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Estimation and Testing for Varying Coeflicients in
Additive Models with Marginal Integration

Lijian YANG* Wolfgang HARDLE Byeong U. PARK
October 2, 2002

Abstract

We propose marginal integration estimation and testing methods for the coefficients
of varying coefficient multivariate regression model. Asymptotic distribution theory is
developed for the estimation method which enjoys the same rate of convergence as
univariate function estimation. For the test statistic, asymptotic normal theory is
established. These theoretical results are derived under the fairly general conditions of
absolute regularity (S-mixing). Application of the test procedure to the West German
real GNP data reveals that a partially linear varying coefficient model fits best the
data dynamics, a fact that is also confirmed with residual diagnostics.

KEY WORDS: Equivalent kernels; German real GNP; Local polynomial; Marginal
integration; Rate of convergence

1 INTRODUCTION

Parametric regression analysis usually assumes that the response variable Y depends lin-
early on a vector X of predictor variables. More flexible non- and semi-parametric regression
models allow the dependence to be of more general nonlinear forms. On the other hand, the
appeal of simplicity and interpretation still motivates search for models that are nonpara-
metric in nature but have special features that are appropriate for the data involved. Such
are additive models (Chen and Tsay 1993a, Linton and Nielsen 1995, Masry and Tjgstheim

*Lijian Yang is associate professor, Department of Statistics and Probability, Michigan State University,
East Lansing, Michigan 48824 (E-mail: yang@stt.msu.edu). Wolfgang Hardle is professor, Institut fiir Statis-
tik und Okonometrie, Humboldt-Universitit zu Berlin, Spandauer Str.1, D-10178 Berlin, Germany (E-mail:
haerdle@wiwi.hu-berlin.de). Byeong U. Park is professor, Department of Statistics, Seoul National Univer-
sity, Seoul 151-747, Korea (E-mail: bupark@stats.snu.ac.kr). This work was supported by Sonderforschungs-
bereich 373 ” Quantifikation und Simulation Okonomischer Prozesse” Deutsche Forschungsgemeinschaft at
Humboldt-Universitit zu Berlin. Yang’s research was also partially supported by NSF grant DMS 9971186.
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1995, 1997, Mammen, Linton and Nielsen 1999, Sperlich, Tjgstheim and Yang 2002), gener-
alized additive models (Linton and Héardle 1996), partially linear models (Hérdle, Liang and
Gao 2000), etc.

In this paper, we consider a form of flexible nonparametric regression model proposed
by Hastie and Tibshirani (1993). The following model

Y;' = m(X,,T,) —f—O’(Xz',TZ')Si, 1= 1,...,77, (1)
where {¢;},., are i.i.d. white noise, each ¢; is independent of (X;, T;) where
Xi = (Xila"'ind)T;Ti = (Eh"':ﬂd)T’ (2)

is called a varying-coefficient model if

s=1

One special case is when all the variables {Xs}f:1 are the same X, which corresponds
to the functional coefficient model of Chen and Tsay (1993b). Indeed, Hastie and Tibshirani
(1993) fitted real data examples exclusively with the functional coefficient model. Although
the name varying-coefficient model was used by Cai, Fan and Li (2000), the model they
studied was the same model proposed by Chen and Tsay (1993b), except with the additional
feature of a possibly non-trivial link function. Cai, Fan and Li (2000) used local maximum
likelihood estimation for all coefficient functions { fs}le, whose computing was no more than
a univariate estimation, due to the fact that all these univariate functions depend on the
same variable X. In the case of an identity link, the estimators are direct local polynomial
estimators.

In practice, it is more realistic to allow some of the functions { fs}‘;l:1 to depend on
possibly different variables {Xs}le. In such case, the only existing estimation method was
the backfitting method of Hastie and Tibshirani (1993), which has not been theoretically
justified. Intuitively, inference about model (1) is no more complex than that of univariate
models. In this paper, we develop a marginal integration type estimator for each varying
coefficient { fs}‘si:1 in the case when each varying coefficient can have a different variable.
Our method achieves the optimal rate of convergence for univariate function estimation, and
has a simple asymptotic theory for the estimators.

As an illustration, consider a time series data {Y;};_, based on West German real
GNP. After taking first difference and de-seasonalization, the data is considered strictly
stationary, as shown by its plot, the dotted curve in Figure 4. A varying coefficient model
Vi=fi(Yi2) Y1+ fo (Vi)Y 3+ 0ue is fitted and estimates of functions fi, f, are plotted
as solid curves in Figure 1, together with 95% point-wise confidence bands as dotted curves.
More details about the data and its modelling are found in Section 4.

(Insert Figure 1 about here)

Although model (1) consists of additive bivariate functions, it is linear in the variables
Ts. One interesting question one may ask is: are some of the coefficient functions { fs}?:1
constant? If the answer is yes for some but not all, then the model is partially linear in



some variables Tj; if the answer is yes to all, then the model is the classical linear regression
model. Any constant f; can then be estimated at 1/4/n-rate of convergence. A formal testing
procedure is proposed in Section 3 for determining the constancy of coefficient functions f;.
For the German GNP data, it is found that f, can be set to a constant, while f; can not.

We organize the paper as follows. In Section 2, we describe a marginal estimation method
for coefficient functions { fs}f:1 and derive asymptotic distribution theory of the estimator.
In Section 3, a test procedure is proposed to test the hypothesis that f; is a constant. In
Section 4, we apply our estimation and testing methods to the West German real GNP data.
All technical assumptions and proofs are in Appendix.

2 ESTIMATION OF VARYING COEFFICIENTS

In this section we formulate local polynomial integration estimators of the coefficient func-
tions { fs}‘::l. For general background on the local polynomial method, see Stone (1977),
Katkovnik (1979), Ruppert and Wand (1994), Wand and Jones (1995) and Fan and Gijbels
(1996).

We assume that each ¢; is independent of the vectors {(X;, T;)},_, ; for each i =
1,...,n. This is sufficient for obtaining our main results on distribution theory as we assume
{(X;,T;)},_,,. . to be strictly stationary and geometrically S-mixing in assumption A2 (see
Appendix.), but weaker than the usual assumption that each ¢; is independent of the vectors
{(X5, T} o0,

Note that if there exists nontrivial linear dependence among the variables T with corre-
sponding functions of X as coefficients, then functions f, are unidentifiable. To be precise,

suppose that
d

> r(Xis)Tis = 0, as.

s=1

for some nonzero measurable functions r, then the regression function m in (3) equals

d
Z {fs(Xzs) + Ts(Xis)} Tz
s=1

as well. Hence, for identifiability one assumes that

d
er(Xis)Tz-s =0,a.s. = r5(x) =0,s =1, ...,d.

s=1

Now Let x =(z1,...,zq)" €IR? be a point where we want to estimate the functions

{fs}le- We denote by (X, T) = (Xy,..., X4, T1,...,Ty) a generic random vector having
the same distribution as (X;, T;) = (Xu, ..., Xia, Ti1, -, Tia), and define X 5 and T g, as
obtained from X and T by removing the s-th components, by

X*S = (Xla --aXsflaXs—H---,Xd)T, S = 1, ...,d,
T*S = (Tla --,TsflaTs—H---,Td)T, S = 1, . d.

