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Abstract

It has long been recognized that aggregating time series introduces correla-
tion between consecutive values of the aggregated observations (see Working
(1960)). This paper investigates the effect of aggregation on the relation
between variables assuming that the data generating process involves two
integrated variables linked by a specific error correction mechanism (cointe-
gration). It will be shown that aggregation does not distort the cointegration
relation while some other features of the data generating process will change
considerably. Cointegration tests become invalid in a single equation frame-
work but system cointegration analysis seems to be robust against various

aggregation strategies.
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1 Introduction

High frequency data such as interest rates or share prices are often aggregated over
time, that is averaged, to give an impression of the general stance of the variable in
a certain period. This is frequently used as a convenient tool for getting a grip on
the overall performance. Sometimes these variables are also viewed in relation to
other, less frequently measured macro-economic indicators such as the level of prices
and the income of an economy. In these cases averages serve to represent the whole
period for which the other variable is calculated once. In fact, most macro-economic
data bases do not even provide the original, say daily data on interest rates rather
than monthly or quarterly aggregates. Consequently these aggregates are used for
statistical analysis simply for practical reasons.

The aggregation has its price, though. We will investigate the costs of aggrega-
tion in the context of cointegrated variables where the adjustment to the long-run
relation is very fast. The motive for this setup is the frequently observed difficulty to
establish a long-run relation between long-term and short-term interest rates despite
distinguished theoretical arguments.! There we have both aggregated variables and
(theoretically) very fast adjustment to the long-run relation whose parameters are
also known.

Despite the early article by Working (1960) and the widespread use of aggregated
data in empirical analysis, the hassles incurred by aggregation have not attracted
much attention. The more recent contribution by Hallerbach (2000) points out the
effect on the relationship between variables and for the first time suggests a filter for
coping with the moving average component introduced by averaging the data. This
paper extends the analysis in that it considers cointegrated variables and different
aggregation strategies.

A distinction has to be drawn to other approaches such as Liitkepohl (1993) and
the remarks made by Hamilton (1994).> There, stable, general VARMA (p,q) are

considered and the interest focus on whether or not the resulting data series also

lsee e.g. Gottschalk (1999), Miiller & Hahn (2001).
2See pages 230ff in Liitkepohl (1993) and pp 106f in Hamilton (1994).



posses any valid VARMA representation. Here, non-stationary series are considered
whose stationary error correction representation is not strictly VARMA. It is to be
seen, that this difference will also effect the results. Moreover, we are not interested
in whether or not the resulting series also have any error correction representation
rather than whether or not they feature exactly the same error correction parameters
as the underlying true process. This is because the primary interest is with the eco-
nomically meaningful relationships between the variables which are to be disclosed.
Therefore, the question to be answered could be put as: Is it possible to derive the
economically interesting relationships between dis-aggregated data (the economic
relations between the variables) from the observable aggregated data series?

Along the way to the answer to that question a few more information about the
changing features of the DGP will be provided and for some of the more interesting
details, a Monte Carlo study will provide an illustration.

The structure of the paper is as follows. First, we give a definition of the data
generating processes and the aggregation methods we want to investigate. After
that, the effects of aggregation on the aggregated series are calculated providing

several hypotheses for a small simulation study which precedes the conclusions.

2 Data Generating Process and Aggregation Meth-

ods

2.1 A Brief View Over Existing Results

Apart from the notion of preserving the cointegratedness of aggregated cointegrated
processes to be found e.g. in Hamilton (1994), researchers have also addressed a
number of related questions among them for example forecasting performance Tiao
(1972), seasonal and zero frequency unit roots Granger & Siklos (1995), Granger
and instantaneous causality Mamingi (1996) and Breitung & Swanson (1998), cross-
equation correlation and their filtering Hallerbach (2000). For many of these, one

of the goals was to give advice on what aggregation method to prefer.
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Granger & Siklos (1995) for instance recommend not to use systematic sampling
(which will be referred to as skip sampling below) when seasonally varying data is
involved because that may shift the seasonal unit root to the zero frequency and
thereby introduce spurious cointegration under certain conditions. On the other
hand Mamingi (1996) concludes on the basis of Monte Carlo Simulations that skip
sampling might be superior when Granger causality is what matters most because
this aggregation method features fewer distortions of related tests. To some extent
his work is most closely related to the current one due to the similarities in the data
generating processes employed and some of the conclusions drawn.

