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Abstract

We consider the stochastic sequence {Y; }ten defined recursively by the linear relation
Yir1 = A4Yi+ By in a random environment. The environment is described by the stochas-
tic process {(A¢, Bt) }ren and is under the simultaneous control of several agents playing a
discounted stochastic game. We formulate sufficient conditions on the game which ensure
the existence of Nash equilibrium in Markov strategies which has the additional property
that, in equilibrium, the process {Y;}sen converges in distribution to a unique stationary

sequence.
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1 Introduction

This paper considers the stochastic sequence {Y; };en defined recursively by the linear relation

Yii =AY, +B  (t€N) (1)

in the random environment {(A¢, B;)}ten. The dynamics of the environment is under the
simultaneous control of several agents who play a discounted stochastic game. We formu-
late sufficient conditions on the game which guarantee the existence of Nash equilibria in
Markov strategies which have the additional property that, in equilibrium, the solution to
(1) converges in distribution as ¢t — co.

Stochastic sequences of the form (1) have been extensively investigated under a mean
contraction condition and under the assumption that the driving sequence {(A¢, Bt)}ien
defined on some probability space (€2, F,P) is stationary under the exogenous measure P. For
example, Vervaat (1979) considers the case where the environment consists of i.i.d. random
variables. Brandt (1986) assumes that the driving sequence is stationary and ergodic under
the law P; see also Borovkov (1998). Horst (2001) studies the case where the environment
is asymptotically stationary in the sense that the process {(A¢, Bi) hen is stationary under
some law Q on (€2, F) which coincides with P on the tail-field generated by {(A¢, Bt) }ten-

In view of many applications in economics it seems natural to extend the analysis of
stochastic difference equations to situations in which the environment is under the simulta-
neous control of several agents. In such a situation the measure PP is no longer exogenous, but
is derived through a game-theoretic solution concept. For example, the process {Y; }1en could
be sequence of temporary equilibrium prices of a risky asset generated by the microeconomic

interaction of investors who are active on a financial market. In such a model, the sequence



{(A¢, Bt) }ten may be driven by the changes in the behavioral characteristics of the agents.
If the investors are ‘large’, i.e., if their behavior influences the dynamics of the random en-
vironment, then it seems natural to assume that the agents anticipate their impact on the
formation of stock prices and, therefore, interact in a strategic manner. In such a context,
the process {Y; }+eny may be viewed as the state sequence associated to a stochastic game, and
so the probabilistic structure of the random environment specified by the measure P is no
longer exogenous. Instead, it is defined through an equilibrium strategy implemented by the
individual investors. In order to analyze the dynamics of the price process in equilibrium, it
is now desirable to have sufficient conditions which guarantee the existence of Nash equilibria
which ensure that the sequence {Y;}ien settles down in the long run.

In this paper we consider discounted stochastic games with weakly interacting players
in with the conditional distribution of the random variable (A, B;) only depends on the
average action taken by the players. We formulate conditions on the game which guarantee
the existence of a Nash equilibrium in Markov strategies 7 such that under the induced
measure P” on (€, F) the solution to (1) converges as t — oo. In a first step we show that
stochastic games in which the state sequence follows a linear dynamics and in which the
interaction between different agents is sufficiently weak have stationary equilibria in Markov
strategies that depend in a Lipschitz continuous manner on the current state. This part of
the paper is inspired by the work of Curtat (1996) and uses a perturbation of a Moderate
Social Influence condition introduced in Horst and Scheinkman (2002). Under a suitable
mean contraction condition on the random environment we then prove that the sequence
{(A¢, B;) }ten defined on (€2, F,P7) has a nice tail structure in the sense of Horst (2001).

This allows us to show that the shifted sequence {Y;7}ien converges in law to a uniquely



determined stationary process as T' — oc.
The remainder of this paper is organized as follows. In Section 2 we formulate our main
results. Section 3 proves the existence of a Lipschitz continuous equilibrium in Markov

strategies. The convergence result for the solution to (1) is proved in Section 4.

2 Assumptions and the main results

Let 9 := {(A4, By) }ten be a sequence of R?-valued random variables defined on some proba-
bility space (€2, F,P), and let {Y;}+cn be the sequence in (1) driven by the “input” 1. In this
section we specify a probabilistic framework which allows us to analyze the asymptotic be-
havior of the solution to the linear stochastic difference equation (1) in a situation in which
the evolution of the random environment is controlled by several strategically interacting
agents.

