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M ROBUSTIFIED ADDITIVE
NONPARAMETRIC REGRESSION

Julien Tamine Wolfgang Hardle

Université de la Méditerranée Humboldt- Universitat zu Berlin

Lijian Yang
Muichigan State Unaversity

Abstract: Additive modelling has been widely used in nonparametric regression
to circumvent the ”curse of dimensionality”, by reducing the problem of estimating
a multivariate regression function to the estimation of its univariate components.
Estimation of these univariate functions, however, can suffer inaccuracy if the data
set is contaminated with extreme observations. As detection and removal of outliers
in high dimension is much more difficult than in one dimension, we propose an M
type marginal integration estimator that automatically corrects the extreme influ-
ence of outliers. We establish the robustness and obtain the asymptotic distribution
of the M estimator through the functional approach. As a consequence, our results
are valid for S-mixing samples under mild constraints. Monte Carlo study confirm
our theoretical results.

Short Running Title. Robustified Additive Regression

Key words and phrases: Frechet differential, kernel estimator, marginal integra-
tion, M estimator, outliers, robustness.

1. Introduction

Applications of nonparametric regression techniques has proved to be useful in many
scientific disciplines, see for instance, Hardle (1990). Its main drawback is its inabil-
ity to estimate multivariate regression with accuracy. This limitation known as the
curse of dimensionality has led many authors to consider an additive form for the
regression function, among other dimension reduction techniques, see Hastie and
Tibshirani (1990) for an introduction to additive modeling.



Given a random variable Y and a d dimensional set of stochastic regressors X,
additive modelling consists of specifying an additive structure for the regression
function m(x) = E(Y|X =x) :

mix) = gt Y ma(ca) 1)

a=1

where z, is the a-th component of x. This specification supposes that the effect
of each regressors can be measured separately by the term mg(x,). This effect can
be graphically represented by the plot of the univariate function mq(z,), with easy
interpretation. Estimation methods for additive models include polynomial spline
(see Stone 1985), the backfitting procedure introduced by Hastie and Tibshirani
(1990) and theoretically developed by Opsomer and Ruppert (1997), the marginal
integration procedure independently developed by Linton (1995) and Tjgstheim and
Auestad (1994). A more recent development was a nonlinear backfitting algorithm
proposed by Mammen, Linton and Nielsen (1999), who also established asymptotic
distribution theory for their procedure.

In the existing literature on additive modelling, the robustness of estimation pro-
cedure has not been theoretically studied. Nevertheless, the problem of outliers is
of particular importance in multidimensional setting, since their removing by visual
inspection is impractical. Our first aim in this work is to gain insight into the ro-
bustness properties of marginal integration procedure. In that view, we first conduct
an asymptotic analysis of marginal integration estimation in a functional setting as
in Ait-Sahalia (1995), that allows us to give an analog of Hampel influence function,
in the manner of Tamine (2002), which defined a smoothed influence function.

Figure 1 illustrates this non-robustness of marginal integration estimator. One
can see from plots (a) and (b) the presence of outliers in the simulated data set. As
a consequence, the ordinary marginal integration estimators do not fit their target
well as can be seen in plots (c) and (d). At the same time, the robust estimator
that we propose gives a much better fit.

Since the Nadaraya Watson estimator (Nadaraya 1964, Watson 1964) and the
marginal integration estimator based on it are obtained by solving linear least square
problems, a natural way of robustification is to use a flatter tail function for min-
imization criteria. Such estimators are commonly referred to as M-estimators (see
Huber 1981, for an expose of these methods) and have already been proved to be use-
ful in univariate nonparametric regression (see chapter 6 of Hardle 1990). Recently,
Bianco and Boente (1998) have used them for additive modelling in the special case
where all the components of the regressor vector are independent. Our second aim in
this work is to extend these results to the more practical case of dependent compo-
nents of the regressors vector. Furthermore, we aim at leading a detailed theoretical
study of the improvement brought by this estimator in terms of robustness. In this
respect, we again benefit from the use of functional analysis concepts.
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Figure 1: Scatterplots and function estimates for a simulated sample of size 150:
Y = my (X1) + mg (X3) + € where my (t) = 5t — 5/3, my (t) = 10t® and ¢ has a
normal mixture distribution (see section 4). (a) plot of (X;,Y"), and my (¢) — solid,
robust estimator — circle, ordinary estimator — cross. (b) is the counterpart of (a)
for (X5,Y) and my. (¢) and (d) are zoomed in copies of (a) and (b).



