1996) work in several directions. Instead of using the marginal

density, we use the transition density, which can capture the full dynamics of a diffusion model.

We employ a dynamic probability integral transform, which converts any highly persistently

dependent data into an i.i.d. U [0, 1] sequence via the model implied transition density under

correct model speciÞcation. Our tests compare a kernel estimator of the joint density of the

transformed data with the product of uniform density and can detect any deviation from either

i.i.d. or U [0, 1] . As there is no serial dependence in the transformed data under correct model

speciÞcation, nonparametric density estimators and related test statistics are expected to perform

well in Þnite samples. Our omnibus tests are further supplemented by a spectrum of graphical

smoothed histograms and autocorregrams of the generalized residuals, which provide constructive

information about the possible sources of model misspeciÞcation. Our tests, although developed

for single-factor diffusion models, are applicable to a wide range of dynamic economic models,

including discrete time series models, time-inhomogeneous diffusion models, stochastic volatility

models, jump diffusion models and multi-factor term structure models. Simulation studies show

that our tests perform rather well in Þnite samples even for data with highly persistent dependence.

It has reasonable size and good power against a wide range of alternatives.

The probability integral transform requires the model-implied transition density, whose closed

form solution is usually not available. For general diffusion models, one can use simulation

methods developed in Pedersen (1995), Brandt and Santa-Clara (2001) and Elarian, Chib, and

Shephard (2002) to estimate the model-implied transition density. Ait-Sahalia�s (2001) recent

important work provides a convenient and accurate closed-form approximation for the model-

implied transition density for single-diffusion models.

When applied to U.S. interest rate data, our tests overwhelmingly reject some popular interest

rate models in the existing literature, including single-factor diffusion models studied in Ait-

Sahalia (1996) and discrete time models with GARCH effects, regime shifts and jumps. We Þnd

that models with nonlinear drifts do not signiÞcantly improve the goodness of Þt, and the main

reason for model inadequacy seems to be the violation of the Markov assumption. We further

Þnd that introducing GARCH effects, regime shifts and jumps help improve the performance of

the models, although these more complicated models are also overwhelmingly rejected by our

tests. Our study shows that nonparametric methods can provide a reliable and powerful tool

for analyzing Þnancial data. In future we research, we would like to apply our tests to more

complicated interest rate models, such as continuous-time stochastic volatility models with jumps,
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continuous-time Levy processes and multi-factor term structure models.
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Granger, C. and T. Teräsvirta, 1993, Modelling Nonlinear Economic Relationships. Oxford Uni-

versity Press: New York.

Gray, S., 1996, Modeling the Conditional Distribution of Interest Rates as a Regime-Switching

Process, Journal of Financial Economics 42, 27-62.

Hall, P., 1984, Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric

34



Density Estimation, Journal of Multivariate Analysis 14, 1-16.

Hall, P. and C. Hyde. 1980, Martingale Limit Theory and Its Application. Academic Press: New

York.

Hansen, L.P. and J.A. Scheinkman, 1995, Back to the Future: Generating Moment Implications

for Continuous Time Markov Processes, Econometrica 63, 767-804.
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Table I. Parameter Estimates of Single-factor Diffusion Models

This table contains parameter estimates for Þve popular spot rate models using daily Eu-

rodollar interest rates from June 1, 1973 to February 25, 1995, as used in Ait-Sahalia (1996).

For ease of comparison, we write each model as a special case of Ait-Sahalia�s nonlinear drift

model. Therefore we have, for Vasicek model, dXt = (α0 + α1Xt)dt + σdWt; for CIR model,

dXt = (α0 + α1Xt) dt+σX
0.5
t dWt; for Ahn and Gao model, dXt =

¡
α1Xt + α2X

2
t

¢
dt+σX1.5

t dWt;

for CKLS model, dXt = (α0 + α1Xt)dt + σX
ρ
t dWt; and for the nonlinear drift model, dXt =

(α−1X−1
t + α0 + α1Xt + α2X

2
t )dt + σX

ρ
t dWt. Parameter estimates are obtained using maxi-

mum likelihood method: the true likelihood function is used if available; otherwise the Hermite

approximation of the likelihood function is used. Standard errors are given in the parentheses.

Model α−1 α0 α1 α2 σ ρ Log-Likelihood

Vasicek 0.0 0.13 -1.59 0.0 0.064 0.0 22503.6

(3.81) (-4.18) (104.40)

CIR 0.0 0.096 -1.27 0.0 0.19 0.5 23605.1

(2.91) (-2.68) (104.37)

Ahn & Gao 0.0 0.0 0.94 -12.60 2.17 1.5 24364.1

(3.34) (-2.50) (108.92)

CKLS 0.0 0.04 -0.62 0.0 1.48 1.35 24385.7

(2.04) (-1.98) (18.41) (62.95)

Nonlinear Drift 0.0001 -0.02 1.47 -15.41 1.50 1.36 24388.5

(0.03) (-1.45) (1.78) (-2.12) (18.78) (64.44)
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Table II. Parameter Estimates of Discrete Time Series Models

This table contains parameter estimates for four discrete time series spot rate models using

daily Eurodollar interest rates from June 1, 1973 to February 25, 1995, as used in Ait-Sahalia

(1996).