For a kernel function K, we write Kj(u) = K(u/h)/h. We fit p-th order local polynomi-

als to estimate the varying coefficients. Write Y = (V;)1<i<n, and let p(u) = (1,4, ..., uP)T.
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Define Z; to be the n x (p + d) matrix which has (p {(Xis — z,)/h}" T}, TT ) as its i-th

2,—$

row. Let W (x_s) = Wi(zs,x_,) be the n x n diagonal matrix defined by
W, (x-;) = diag { K (X5 — 75) Lg(X,—s — x-5)/n} cjcp

where Lg(u) = (g1 gom1gs41- - 9a) "L(gi un, ..., G5 1Us—1, Gst1tst1,- - - g Ua), L is a
(d — 1)-variate kernel, and g1,...,9s-1,9s+1,-- -, 9gq are bandwidths that are allowed to be
different from each other. Then the first component of the minimizer B of the weighted sum
of squares

n

2
P
) {YJ = BalXjs — ) Tjs — 3 5ijk} Kp(Xjs — 25) Lg(Xj, s — %)
j=1 1=0 ks
is given by

. . -1

ﬂsO = ﬂsO(X—s) = 6’(1; (ZZWS(X_S)ZS) ZZWS(X—S)Y

where ¢; is the (p+ d)-dimensional vector whose entries are zero except the (I+1)-th element
which equals 1.
The integration estimator of fs(z;) is a weighted average of Ss(X; _5)’s, i.e.

n

fio) = 3w (iKY wo(Ke) (@

where the weight function w_,(-) has a compact support with nonempty interior, and is
introduced here to avoid some technical difficulty that may arise when the density of X; _,’s
has an unbounded support. Based on (4), one can predict Y given any realization (x,t) of
(X, T) by the predictor

m(x,t) = ; Fo(zs)ts. (5)

In the estimation procedure for f, for a given s, we fit local constants for the other
varying coefficients fy, s’ # s. One could fit higher order local polynomials for those varying
coefficients, too. The theoretical performance of the resulting estimator would be the same
as the present one, however. The smoothing bias of the present estimator due to the local
averaging for fy, s’ # s can be made negligible by choosing the bandwidth vector g of smaller
order than h and using a higher-order kernel L. See the conditions for the bandwidths and
the kernel L given in the appendix.

Theorem 1 Under the assumptions A1-A6 given in the appendiz, we have, for any s =
1,...,d,

Vnh{fo(@s) = fulzs) = B0 (x0) } 5 N {0,02(z,)} (6)
as n — 0o, where bs(xs) = ks(xs)/ns, 02(xs) = 72(25) /12, and ks, T2, 15 are as defined at

(A.14), (A.15) and (A.16), respectively.

The estimator m(x,t) of the prediction function m(x,t) enjoys the same rate of con-
vergence as that of a single varying coefficient, and its asymptotic parameters are easily
calculated from those of the f;(z5)’s and the value of t, as in the following theorem

4



Theorem 2 Under the assumptions A1-A6 given in the appendiz, we have, for any s # s,
cov [Vnh {fu(z,) = fu(zs)}, Vb { fu(za) — fo(zs)}] =0, (7)

as n — 0o, and hence
Vinh {m(x,t) = m(x, t) = B b (x, 1)} 5 N {0,02,(x,t)} (8)
where by, (x,t) = X%, by(z,)t, and o2,(x,t) = X, 0% (z,)t2.

We comment here that Theorems 1 and 2 hold only for local polynomial estimators of
odd degree p, while similar results hold for p even as well. In particular, p = 0 corresponds
to integrating the well-known Nadaraya-Watson type estimator. When an even p is used
instead, the variance formula (A.15) remains the same while the bias formula (A.14) contains
extra terms involving the derivatives of the design density.

As discussed in the introduction, our estimator (4) is designed for the model (1) when
the regression function m(x,t) is specified as in (3) with X’s different to each other, while
the estimators in Cai, Fan and Li (2000) can be applied only to the case where there is a
common X for all T, s = 1,...,d. Of special practical interests is the case where some but
not all of the X,’s are the same. As an example, one may consider models such as

Y = ¢+ ai(re) My + ao(re) M7 + as(r) M7 Iipg,<oy + b1(8) 7 + b2 ()7 + &, t=1,..0m

in which Y; denotes the implied volatility, r; the interest rate, M; the moneyness, and 7; the
maturity at time ¢. Further research will be needed to obtain coefficient function estimators
for such model.

3 TESTING FOR VARYING COEFFICIENTS

Suppose we are interested in testing the hypothesis
fs(xs) = constant 9)

for a specific s. If this hypothesis is true, one would get min, E{f,(X;) — a}?ws(X,) = 0
where w; is an arbitrary positive weight function with a compact support. This leads us to
propose the following test statistic:

Vns = n 1m1na Z{fs s —Oé} ws(Xs)

n n

= 7’1,_1 Z fs(Xis)Qws(Xz’s) — n_l{z 1{2 fs [ ws )}2’ (10)

i=1 =1

where the obvious solution of the least squares problem is given by

:{éws( 1{Zfs is)Ws(Xis) }- (11)

The next theorem describes the asymptotic distribution of the test statistic (10) under
the null hypothesis (9).



Theorem 3 Under the null hypothesis (9) and the assumptions A1-A6 given in the appendiz,
we have, for any s =1,...,d,

b (Vo —nth o) S N {0,732} (12)
as m — oo, where vy and ys are as given in (A.20) and (A.19).

For the practical implementation of the test, we suggest to use a bootstrap procedure
instead of the asymptotic normal distribution theory in Theorem 3. The reason is that
for a test statistic based on kernel type of smoothing, the normal approximation to the
distribution of the test statistic is very poor, as shown in Hérdle and Mammen (1993) and,
more recently, confirmed by Sperlich, Tjgstheim and Yang (2002). Another reason is that
the normal approximation given in Theorem 3 involves too complicated expressions, which
makes the task of obtaining asymptotic critical values out of reach.

