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Simulation based Option Pricing

Jens Liissem! and Jiirgen Schumacher?

1 Simulation techniques for option pricing

We introduce Monte Carlo techniques and Quasi Monte Carlo techniques for
option pricing. First, we give an idea how to use simulation techniques to
determine option prices, then - using the developed basic methods - we give
examples how to price more complex i.e. exotic options even on more than one
underlying. Finally we present a short guideline how to price exotic options
with the proposed techniques.

First, we take a look at a European put on one underlying stock, a pricing
problem which can be solved analytically e.g. by using the Black-Scholes for-
mula. We start with this problem not only because it has become a kind of
”standard problem” but also to have the possibility to compare the results of
our approximation with an analytical solution. At the same time we look at
the time-complexity of the used simulation technique. Next, we show how to
price path dependent options with Monte Carlo methods. Afterwards, we show
how to price a stock option on several underlyings. This implies that we have
to solve a multi-dimensional simulation problem.

1.1 Introduction to simulation techniques

The idea behind randomized algorithms is that a random sample from a pop-
ulation (of input variables) is representative for the whole population. As a
consequence, a randomized algorithm can be interpreted as a probability distri-
bution on a set of deterministic algorithms.

We will see that there are three main advantages to randomized algorithms:
1. Performance: For many problems, it can be shown that randomized algo-
rithms run faster than the best known deterministic algorithm. 2. Simplicity:
Randomized algorithms are easier to describe and implement than comparable
deterministic algorithms. 3. Flexibility: Randomized algorithms can be easily
adapted.

In general one distinguishes two types of randomized algorithms. Las Vegas
algorithms are randomized algorithms that always give correct results with only
the variation from one run to another being its running time. Monte Carlo
algorithms are randomized algorithms that may produce an incorrect solution
for which one can bound the probability of occurrence. The quality of the
solution can be seen as a random variable.

Within this chapter, we focus on Monte Carlo algorithms calculating the
value of the following integral

/ f(@)de (1)
[0,1]d

by evaluation of f(z) for independent uniform distributed random vectors X, X, ..., Xy,
X; € [0,1)4
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The arithmetic mean of the values f(X;) can be seen as a guess for the
expected value of the random variable f(X;) and therefore can be interpreted
as an approximation for the value of the integral. According to the strong law
of large numbers the estimator for the expected value (the arithmetic mean of
the random function values) is converging to the expected value (the value of
the integral) with an increasing sample size. The probability that the absolute
error of the approximation result exceeds a fixed positive value € is limited and
decreases to zero with an increasing sample size if the variance of f is finite.

1.2 Pricing path independent European options on one
underlying

For the case of a European option on one underlying we have to approximate
the following integral via Monte Carlo simulation:

T OR[Cr(Sp)|S)] = / Cr(St)g(StISpr0,T - dSy  (2)
0

CT{f(IE,St,T, U,T - t)}dil? (3)
[0,1)

Where
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is the risk neutral density function of the Black Scholes model with parameters:

St : price of the underlying at maturity

S 1 price of the underlying at time ¢

r :  risk free interest rate

o :  volatility of log returns of the underlying
T—-t : time to maturity

St = f(z,Si,r,0,T — t) = Sy exp{(r — %az)(T — )+ oVT —tF(2)}

transforms the uniform distributed values z in g(St|St,r,0,T — t) distributed
underlying values St. F~1(z) is the inverse of the cumulative normal distribu-
tion function and Cr(y) is the payoff function of the option.

The Monte Carlo simulation calculates the value of the integral in the fol-
lowing way:

1. n independent random underlying values Si....SZ are generated by com-
puting f(x, S, 7, 0, T —t) for a set of uniformly distributed pseudo random
numbers Xi,..., X,.

2. the option payoff Cr(S%) is calculated for each Si.