The long run behavior of the sequence {Y;}icn has been intensively investigated under
a mean contraction condition and under the assumption that i is stationary under some
exogenous measure P; see, e.g., Brandt (1986) or Vervaat (1979). Horst (2001) assumes that
the environment is asymptotically stationary and that is has a nice tail structure the sense

of the following definition.
Definition 2.1 (Horst (2001)) Let F; := o ({(As, By)}s>t) and let

%::ﬂﬁta (2)

teN

be the tail-o-algebra generated by 1. A driving sequence v is called nice with respect to a

probability measure Q on (2, F) if the following properties are satisfied:



(i) 1 is stationary and ergodic under Q and satisfies

EgIn|dg| <0 and Egp(In|Bg|)" < oo (3)

where Eg denotes the expectation with respect to the measure Q.

(i) The asymptotic behavior of v is the same under P and Q, i.e.,

P=Q on Ty 4)

Remark 2.2 We denote by || - ||¢ the total variation of a signed measure on a measurable
space (E,E). Since

Jim [P~ Qll, =P - Q. (5)

a driving sequence 1 satisfies (4) if and only if it becomes stationary in the long run. This

is equivalent to the existence of a sequence {ct}en satisfying limy_yo0 ¢; = 0 and
sup |[P— Q| < (6)
1>t ’

where Fyp := o ({(At, Bt) }i<s<1). Here, both (5) and (6) follow from the continuity of the

total variation distance along increasing and decreasing o-algebras.

In the sequel it will be convenient to denote by Law(Y,P) the law of a random variable
Y on (Q,F,P) and to write —— for weak convergence of probability measures.

Let us turn to the solution {Y;}sen of (1). For any initial value Yy = y € R, we have the
explicit representation

=1 [ -1 t—1
Vi =ui(y,v) = Z II 4| Bija + (H Az‘) y (eN. (7)

j=0 \i=t—j



In the stationary setting P = Q analyzed by Brandt (1986), we may as well assume that
the driving sequence is defined for all ¢ € Z, due to Kolmogorov’s extension theorem. Under
the mean contraction condition (3), there exists a unique stationary solution of (1) under
Q driven by . That is, there is a unique stationary process {Y;*}icz which satisfies the

recursive relation (1) for all ¢ € Z. The random variable Y;* is Q-a.s. finite, takes the form

o t—1
Yi* = Z H A; Bt—j—l (t € Z), (8)
=0 \i=t—j

and, for any initial value y € R, the solution {y;(y,%)}en to (1) converges almost surely to

the stationary solution in the sense that

Jim Jyy(y, ) =Y | =0 Qas.

In the non-stationary case P # Q studied in Horst (2001) the shifted sequence {y;+7(y, %) }ten
driven by a nice input 1 converges in distribution to the unique stationary solution {Y;*}+en

to (1) under Q:

Law ({+7 (4, %) }en, P) = Law({¥;},Q) (T — o0). (9)

So far, the asymptotics of the sequence {Y;};en have only been analyzed in situations
where the probabilistic structure of the random environment v is described by an exogenous
measure. QOur aim is study to dynamics of the solution to the linear stochastic difference
equation (1) in a situation in which the evolution of ) is controlled by strategically interacting

agents who play a stochastic game.

2.1 The stochastic game

The infinite-horizon discounted stochastic games % = (I, X, (U*?), 3, Q,y) which we consider

in this paper are defined in terms of the following objects:



I={1,2,...,M} is a finite set of players.

e X C R is a common compact and convex action space for the players.

Ul:R x [Licr X — Ris the utility function for player i € I.

B € (0,1) is a common discount factor.

Q is a stochastic kernel from X to R2.

y € R is the starting point of the state sequence {Y; }1en.

A typical action of player i € I is denoted z* € X. The actions taken his competitors are
denoted 7' € X" := {z7" = (¢7)jen\ (i3}, and X := {Z = (z")ics : 2’ € X} is the compact
set of all action profiles. To each action profile Z € X, we associate the average action
Ti= 4> e ot

At each time t € N, the players observe the current position Y; of the state sequence
{Y3}1en- They take their actions zt = 7¢(Y;) independently of each other according to a sta-
tionary Markov strategy 7° : R — X and the selected action profile z, = (z%)icr = (7°(Y3))icr
along with the present state Y; yields the instantaneous payoff U*(Y;, Z,) = U*(Yy, x4, 2;°) to
the agent ¢ € 1. We assume that the law of motion only depends on the average action taken

by the individual players. More precisely,

1

7
M 2
1

Mk

Yiy1 =AY, + B, with (A4, B;) ~ Q(cxy;-) for some ¢ >0 where z;:=
1
(10)

In this sense we assume that the indirect interaction between different agents, i.e., the in-

teraction via the state sequence {Y;}cn, is global. Thus, in games with many players or in



games with a small ¢ > 0, the impact of an individual agent on the dynamics of the random

environment {(A, By) }en for the evolution of the state sequence {Y;}icn is weak.