The present paper reaches beyond the objectives of the aforementioned work
however, in that it treats the problem in a (simplified) theoretical way and based
on this can also provide some hints as to how to overcome some of the problems
involved. To conclude the preliminary thoughts, without claiming completeness
Table 1 surveys some of the studies dealing with problems related to the aggregation

of time series.

2.2 The DGP

To keep things very simple we will investigate a simplest data generating process:

T1s = xl,sfl_i’el,s (21)

Tas = Tis—1 T €2 (2.2)
giving rise to the error correction representation

AJYlS = &1, (23)

Azgs = —(T25-1— T15-1) + 25 (2.4)

with A7 = (1—L?)7 and L being the lag operator. The disturbances ¢, , and e, are
independent of each other and are assumed to follow a time invariant distribution
with mean zero and variance o? and o3 respectively. The difference (x9,5-1 — T1,5-1)
will be called error correction term (ec-term). Under these circumstances the pro-

cesses are known to contain a unit root which becomes apparent from their stochastic



trend representations

s—1

Tis = Y, E1i+ELs (2.5)
1=—00
s—1

Tos = Z €15+ €25 (2.6)
1=—00

forming the basis to re-write (2.4) as
Azgy = —(e25-1 —€1,5-1) + €2

In the terminology of Ericsson, Hendry & Mizon (1998) x; will be called weakly
exogenous because while x, will be referred to as the endogenous variable in the

bi-variate system.

2.3 Aggregation Strategies

We will consider two aggregation strategies, averaging and skip sampling. The

following scheme makes clear what they mean.

DGP Tis—8 Ljs—7 Tis—6 Tis—5 Tis—4 Tis-3 Lis—2 Tis—1 Lis Lis+l
averaging
Yir—4 Yir—3 Yir—2 Yir—1 Yi,r
. . N—— N — S~~~
skip sampling
-2 Zit-1 Zit

We define y;, = 5(2is + Tior1) and 2ziy = Yip, Zigr1 = Yipzo Which restricts the
current analysis to the case of averaging over two neighbouring periods and by
skip sampling to collecting every second data point ignoring the intermediate one.?
Thus, skip sampling is the equivalent to what Granger & Siklos (1995) refer to
as systematic sampling and averaging is used as an other expression for temporal
aggregation. This choice has been made because the last term seems to be too
general since skip sampling also can be regarded a particular version of temporal
aggregation where unequal weights are attached to different observations. Likewise,

systematic sampling appears less appealing than skip sampling which provides a

more intuitive access to what is happening with the data.

3Tt is easy to see though that this procedure will generalize to averages of even numbers of

periods at least.



2.3.1 Averaging
Now we first consider pure averaging and look at y;, to start with.

1
Yir = 5( 1,5 + Z1,541)

1 S S
= 3 D e+ Y et 1o
i=0 i=0
= Ti5+ 551,5—{—1

1 s—1 s—1
Yor = 3 €15t €25+ Q) €1itE1s+E2511
2 \iz i=0

1
= Ti151+ = (61,5 + 625+ E2,5+1)

2
1
Ay, = Tis— Tig-—2+ 5(51,54—1 — €1,5-1)
1
Nyop = T+ 3 (61,5 + €25 +€2,541)
1
- (331,33 + B (€25 2+ €152+ 82,51))

These expressions simplify to
Ay = DoZis+ el
Ayp, = Noxis 1+ 55,5

with ef ;= 5 (1 — L?) 1,541 and €5, = 5 (1 — L?) (€1,s + €2, + €2,641). Re-arranging
terms finally leads to an error correction representation of the averaged process
Ay, = ui, (2.7)
ANypr = — (Yor-1 = Y1,r-1) + Uy (2.8)
where u;, and ug, are given by
Uy, = €10+ % (14 L)ey, (2.9)
Upy = Eo, + % (1+L)ey, (2.10)

and Eir = % (1 + L) €i,541-
Equation (2.7) and (2.8) reveal three effects of the averaging procedure. At first,
the disturbances of equation (2.7) feature moving average (MA) properties because

some of the components of u;, are also present in u; ,_;.