Our work is organized as follow : in section 2, we study the robustness properties
of marginal integration estimator and set the functional framework necessary to
calculate its influence function. In section 3, we specify an alternative additive
model based on M-estimators, suitable for regression estimation in the presence of
outliers in the data. This estimator is shown to be less sensitive to outliers since
its influence function is proved to be bounded under suitable conditions on the
minimization criterion function. All of our asymptotic results are obtained under
mild a—mixing assumptions. In section 3, a Monte Carlo simulation illustrates the
finite sample behavior of the M-robustified additive estimator.

2. Smooth influence function for marginal integra-
tion

2.1 Functional Presentation of marginal integration estima-
tor

For the additive model (1), we will suppose without loss of generality that p = 0.
Under the identification condition

Eqo{m,(X.)} =0, (2)

we have

Ma(Ta) = / m (x) dF (x(-a)) (3)

which can also be written as
Ma(@a) = [ m (%) f (X w) dX( o (4)

where x(_q) denotes the vector x with the ath component removed.

If one uses (3) with m (x) estimated by the Nadaraya-Watson (see Nadaraya 1964
and Watson 1964) estimator (or local polynomial estimator), and F’ (x(_a))estimated
by its empirical estimator, one obtains the marginal integration estimator

ma(xa) = Z ’ﬁ’L(.’L‘a, Xi(—a)) (5)
i=1

In this work, we are going to consider a slightly different estimator. We will use (4)
with m (x) estimated by the Nadaraya-Watson estimator of regression and f (x(,a))
estimated by the Parzen-Rosenblatt (see Parzen 1962 and Rosenblatt 1956) kernel
density estimator. Here, the estimator we consider is defined by the empirical analog
of (4):

’ﬁ’La (.Z‘a) = /ﬁ’i, (X) f (X(,a)) dX(,a)



where the integral is approximated by any reasonable numerical integration proce-
dure. In order to distinguish our marginal integration m from m, we will call it the
smoothed marginal integration estimator.

Although the primary motivation for using the smoothed marginal integration
estimator is theoretical as will be pointed out later, in some cases there is an addi-
tional computational advantage for doing so. Indeed, as discussed by Cheéze, Poggi
and Portier (2000), such an estimator can be costless in computation when the
number of observations is large relative to the number of regressors. In that case, it
requires less operations to approximate the integral on x(_,y than to estimate the
expectation under x(_,) by its empirical counterpart.

In order to assess theoretlcally the non-robustness properties of the smoothed
marginal integration estimator, we're going to analyze it from a functional point
of view. We define as in Ait-Sahalia (1995) the smoothed cumulative distribution
function of the random vector (X,Y") by

~ 12 X—Xi —Y;
Fn(xvy):ﬁZKI< . )Kz(yh )

i=1

where

and

with K a univariate kernel whose properties will be made precise in Appendix. The
smoothed marginal integration estimator can then be regarded as the plug-in of E,in
the functional. It was shown in Ait-Sahalia (1995) that under technical assumptions
that this smoothed cumulative distribution function converges to the cumulative
distribution function of the random vector (X, Y") denoted by F' (x,y) . Furthermore,
under regularity assumptions, Ait-Sahalia (1995) showed that the derivatives of
E, (x,y) which are in fact classical Parzen-Rosenblatt estimators of density converge
to corresponding marginal densities of the random vector (X,Y).

Having said all the above, both m, and m, admit a tidy functional representa-
tion. Indeed, (3) can be written under the form

/ Bd“F )
Y Y d+1
0x0y 0t F

Ma (Ta) =Ty / adle %0y (x,y) dzody | dx(—a).

0x0y

We then have



This functional presentation allows us to quantify the (non)robustness properties
of the smoothed marginal integration estimator by adapting Hampel’s influence
function (see Hampel 1994) to this nonparametric framework.