3. the value of the integral in (3) is then approximated by the arithmetic
mean of the option payoffs:

[\]



We will now derive an estimate of the approximation error of the arithmetic
mean. We assume that S....S% are independent random underlying samples
of the g(St|St,r,0,T —t) density. Using this assumption we can conclude that
C is a random variable with expected value

E[C] = T 90(Sy)
Additionally we have to assume that the variance of the option payoffs
Cr(ST) is given by:
Var [CT(ST)] = / CT(ST)2g(ST|St,T, U,T — t)dST —-E [CT(ST)]2 (4)
[0,00]

exists. Then we get:

R ; 1
Var [C] = = i:ZIVar [Cr(Sy)] = ;Var [C7(ST)] (5)
because of the independence of S}, ..., ST

The expected value of the random variable C' equals the value of the inte-
gral e"T=Y(Cy(S,;) and its variance converges to zero with increasing n. The
probability that the approximation error is greater than a fixed positive value
decreases to 0 with an increasing number n. A first estimation of the error is
given by the Chebychev inequality for C,

1
P (|C’ _ eT(T_t)Ct(St)| > a) < W

The bound given by this equation is rather imprecise since we do not make
any assumptions on the distribution of the random variable. Only the expected
value and the variance are used in the previous equation. According to the
central limit theorem the distribution of C' converges to a normal distribution
for n = oo. It follows that the difference between the approximation and the
integral, C' — eT(T’t)Ct(St) is approximately normally distributed with mean 0

and standard deviation

Var CT(ST)
oo = 2rlcrtor] 0
for large n. According to Boyle (1977) a value of n > 1000 is sufficiently large

in order to use the normal distribution for error estimation purposes.

We get the following equation if we assume that C' —e™ Tt (Cy(S;) is normal
distributed:

P(lo-e™ 90,5 <) = \/%7/ exp{—%}du ()

If we choose k as a multiple of the standard deviation o of C, then we get:

ac

P (‘Cv _ er(T—t)Ct(St)‘ < kgé) - p <|C - eT(Tit)Ct(St” < k)
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V2m J g p{ 2}



Errors in MC Simulation
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Figure 1: Absolute error of a European Call option price calculated by Monte
Carlo simulations vs. n~1/2

Given a fixed probability level p, the error converges to zero with O(1/+/n).
The error interval holds for £ = 1,2,3 with the respective probabilities p =
0.682,0.955,0.997

The confidence intervals for a given probability level depend on the standard
deviation of the payoff function Cr(ST):

ooy =/ Var [Cp(S7)] . (10)

In general, this standard deviation cannot be calculated with analytical
methods. Therefore one calculates the empirical standard deviation & and uses
it as a proxy for the error bounds:

1
n—1

Qi
I

> {Cr(si) - CY. (11)
k=1

Figure 1 shows the evolution of the absolute error of the price for a European
call option calculated by Monte Carlo methods compared with the analytic
solution. One can observe that the error tends to zero with O (1/y/n).

We would like to give some of the main properties of algorithms using Monte
Carlo techniques. First from (9) it follows that the error bound tends to zero
with O (1/4/n) for a fixed probability level p. Second, the probability that a
fixed error bound holds converges to 1 with O (1/+/n), Mavin H. Kalos (1986).
Since these results hold independent of the dimension of the problem, which
affects only the variance of the payoff function with respect to the Black-Scholes
risk neutral density, the Monte Carlo method is especially well suited for the
evaluation of option prices in multidimensional settings. Competing pricing
methods e.g finite differences have exponential growing computational costs in
the dimension of the problem. Another advantage of the Monte Carlo pricing
method is the error estimate given by the empirical standard deviation which
can be computed with a small additional effort.

The two most important drawbacks of the Monte Carlo simulation, men-
tioned in literature are its small convergence speed compared to other tech-



niques for options on few underlyings and the difficulties occurring for options
with early exercise possibilities. For example, American options giving the in-
vestor the possibility to exercise the option at any time before and at maturity,
are difficult to price. To evaluate an American option means to find an optimal
exercise strategy which leads - using only basic Monte Carlo techniques - to a
recursive algorithm with exponential time-complexity. But more advanced tech-
niques using importance sampling methods show that Monte Carlo simulations
can be applied to evaluate American contracts, Broadie (2000).