Remark 2.3 For our subsequent analysis it will be essential that the impact of an individ-
ual player on the law of the random environment is sufficiently weak. Assuming that the
conditional distribution of the random variable (Ay, B) depends on the current action profile
Z, only through the quantity cxy = 17> icr zt simplifies the formulation of an appropriate
weak interaction condition. Of course, weak dependence assumptions can also be formulated

differently.

A stationary Markov strategy 7 = (7%);c; along with an initial distribution u for the
starting point of the state sequence and together with the law of motion () induces a proba-
bility measure P/, on (2, F) in the canonical way. Under the measure P, the state sequence
{Yi}+en is a Markov chain on the state space R and the expected discounted reward to player

1 € I is given by

Ji(yaT) = Ji(yaTiaT_i) = EL Zﬁt UZ(Y%aEt) (11)
t=0

Here the expectation is taken with respect to the measure P}, and 770 = (79 )j+i- In what

follows we shall write IP’; for IP’gy.

Definition 2.4 A stationary Markov strategy profile 7 is a Nash equilibrium for ¥ if no

player can increase his payoff by unilateral deviation from 7, i.e., if
Ty, 7) > J(y, 0", 77" (12)

for all Markov strategies o' : R — X and each i € I.



Our objective is to formulate conditions which guarantee the existence of a Nash equi-
librium in Markov strategies 7 such that the Markov chain ({Y;},P}) converges in law to a
unique limiting distribution. To this end, we need to assume strong concavity of an agents’
utility function with respect to his own action and we have to place a quantitative bound

on the dependence of the instantaneous utility for player ¢ € I on the actions taken by his

competitors.

Assumption 2.5 (i) Uniformly ini € I, the utility functions U’ : RxX — R are bounded,

Lipschitz continuous and twice continuously differentiable.

(ii) There exists constants L"*(y) > 0 and L > 0 such that

62
6(1")2

U'ly,a',2™") < —L*(y) < =L < 0. (13)
In particular, the function U(y,-, %) is strongly concave on X.

(iii) The law Q(z;-) has a density q(z;-) with respect to some measure v on R?. The maps
z — q(z;n) are uniformly bounded, uniformly Lipschitz continuous and twice contin-

uously differentiable on an open set containing X. Moreover, |%q(w,n)‘ < o1(n) and

;—;q(x,n)‘ < 02(n) for some functions o1, 0o : R2 — R with are integrable with respect

to p.

The Lipschitz continuity condition on the conditional densities g(x;-) translates into a

norm-continuity assumption on the transition probabilities Q(x;-):
1Q(@n; ) = Qs )llp =50 if  ap =g,

where B denotes the Borel-o-field on R?. Such a norm-continuity condition has also been

imposed by, e.g., Nowak (1985) and Duffie, Geanakopolos, MasColell, and McLennan (1994).



Let us consider an example where our assumptions on the densities g(z;-) can indeed be

verified.

Example 2.6 Let f : X — R? be a two times continuously differentiable function and let
©m(+) be the density with respect to Lebesgque measure of the two-dimensional standard normal
distribution with mean m = (m1,mz). It is easy to show that q(z;n) = @y (n) satisfies

Assumption 2.5 (ii).

In order to establish the existence of Lipschitz continuous Nash equilibria in the stochastic
game under consideration, we have to control the strength of interactions between different
players. To this end, we introduce the constants

2

aCCi 6.’1,‘]'

2

0x;0y

L*(y) = sup
zeX

U'y,Z)| (i #j) and L'= sup

yER,zEX

Uy, )|

(14)

The quantity L/ (y) may be viewed as a measure for the dependence of agent 4’s instantaneous
utility of the choice of player j, given the current state y. By analogy, L’ measures the

dependence of his one-period utility of the current position on the state sequence. We also

put
2 2
A c 0
L :=sup — || z54(z,- 15
SUp 373 5,24 . (15)
where | - || denotes the L'-norm with respect to the measure v. In order to guarantee

the existence of Lipschitz continuous equilibria in the discounted stochastic game 3 we need
to assume that the interaction between different agents is not too strong. Since the players
interact both through their instantaneous utility functions and through their individual im-
pacts on the evolution of the state sequence, we have to control both the dependence of an

action of player j on the instantaneous utility of the agent 1 and the dependence of the law of



motion on the actions taken by an individual player. We formulate this conditions in term of

the following perturbation of the Moderate Social Influence in Horst and Scheinkman (2002).