It is well-known that the ordinary method of resampling residuals fails to work when the
error variances are allowed to be different. See Wu (1986), Liu (1988), and Mammen (1992).
Hirdle and Mammen (1993) also pointed out that it breaks down even for homoscedastic er-
rors in the case of the goodness-of-fit test statistic for testing a parametric hypothesis against
the nonparametric alternative. As an alternative, we suggest to use the wild bootstrap pro-
cedure which was first introduced by Wu (1986) and implemented in various settings by Liu
(1988), Hérdle and Mammen (1993), and Sperlich, Tjgstheim and Yang (2002) among oth-
ers. Basically, this approach attempts to mimic the conditional distribution of each response
given covariate using the corresponding single residual, in such a way that the first three
moments of the bootstrap population equal to those of the single residual.

To describe the procedure in our setting, let m(x,t) = dsts + Zz# fk(:rk)tk is the
regression estimator under the hypothesis (9), where &; is an estimate of the constant fs(zs)
given by (11) while fr(zx) (k # s) is the marginally integrated estimate of fy(zx) in (4).
The wild bootstrap procedure to estimate the sampling distribution of V,,; under the null
hypothesis then consists of the following steps:

(i) Find the residuals ¢ =Y; — m(X;, T;) fori =1,...,n.

(i) Generate i.i.d. random variables Z)V such that E(Z)Y) = 0, E(Z)Y)? = 1 and
E(ZY)? =1. Put Y =m(X;, Ts) + 2.

(iii) Compute the bootstrap test statistic V¥, according to (10) using the wild bootstrap
sample {(Y;*, X;, T;)}2,.

(iv) Repeat the steps (ii) and (iii) M times, obtaining V5 ;,..., V.5 ). Estimate the null
distribution of Vp,s by the empirical distribution of V' 1,..., V5 4.

For examples of ZV satisfying the moment conditions, see Mammen (1992). For the
empirical example in the next section, we used a two-point distribution : Z}¥ = (1 —+/5)/2
with probability (54 +/5)/10, and Z}¥ = (1 + +/5)/2 with probability (5 — v/5)/10, with
M = 200.



4 AN EMPIRICAL EXAMPLE

We illustrate our estimation and testing methods through the analysis of the quarterly
(seasonally non-adjusted) West German real GNP from 1960:1 to 1990:4. The data Gy, 1 <
t < n = 124, which was compiled by Wolters (1992, p. 424, note 4), is plotted in Figure
2(a). One may see clearly a linear trend and pattern of seasonality. Based on seasonal
unit root testing of Franses (1996), we take the first differences of the logs, and obtain a
time series data, Dy, 1 <t < n = 124, which is plotted in Figure 2(b). This time series no
longer has any trend but is obviously seasonal. Following the de-seasonalization procedure of
Yang and Tschernig (2002), the sample means of the four seasons are calculated, which are
—0.065116, 0.038595, 0.051829, 0.0089443 respectively. By subtracting these seasonal means,
as was done in Yang and Tschernig (2002), the de-seasonalized Y;,1 < ¢t < n = 124, are
growth rates with respect to the spring season. As such, it is reasonable to assume that the
Y,’s satisfy our strict stationarity and mixing conditions. In Figure 4, the data ¥;,1 < ¢ <
n = 124 is plotted as the dotted curve.
(Insert Figure 2 about here)

According to the semiparametric lag selection performed in Yang and Tschernig (2002),
it was clear that the significant variables for prediction of Y; are Y;_, and Y;_5. Calculation
of autocorrelation functions indicates that Y; is more correlated with Y;_; and Y;_3 than with
other lagged values. Hence, we propose a varying coefficient model

Vi=fi(Yi2) Y+ fo(Yia) Vi +o0ey (13)

which includes the special case of possible linear AR(2) model V; = f1Y;_1 + foYi—3 + 0ey.
According to the definition of marginal integration estimator (4), we have estimated the
functions fi, fo, and computed the predicted values

Y, = fi (Yiea) Yiot + fo (Yiea) Vi (14)
We have carried out local linear smoothing (p = 1). The kernels K and L we have used

p

for smoothing are both the quartic kernel L(z) = K(z) = 0.9375 (1 — z2)° I(|z<1), while
the bandwidths are h = 0.05,¢9 = 0.05/1.1 = 0.0454. Also computed are the standardized
residuals €;. The independence of the error terms would indicate the goodness-of-fit of the
proposed model (13). At a practical level, such independence can only be examined via the
autocorrelation functions (ACFs) of powers of the absolute values of the residuals. In Figure
3, we have plotted the ACFs of both |¢;| and £2. As can be seen from the plots, within the
confidence levels of £2 x n~'/? lie more than 95% of all the sample ACFs, and hence one
can conclude that both |¢;| and €2 have no autocorrelation. The ACF plots for |&;|3, €}, etc.,
have led to the same conclusion. Thus, the model (13) fits well the structure of the data Y;.
As further evidence, we have plotted in Figure 4 the overlay of Y; together with the predicted
series Y} given by (14). The predicted series follows the actual series rather closely.

(Insert Figures 3 and 4 about here)
A 124 . 124 | )
We have plotted {Yt_g, fi (Yt_z)}t:5, {Y}_4, fa (Yt_4)}t:5 in Figure 1 as the solid curve.

Also plotted as dotted curves are 95% point-wise confidence bands of f; and f, based on
200 wild bootstrap samples. The solid horizontal lines have the average values of f; (Y;_2)
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and f, (Y;_4), respectively. The function f, looks rather unlike a constant function, as the
constant fit represented by the horizontal line does not lie within the confidence bands. The
function f, however, has a confidence band that covers the horizontal line, and hence could
be a constant function.

To determine the significance of this visual impression, we generated 200 wild bootstrap
samples from the data, and calculated V,,; according to (10) for the data itself and V for
every generated bootstrap sample. The p-values for V,,;, V,,» have been calculated relative to
the bootstrap distribution, and they are 0.05 and 0.455 respectively. Hence we can conclude
that an appropriate model for the data is the partially linear model:

Y, = fi (Yieo) Yot + foYi_s + oer.

APPENDIX: PROOFS

Preliminaries

We shall need the following technical assumptions on the kernels:

Al: The kernels K and L are symmetric, compactly supported and Lipschitz continuous
with [ K (u)du = [ L (u)du = 1. While K is nonnegative, the kernel L is of order q.