We now define the analog of usual first order Taylor expansion for functionals
such as I'. Given a normed linear space (F, ||o||), a real valued functional I" defined on
an open neighborhood of the point F' € E is said to be strongly Frechet differentiable
at the point F' if there exists a continuous linear operator Dpl' : E — R such that

T (F+V)=T(F)+ Dl (V)+0O(IVI)

holds for all V' satisfying ||V|| — 0. The linear operator Dy is called the Frechet
differential of the functional I" at the point F. In the next section, we will establish
the Frechet differentiability of I', and then use it to assess the non-robustness of the
smoothed marginal integration estimator via an adapted form of Hampel’s influence
function.

2.2 Non-robustness of marginal integration estimator

Let’s now state the first lemma which is going to reveal the asymptotic behavior of
the global estimator. Let E denote the linear space of bounded real-valued functions
defined on R%*! whose partial derivatives up to order d + 1 are continuous with
compact support. For any V' € E, define the Sobolev norm of order d 4+ 1 as

O™V (u)

V1l oo.a1) = 0<esdiil Ar?ﬁﬁxcusgﬂl

OAV (ur)+0"d+ (ugyr)

d+1
where |A| = > Ajfor A = (Ay, ..., Agr1) € N*tand 0%V (u) = 07 Viw)
j=1

Lemma 1 The functional I'q admits a Frechet differential for the norm ||| 411
at every cumulative distribution F € E satisfying assumption (A3). This Frechet
differential is given by

DI, (V) =/f(;((7)§)) [/yv(x,y)dy—v(X) ] +/m V(X(—a))dX(—a)

%;;:// (X’ y) v (X) - /U (Xa y) dy, U(X(—a)) = /’U (X) dx,.

in which v (x,y) =

In the case when V = F,,—F,v = f,—f, we show that the term / m(x)v(X(—qa))dX(—a)
is of higher order than the first one, and hence one obtains

Corollary 1 Under assumptions (A1) to (Ab), the following expansion holds :

1 n
Ma(Ta) — Ma(Ta) = = U(X;, Vi h) + 0p(n2R7H2) (6)
=1

3

6



where

\II UX, UY, dX(_a)

/ fx [ Jy (Kn(x —ux)Kn(y —uy) — f(x,y)) dy

& = (Kn(x - ux) — f(x)) m(x)

Clearly, according to expression (6), each data point (X;,Y;) contributes to the
asymptotic error of estimating mq(z4) by M4 (x4) through the term U(X;, Y;; h).
As pointed in Tamine (2002), ¥(X;,Y;; h) can be considered as an adaptation of
Hampel’s influence function to kernel estimators. As a consequence, the analysis
of W(X;,Y;; h) is interesting in order to quantify the robustness properties of the
estimator Mg (z,) when outliers may be present in the sample. This is done in the
following lemma:

Theorem 1 Under assumptions (Al) to (A5), ¥(ux,uy;h) is bounded in the vari-
able ux (uy being bounded) and unbounded in the variable uy (ux being bounded).

This lemma shows us that outliers among the regressors X; can only have
bounded effect on the error of estimation, this is due to the local character of the
estimator. On the other hand, outliers among the response variable Y; can increase
the error of estimation without any limit, which in practice can produce a fictitious
peak.

The next step of this analysis is to derive the asymptotic distribution of the global
estimator. This is done using a central limit theorem. The results are summarized
in the following lemma:

Theorem 2 Under assumptions (Al) to (A5) :
Vnh {ia(za) — Ma(za)} = N (0,V)

where

v= [ oy s vy [ KO0

3. M robustified additive model

3.1 Model specification

As discussed in the previous section, the marginal integration estimator is non-
robust in the presence of response outliers. In this section, we consider an estimation
procedure of the additive components m,(z,) using conditional M-estimates.

In what follows, we assume that the conditional cumulative distribution function

R =[5

dv is symmetric around m (x).



Let a score function be ¥ which is odd, bounded, twice continuously differentiable
ov
on R and satisfies the inequality /E (y — m(x)) dFx(y) > 0.
It can be easily shown that m (x) is the unique 6 value that solves the equation

[ew-olFay—o 7

Remark :

e our regularity assumptions on ¥ are stronger than those that are usually re-
quired for the study of the M estimator of the regression. This assumption
could be relaxed at the cost of increased complexity in the proofs.

e If Fi(y) is not symmetric, equation (7) still admits a unique solution which is
no longer m (x), but can nevertheless be useful as a robust location parameter
(see Huber 1981 for discussion).