1.3 Pricing path dependent European options on one un-
derlying

There are two categories of options. Path-independent options are options whose
payoff depends only on the underlying prices at maturity. Path-dependent op-
tions are options whose payoff depends on underlying price outcomes S, ...,
S;,, at several time points t; < ... < t,,, within the lifetime of the respective
option.

Within the group of path-dependent options one can distinguish options
with a payoff function depending on a continuously defined path variable and
options with a payoff function depending on a fixed number of underlying values.
The price of an option with many - usually equally spaced - exercise dates is
often approximated by the price of an option with a continuously defined path
variable and vice versa.

Examples for path-dependent options are barrier options, lookback options,
and Asian options. The latter have a payoff function which is linked to the aver-
age value of the underlying on a specific set of dates during the life of the option.
One distinguishes two basic forms of Asian options: options on the geometric
mean (for which the price can be calculated with standard techniques) and op-
tions on the arithmetic mean (for which the price can not be determined using
standard approaches). Asian options are frequently used in commodity mar-
kets. The volatility of the underlying prices of the commodities is usually very
high so that prices for vanilla options are more expensive than for comparable
Asian-style options.

1.4 Pricing options on multiple underlyings

In this section we show how to extend the Monte Carlo simulation technique to
higher dimensions. The problem is not only that one has to deal with higher
dimensional integrals, but also that one has to incorporate the underlying cor-
relation structure between the considered securities. In our framework we need
the covariance matrix of the log returns on an annual basis.

In general, a basket option is an option on several underlyings (a basket of
underlyings). Basket options can be European-, American or even Asian-style
options. Normally, the average of the underlying prices is taken to calculate the
price of the basket option, but sometimes other functions are used.

The advantage of the usage of basket options instead of a series of one dimen-
sional options is that the correlation between securities is taken into account.
This may lead to better portfolio hedges. We will look at a basket option on
five underlyings where the underlying price of the best security in the basket is
taken to calculate the option price.



2 Quasi Monte Carlo (QMC) techniques for op-
tion pricing

2.1 Introduction to Quasi Monte Carlo techniques

QMC methods can be considered as an alternative to Monte Carlo simulation.
Instead of (pseudo) random numbers, Quasi Monte Carlo algorithms use the
elements of low discrepancy sequences to simulate underlying values.

The discrepancy of a set of points P C [0,1]° measures how evenly these
points are distributed in the unit cube. The general measure of discrepancy is
given by:

D, (B; P) := sup AB; P)
BeB n
where A(B; P) is the number of points in P belonging to B, A\s;(B) is the
Lebesgue measure of the set B, B is a family of Lebesgue measurable subsets of
[0,1]%, and n is the number of elements in P.

The discrepancy of a set is the largest difference between the number of
points in a subset and the measure of the subset. If we define B to be the
family J of subintervals []7_,[0,u;), then we get a special measure, the star-
discrepancy:

Dy (P) == Dn(J; P) (13)

2.2 Error bounds

For the star-discrepancy measure and reasonable assumption on the nature of
the function that has to be integrated an upper bound on the error is given by
the following theorem:

THEOREM .1 (Koksma-Hlawka) If the function f is of finite variation
V(f) in the sense of Hardy and Krause, then the following equation holds for
all sets of points {x;,...,z,} C I* =10,1]*

1 n

n 2 f@) = [ fudu

i=1

A proof is given in Niederreiter (1992).

This means that the error is bounded from above by the product of the
variation V(f), which in our case is model and payoff dependent and the star-
discrepancy of the sequence. The bound cannot be used for an automatic error
estimation since the variation and the star-discrepancy cannot be computed
easily. It has been shown though that sequences exist with a star-discrepancy
of the order O(n~'(Inn)®). All sequences with this asymptotic upper bound
are called low-discrepancy sequences Niederreiter (1992). One particular low-
discrepancy sequence is the Halton sequence.