When estimating the function f; for a particular s, a multiplicative kernel is used con-
sisting of K for the s-th variable and L for all other variables. To accommodate dependent
data, such as those from varying-coefficient autoregression models, we assume that

A2: The vector process {(X;, T;)}i, is strictly stationary and S-mizing with mizing coef-
ficients B(k) < Cyp*,0 < p < 1. Here

B(n) = sipEsup{‘P(A\}'foo) — P(A)‘ :Ae fl’ik}

where Ft is the o-algebra generated by (Xy, Ty) , (Xeg1, Teg1) s -ny Xy, Tyr) fort < t'.
The following assumptions are for the functions involved in the estimation and testing.

A3: The functions f,’s have bounded continuous (p + 1)-th derivatives for all 1 < s < d,
andp>q—1

A4: The distribution of (X, T) has a density ¥ and X has a marginal density ¢. On the
supports of weight functions w_, and w,, the densities p_; of X_s and ¢s of X,
respectively, are uniformly bounded away from zero and infinity. The marginal density
¢ and E (T,Ty|X =) for 1 < s,s' < d are Lipschitz continuous. Also, o%(-,t) and
Y(-,t) are equicontinuous.

Ab: The weight functions w_, and w are nonnegative, have compact supports with nonempty
interiors, and are continuous on their supports.



Finally, we assume that the bandwidths, g for the kernel L and h for the kernel K,
satisfy
A6: (Inn) (nhgprea) 2 = O (n™%) for some a > 0 and (nhlnn)2ge.  — 0 as n — oo

where Gprod = 91" Gs—-19s+1 """ 9d and Gmax = max(gl, cee90s—1,9s+1,5 - - - agd)a and h s
asymptotic to n~ Y/ (r+3)

One should note here that for existence of the bandwidth vector g satisfying the as-
sumption A6 it is necessary that ¢, the order of the kernel L, should be larger than (d—1)/2.

To prove many of our results, we make use of some inequalities about U-statistic and von
Mises statistic of dependent variables derived from Yoshihara (1976). Let &;,1 <i <n be a
strictly stationary sequence of random variables with values in R? and -mixing coefficients
B(k),k=1,2,.... Let r be a fixed positive integer. For a fixed positive integer m, let {6, (F')}
denote the functionals of the distribution function F' of &; given by

/gn (&1, wvey ) AF (1) - - - AF ()

where {g,} are measurable functions symmetric in their m arguments such that

[ 190 @1, 20) 57 AF (21) - dF () < My < 00

sup /|gn L1, oy T dFy, . & (T1, s Tm) < Mp e < 400,¢=0,...,m—1
(%1 yeeeesim)ESe
for some § > 0. Here, S, = {(i1, ey i) |#+ (11, ooy i) = ¢}, ¢ = 0,...,m — 1, and for every
(11 ey i), 1 < iy < - v- <y <y #4(41, +ony i) = the number of j = 1,...,m — 1 satisfying
141 — %5 < r. Clearly, the cardinality of each set S, is less than n™ .
The von Mises’ differentiable statistic and the U-statistic

On (Fn) = T, - ) (331) an(xm)

1 & -
= _mz Zgn f’bl"'ié‘im)

i1=1
1
Un = n Z gn (§i17"'a€im)7

(m) 1<iy < <im<n

\

respectively, allow decompositions as

() = 0P+ 3 (70,
c=1
where V(9 = S gne (@1, s we) 52y [dF 0 (x5) — dF(z4)], and

U = 6.(F)+3 (?) e,

c=1



where Ur(LC) = ﬁ%ﬂ Zl§i1<"'<ic§n fgn,c ($i1, ceey $ic) H;:l I:dIR‘_j'_ (l‘j - g'tj) - dF(IJ)] . Here, In,c
are the projections of g, given by

One (T1,..,x /gn X1y ooy L) AF (2ey1) -+ - dF (), = 0,1, ...,m

so that gn o = 0n(F'), gn = gnm, and I R is the indicator function of the nonnegative part of
R R ={(y,....ya) € Ry; > 0,5 =1,...,d}.

Lemma A.1 If B(k) < C1k=@+/Y for § > §' > 0, then

EV©9% 4 U2 (A1)

n m—1
< C(m,é,r)n° {Mg/(Q-HS) 2 kﬁd/(2+5)(k) + z —c M2/ (2+96) Zkﬁ(s/(ZH) )}
c¢'=0

k=r+1

for some constant C (m,8,7) > 0. In particular, if one has B(k) < Cop* for 0 < p < 1, then

m—1
EV©9? 4+ EU? < C (m,6,r) CL,C(p)n~¢ {Mz/(”‘s) + > n° MQ/(HJ)} (A.2)

n,c'
=0

Proof. The proof essentially is the same as Lemma 2 in Yoshihara (1976) which dealt
with the special case where g, = g,7 = 1 and M,, = M,, ». The inequalities in the proof
of this lemma do not require all g,’s to be the same for n = 1,2, ..., and the terms in Ur(f)
where exactly ¢’ pairs of neighboring indices differ by at most r form a subset of terms
with cardinality of order n¢¢. Elementary arguments then establish (A.2) under geometric
mixing conditions. m

Define the following square matrix of dimension (p + d):

Sy(x) = [ Jp(w)p” (u)K (v)du E(TX =x) [p(u)K(u)du E(T,T” |X = x) ]
s E(T,T_{X=x) [p"(v)K(u)du FE(T_,T”|X = x) '

The next lemma shows that the matrix Ss(x) is proportional to the limiting dispersion
matrix.

Lemma A.2 Asn — o0

s(X_5)Zs — p(xs,x_5)S(x5,%x_5)| = 0(b) a.s.

sup
zsEsupp(ws),X s Esupp(w—_s)

where b=1Inn (h + 9.+ 1/, /nhgprod).

Proof. The conclusion follows by directly using the covering technique and exponential
inequalities for S-mixing processes, as in the proof of Theorem 2.2 of Bosq (1998). m

Now let ¢ be an integer such that b = o (h?™2?). The next lemma decomposes the
dispersion matrix.

10



Lemma A.3 For any integer k,

-1 SN (zs,x )
ZTWS X_s)Zs _ s \"$HAms)
(ZiWx-020) - = 25

-1 c T -1 ¢
_ M Z {I _ Zs Ws(st)ZsSs (xs,xs)} + R, (fEs,X—s)

= d
ol x_s) S (25, X_5)
as n — 0o, where the matriz Ry (xs,X_s) satisfies
sup |Rs (z5,x )| =0 (h”“) a.s.