Under the additive specification (1) for m (x) and the identification condition
(2), mq(zy) still satisfies the relation

mg (.’L‘a) = /m (X) f (X(,a)) dX(,a)

and is still a functional of the cumulative distribution function F'(x,y). This func-
tional that we will denote by ' doesn’t have a closed form since m (x) is implicitly
defined. Nevertheless, this functional presentation is still useful in order to establish
the robustness properties of the estimator.

3.2 Estimation procedure

The estimator we propose is still of marginal integration type. It proceeds in two
steps:

e first an estimator of m (x) is computed by solving equation

fxy

/ U (y—0) (A )
fx)

where f(x,y) and f(x) are the Parzen-Rosenblatt estimators of f(x,y) and f(x).

The existence of this estimator for n large enough as well as its convergence prop-

erties have discussed in detail in Tamine (2002).This first step estimator will be
denoted mM (x)

dy =0 (8)

e my(z,) is then estimated by

mgl(:va) = /’ﬁ’LM (X) f (X(,a)) dX(,a)



e One has to notice that 2 (z,) is in fact the plug in estimator of the functional
M M
M (Ta) = Iy (F)

at F, (x,v).

3.3 Asymptotic analysis

Lemma 2 The functional TM admits a Frechet differential for the norm o]l (0o,d:+1)
at every cumulative distribution F' € E satisfying assumption (A3). This Frechet
differential is given by

or) = [ ¥y = mx)}vix,y)dy
[ ¥y = m(x)} £ (x, y)dy

aa;a;/ (x,9),v(x) = /U (x,9) dy, v(x(—q)) = /v (x) d,.

f(X(_a))dX(_a) + /m(X)U(X(_a))dX(_a)

in which v (x,y) =

As previously, in the case V = F,— Fandv= fn — f, we show that the term

m(X)v(X(—a))dX(—q) is of higher order than the first one, and hence one obtains

Corollary 2 Under assumptions (A1) to (A5)

0 (20) = ma(za) = — 30 UM (X, Yis ) + 0,(n~ /20 ™12)

nzl

where

. [0 4y =m0} {Ka(x — ux) Ky — uy) = f(x,9)} dy
UM (ux, uy; h) —/

, f(X(—a))dX(—a)
[ ¥ {y =m0} 1 (x,y)dy

We can now lead a more careful analysis of ¥V (ux, uy; h) in order to assess the
robustness properties of the estimator m (z,)

Theorem 3 : Under assumptions (A1) to (A5) ™ (ux, uy;h) is bounded.

This theorem shows us how the estimator m (z,) improves in terms of robust-
ness. Indeed no observations (X;,Y;) can have extreme effects on the asymptotic
error of estimation.

We are now going to derive the asymptotic distribution of the robust estimator

mg[(xa) :



Theorem 4 : (Al) to (A5) :
Vnh {md (za) = ma(za)} = N (0,VM)

where

2

// Ay~ mbo) f(x-a) f(X,y)dX(—a)dy-/KQ(t)dt
[ W'y =m0} f(x,p)dy

4. Monte-Carlo simulation
The data generating process we have chosen is the following :
Y=m(X)+e
where m is the same bivariate additive function used in Figure 1
m(x) = 522 — 5/3 + 1023

X is uniformly distributed on [—1,1]* and € is a mixture of normal laws with prob-
ability density function

1) 1—v g2 L7 g2
) = exp | —— exp | — ==
V2 P\ V2rk P\ "2k
v represents the degree of contamination of the standard normal law. This degree of
contamination has been set to 10%, k represents the variance of the contaminating

law and has been set equal to 9.
We chose the score function

eif le] < ¢
Ule) =4 Yle)ifer < el <e
0if |€| > Co

where WU is a fifth order polynomial chosen in such a way that ¥ is twice continuously
differentiable and ¢y, ¢o are trimming constants. Following Lucas (1996), we chose

c1 = 4/x~1(0.99) and ¢z = 1/x~1(0.999). If Y; — m(X) follows a standardized normal

law, such a choice ensures that the observations for which |Y; — m(X)| > 3.5 are
discarded and the observations for which 3.5 > |Y; — m(X)| > 2.8 are downweighted.