Panel A. Parameter Estimates for GARCH Model (with nonlinear drift and level effect) and

Regime Switching Model (with GARCH and level effect)

Parameters Estimates (GARCH) Std. Error (GARCH) Parameters Estimates (RS) Std. Error (RS)

α−1 -0.0984 0.1249 α0 1.5378 1.5378

α0 (1e-02) 5.0494 6.3231 β0 -1.0646 0.4207

α1 (1e-03) -4.4132 9.2876 α1 -0.0013 0.0351

α2 0.0000 0.0004 β1 -0.0076 0.0484

σ1 0.3355 0.0483

ρ 1.0883 0.0408 ρ0 0.3566 0.0693

ρ1 0.0064 0.0512

β0 (1e-03) 0.0738 0.0119 b0 (1e-03) 6.5126 1.9898

β1 (1e-01) 6.4117 0.1359 b1 0.0224 0.0034

β2 (1e-01) 3.5260 0.2181 b2 0.7810 0.0254

a00 0.2350 0.2192

a01 4.5398 0.2691

a10 0.0208 0.0184

a11 -0.2800 0.0296

Log-Likelihood 654.13 Log-Likelihood 2712.97
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Panel B. Parameter Estimates for Jump-Diffusion Model (with nonlinear drift, ARCH/GARCH

and level effect)

Parameters Estimates (ARCH) Std. Error (ARCH) Estimates (GARCH) Std. Error (GARCH)

α−1 0.2422 0.0776 0.2109 0.0768

α0 (1e-01) -1.3077 0.3865 -1.0865 0.3843

α1 (1e-02) 2.0799 0.5655 1.6082 0.5719

α2 -0.0010 0.0003 -0.0007 0.0003

ρ 0.7645 0.0576 0.3698 0.0445

β0 (1e-03) 0.9009 0.0982 0.8765 0.0587

β1 0.1041 0.0143 0.1488 0.0153

β2 0.1747 0.0247

q 0.1015 0.0060 0.0789 0.0055

µ 0.0053 0.0263 -0.0138 0.0349

γ 0.7997 0.0307 0.7957 0.0379

Log-Likelihood 2482.39 2568.13
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Figure 1: Size of the Q-Test for both high and low level of persistent dependence
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Figure 2: Size of the H-Test for both high and low level of persistent dependence
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Figure 3: Power at 5% level of the Q-Test and H-Test against different alternatives
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Figure 4: Level and change of 7-day Eurodollar interest rates
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Figure 5: Test statistics under Q-Test and H-Test for Þve different spot rate models
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Figure 6: Marginal densities of the original and transformed data for Þve different parametric

spot rate models
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Figure 7.a Lag Order
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Figure 7.b Lag Order
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Figure 7.c Lag Order
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Figure 7.d Lag Order
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Figure 7: Autocorrelations of the Þrst four moments of the �generalized residuals�
nbZmτ on

τ=1
for

the Þve single-factor diffusion models. Subplots a, b, c, and c represents Corr
h bZmτ , bZmτ−ji for

m = 1, 2, 3, and 4. In each plot, from top to bottom are Vasicek, CIR, Ahn and Gao, Nonlinear

Drift, and CKLS models.
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8.b Autocorrelation of the PITs via Nonparametric Density Under Markov Assumption

Figure 8: Marginal density and autocorrelation of the probability integral transforms (PITs) of

original data via nonparametric transition density estimated under the Markov assumption
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Figure 9.a Lag Order
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Figure 9: Test statistics under Q-test and H-test for the four discrete time series models. For

Q-test, from top to bottom are GARCH, Regime switching, Jump-diffuson/GARCH, and Jump-

diffusion/ARCH models. For Q-test, from top to bottom are GARCH, Regime switching, Jump-

diffuson/ARCH, and Jump-diffusion/GARCH models.
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Figure 10.a Jump-diffusion/ARCH model
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Figure 10.a Jump-diffusion/GARCH model

Figure 10: Histograms of the �generalized residuals� {Zτ}nτ=1 for four discrete time series models
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Figure 11.a Lag Order
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Figure 11.b Lag Order
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Figure 11.c Lag Order
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Figure 11.d Lag Order
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Figure 11: Autocorrelations of the Þrst four moments of the �generalized residuals�
nbZmτ on

τ=1

for the four discrete time series models. Subplots a, b, c, and c represents Corr
h bZmτ , bZmτ−ji for

m = 1, 2, 3, and 4. In each plot, from top to bottom are GARCH, Regime switching, Jump-

diffusion/ARCH, Jump-diffusion/GARCH models.
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