6



e Moving Average effect

1 2
E(ul,rul,r—l) = E(—€1,5—1>

=~ =

_ 2
= -0]

In contrast to the first equation, no MA effect is introduced to the second one. The
result also suggests that the order of the moving average process introduced is just
one. Disturbances that are further apart than one period will not be correlated. Two
more remarks are in order. The standard results for aggregated stable VARMA (p,q)
DGP do not distinguish between the individual processes with respect to the MA
effect.* In other words, in those cases all marginal processes feature MA components
after aggregation. This is not the case here, however. The reason for that lies in the
particular way in which lagged values of the observations enter the DGP. Second,
also owed to the cointegration representation it is not possible to express the error
term u;, as a sum of two subsequent and independent error components, thus we
can only talk of a MA effect rather than giving a precise MA representation of the
error term.

The next consequence of aggregation has to be mentioned only briefly, because it
is also present in the VARMA case and therefore does not come as a surprise. This
effect is the correlation between the error terms of the individual processes. Some
more detailed analysis thereof is available in Hallerbach (2000). While not specifying
a data generating process and not considering cointegrated variables, he investigates
averages of stochastic variables in general. One should recall that we assumed the
innovations of the DGP do be independent of each other. This property obviously
does not carry over to the averaged series while the auto-regressive structure of the
process itself is not altered.

Due to the third effect the disturbances in (2.8) will be correlated with the
explanatory variables, that is with the equilibrium error ec, = (yo,—1 — y1,-1)- As

a consequence ordinary least square estimation of that equation would yield biased

“see e.g. Liitkepohl (1993) p. 233.



estimates and standard parameter tests become invalid. It also calls into question
the validity of general cointegration test e.g. system cointegration tests. Luckily,
the small simulation study below indicates that standard system cointegration tests®
do not seem to be affected at least as long as the DGP is as simple as in (2.1) and
(2.2). The expected additional covariances introduced by the averaging procedure

can be calculated as follows.

e Covariance Regressor, disturbance

E(ecrus,) = E

e Covariance of the disturbances

1
E(ui ugy) = ( €1,5-1 T €15 T 5€2,5— 1)

2

1 1
X 5 1+L 813+§(1+L)52,3+1)]
1 2
= E(§€ls 1+ €1s>
1
= 2ot

Note that in regression analysis the correlation between disturbance and regressor in
the equation for y,; can neither be accounted for by lagged values of the dependent
variable nor by introducing MA terms. This is because the latter would not share
any component with uy,. At the end of the paper a few remarks will be made with

respect to a more general approach towards inclusion of lagged variables.

Ssee e.g. Johansen (1995)



2.3.2 Skip Sampling

As mentioned before, the phenomenon of the moving average properties of the series
derived by aggregation have long been recognized. One seemingly obvious and
popular solution to this problem is skip sampling.® That is, data which is known to
have been averaged is selected such that some intermediate observations are thrown
away and only values picked in this way are considered. For example data on interest
rates which can be observed on a daily basis are summarized to monthly data and
for econometric modelling on a quarterly frequency the average of the mid-quarter
month is picked to represent the whole quarter. To analyze the effects we will proceed
in two steps. First we calculate the results of pure skip sampling and second these
will be combined with the previous results.

The following rules apply

Yir = Ti,s S=T,

Zig+l = VYis+2

Straightforward re-arrangement gives

Dz = ey (2.11)
Nzoy = —(€9,5-0 —€1,5-2) + (€1,5-1 + €2,5)
= — (21— 2101) T €2y (2.12)
where
€t = Els-1 T €1 (2.13)
€2t = El5-1 T E2s (2.14)

from which we can conclude that the new error terms will indeed not be corre-
lated over time, that means there is no moving average effect introduced as long as
E(51,3—2€1,s) = E(52,s—2€2,s—1) = 0.

Moreover, there is also no correlation between the errors of equation (2.12) and

the explanatory variables. On the other hand the disturbances of both equations

6Wolters, Terésvirta & Liitkepohl (1998) do so for example.



will be correlated, the covariance between them being o?. Nevertheless, the error

correction representation still exists, so skip sampling the data does not have an

effect on that.