In order to compare the performances of our estimators, we estimated the re-
gression function on a grid {t1, .....tg} equally spaced on [—0.7;0.7]. This restriction
is to avoid the boundary effects. Our criterion of comparison for each o« = 1, 2 is the

1
sum of squared errors SSE, = S > {ma(t:) — e (t;)}° where 1, will be either the

10



ordinary marginal integration estimator or the M robustified one of the regression
component function m,. Our results are consigned in Figure 2. Clearly, for both
components m; and my, the robustified estimators have overall smaller SSE than
the ordinary estimators. A typical example is seen in Figure 1 in the introduction.
The ordinary estimators show greater bias, due to the influence of outliers. This
corroborates with our theoretical results, Theorem 1 and Theorem 3.
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Appendix

A.1 Preliminaries
We are first going to give assumptions needed for the following proofs:

e (A1) : The sample {(X;,Y;)}, is a strictly stationary and § mixing real-
izations of the vector (X,Y) satisfying k°8; — 0 for some fixed 6 > 1. For

definition of mixing, see Doukhan (1990).

(A2) : The density f(x,y) is compactly supported and admits continuous
derivatives up to order r.

(A3) : The density f(x) admits a strictly positive lower bound, c.

e (A4) : The univariate kernel K is an even kernel of order r.

(A5) : The bandwidth satisfies lim h = 0 (the dependence of h on 7 is left

implicit for the simplicity of notations) in such a way that lim n:h%+3 5

and lim nih™z — 0.

Assumption (A2) is stronger than what is usually required due to the use of the
o] £(00,d+1) Sobolev norm for studying the remainder terms. This assumption could
easily be weakened by employing sharper bounds on the remainder. In that case,
the estimator couldn’t be studied in such generality.

We now introduce notations and establish basic results needed in the proofs of
main results. In the space F (see section), U will be the neighborhood of zero

11



constituted by the functions V' satisfying ||Vl 411y < g For all V' € U, and for

all t € [0,1], applying a triangular inequality to |f(x) + tv(x)| gives
() +tw(x)| > 5 >0 (A1)

so that the real valued function

f(x,y) + to(x,y)
f(x) + to(x)

is well defined. Differentiation with respect to ¢ yields

v(x,y)f(x) — f(x y)v(x)
{f(x) +to(x)}"

Sox,y(t) =

Oy (t) =

and
" — _9u(x U(Xa y)f(X) — f(X> y)v(x)
Pl = 29T ) v

Using inequality (A.1), it follows immediately that for some constant C (F,c) :

Py < C(F0) IV (A2)

00,d+1)

and

r, (1) < C(Fo). VI (A.3)

00,d+1)

A.2 Proof of Lemma 1

Jyf(xy)dy
Fa F :/ f X(—a dX —a
(F) Fo) ) Kew)dXew
and for ¢ € [0, 1], let’s denote by 7, the function
’Ya(t) = Fa(F + '/,'V)

where V' € U is as defined in subsection A.1. With notations of subsection A.1, we
have

Ya(t) = / { / Wx,y(t)dy} {FxX(a) +10(X()) } AX(—a).

Differentiating with respect to ¢ yields:

10 = [{ [ @y} {Fxw) + t0lxi-w)} dxia

+ / / Yy (1) dyv(X (o)) dX(a)

12



and

0 =2 [ [ yele, @dyotec e et [ { v, @y} {FOa) + t0(x )} dx o

A Taylor expansion of v, between 0 and 1 gives us :

Lo(F +V) =Ta(F) + 7,(0) + 7" (%)

where ¢ € |0, 1[. Using the expression (A.4), inequalities (A.2) and (A.3) one obtains

7' =0 (VI coasn)) -

With
10 = [ FEC{ [yt )y — vom) by + [ ot o
we get
Lo(F+V) = +/f {/yv x,y)dy — v(x)m (X)}dX(a) (A.5)

+/m X( @)dx(—q) + O (||V||L(oo,d+l)) :

A.3 Proof of Corollary 1
Using assumptions (A1) to (A5), one has Hﬁ’n - FHL( 41) —95 0, according to Ait-
Sahalia (1995). Hence for large enough n, V,, = F,— F € U and one can use equality
(A.5) in order to obtain

Ma (Ta) = Ma (To) +

1Sn [ 1Gw) [ Sy (Ba(x = Xi)Ka(y = Y:) = f(x,9)dy |
Z/ f(x) l — (Kn(x — X;) — f(x)) m(x) ]d )