Assumption 2.7 There exists v < 1 such that the following holds for all i € I:

L) + LM e <95 ). (16)
i

For games with many players, i.e., for M — oo, and for games in which the impact of
an individual agent on the dynamics of the state sequence is very weak, i.e., for ¢ — 0, our
condition (16) reduces to the Moderate Social Influence assumption »_,; L4 (y) < yLbi(y)
introduced in Horst and Scheinkman (2002).

Let us consider a simple case study where our Assumption 2.7 can easily be verified.

Example 2.8 Consider a law of motion Q which is of the form

@t )~ Huo )+ (1- Tt g, (17

If Q;(-) has a bounded density q;(-) with respect to some law v on R?, then our Moderate
Social Influence condition translates into an assumption on the marginal rates of substitution.

Indeed, (16) holds if
2

aQLEi

62
3.7,‘1' 8:1:j

U'(y, ) U'(y,z)

>

J#i

<~ (18)

for alli € I and for some v < 1. In addition, (13) requires inf,

2 i —
Ui (0,2)| > 0.

Remark 2.9 Observe that (18) is necessary for our Moderate Social Influence condition.
On the other hand, if (18) holds, then we can always choose a small enough ¢ > 0 such that

Assumption 2.7 holds.

10



We are now going to state a result which guarantees the existence of Lipschitz continuous

equilibria in the stochastic game 3. It will be proved in Section 3 below.

Theorem 2.10 Assume that the discounted stochastic game Y. satisfies Assumptions 2.5 and
2.7 and

2
sup / 4] ‘%q(x,A,B) V(dA,dB) < oo. (19)

reX

Then there exists C* > 0 such that, for all ¢ < C* the game % has a stationary equilibrium

in Markov strategies T which is Lipschitz continuous. That is, there exists L™ < oo such that
7 (1) = 7' (y2)| < L*yn —w2| (i €1).
Remark 2.11 The proof of Theorem 2.10 will show that whenever the law of motion takes

the linear form (17), the stochastic game has a Lipschitz continuous equilibrium for all ¢ > 0.

2.2 Convergence of the state sequence

Let us now return to the solution to the stochastic difference equation (1). For given a Nash
equilibrium in Markov strategies 7, we denote by P the law on (Q,F) induced by 7 and the
starting point y on (€2, F). In order to guarantee asymptotic stability of the process {Y;}ten
under P}, we need to assume that the following mean contraction condition for the dynamics

defined by (1) is satisfied.
Assumption 2.12 (i) There ezxists a constant v < 1 such that

/\A|Q(x;dA,dB) <r and sup/|B|Q(:1:;dA, dB) < ©. (20)

11



(i) There is a measure ¥ on R% and a constant ¢ > 0 such that
Qz;-) > ci(-) and / |A|i(dA, dB) < r.

We are now ready to formulate the main result of this paper. It will be proved in Section

4 below.

Theorem 2.13 Let 7 be a Lipschitz continuous equilibrium in Markov strategies for the

stochastic game %. If Assumption 2.12 is satisfied, then the following holds:

(i) There is a probability measure Q" on (Q,F) such that the driving sequence 1 defined

on (Q,F,P}) is nice with respect to Q7.
(i) Under Q7 there exists a unique stationary solution {Y;*}en to (1) and

Law({Yi17 Hen, Py) — Law({Y," }en, Q")  for ally € R as T — oo.

We close with section with two case studies where the assumptions on () in Theorem 2.13

can indeed be verified.

Example 2.14 (i) Let us return to the law of motion Q introduced in Ezample 2.8 below.
In this case, (19) is trivially satisfied and Assumption 2.12 holds if Q1(-) and Qz(-)
satisfy (20) and if, for instance each Q; is of the form Q;(-) = AQi(-) + (1 — N)&(-) for

a suitable measure v on RZ.