$s€sum)(ws):x—sEsupp(w—s)
Proof. By a Taylor expansion for the matrix inversion operation, Lemma A.2 immedi-

ately yields the result. m
Lemma A.4 Define

Dy, (375) = ﬁ Z wfs(Xi,fs)Rs (.’L’S, Xi,fs) ZZ‘W’LSE,
i=1
1 P Wz )hY
DsQ (335) = E Z w—s(Xi,—s)Rs (3:57 Xz s) ZTWzs l{fs( )}] 1 Z %Zseu )
i=1 v=0 .
1.
Dg3 (375) = ﬁ Z wfs(Xz,fs)Rs (.’L’S, X s) ZTW’LS
i=1
X {Zfs’(st’)} Zfs’ sep—|—s’ :
s'#s j=1 s'#s

Then, as n — o0
sup  {| D1 (2,)] + [ Dy ()] + | Do (w5)[} = 0(h?*?) a.s

Ts €supp(ws)
Proof. The lemma follows directly from Lemmas A.3. m

Lemma A.5 Write Wy, = W,(X, _,) and E = {5(X;,T:)ey, ...,0(Xpn, Tp)en} . For £ =

., define
1 & w*S(Xifs) -1 ZTWiSZssil(xsaXifs) ¢
R s = - —— 5 saXi—s 1 e £ ?
a(o) = 33 s, X ) {f - B
ZTWZ-SE (A.3)
l
) — Zzwiszsss_l(xw Xi,—s)
Rp(r,) = ;wa X )Ss l(xsvxi,—S) Iya— oz, X; _y)
=1 §3 LR, =S 8§y 4¥q,—8
n L ()b
Xzzwisis l{fs(st)}jzl - Z ngeyl (A4)
v=0 :
1 & w—s(Xz’—s) ~1 { ZTWisZsS_l(mei—s)}z
Rep(zs) = — 3 208wy X, o) Ly — = : :
ZS( ) nizzlgp(x&xi,—s) ( ) i SO(Q:SaXz',—s)

(A.5)
=

{Zfs’(st’)} Zfs’ s’ Z s€p+s!
j=1



Then, as n — oo,
|Rer(25)| + |Rea()| + | Res ()| = 0, (b/V/mb) . (A.6)

Proof. For simplicity of notations, consider the case of Ry (xs) and only £ = 1. The
term Ry (zs) equals P; — P in which

12 S(l‘s Xz _3) E (Zzwiszs|x5axi,—s)
P = - —s( X —s St 50 Xi—s - -
1 n 1:211” ( ; ) s (z ; ) {@(iﬁs, Xi,fs) ©2(z, Xi,fs)
XS;1($35 Xi,—s)zgwisEa
12 7IW, 2, E(ZIWiZi|o, X, )
P = - —s(X,—s S_l SaXi —s > T 7
2 n 1221 w ( , ) s (l" ) ) {QO(IL"S, Xi,—s) S02(%’ Xi,—s)

xS (s, Xi_s) 2l Wi E.

Denote & = (X;, T;,Y;), The term P; can be written as the von Mises’ differentiable statistic
Vi, =1/2n?%"

1,j= 19n fzaé-] Where In é-zaf] GQE%ZTWZSZSL’L‘S, i, 5)
(102('1‘5’ X ,—8)
w_y(Xi - :cs, ’E,Qli (X s — Xi _s)o(X;, T))e;
XS l's, i, s Is /h} TJsKh ( 373) Lg(Xj,—s - Xi,—S)U(Xja Tj)‘sj
Tj sKh g(X],—s —_ Xi’_s)O'(Xj, r:[‘_7 13
E

)
S(xzs, X, s ZTW ; Z |25, X _s
+ w—S(Xj,—S)Ss_l(ms’ Xj,—s) { (33 ke ) — < J ‘ J )

o(zs, Xj,fS) ©? (g, Xj,*S)
TisKp (Xis — x5) Lg(Xi s — X, 5)0(X;, Ti)es

ng_l(xsa Xj,—s) p {(Xzs - xs)/h’} TjsKh (Xis - -Ts) Lg(Xz',fs - Xj,,s)O'(Xi, Ti)gz' .
Ti,—sKh (Xis - xs) Lg(Xi,—s - Xj,—s)U(Xz', Ti)gi

First, one calculates that g, o = 0 and g, (§;) equals

E(Z"W;,Z,|x,,z_,
/Ss_l(xs;Z—s)w—s(z—s)ss_l(ﬂfs,Z_S) {S(.’ES,Z_S) . ( s | )}

o(zs,25) 0% (25, 2_5)
TjsKn (Xjs — ) L (X] —s — 2_5)0(X;, T))g;
xSy (5, 2-5) ( P {(Xjs — x5)/h} Tjs Ki (Xjs — x5) Lg(Xj—s — 2-5)0 (X, Tj)e; )
Tj—sKn (Xjs — z5) Lg(Xj,—s —z_5)0(X;, Tj)e;

Xp_s(z_s)dz_s

which has mean zero and variance of order b?/nh. So V(! =1/n 3", g1 (&) = o, (b/\/ nh).
Next, take a small constant § > 0. Then, the (2 + §)-th moment of g, (&,€;),7 < j, is not

12



greater than

2446
w_y(X; —S)TjsKh (st — T) Lg(Xj,—s - Xi,—S)U(Xj’ Tj)ej

)

Cv*™E W (Xi—s)P {(Xjs — z5)/h} Tjs K (Xjs — @5) Lg(Xj—s — Xi—5)0(Xy, Tj)e; ,

)

Ws(Xi,—s) Tj—s Kn (Xjs — ) Lg(Xj—s — Xi—5)0 (X, T)e;
which, by Lemma 1 of Yoshihara (1976), is less than or equal to

2+96) /(2420
T;sKp (Xjs — x5) 0(X;, T))ej 2+25\ (2+0)/(2+29)

1
COHC(p) | s B | P (X5 — 25)/ 1} Tjs K (X5 — 5) 0(X;, T)e;
gPTOd Tj,—sKh (X]s - xs) O-(X]" T])gj
1 (2+9)/(24296)
< Cv*HC(p) ( )

1120
pi+20g 132
—(246)/(2+26)
Hence, one can take M, = M, = Cb*t9 (p11+2041+20 (ro)/@+20) in the context of
3 ) prod

—(2+4)