Z/m Kh X(—a) X(_a)i) —f (X(_a))}d}((_a) + Op (“Vn“i(oo,tﬂ—l)) . (Aﬁ)
We are now going to study the term
Z / m() { K (%) = X(ay) = f (X)) f dx( o) =

/ m(x) (f (xca) = f (X)) dXa)-

Using an integration by parts, we obtain :

Ty = ‘ / (@) { B (X)) = F(X(—ay)} A

13



so that
Tin| = Oy (){S(HP) F(xa) ~ F (X(—a))D :

But, using Lemma 1 of Ait-Sahalia (1995), under assumptions (A1) to (A4), we have

sup F(X(_Q)) — F X(—a) ‘ = TL 2 + hr)

X(—a)

so that
Tin =0, (02 +4")

and, under assumption (A5), we obtain
(nh)5 Tln = Op(l).

Now, under assumptions (A1) to(A5), we have

_ —17,—2(d+1) 2r
L(co,d+1) Op (n h th )

and using expression (A.6), we get

X _ 1 fx( W) | Jy(Ep(x—X)Kn(y—Y:) — f(x,v))dy
a (Ta) = Ma (7o +n2/ l S (Kn(x — X3) — f(x)) mi() ]

+o,((nh)~%) + O, (n_lh AdtD) 4 hz’") :

dX(—a)

But, under assumption (A5), we have (nh)%O ( —1p—2(d+1) h”) = op((nh)_%) SO
that

) B 1 f(x [y (Kn(x = X3)Ki(y — Vi) — f(x,9)) dy
M (Ta) = )+~ Z/ [ — (Kn(x — X;) — f(x)) m(x) ]d

X(—a)
+op((nh>-%).

Thus we have proved the lemma.

A.4 Proof of Theorem 1
We have:

uX; U/Y; dx(—a)

/f [fy(Kh(X_uX)Kh( y—uy) = f(x,y))dy
(x) (Kh(x — ux) — f(x)) m(x)

Let’s first restrict uy to a compact set. Since the kernel K is compactly supported
and all integrations are made over a compact set, the boundedness in ux is imme-
diate.

14



Let’s now restrict ux to a compact set. The dependence on uy only comes from

the term
/ f(x

/y{Kh x —ux) Ku(y — UY)}dy] dx(_a).

In the integration with respect to y, we make the change of variable v = Y —huY’
with [vK(v)dv =0 and [ K(v)dv = 1, we obtain
X(—a X(~a
f(f((x))) /y{Kh(X —ux)Ky(y — UY)}dy] dX(—a) = Uy/ = ))Kh(x_ux)dx(_a)

which is an unbounded function of uy. Hence we have completed the proof of the
theorem.

A.5 Proof of Theorem 2

In expansion (6), consider the term

/f X(—a) l Jy{Kn(x—X)Kn(y—Y:) — f(x,y)} dy ] dx
— {Kn(x = X;) = f(x)} m(x) o

Let’s first study the its mean

By, = /// f(;(((;;)) {/yKh(x —u)Ky(y — v)dy — Kp(x — u)m(x)} f(u,v)dx(_4dudv

. . X—u ., . . .
Using the change of variable £ = in the integration with respect to u and

h
—U. . . . .
Y . in the integration with respect to v, we obtain

’r]:

FX( o) [///{yK({f)K(n) — K(§m(x)} f(x — h&, y — hn)dEdndy | dx(—q).

f(x)

Using a Taylor expansion of f(x — h&,y — hn) up to order 7, and using assumption
(A4), we obtain

B = [ LS [ty = gm0} oy + O)

so that, under assumption (A5), we have

t)? (B = [ LD [y ity — om0 ) = o01)

i.e.

(nh)2 E (Tyn) = o(1).
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1
We now have to study the variance term normalized at rate (nh)2 :

)3V = 3 2| [ L)y ) { [ it = Yoy =m0} iy = B

Let’s define F,, ; as the o field generated by {X}, ]}] ,..; and let’s define the random
variable

i = @ IS e x { [ st Yoy - mio) s

i
so that ( Vgn Z . The array {Z Znjs Fnin1 <i<n,n> 1} is a zero
j=1

mean, square 1ntegrab1e martingale array. We have

i E(Z?z,j) = h// [/ f(;(:;))Kh(X —u) {/yKh(y —v)dy — m(x)} dx(_a)r.