2.3.3 Combining Skip Sampling and Averaging

The last computational effort will be devoted to combine the averaging and the skip
sampling procedure. We will now skip sample the averaged process. We already
know that the error correction representation of the skip sampled process is the same
as for the original process which is in our case the averaged process. We therefore
simply replace the components of the screened representation by the counterparts
from the averaged results. As a consequence the properties of the error terms will
be different. We re-state equations (2.11) and (2.12) noting that we now have
Yir = 3 (Tis + Tist1), 2ip = Yir and 2ige1 = Yirso and so forth, we find from
equations (2.7) and (2.8):

Azy = €7, (2.15)

Nzyy = —(200 1~ 2101) + €5y (2.16)

As a consequence of (2.13) and (2.14) we are able to dissolve e;; and eq; as

e’{,t = Up;_1 + U, (2.17)
€y = U1+ Uz, (2.18)
Likewise the term — (22,1 — 214—1) can be found to be

—(224-1— 214-1) = —Ugp 2+ Uty 2 (2.19)
Thus, expressions for u;, will provide the solution. We have

Uy = = (€15-1+€1541) FE1s (2.20)

’

U,y =

I

N =D =

1
(1,51 + €1,5) + 5 (25 + €2,541) (2.21)

Carefully respecting the step length of the skip sampling procedure further reveals

that

1
Ulr—1 = 3 (€1,6-3 + €1,6-1) + €152

10



1

Ul r_g = B (E1,5-5 + €1,5-3) + €1,5-4
1
Ugr_g = 3 (e1,5—5 + €1,5-4) + B (€2,5—4 +€2,5-3)

We are now in a position to calculate the items of interest. First re-consider the
moving average problem. After dismissing the next observation, that is choosing
Zt11 = Yry2, the new error €] 141 is given by €] 441 = Ulypt1 + Uri2 which shares the
(s+1)st innovation €, 441 with e} ;. That’s why it does not suffice to drop only one
observation and in fact, there is no skip length that could guarantee removal of the
MA pattern at all. The reason for this can be found in the following decomposition

of a random walk where we intend to pick every ath observation only (a > 1).

t—1
T, = Y gitey

1=—00

t—a t—1
= Z g + Z E; T &

i=—00 i=t—a+1

_mter (2.22)

It tells that regardless of the number of observations being not considered e.g. by

leaving them out, the ignored effects will turn up in the error term. These are subject

to an MA(1) effect when previously averaged observation enter (2.22), however.

Thus, due to €;,_, and ¢; the errors e;_, and e;, , respectively will be correlated with
e;-

We conclude that skip sampling does not remove the moving average effects
introduced by the averaging procedure while maintaining the cointegration structure
of the model. Secondly, the covariance between the innovations in (2.15) and (2.16)
is given by

. 11
E(el,te2,t) = ZU% (2.23)

where we made use of the fact that

1
*
€1y = 551,3—3 +€E15-2+€15-1+ €15+ 581,54-1
. 1 1 1
€p = 551,5—3 + €152+ €15-1+ 581,5 + 552,3 + 582,54-1

11



Note therefore that the data screen does not improve the situation with respect to
the artificially introduced covariance. Finally, the covariance between regressor and

disturbance in (2.16) is investigated:
E ((zz 1 = 214-1)€5 ) = _1‘72 (2.24)
: : 2,t 171

Thus the explanatory variables remain correlated with the error terms in that equa-
tion generally jeopardising standard inference in an OLS framework.

Table 2 states the results for the three processes considered. These are the
original process, the purely averaged, the purely screened and the averaged and
screened process. For convenience we will label the number of observations entering
the average m, and the observations skipped to obtain the screened process a — 1.
So, we will find the averaged and screened process for e.g. m = a = 1 to be the

original sample.

2.4 A small simulation study

Based on the considerations in the previous sections we will simulate some mod-
els and check the performance of testing procedures. In line with model (2.4) we

formulate its empirical counterpart as
Nzgy = afzo4-1 — 21,4-1) + e;t (2.25)

where the z;, had previously been subject to the data transformation procedures de-
scribed by a and m. That means we extend the averaging and skip sampling technol-
ogy to encompass cases which are common in praxis. As to the equation for the z;,
we do not perform estimation, but we make use of them to calculate the correlations
between the errors of both processes. That is calculating the correlation between
Az and (Azgp — G(z94-1 — 21,4-1)), where & is the OLS estimate of « in equation
(2.25). Likewise, the quantities (z24—1 — z14-1) and (Azoy — az94—1 — 214-1)) are
used to calculate the correlations between the regressor and the error term in (2.25).
It has been mentioned before that the latter effect will bias the OLS estimates of

«, therefore we will check this bias too. We formulate two hypotheses: Hj : « = 0