Lemma A.1 with m = ¢ = 2,7 = 1. Similarly, one can show that M, ; = Cb* a1+ g =

Now applying Lemma A.1 with m = ¢ =2 and r =1, (A.2) gives

EP? < Cn‘Q{b2+6 (h1+2691+25)(”‘”/(2*2‘”}2/(2+J)+Cn—3{b2+‘5h—(1+6)g—(2+6)}2/(”‘”

prod prod
+Cb /nh

< Cn%p? (hgpmd)—2(1+26)/(2+25) + Cn—3b2h—(1+5)2/(2+5)gr;(ozga)z/(zm) + B /nh
< Cn7'h'9?

by making ¢ sufficiently small. Similar arguments establish that FP? < Cn~'h~'b?. Hence
P, — P, = 0,(b/v/nh). We have thus concluded the proof of the lemma. m

Proof of main results

Now write q,(u;t) for the (p + d)-dimensional vector given by
qs(u;t)" = (p(u)Tts,tTS) = (ts, uts, ..., uPt,, t",),
and define an equivalent kernel
K3 (ust,x) = e S; (x)as (u; £) K (u). (A7)
Write K, (u;t,x) = (1/h)K; (u/h; t,x), i.e.
K7 (ust,x) = (1/h)eg S (x)as (u/hs t) K (u/h). (A.8)

This kernel satisfies the moment conditions as are given in the following lemma, which follows
directly from the definition of S,(x) and S;*(x).

13



Lemma A.6 Let 0, equal 1 if j =k and 0 otherwise. Then

E{JuwT,K;(u; T,X)du|X = x} =dyg, 0<¢q<p;

E{[T¢K};(u; T,X)du|X =x} =0, s=1,..,d,s #s. (4.9)

In order to prove Theorem 1, we begin by observing the following simple equations:
—1
ey (ZIWiZ,) ZIWiZye=0q, 1=0,..,p+d—1.
Define Qin =27 | w ((X;,_5)/n and

_ -1 p f(u) Ty hl/
Qon(zs) = ! Zw_ - (ZTWwZ ) ZSTWiS {Y — UZ:O —SJI/TLZSe,,

s'#s

- Zfs sep+s}-

Then, we obtain
an {fs(ms) - fs(xs)}
= Y w (Xl (ZTWaZ,)  ZEWLY

i=1
n 4 (v) v _
S w (Xims) Y Weg (2'Wiz,)  Z'WiZe,
z'—l v=0 :
—n_IZw_ Z fo (Xis)eg (ZTWZSZ ) 1ZfWiSZseers/,
I#S

which equals Qo (7). By Lemmas A.5, A.4 and A.3 and by the definition of K7, (u,t;x) in
(A.8), we now write

Qoo i{ >+immyu%mﬁ (A.10)

I=1
where
P (zs) = n-? )K: Xjs —xs; T, 05, X _) Lg(Xj—s — Xi—5)0(X;, Tj)e;
1 ijl gp(xs, X_Z 5) h ( J k) ) g( T ) J J J
(A.11)
_ " w—s(Xi,—s) *
Pgn(xs) = n 2 .Z_l mKs’h (st — Tg, Tj, Ts, Xi,fs) Lg(Xj,fs — Xi,fs)
1,j=
P
x%am—z )06 = 2} (A12)
v=0
_ ) o
Psn(z,) = n7? Zl cp(ms,X )Ksh (Xjs — 253 T, w5, Xi =) Lg(Xj—s — Xi—s)
i,j
X Z {fsr fsl( is’ )}7}51. (A13)
s'#s

In the following three lemmas, we derive the asymptotics for Py,, Py, and Ps,.
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Lemma A.7 Asn — oo,
Pin(z,) =" Y pjs(s)e; + 0p{ (nhlogn)~'/%}
7=1
where
’lU_S(Xj’_S)
(P(-Ts, Xj,—s)

Proof. By the definition (A.11) and using Lemma A.1 for geometrically S-mixing processes,
one has

pjs(Ts) = K5y (Xjs — 253 Ty 25, Xj—5) 05 (Xj,-5)o (X, Ty).

Pln -Ts = _IZ/ o K;h(X xs;Tjaxwx—s)
‘/ES’
X Lg(Xj—s — x_s)go_s(x_s)dx_sa(Xj, T,)e; + op{(nhlog n)_1/2}

which, after the change of variable x_, = X, _; — gv_j, equals

— w— _gV—S) * .

XL(v_g)p_s(Xj_s — gv_s)dv_,0(X;, T;)e; + op{(nhlogn)~/?}.
Using again the fact that L is of order ¢, the above equals
—1 ) *
K (Xjs — 26T, m5, X 5) 0-5(X, )0 (X, Tj)e;
]Zlgo(xs,X] ) ek J j J Jr +5)€j
+0,{(nhlogn)~/?}

which completes the proof of the lemma. =
Lemma A.8 Asn — 00, Py,(z5) = ks(xs) WP + 0,(hPT1) where

fs,(p+1) (zs)

T [ B {w (KT (0 Ty, X ) du (A.14)

Ks(xs) =

Proof. By definition (A.12) and again using Lemma A.1, one derives

w_s(x_s)

o) = ] o)

K;k,h (ZS — Ts; t7 Ls, X—s) Lg(Z_s - X—s)

{fs %) i Y 5)”} b6z, 6y (s )dadtae_, {1+ 0,(1)}

which, after the changes of variables 2z, = x5 + hu and z_; = x_, + gv_;, equals

/ wx K* (us b, 2, X—5) L(v—s) {fs(xs + hu) — i Mu”}

v=0
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Xtsh(xs + hu,x_5 + 8V_s, t)p_s(x_s)dudv_sdtdx_s {1 + 0,(1)}.

Here, we write gv_s = (9101, - -, gs—1Vs—1, §s+1Vst1, - - -, §gUq)- Lhus,
(p+1)
Pon(z,) = R / w]{: (w3 t, 75, X_s) [0 () uP e,
P(Ts, %) (p+1)!

XQ_s(X_s) (X5, X_s, t)dudx_,dt {1 + 0,(1)}
f(p—l—l)( ) )
Whp+1/ [/K u;t, Ty, X )up-i'ltsw(t‘a:s,xs)dudt]

Xw*S(X*S)(p*S(Xf )dxf,g + 0p(hp+1)
f(p+1)( ) X
72“ o E [ X_,) [ K (st 2y, X)) urt tsw(t|xs,X_s)dudt]
+o0p(hPT1)
f(p+1) (‘,'E )hp—|—1
(p+1)!