2.3 Construction of the Halton sequence

We start with the construction of the one-dimensional Halton sequence within
the interval [0, 1]. An element of this sequence is calculated by using the follow-
ing equation:

oo
i = an,ip_k_l (15)
k=0
with ¢ > 0, p = 2 and ny; determined by the following equation:
o
i= npip¥ 0<mpi <p; g €N (16)
k=0

Note that with the above equation n; ; is a function of ¢ and takes values only
in {0;1}. To illustrate the algorithm we calculate the first three points.

i=1:n91=1,np1 =0 for every £ >0
i=2:n1o=1nge =0forevery k#1
t=3:ng3=n13=1,ng3 =0forevery k> 1

Therefore we get the sequence 1/2,1/4,3/4,1/8,5/8, .... The extension of this
construction scheme to higher dimensions is straightforward. For every dimen-
sion j =1,...,d we define z] by

oo
wl = nki(i)p; (17)
k=0
with p; is the jth smallest prime number and ny ;(j) is calculated as follows:
i =Y (P 0 <mai(§) <pjs me(f) €NV (18)
k=0

By using p1 = 2, p2 = 3 we get the following two-dimensional Halton sequence:
(1/2;1/3),(1/4;2/3), .... In contrast to grid discretization schemes like i/n i =
1,...,n low-discrepancy sequences fill the integration space in an incremental
way avoiding the exponential growth of grid points of conventional schemes.

XploRe provides quantlets to generate pseudo random numbers and low
discrepancy sequences. For the generation of the pseudo random numbers we
use

erg = randomnumbers (seqnum,d,n)
generates n pseudo random vectors of dimension d

where seqnum is the number of the random generator according to Table 1,
d is the dimension of the random vector and n the number of vectors generated.
The generation of low discrepancy sequences is provided by

erg = lowdiscrepancy (seqnum,d,n)
generates the first n low discrepancy sequence vectors of dimension
d




Park and Miller with Bays-Durham shuffle

L’Ecuyer with Bays-Durham shuffle

Knuth

generator from G. Marsaglia et al. Marsaglia (1993)
random number generator of your system

generator from ACM TOMS 17:98-111

multiply with carry gen. (Marsaglia) Marsaglia (1993)

DU W N~ O

Table 1: Random generator that can be used in XploRe

where seqnum is the number of the low discrepancy sequence according to
Table 2.

Halton sequence
Sobol sequence
Faure sequence
Niederreiter sequence

LN =O

Table 2: Low-discrepancy sequences available in XploRe, (Niederreiter, 1992) .

2.4 Experimental results

Figure 2 shows that two dimensional Halton points are much more equally
spaced than pseudo random points. This leads to a smaller error at least for
“smooth” functions.

The positive effect of using more evenly spread points for the simulation task
is shown in Figure 3. The points of a low-discrepancy sequence are designed
in order to fill the space evenly without any restrictions on the independence
of sequence points where as the pseudo random points are designed to show no
statistically significant deviation from the independence assumption. Because
of the construction of the low discrepancy sequences one cannot calculate an
empirical standard deviation of the estimator like for Monte Carlo methods
and derive an error approximation for the estimation. One possible way out
of this dilemma is the randomization of the low-discrepancy sequences using
pseudo random numbers i.e. to shift the original quasi random numbers with
pseudo random numbers Tuffin (1996). If z,...,x, are scalar elements of a
low-discrepancy sequence X then we can define a new low discrepancy sequence

T; +€ T, +e<=1

(z; + €) — 1 otherwise (19)