7j=1
f(u,v)dudv — h(Bay,)>.

. . Lo — Uq . . . .
With the change of variable &, = => 2 in the integration with respect to u, and

X(—a) — U(—q) . . . . .
§(—a) = % in the integration with respect to x(_,), we obtain

+hf a))
/f xa’ +h£ )K(g(*a))

ez
j=1 // {/yKh — U)dy — m(xa, U(—q) + hg(_a))} dg(_a)
K? (ga)f( hé-aa U(—q), )dé-adU( a)dU - h'(B2n)2

Now, we have /yKh(y —v)dy = v so that

A B (ZZQ’”> //( flx _a) )2 (v = m(ra v )"
F(Zar Uay, U)du(_a)dv : / K2(€,)dé.

and

= 2
;E( il Frj- 1 — //{ aca, - } {U—m(xa,u(_a))}Q_
[ @, 0y, V) aydv - [ K ()
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Under assumptions (A1) to (A5), conditions 3.19 and 3.20 of Corollary 3.1 of Hall
and Heyde (1981, pp 58) are satisfied, so that we finally get

(nh)2Va, — N(0,V)

where

2
V= //{ xa,u( o } {”_m(%’“(—a>)}2f(%au(—a),v)dU<—a)dv'/K2(§a)d«Sa-

A.6 Proof of Lemma 2

As noticed in Section 3, m(x) is implicitly defined by

f(x,y)
f(x)

which is a functional of F that we will denote as '™ (F). Define also the function
yM(t) = TM(F +tV). Applying the implicit function theorem as in Tamine (2002),,
we obtain:

Jwty - m(x)) dy =0

/ ‘I' y— eo;,y(t)dy
/\III Yy - 7 }@x,y(t)dy

and

() = :—VM'(t) / U {y —M(0)} ey (Ddy + / v {y— (1)} soii,y(t)dy]
[ {y—M0)} ety

—M'(t) / W {y = M (1)} gy (t)dy
+ [ W {y =)} by By
l M -
[ (=20} eealtrdy
Using arguments nearly identical to Theorem 3 of Tamine (2002), one obtains

() = O (IVll ooasn)) (A7)

/‘I’ {y—7"1} w&,y(t)dy} :

and
n 2
Y (t) = O (VI3 o)) - (A.8)

We are now ready to study the term
M (p) = / ™ (F) f(X(—a))d%X(—a)-

17



First let’s define the function v (t) = TM(F + tV'). We have

/7 ) + (X (a) | dX(a)
so that
/fyM' o)) + (% +/'y V(X(~a) X (~a)
and
M / () { F(X(—a) + 10(X(a) } dX(a) + 2 / (v (x(—a)dX(—a). (A.9)

A Taylor expansion of v between 0 and 1 gives us
LY (F+V) =T (F) +7,"(0) +7"(2)
where ¢ € (0,1). Using the expression (A.9) , inequalities (A.7) and (A.8) one obtains

V') =0 (IVI} odsr)) -

With

U {y —m(x)}v(x,y)dy
0=/

F(X(—a))dX(—a) + [ m(X)V(X(—a))dX(—a
[ ty-meo) ey’ [ s

we get

'"MFrE+v) =1V

f(X(—a))dX(—a)

m//W{y m(x)} v(x, y)dy
[ ¥ty —mix)} £, )y

+/m V(X(—a))dX(— +O(||V||L(ood+1))

A.7 Proof of Corollary 2

In a similar way as in proof of Corollary 1, one readily obtains

L //\Il{y—m( x)}H{En(x — X0) Knly = Y2) = f(x,9)} dy
[ ¥y = m(x)} S (e w)dy

18



A.8 Proof of Theorem 3

We have

[0 4y = (o} {Kn(x — ux) Ky — uy) = f(x,9)} dy
¥y = mi)} £(x,y)dy |

‘I/M(llx, Uy, h) = /

From the boundedness of the score function ¥, the boundedness in (ux,uy) is
obvious.

A.9 Proof of Theorem 4

In expansion (2), let’s study the term

[ ¥y =m0} {Knlx = Xo) Ky = Yi) — flx,9)} dy
/ [ {y = mx)} £x,p)dy
Let’s first examine the bias term
[ ¥ {y =m0} Kn(x = X Ky - Yi)dy
[ {y = mx)} £x,p)dy

Ty = F(X(-a))dX(a)

B =F / f(X(—a))dx(—q)

i.e.