This completes the proof of the lemma. m

/ WPVE {w_ (X )T K (u; T, 24, X_y)} du + o, (R,

Lemma A.9 Asn — 00, Py, (25) = Op (92 4x)-

Proof. By definition (A.13) and applying Lemma A.1, one has

w-— X_
P3n / ./E Sh( J’ls;taxsaxfs) Lg(Z,s—X,s)
57

x [Z {fo(ze) = for(ws)} s | (2, t)0—s(x—s)dzdtdx_s {1 + 0p(1)} .

s'#s
After the changes of variables z_; =x 4+ gv_, and 2z, = x, + hu, we obtain

w_
Py (z5) = / (@ K* (us b, 5, x—5) L(v_s) ,:Z {fs (s + gsvs) — for(Ts)} Lo
sy X s'#s
xw(xs + hu, X_s+ 8V_s, t)p_s(x_s)dudv_sdtdx_s {1+ 0,(1)}

= Op(grqnax)

since L is of order ¢ by the assumption Al. Thus, we have proved the lemma. m

Proof of Theorem 1. By Lemma A.7 and the martingale central limit theorem of Liptser
and Shirjaev (1980), vVnhPy,(zs) for each z; € supp(ws) is asymptotically normal with mean
0 and variance

h / w? (10,2 :Qh (zs — x5 t, T5,2_5) g02_s(z_5)02(z, t)1Y(z,t)dzdt {1 +o(1)}.

After the change of variable z;, = x4 + hu, this equals

/ w2 2 K*2 (u;t, 75,2 5) ©° (Z_5)0” (Ts + hu,z_,,t)
><¢(acS —|— hu,z_g,t)dudz_,dt {1+ o(1)},
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the leading term of which equals

2 () / w2 K*2 (ust, 24, 2_) 0 (2_5) 0% (T4, Z_s, )U(25, Z_, t)dudz_ dt.
xsa

(A.15)
The theorem now follows immediately from Lemmas A.7, A.8, the conditions on the band-
widths as given in A6, and the fact that Q1, = 1, + O,(n~'/2) where

/w Z_g)dz_s. (A.16)

Proof of Theorem 2. One first notes that (8) follows directly from (7), so we will only
show the latter. Now, from Lemmas A.7, A.8, A.9 and the conditions on the bandwidths,
we obtain

n

fs(xs) - fs(xs) = bs(xs>’)h’p_|—1 + n_lﬂs_l ijs(xs)gj + Op(hp+1)' (A17)
j=1

Applying (A.17), one only needs to show that the two stochastic terms n~ 37, pjs(xs)e;

and n~ ' Y5, pjy (x4 )e; for s # s’ have covariance of order o(n~*h™'). Noting that the ;s

are 1.i.d. white noise and each ¢; is independent of the vectors (X;, T;),j = 1, ..., for each

1=1,...,n, we need only to show that

E{pjs(xs)pjw (z4)} = o(h77). (A.18)

By change of variables technique for X, and X, which are contained in p;,(z,) and pjy (zy)
respectively, one may show that the left hand side of (A.18) is actually O(1), which proves
the theorem. m

Proof of Theorem 3. For this proof, we use (A.10) again. Under the hypothesis (9),
Pon(zs) = Ria(z5) = Dy (z5) = 0 and so

Que {F:(52) — @) = Pun(2) + 3" Ru(25) + Das (55) + Pon() + 3 Ris() + D ().

=1 =1

Hence to study 37, fs(Xes)2ws(Xps)/n, we derive the asymptotics of such as 7, w,(Xks)
P} (Xgs)/n. By the definition (A.11), the latter equals

w— S(X ) *
-0 Z ws st Z ()(TX'ZS)KSIZ (st — Xis; ijXk:sti,—s)
1,j=1 ¥

2
X Lg(Xj,—s — Xi,—s5)o(X;, Tj)sj}

n

= 107" > (& & & & &m),

,5,k,0,m=1
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where é-z = (Xu TZ', Y;) and

Gn (§i:&5, 6k, 61, 6m) = ws(Xis) » K3 (Xjs — Xis; Ty, Xis, X, —s)

X Lg(Xj,—s — Xi—s)o (X5, T))e;
K3 (Xoms — Xis; Trny Xisy Xi,-5)
X Lg(Xpm,—s — Xy —5)0 (X, T )em

Next, we define

0 (66 € € 6m) = = X G (€€ s 60, )

’ (i’ 7.]" ’kl ’l’ ’m’)

where the sum is over all possible permutations of 7, j, k, [, m. Then >-}_; w,(Xy,) P2, (Xgs) /1
is expressed as a V statistic

n_5 Z gn (gm §ja gk:a é.la gm) .

i.7.k,1,m=1

It is easy to see that g, =0, g,1 = 0, and

w—s(xi —s) w—s(xl —s)
n iy Sm = iy Lj XmaTm j m/ s s : :
.2 (fj 5 ) O-(X] T])O( )816 v (xk )(p(xks; Xi,—s) (P(kaaXl,—s)

XK;,h, (X]S — Tks; t]a Tks, X’i,—s) Lg(X]’,_s - Xz‘,_s)
XK:;h' (Xms - "'Eks; Tm7 xk‘s’ Xl;_s) Lg(me_S - Xl,_S)
XT/J(XZ', ti)w(xl, tl)’l[}(xk, tk)dxidxldxkdtidtldtk.

By changes of variables

Xj,fs - X4,—s = 8U; _, Xm,fs — X5 = 8U; g, st — Tgs = huksa

9n,2 (& &m) becomes
Ws (Xs - huks)wfs(x j,—s — 8U; fs)w*S(Xm,fs — gu; 75)
O'(Xj,Tj)O'(Xm,Tm)Ejgm/ X, —Jh X, _ J )(7 _ X _ 2
(p( Js Uks, J,—S8 gui,fs)(p( Js Uks; Am,—s gul,fs)
XK (uns; Ty, Xjs — huge, X s — gu; ) L(w;,_s) L)
XK:,}L (Xms - st + hulcs; Tma st - hulcs; Xm,—s - gul,—s)

Xw(l‘is,xj, s guz -8 t; )w(l‘ls, Xm,—s - gul,—sa tl)w(st - hukSa Xk,—Sa tk)
><d:rz-sdui,_sd:clsdul,_sduksdxk,_sdtidtldtk.