W(e) ={y1,...,yn} with y;= {

for a uniformly distributed value e. Then we can calculate an empirical

standard deviation of the price estimates for different sequences W (e) for inde-

pendent values € which can be used as a measure for the error. Experiments with

payoff functions for European options show that this randomization technique
reduces the convergence rate proportionally.
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Figure 2: 1000 two-dimensional pseudo random points vs. 1000 Halton points
Q XFGSOPRandomNumbers.xpl, @ XFGSOPLowDiscrepancy.xpl

The advantage of the Quasi Monte Carlo simulation compared to the Monte
Carlo simulation vanishes if the dimension increases. Especially the components
with a high index number of the first elements in low-discrepancy sequences are
not evenly distributed Niederreiter (1992). Figure 4 shows that the 49th and
50th component of the first 1000 Halton points are not evenly distributed. But
the result for the first 10000 points of the sequence shows that the points become
more evenly spread if the number of points increases.

However by using the Brownian Bridge path construction method we can
limit the effect of the high dimensional components on a simulated underlying
path and the corresponding path variable for the most common path dependent
options, Morokoff (1996). This method start with an empty path with known
start value and calculates at each step the underlying value for a time point
with maximum time distance to all other time points with known underlying
value until the whole path is computed. Experimental results show that we can
still get a faster convergence of the QMC simulation for options up to 50 time
points if we apply this path construction method.

3 Pricing options with simulation techniques -

a guideline

In this section we would like to give a short guideline how to price exotic op-
tions with Monte Carlo and Quasi Monte Carlo simulation techniques within
the framework described above. Furthermore we give some indications about

the limits of these techniques.



Errors in QMC vs. MC Simulation

log absolute error
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Figure 3: Absolute error of a random sequence and the Halton sequence for a
put option

3.1 Construction of the payoff function

As a first step we have to define the payoff function corresponding to our op-
tion product. Within the methods defined in the quantlib finance we have to
consider three different cases.

One underlying + path independent

In this case the payoff function is called by the pricing routine with the sim-
ulated underlying value at maturity as the single argument. It calculates the
corresponding payoff and returns this value. We have defined the payoff func-
tion for a put option with strike price 100 as an example for a one dimensional
payoff function.

Several underlying + path independent

For options whose payoff depends on the underlying values of several assets at
maturity, we have to define a payoff function on the vector of the underlying
values at maturity. An example for such an option is an exchange option that
permits to swap a defined share with the best performing share in a basket. Its
payoff function is given by:

Cr((Sk,...,83)) = maz{0,;(Sh — K*) + 55— S3|i = 1,..,5}

One underlying 4+ path dependent

The third category of option types that are captured are path dependent op-
tions on one underlying. The payoff function of these options depends on the
underlying values at several fixed time points during the lifetime of the option.
Payoff functions for these contracts are called with a vector of underlying values
whose ith element is the underlying value at the time t; which has to be specified
in the model.

10
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Figure 4: The first 1000 and 10000 Halton points of dimension 49 and 50
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3.2 Integration of the payoff function in the simulation
framework

After defining the payoff function in XploRe we can start to calculate a price
estimate with the help of the appropriate simulation routine. In the one dimen-
sional case we just have to call

erg = BlackScholesPathIndependent1D (s0Q,r,vola,dt,opt,
itr,gen)
MC estimation of the option price for a path independent option.

erg = BlackScholesPathIndependent1DQMC (sO,r,vola,dt,opt,

itr,gen)
QMC estimation of the option price for a path independent
option.

to get a price estimate and for the Monte Carlo case an empirical standard
deviation with respect to a start price of s0, a continuous risk free interest rate
of r, a volatility vola, a time to maturity of dt years, the payoff function opt,
sample size itr and the random/low-discrepancy generator with number gen.
Table 1 shows the random number generators and table 2 the low-discrepancy
generators that can be used. An application of these routines for a Put option
can be found in @ XFGSOP1DPut.xpl.