12



Table 2: Covariances and correlation coefficients

€ITor,regressor

between errors

Cov. Corr. Cov. Corr.
formulas
original data (m=a=1) 0 0 0 0
(I) averaging (m=2, a=1) —1o? %(%Jig) lo? e %;§U%+Jg)
2
(IT) skip sampling (m=1, a=2) 0 0 o? W&W
@) + () (m=2, 2=2) it Jomrvee | Y e
Evaluation at 0? = 03 = 1
original data (m=a=1) 0 0 0 0
(I) averaging (m=2, a=1) -1 -3 3 0.577
(IT) skip sampling (m=1, a=2) 0 0 1 5
(D) + (1) (m=2, a=2) - —.144 n 0.849
Simulation results*, no estimation
original data (m=a=1) .001 .001
(I) averaging (m=2, a=1) -.250 611
(IT) skip sampling (m=1, a=2) .002 .500
(I + (II) (m=2, a=2) -.145 .848
Simulation results*, o, e estimated
original data (m=a=1) 0
(I) averaging (m=2, a=1) 0.579
(IT) skip sampling (m=1, a=2) 0.500
(I + (II) (m=2, a=2) 0.837

*Simulation with R = 1000 draws and T = 1000 observations.

13



being equivalent to hypothesizing no cointegration and second HZ : a = —1 to ac-
tually asses the deviation of the estimate from its true value. Finally, stacking z; ,
and zp; into an vector z; = (214 224)’, we can write the model in the vector error

correction form”:
A,Zt = aﬂ'zt_l + & (226)

allowing us to perform system cointegration tests. We chose the Johansen® tests be-
cause in this very basic framework there is no need for more sophisticated modelling
and these tests are the most commonly used anyway.

The following values of a and m are chosen. Apart from the 1, 2 representing
the situations we have theoretical results for, m will take on the values 7, 14, 28, 84
to approximate weekly, fortnightly, monthly and quarterly averages of daily data re-
spectively, a also becomes 3, 4, 16, 28 and 84 to allow picking monthly and quarterly
representatives of the averaged observations. The combination m = 28, a = 3 will
approximate the situation where we pick the end of month value within a quarter
of monthly averages, for example.

The experiment is run a R = 1000 times with 7' = 100 observations each®, and
the starting seed for the GAUSS N'T 3.2 version random normal number generator is
set to 8091976. In addition, 1000 draws of the random numbers have been reserved
as pre-sample values and therefore do not enter the simulation. The error terms are
(pseudo-) normally distributed with mean zero and unit variance, yet independent
of each other.

Although we do not have theoretical results for the cases involving higher order
m and a aggregation, the general suspicion is that the properties derived for the
basic situations would carry over to those. And indeed, that seems to be the case.
Two important questions have to be addressed. First the cointegration property and
second the estimate of the adjsutment parameter. Unfortunately, we cannot easily

check both, estimates of the cointegration and adjustment parameter.

"The true parameters of & and 3 are (0 1)’ and (1 — 1) respectively.
8see Johansen (1988)
9The theoretical results for the correlations are simulated with 7' = 1000 observations too.

14



Table A.2 can be interpreted as the results of a test for cointegration. If the
adjustment parameter really was zero, this would imply no cointegration. Rejecting
the hypothesis @ = 0 therefore provides evidence for both processes being cointe-
grated. That’s why ideally all entries should be close to one. It turns out that
the correct decision becomes the less likely the more involved the averaging proce-
dure becomes. For the combination approximating the quarterly representative of
monthly averages (m = 28, a = 3), no cointegration is found in about one third of
all throws. This is the more surprising since the bias introduced in the OLS pro-
cedure is a negative one, therefore, the estimates of o are skewed downwards from
minus one and thus further away from zero. The same effect becomes apparent from
table A.3 where the bias is investigated more thoroughly. In contrast to the pre-
vious aspect, where the test seemed quite robust against modest manipulations of
the data, even very limited aggregation operations heavily reduce the likelihood to
obtain correct estimates of the adjustment parameter. Averaging and skip sampling
over just two periods each e.g., exaggerates the nominal size by more than .25. This
effect seems to be much stronger the more consecutive observations are averaged
while skip sampling relieves some of the distortions. The reason for this behaviour
lies in the fact that the correlation between the error term and the regressor of the
second variable becomes smaller the larger the steps of the screen.

With respect to the correlation between the residuals of both equations, table
A.1 indicates that averaging and skip sampling both seem to feedback to each other.
Therefore, the largest correlation coefficients are obtained for high orders of ¢ and
m.