(i) Consider now the densities q(x;n) = Apy(y)(n)+(1—A)D(:) where @) (n) is introduced
in Ezample 2.6. We assume that f(z) = (fi(z),z) for some f1 : X — R. Since f is

two times continuously differentiable and because X C R is compact, it is easy to show

12



that (19) holds. Moreover, there exists 11 > 0, such that the mean-contraction condition

(20) holds whenever fi(z) <ry.

3 Existence of Lipschitz continuous Nash equilibria

This section is devoted to the proof of Theorem 2.10. Since the state space of our stochastic
game Y is not compact, we cannot prove the theorem directly. Instead, we shall first analyze

the ‘truncated’ games
N = (1, X,(UY), 8,Q,y,[-N, N]) (N eN)

with the compact state space [—N, N| in which the conditional dynamics of the new state

Yi+1, given Y; and the action profile Z; is of the form
Yip1 = o (Y3, Ay, By) := max{min{A4;Y; + B;, N},—N} and (A4, B;) ~Q (% Z]Jé, ) .

Using our Moderate Social Influence assumption we show that the games £V have Lipschitz
continuous Nash equilibria in Markov strategies 7V whose Lipschitz constants do not depend
on N € N. A Lipschitz continuous equilibrium for ¥ will then be determined as a suitable

accumulation point of the sequence {7V} yen.

3.1 Lipschitz continuous equilibria in truncated games

The aim of this section is to establish the existence of Lipschitz continuous Nash equilibria

in the truncated games XNV,

Proposition 3.1 Under the assumptions of Theorem 2.10 there exists C* > 0 such that for

all ¢ < C* the following holds:

13



(i) For all N € N, the truncated game N has a Lipschitz continuous Nash equilibrium ™

in Markov strategies.

(ii) The Lipschitz constant of TV (N € N) does not depend on N € N.

The proof of Proposition 3.1 requires some preparation. We put u := max; ||U?|| and de-
note by Ly, ,([—N, N],RM) the class of all Lipschitz continuous functions f : [-N, N] — RM
with Lipschitz constant L that satisfy || f||co < u. To each such average continuation function
f = (fi)ier we associate the reduced one-shot game E;V = (I, X, (U}’N),ﬂ,y, [-N, N]) with

payoff functions

U (3) = (1= AU (2) + 58 [ fio0" (. A, Blalo A BdA,dB)  (21)
viewed as a function from [-N, N] x X to R

Remark 3.2 Observe that U;’N(y,z) is the payoff to player i € I in the discounted stochastic
game TV, if the game terminates after the first round, if the players receive rewards according
to the payoff functions f; in the second period, and if first period payoffs are discounted at

the rate 1 — 3.

The following Lemma shows that the conditional best reply T;’N(y, %) of player i € I in
the game jE]Ys uniquely determined and that }J]\ﬁas a unique equilibrium T;V (y). The map
T]{V :[-N,N] — X is Lipschitz continuous. The Lipschitz constant can be specified in terms
of the Lipschitz constant of f, the discount factor, the bounds for the utility functions and
the quantities L/ (y), L’ and L introduced in (14) and (15), respectively. In particular, it can

be chosen independently of the specific average continuation function f and independently

of N. This turns out to be the key to the proof of Proposition 3.1.

14



Lemma 3.3 For N € N, let E}V be the reduced game with average continuation function

f € Lru([—N, N],RM). Under the assumptions of Theorem 2.10 the following holds:

(i) The conditional best rely T}’N(y, %) of player i € I is uniquely determined and depends

in a Lipschitz continuous manner on the actions of his competitors. More precisely,

(1—B)LY(y) + Bul,
(1— B)Lii(y) — Bul

N |27 — 3] (22)

177N (y,277) = P (g, 237 <
if 2% = 2k for all k # j. Moreover,

177N (y1,27") = (2, 27| < Llys — vl (23)
for all y1,y> € [-N, N] and each 7" € Xﬁi. Here

[ sup (LAIL + BL(f)g
vi (1—B)L¥(y) — pul’

L(f) denotes the Lipschitz constant of f and the quantity q is defined in (19).

(i) The reduced game E}V has a unique equilibrium 'r;v(y) = {T;-’N(y)}iej € X.

(i3i) The map y — T;’N(y) is Lipschitz continuous and the Lipschitz constant can be chosen

independently of the average continuation function f and independently of N.
(iv) The map f T;’N(') is continuous.
PrOOF:

(i) Let us fix an average continuation function f € Lz ,([—N, N],RM) an action profile
z~ € X " and a state y € [-N, N]. By Assumption 2.5, the map U}’N(y, L x7%) is two

times continuously differentiable on an open set containing X and our Moderate Social

15



(ii)

Influence condition yields

92 . o - .
S Ur WahaT) < —(1=HIF() + ful <0.