U {y — m(x)} Ku(x — u) Ku(y — v)dy
Ban = // // /\I,, (- mx)} F(x.9)dy f(X(—a))dX ()| f(u;v)dudv

u
in the integration with respect to u and

Using the change of variable £ = X
y—v

n= in the integration with respect to v, we obtain

By, = ////‘I’{y m(x)} K(§)K(n)f(x = h&,y — hn)dEdndy

f(X(—a))dX(—a)-
[ty m(x)} £x.n)dy S

Using a Taylor expansion of f(x—h&, y—hn) up to order r, under assumptions (A4)
we obtain

o //q,{y m} SCe )y

(X(,a))dX(,a) +O(h")
[ ¥ =m0} flx,y)dy

19



so that, under assumption (A5), we have

[y —mx)} £(x,y)dy
¥y =m0} £x,)dy

1 M
(nh)2 | By, — / f(X(—a))dX(—a) | = 0,(1)

B (nh)2E (T37) = o(1).

1
We now have to study the variance term normalized at rate (nh)2 :

l\JI}—‘

.//ww m(x)} Kn(x — X;) Kn(y — Yi)dy
¥ty =m0} Flx y)dy

Let’s define F, ; the o field generated by {X;, ]}J 1...; and let’s define the random
variable

i ey =m0} K- X0 iy - Yidy
Z?iwz: . f(x—a)dx—a _B%
e [ty =m0} (x,0)dy B

Z

f(X(—a))dX(_a) — Bj,

so that (nh)zVM = Z . The array Z M, m,lgign,n21} is a zero

mean, square 1ntegrable martmgale array. We have

gz:E (Z05) = h// / /\Ij W mBgH b = Wi - v)dyf(X(a))dx(a)

[ ¥ {y = mx)} (x, 5)dy
f(u,v)dudv — h(B3)2.

. . Lo — Uq . . . .
With the change of variable &, = =° 2 in the integration with respect to u, and

X(—a) — U(i_q
¢ _ M=o (=e)

(a) = . in the integration with respect to x(_4), we obtain

[ ({y = ml@as uc w + b w)}) Knly — v)dy

jz::IE ZM2 - h,// //\1}/ y m xa,u( a) +h§( a))}f(aca,u(,a) —i—hf(,a),y)dy
K(§—ay) f(ua) + hE(—a))dé(—a)
K? (fa)f(wa - hga, U(—q), U)dgadu(_a)dv - h(B%)Z.
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In the integral/ v {y — m(Ta, W(—q) + hf(_a))} K, (y —v)dy, we make the change of

-
variable w = Y ,50 that

/\Il v+ hw — m(Tq, U—a) + hf(_a))} K(w)dw

jglE(ZM2 — h// //\Iﬂ y m xa,u( a) +hf( a))}f(fva,u(_a) +h§(_a),y)dy
K (§(—a)) f(0(—a) + hE(—a))dE(~a)
KZ(ga)f(xa - hfaa U(—q),V )dé-adu dU - h(B%)Z

taking the limit for n — oo, we obtain

$a, a))} f(-raa U(—q), y)dy

JE’&E< ZMQ) / / / v {y oo i) f(x(-a))

(o, (o), v)du_aydv- / K2(€,)dés

and

y m(Tq,u— a))}

f(x(a)

Jj=1

S E () > f [v-

Jﬁa, (- a))}f(xaau(—a),y)dy
f @as Uy )ty [ K (E0)dEa

Under assumptions (A1) to (A5), conditions 3.19 and 3.20 of Corollary 3.1 of Hall
and Heyde (1981, pp 58) are satisfied, so that we finally get

(nh)2 VM — N(0,V™)

where

{y = m(za, v o)
// / } f(X(*a)) f(xaa U(—q), U)du(*a)dv
/\Il y—m $a,U( a))} f(xa,u(_a),y)dy

X /K2 £.)dEq.
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Figure 2: Kernel estimates of density function of the SSE’s of estimators of m,,, with
a = 1,2, based on 100 simulated samples of size 150: (a) SSE’s of my, robustified
estimator— solid, ordinary estimator — dash. (b) is the counterpart of (a) for msy