Finally, having mentioned that cointegration may not be found on grounds of
single equation OLS regression, the system cointegration test seem to solve that
problem as can be seen from table A.4. We find that the selection of the cointegrating
rank succeeds in all cases at all reasonable significance levels. Thus, aggregation

alone cannot be blamed for not finding cointegration between inflation rates.
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2.5 More Questions and Few More Answers

In the tradition of the previous studies this paper investigated those situations where
all series involved are aggregated by either averaging or skip sampling. The combi-
nation of both has not yet been dealt with in detail. This however, is not the whole
universe of possible combinations which may occur in praxis. One such typical
constellation is the joint empirical analysis of skip sampled and averaged variables
when for example the demand for money is modelled as a function of income and
interest rates.'’ Therefore, the consequences of these possibilities deserve a separate
treatment. Of course, the approach presented above is capable of also deriving the
theoretical results for these situations. The only difference is that it is now necessary
to distinguish between the weakly exogenous and the endogenous variable. To save
space, the straightforward calculations are omitted and the results are presented
in Table 3. It turns out that the least problematic case is the one in which the
weakly exogenous process is skip sampled while the other may be averaged. In fact,
the effects are mainly identical independent of whether or not both processes are
skip sampled or if the weakly exogenous process is skip sampled and the other is
averaged.

As shown in Tables 2 and A.3 the most troublesome problem seems to be the
correlation between the error correction term and the regression residual in the
equation for the endogenous variable. A natural candidate for solving this problem is
lag augmentation of the regression equations. Looking at the Tables 3,4,5 indicates
that including the one time lagged dependent weakly exogenous variable in the
equation for the other variable suffices to eliminate the correlation between the
error correction term and the residuals. Scrutinising this recipe more thoroughly
reveals that this incurs costs in its own, though. In all cases the residual variance
will increase and in some instances the MA effect will become more pronounced. In

only one of the constellations the correlation between the residuals will be reduced

10See for example Breitung & Swanson (1998) who point out that flow variables like income can
be viewed as averaged observations while skip sampling is more likely applied to stock variable like

money.
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resentation and Error Correlations

Table 3: Different Aggregation Strategies and the Implications for the DGP Rep-

Ay = ey
Aysy = Oé(yl,t—l — y2,t—1) +e2
process
Effect on weakly exogenous endogenous
skip sampled averaged
Representation preserved preserved
correlations
ec-term, eq; 0 X
ersseas N N skip sampling
€i.t,€4t+1 0 x/0
Representation preserved preserved
correlations
ec-term, eg; 0 X
€1 eas « < averaging
€it, €it+1 X

* The x indicate non-zero effects, x/0 stands for a non-zero cor-
relation in the weakly exogenous process only. Note: if no aggre-
gation would precede the empirical analysis all correlations would

be zero.

ec-term, e;; stand for their respective counterparts in the repre-

sentation of the data generating process.
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Table 4: The Consequences of Lag Augmentation

Ayl,t €1,
Ays 4 a(Y1,i—1 — Y2,0-1) + YDY1,4-1 + €24
process
Effect on weakly exogenous endogenous
skip sampled averaged
Representation preserved preserved
correlations
ec-term, eoy 0 0
errent 0 < skip sampling
€i,t; €i,t+1 0 x/0
Representation preserved preserved
correlations
ec-term, eo; 0 0
erisens « < averaging
€ty €it+1 0 X

* The x indicate non-zero effects, x/0 stands for a non-zero cor-
relation in the weakly exogenous process only. Bold face marks
stronger correlation if compared to Table 3.

ec-term, e;; stand for their respective counterparts in the repre-
sentation of the data generating process.

to zero if the appropriate lagged variable was included in the regression.

Finally, if the regression equation for the series obtained by applying both aver-
aging and skip sampling is augmented by a lagged variable, the correlation between
the error correction term and the innovations will disappear but the newly intro-
duced regressor will be correlated with both, the error term and the error correction
term. Thus, as before one problem is solved at the expense of introducing another

one.
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Table 5: Skip Sampling the Averaged Process and Lag Augmentation

A2/1,16 = €1,
Ayay = a(yie1—y2-1) +7Dy11+e2s
m=2a=2
Effect on v =0 V0
Representation preserved preserved
correlations
ec-term, eg; X 0
€1,t,€2,¢ X X
€it; il X X
Ayri-1,€2, X
Ay -1, (yl,t—l - yz,t—1) X

* The x indicate non-zero effects, x/0 stands for a non-zero cor-
relation in the weakly exogenous process only. Bold face marks
stronger correlation if compared to Table 3.

ec-term, e; ; stand for their respective counterparts in the repre-
sentation of the data generating process.
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3 Conclusions

We investigated a small, specific, cointegrated process which has been subjected
to standard aggregation procedures commonly used in preparation for econometric
analysis of macro-economic data. In contrast to previous studies we focused on the
cointegrating feature of the data generating process and the implications for the
relation between the variables rather than for the isolated processes alone.