Thus, an agent’s utility function is strongly concave with respect to his own action, and
so his conditional best reply given the choices of his competitors is uniquely determined.

To establish the quantitative bound (22) on the dependence of player i’s best reply on

the behavior of all the other agents, we fix a player j # ¢ and action profiles xfi and

—1

which differ only at the j-th coordinate. Under the assumptions of Theorem 2.10

we have

0
U (y,al,25)

—UZN ,zt 7)) —
‘ y 1 ) or

<{(-p)L¥(y) + pul} 2] 2. (24)
Thus, (22) follows from Theorem A.1. In view of (24) and because
0 Ui,N i —i 0 Uz’,N im0 < [(1 L L J J 25
5701 (y1, 2", )—@ 7yt 2T < {1 - B)L' + BL(f)q} |z] — z3|  (25)

our estimate (23) also follows from Theorem A.1.

The existence of an equilibrium in pure strategies for the static game E}V follows from
strict concavity of the utility functions UJZ;’N with respect to the player’s own actions
along with compactness of the action spaces using standard fixed points arguments. In
order to prove uniqueness, we proceed as in the proof of Proposition 4.21 in Horst and

Scheinkman (2002). In view of (13), our Moderate Social Influence condition yields

<1

_ 1— )L L

__ SUPZ (1-5) . .(y) +ﬁUA
Thus, given action profiles a:l_i and x5 ¢ of player i’s competitors, (22) shows that
i,N (

_; i N . - i i
7" s 21) =77y, 3, ")| < Lmax oy — ).

16



(iii)

For 7 # z9, we therefore obtain

i, N —i i\N —i ; ;
max |7 (g, 27) — 7 (y,27°)| < max | — ).

Thus, the map z — (T}’N(y, 27%))se1 has at most one fixed point. This proves uniqueness

of equilibria in E;V .

Let T}V(y) be an equilibrium. Then T}’N(y) = T}’N(y, {T};’N(y)}#i), and so

2, IN 2, IN 2, IN i\ N 3, IN N
1T (1) =727 ()| <R (yn ATF T (y) bama) — 777 (yi ATF (y2) b))
2, IN i, N 2, IN N
HE (s, AT o) b)) — 7 (2, {5 (y2) Y]

IN

LY 1Y () = 7Y ()| + Ly — val.
J#i
This yields

L

mhﬂ — Y- (26)

N N
[T (1) =7 (y2)] <
Hence the equilibrium mapping TJ{V : [N, N] — X is Lipschitz continuous which a

constant that does not depend on NV € N and which depends on the average continuation

function f only through its Lipschitz constant L(f).
We fix y € [-N,N] and % € X " and apply Theorem A.1 to the map
i N, i —i
(3: af) = Uf’ (y,m » T )

Due to Assumption 2.5 (ii) there exists a constant ¢* < oo such that

0 . S 15] 1 i 4 *
@U};N(yaxzax Z) - ﬁUZ’IN(yaxzax Z) S q ||f1 - f2||00’

for all f,g € L14([—N, N],RM), and so Theorem A.1 shows that there is Ly < co such
that
|Ti’1N(y7"E7i) - T;;N(yaxii)‘ < LOHfl - f2||oo
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Thus, similar arguments as in the proof of (iii) yield the assertion.

Our Moderate Social Influence conditions appears to be rather strong. However, for the
proof of Theorem 2.10 it will be essential that the maps T;V : [-N,N] — X are Lipschitz
continuous with a constant that depends on the average continuation function f only through
its Lipschitz constant. For that, we need uniqueness of equilibria in the reduced one-shot
games E}v . We guarantee this by assuming that the utility functions U;’N inherit enough

concavity in the player’s own actions from the original reward functions U®.