By applying the martingale central limit theorem, one may show that the off-diagonal
sum 2n~2 I<j<m<n 9n2 (&, &m) is asymptotically normal with mean 0 and asymptotic vari-
ance given by

2 W -Tjs X] s)w—s(xm,—s)
) O-(X]a X’ma
n x]s; Xj,—s SO(-TJSa Xm,—s)
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XK: (Uks; tj; Tjs, Xj —s ) K:h (Ims — Tyjs + huks; tma Ljs, Xm,—s)
XL(ui,—s)L(ul,—s)w(xzs,xj, LR t; )w(xls; Xm —8> tl)w(xjw Xk,—s; tk)

2
xda:isdui,delsdul,sduksdxk,Sdtidtldtk} T,ZJ(X]', tj)¢(Xm, tm)
X dX; A% dt;dty {1+ O (7 + g7)}

_ 2{t+ 0 +¢9} { 0 (%5, ;)0 (Xom, 1)

n2

Ws (Tj5) W5 (Xj,— 5 ) W—5(Xm,—s) }2

SO(Xj)SD(ija Xm,—S)
X {/ K: (uks; tja Xj) K:,h (xms - xjs + huks; tma xjsa xm,fs)

2
><duksgo(xj,_s)(p(xm,_s)go(xjs)} D%, £ (X by A Al b .

After making another change of variable z,,; = x5 + hvs, the above variance becomes

2{1+ O (hP** + ¢g9)}
n2h

x/{a(xj,t )0 (@5 + Mg, Xm,—s, tm)

Ws (xjs)w—s(Xj,—S)w—s(Xm,—s) }2
(%) (Tjs, Xm,—s)

X {/ K; (uks; tja Xj) K: (Us + Uks; tma xjs: Xm,fs) duks
2
X(p—s(xj —s)w—s(xm,—s)go(xjs)}
XY(x4, )0 (x5 + hvs, X —sy b ) AV AKXy — sdX jdb jdb

or {1+ 0O (WP + g9} n=2h~'niy? where

2 _ w’ (3 Vw2 ( 2603 LK) (0t 8 2
B Us / thsasj/c ;ﬂb%( 5 Zos 5/{ 5 (us b, Q’xS’X—saz—s)}

X QD_S(X_S)QDES(Z_S) (ms, X—s) tl)U2 (5,25, t2)¢§ (zs) (A.19)
XY (Tg, X—g, t1)V(X5, Z_s, to)dudz dx_sdz_dt,dts

and KX (w;ty,t0, 75,%X 5,2 5) = [ K (u;t1, 25, %) K (w+ u;tg, 75,2 ) dw.
Meanwhlle by the martingale central limit theorem again, the diagonal sum n 2 1<j<n
gn2 (&5, &;) is asymptotically normal with mean

{140 (h*! + g9} ws(2; i) g
n -7’ / : J;]Sax] JS) : Ks (’U,k.s;tj,xjsng,—s)

XL(ui s)L(ul S)K:h(huk.ﬁ)t]ix]87x] s)¢(xzs,xj s;t)'(/J(xls;X], s:tl)
X’lﬁ(ﬂfjs,xk S;tk dx,sduz, d:clsdul Sduksdxk sdt dtldtkw(x], ')dedtj

{1+O hp+1 )} ws xjs)wQ_s(X],—s) 2 (x. T
/ SD2(X].) —s( ]7_5)@( JS)

)(I(;<2 (uks; tj, Xj) duksd)(Xj, tj)dedtj

= Ly {110 (),
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where v, is given by

o= w_snx; )R (051,5) 92, ()0, )0, (ot (4,20

The asymptotic variance of n =2 Yi<j<n Gn,2 (&;,&5) is likewise calculated, and may be shown
to be of order n=3h~2. Therefore, we establish

2

m@{ 2 Z n2 'Sﬂ’g’”)__h }—>N<O niy?). (A.21)

jym=1

Application of Lemma A.1 reveals that n=*37 . _; gnc(&yy-n &) = 0 (n’l h_l)

for ¢ = 3,4,5. Using Lemma A.l again, now to terms such as Y p_; ws(Xgs) P2, (Xks)/n,
Sr_ ws(Xgs) R (Xgs)/m and Yp_; ws(Xgs) R%(Xks)/n, one may show that they are all of or-
der o (n’lx/ h*l) as well. Meanwhile, 37 _; wy(Xgs) D2 (Xys)/nand 37, wy(Xgs) D% (Xks) /0

are both of order o (h?**) = o (n_l h_l) according to Lemma A.4. Similar arguments es-

tablish that {37, fs( Xis)ws(Xi5)}> = o (n_lx/h_l). Hence,

Q1n2 Z o (Xks)ws (Xis)/n+ 0 ( h_l) .

This completes the proof of Theorem 3. m
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The First Varying Coefficient Function
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Figure 1: Marginal integration estimates of varying coefficient functions for the West Ger-
man real GNP quarterly data from 1960:1 to 1990:4. The model is Y; = f; (Vi) Y;_1 +
fo (Yi—4) Y;_3 + o0&y, in which the time series Y; consists of de-seasonalized first differences of
the logarithm GNP. The response variable is Y = Y}, while the predictors are X; = Y; o,
Xo=Y, 4, Ty =Y, 1 and T, = Y, 3. Solid curves are function estimates while the dotted
curves are point-wise 95% confidence bands. The horizontal lines represent the means of the
coefficient functions over the compact ranges.

23



Log(German Real GNP)
=
o
S -
6 56 160
Time
(a)

First Difference of Log(German Real GNP)

= f I

|| |

Log GNP, First Difference*E-2
0
1

(T

-10

o 50 100
Time

(b)

Figure 2: Plots of the West German real GNP quarterly data from 1960:1 to 1990:4: (a) the
logarithm of GNP (b) the first difference of the logarithm GNP.
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Sample autocorrelation function (acft)
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Figure 3: Autocorrelation functions over 30 lags of: (a) the absolute values and (b) the
squares, of the standardized residuals &; for fitted model V; = f1 (Y; 2) Vi 1+ fo (Vi 4) Vi 3+
o€y, in which the time series Y; consists of de-seasonalized first differences of the logarithm
West German real GNP quarterly data from 1960:1 to 1990:4. The solid horizontal lines at
levels £2 x n~ /2, represent the 95.44% confidence bands of the autocorrelation functions.
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Predicted vs. observed values, varying coetficient model
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Figure 4: Prediction for the West German real GNP quarterly data from 1960:1 to
1990:4 based on marginal integration fit of varying coefficient model Y; = f; (V; 2) Y; 1 +
fo (Yi_4) Yy 3+ 0e,. The time series Y; consists of de-seasonalized first differences of the loga-
rithm GNP. The response variable is Y = Y, while the predictors are X; =Y; o, Xo =Y} 4,
T, = Y,_1 and Ty = Y;_3. Solid curve consists of predicted values Y; given by (14) while the
dotted curve consists of the observed values Y;.
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