It turned out that averaging does not always cause moving average effects. In
our example this was the case for the independent random walk only, while the
series being ruled by the error correction term did not suffer from this problem. In
addition, in contrast to the VARMA(p,q) case, the problem cannot be solved by
augmenting the cointegrated process by a MA term.

Regardless of the aggregation method (averaging or skip sampling), the innova-
tions of the aggregated processes will be correlated even if those of the underlying
data generating processes are not. This is useful knowledge for e.g. impulse-response
analysis of vector-autoregressive processes (VAR), in particular if the error covari-
ances are given an economic interpretation like in the structural VAR analysis.
In such cases spurious correlation might render the identification of the structural
shocks arbitrary. In the more general perspective, the conclusions drawn with re-
spect to instantaneous causality have to be met with caution.

Second, if the process is the result of averaging, the innovations of the data series
being ruled by the exogenous stochastic trend (here z;;) become correlated with the
error correction term entering the same equation. Standard OLS analysis therefore
yields biased estimates of the adjustment coefficient. That’s why cointegration tests
in the single equation framework frequently fail, though less so than finding the true
parameter itself. It does not occur if the data is screened only and it is relieved if
the data is screened once it has been averaged before.

Finally, standard system cointegration analysis opens a way to cope with at least
some of the problems. They seem to be reliable when it comes to determination of

the cointegrating rank. When including lags of the weakly exogenous variable as
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regressors to the equation for the endogenous variable, standard OLS inference will
improve with respect to the ec-term but only at the expense of introducing other
problems.

So far, the outcome cannot be generalized to all cointegrated processes and richer
lag structures, yet one should be prepared to face similar problems. Therefore, a
natural extension of the current agenda is to generalize the investigation to encom-
pass larger cointegration parameter spaces. In addition, general theoretic results
concerning the error correlation are desirable to provide some form of correction for

that phenomenon.
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A Appendix

Table A.1: Empirical correlations between the error terms

T=100 averaging parameter (m)
R=1000 1 2 7 14 28 84
1 |.001 .570 .894 .905 .903 .900
2 | 484 831 .955 .958 - -
skip 3 | .662 - - - 972 -
parameter (a) 4 | .743 - 976 - - -
16 | .932 - - - - 991
28 | .959 - - - - -
84 | .983 - - - - -

The a have been estimated by OLS previously.

Table A.2: Cointegration test: Empirical rejection frequencies of Hy : o = 0

T=100 averaging parameter (m)
R=1000 1 2 7 14 28 84
1 1 1 1 1 999 .999
2 1 1 981 .942 - -
skip 3 1 - - - .694 -
parameter (a) 4 1 - T4 - _ -
16 | 934 - - - - 171
28 | 778 - - - - -
84 | 324 - - - - -

The nominal significance level is 0.05.
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Table A.3: OLS bias analysis: Empirical rejection frequencies of H? : o = —1

T=100 averaging parameter (m)
R=1000 1 2 7 14 28 84
1 ].049 .758 .991 .995 .995 .996
2 | .074 319 .722 .746 - -
skip 3| 049 - : - 575 -
parameter (a) 4 | .059 - 353 - - -
16 | .055 - - - - .165
28 | .049 - - - - -
84 | .052 - - - - -

The nominal significance level is 0.05.

Table A.4: System Cointegration Test: Empirical frequencies of correct rank

decisions™

T=100 averaging parameter (m)

R=1000 1 2 7 14 28 84
1 1.945 943 960 .956 .959 .962
2 1.936 .951 .954 963 - -

skip 3 1.945 - - - 951 -

parameter (a) 4 |.947 - 957 - - -
16 | 944 - - - - 963
28 | .959 - - - - -
84 | .950 - - - - -

*Johansen rank test, sequential test procedure.

The nominal significance level is 0.05.
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