We are now ready to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1: Let B,([—N, N],R™) be the class of all measurable functions
f:[=N,N] - RM with ||f||cc <u. We introduce an operator 7" from Ly, ,([—N, N],RM) to

Bu([_Na N]aRM) by

(TFily) = 1 =AU (v, 77 (v)) + B / fiov™(y, A, B)g (M > (W) A, B) v(dA, dB).
iel
(27)

A standard argument in discounted dynamic programming shows that for any fixed point FV

of T, the action profile TI{YN (y) is an equilibrium in the non-zero sum stochastic game XV. The

N —
equilibrium payoff to player ¢ € I is given by Fl_(g), and the map T}];,VN :[-N,N] — X is Lips-
chitz continuous, due to Lemma 3.3. In order to establish our assertion it is therefore enough
find L < oo and C* > 0 such that the operator 7' has a fixed point in Ly, ([—N, N], RM) for

all ¢ < C*. For this, we proceed in three steps:

(i) For all f € L u([—N,N],RM), the mapping y — (T'f)(y) is Lipschitz continuous:

18



(iii)

Indeed, Lipschitz continuity of the utility functions and the densities along with As-

sumption 2.12 (i) yields a constant ¢; < co such that

ITfi(y1) — Tfiy2)| < e (lyr — vl + 177 (1) — 77 (12) o) - (28)
Thus, Lipschitz continuity of the map TJ{V (-) yields Lipschitz continuity of T'f(-).

The operator T is continuous: For any sequence {f"},en, f® € LLu([—N,N],RM),
that converges to f in the topology of uniform convergence, Lemma 3.3 (v) yields
lim,, o0 ||T;Yz -7 ;v lo = 0. Thus, Lipschitz continuity of the reward functions and the

densities gives us constants co and c3 such that

T y) = Tfiy)| < eallmph — 7 oo + €3 {IfF = filloo + I7fn = 7/l }
and so limy o0 [|Tf™ — T f|loc = 0.

Lemma 3.3 and (26) show that there are constants dy, ds and ds such that, for all N € N
and each f € L ,([—N, N],RM), the equilibrium mappings T;’N : [-N,N] — X are
Lipschitz continuous and that the Lipschitz constant L*(L) takes the form

d
Lo ditcBD
d3
In particular, (28) yields

di +c27,
IT fi(y1) — Tfi(y2)| < c1 [1 + ITM] ly1 — yal.

If we choose C* < ‘ii’é\;f, then for all sufficiently large L € N and for each ¢ <
C*, the operator T maps the set Ly, ,([—N, N],RM) continuously into itself. Since

Lr.([—N,N],RM) is a compact set with respect to the topology of uniform conver-

gence, T has a fixed point by Kakutani’s theorem.
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This finishes the proof O

Remark 3.4 In case the law of motion Q takes the linear form (17), we have do = 0, and so
the proof of Proposition 3.1 shows that such games .V have Lipschitz continuous equilibria

for all ¢ > 0.

3.2 Lipschitz continuous equilibria in discounted stochastic games

We are now prepared to prove the existence of Lipschitz continuous Nash equilibria in Markov

strategies for discounted stochastic games with affine state sequences.

PROOF OF THEOREM 2.10: For N € N, let 7%V and F" be a Lipschitz continuous Nash
equilibrium and the associated payoff function for the truncated game XV. In view of Propo-
sition 3.1 we may assume that these maps are Lipschitz continuous with a common Lipschitz
constant, and so the sequences {7"}yen and {F"}yen are equicontinuous. Thus, by the
theorem of Ascoli and Arzela, there exists a subsequence (Nj) and Lipschitz continuous

functions 7 : R — X and F : R — R such that
Try, (y) = 7(y) and FMe(y) — F(y) uniformly on compact sets as k — oo.

Let us now fix y € R. For any compact set K C R?> we have

lim sup |FN ov™(y, A, B) — F(Ay +B)‘ =0.
N0 (A B)eK

We also have imy_yo0 ||Q (55 Y icr TV ()5 1) — Q (55 Yicr Ti(y);-)”B = 0. Since the se-

quence {F o™} nen is uniformly bounded, we obtain

Fi(y) = (1= B)U (y,7(y)) +ﬂ/Fi(Ay+ B)q (%Z”(y)a& B) v(dA, dB).

i€l
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It is easily seen that 7 : R — X is a stationary Nash equilibrium in Markov strategies for the

game Y. By construction, 7 is Lipschitz continuous. O

4 Asymptotic stability of the equilibrium process

Throughout this section, we denote by 7%V : [N, N] — X and 7 : R — X Lipschitz continu-
ous equilibria in the stochastic games =V and ¥, respectively. We may assume that
M

7% (y) = 7(y) uniformly on compact sets as N — oc. (29)

For any initial value y € R of the solution to (1), the strategies 7%V and 7 induce the respective
measures ]P’;N and P’} on (Q,F). To simplify notation, it is understood that under IF’;N the
process {Y; }sen is the state sequence on [~ N, N] in the truncated stochastic game V. This
sequence may also be viewed as the Markov chain on the compact state space [—N, N] as-
sociated to a suitable random system with complete connections; see, e.g., Barnsley, Demko,
Elton, and Geronimo (1988) or Norman (1972). In view of Theorem 4.2 in Norman (1972)
weak convergence of the process {Y:}ien to a unique stationary measure follows from As-

sumption 2.12.