Pricing path-dependent options is only slightly more complicated. Here we
have to define the vector of time points for which underlying prices have to be
generated. This vector replaces the time to maturity used to price path inde-
pendent options. Then we can apply one of the following methods to compute
a price estimate for the path dependent option

11



erg = BlackScholesPathDependent1D (sO,r,vola,times,opt,
itr,gen)
MC estimation of the option price for path-dependent options.

erg = BlackScholesPathDependent1DQMC (sO,r,vola,times,opt,
itr,gen)
QMC estimation of the option price for path-dependent options,
with:

with respect to the start price s0, the continuous risk free interest rate r,
the volatility vola, the time scheme times, the payoff function opt, sample size
itr and the random/low-discrepancy generator with number gen, as given in
Tables 1 and 2. Using the above quantlets, we calculate the price of an Asian
call option in @ XFGSOP1DAsian.xpl.

In the case of multidimensional options we have to define a start price vector
and a covariance matrix instead of a single underlying price and volatility value.
Then we can call one of the multi-dimensional simulation routines:

erg = BlackScholesPathIndependentMD (sO,r,vola,dt,opt
,itr,gen)
MC estimation of the option price in the multidimensional Black
Scholes model

erg = BlackScholesPathIndependentMDQMC (s0O,r,vola,dt,opt
,itr,gen)
QMC estimation of the option price in the multidimensional
Black Scholes model

with respect to the m dimensional start price vector s0, the continuous risk
free interest rate r, the mxm covariance matrix vola, the time to maturity dt,
the payoff function opt, the number of iterations itr and the generator number
gen according to the generators in Tables 1 and 2. Both quantlets are illustrated
in @ XFGSOPMD. xpl.

If in addition a dividend is paid during the time to maturity, we can use the
following two quantlets to calculate the option prices.

erg = BlackScholesPathIndependentMDDiv (s0O,r,div,vola
,dt,opt,itr,gen)
MC estimation of the option price in the multidimensional Black
Scholes model

erg = BlackScholesPathIndependentMDDivQMC (s0,r,div,vola
,dt,opt,itr,gen)
QMC estimation of the option price in the multidimensional
Black Scholes model

The additional argument div is a m dimensional vector of the continuously
paid dividends. An application of these functions for our basket option is pro-

12



vided in
Q XFGSOPMDDiv.xpl.

3.3 Restrictions for the payoff functions

Monte Carlo based option pricing methods are not applicable for all types of
payoff functions. There is one theoretical, and some practical limitations for the
method. Let us look at the theoretical limitation first.

In the derivation of the probabilistic error bounds we have to assume the
existence of the payoff variance with respect to the risk neutral distribution. It
follows that we are no longer able to derive the presented error bounds if this
variance does not exist. However for most payoff functions occurring in practice
and the Black Scholes model the difference between the payoff samples and the
price can be bounded from above by a polynomial function in the difference
between the underlying estimate and the start price for which the integral with
respect to the risk neutral density exists. Consequently the variance of these
payoff functions must be finite.

Much more important than the theoretical limitations are the practical lim-
itations. In the first place Monte Carlo simulation relies on the quality of the
pseudo random number generator used to generate the uniformly distributed
samples. All generators used are widely tested, but it can’t be guaranteed that
the samples generated for a specific price estimation exhibit all assumed statis-
tical properties. It is also important to know that all generators produce the
same samples in a fixed length cycle. For example if we use the random number
generator from Park and Miller with Bays-Durham shuffle, we will get the same
samples after ~ 10% method invocations.

Another possible error source is the transformation function which converts
the uniformly distributed random numbers in normally distributed number. The
approximation to the inverse of the normal distribution used in our case has a
maximum absolute error of 10~1% which is sufficiently good.

The most problematic cases for Monte Carlo based option pricing are options
for which the probability of an occurrence of a strictly positive payoff is very
small. Then we will get either price and variance estimates based on a few
positive samples if we hit the payoff region or we get a zero payoff and variance
if this improbable event does not occur. However in both cases we will get a
very high relative error. More accurate results may be calculated by applying
importance sampling to these options.
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