Proposition 4.1 Under the assumption of Theorem 2.10 there exists unique probability mea-

sure u such that
py = Law(Yt,]P);N) s yN forally €R as t — oo.
Under Q™" () := fIP’ZT/N(-)uN(dy) the process {Yi}ien is stationary and ergodic.

Now our aim is to show that under P} the sequence {Y;}+en converges in distribution to

the unique weak limit of the sequence {u" }yen. To this end, we modify arguments which
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appear in Follmer, Horst, and Kirman (2002). In a first step we prove weak convergence of
the one dimensional distributions of the process {Y;}icn under IF’;N to the one dimensional

distributions of the sequence {Y;};en under P} as N — oo
Lemma 4.2 For all t € N we have
piv’y = Law(Y;, Py) =: pu{ as N — oo. (30)

PrOOF: We prove (30) by induction over ¢ € N. For ¢t = 1, the assertion is trivial. Let us
therefore fix a Lipschitz continuous function with compact support f : R — R and assume

that

/f ’y (dy) = m(f) as N — oo.

In view of the induction hypothesis, it is enough to show that

/fovN(Ay+B ( > N(y);dA dB) —>/f(Ay+B) Q(%Zri(y);dA,dB)

i€l i€l

uniformly on compact sets as N — oco. Since f has compact support, f o v"¥ = f for all

sufficiently large N € N, and so it suffices to prove that

( S N (y) dAdB) ( > Ny dAdB)

el i€l

‘%0

‘/f(Ay+B

uniformly on compact sets as N — oo. This, however, follows from Lipschitz continuity of

the stochastic kernel @ and from (29) because

HQ (%2#‘“(.1/);-) -Q (H > () )
i€l 1€l

for some C < oo. This shows vague convergence of the sequence {uﬁ_’gf} NeN to the probability

< Cmax|r"V(y) — 7(y)|
5 el

measure /j,%l 1 and, therefore, weak convergence. a
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We now prove convergence in distribution of the sequence {Y;}icn to the unique weak

limit of the sequence {u"} yen. This turns out to be the key to the proof of Theorem 2.13.
Proposition 4.3 There exists a unique probability measure u on R such that
Law(Y;, IPy) Lpu forallyeR ast— .

PROOF: In order to prove our assertion, we proceed in two steps.

(i) Let us first show that the family of probability measures {uiv’y, pY} v ten is tight. For

this, it suffices to prove that

Tim sup {IP’;N[|Yt| > o, Pr[Vi > d: Nt e N} =0. (31)
Due to Tchebychev’s inequality, (31) follows from

sup { B} [[Yill, Ej[|Yil): N,¢ € N} < oo. (32)
In order to prove (32), we put
a:= sgp/|A|Q(m;dA,B) <1 and b:= sgp/|B|Q(w;dA,dB) < 00
and consider the deterministic sequence {Y };cn defined by the recursive relation
Yi=aY}+b (t€N Yy=y).

Since a < 1, we have limy_, o 7? = 1Tba < oc. In particular, sup, Y < oo, and so it

suffices to show that

E;N |V;| <Y? and that By |V < Y; for all y > 0. (33)
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Clearly, (33) holds for ¢ = 0. We proceed by induction and assume that (33) holds for

all ¢t <T. For the induction step, note that

EylYr| < Ej[|ArYr|] + E[|Br]

< E [[Yr[E][|Ar|| |[Yz[]] +b
< aBp[[¥r] +b

< aYr+b

= Yru.

Similar arguments show that @N V| < Y7 forallt € N.

Since the sequence {u}ien is tight and because the Markov chain ({Y;}ien, P7) has
the Feller property, a standard argument shows that it has a stationary measure p*.
In order to prove weak convergence of {uf}en to p* observe first that, by Prohorov’s
theorem and (i), there exists a sub-net (Ng,tx)ken and an accumulation point ¢ such

that ugk’y 5 p¥ as k — oo. Thus, Proposition 4.1 along with Lemma 4.2 shows that

lim  lim ) *Y(f) = p¥(f) = lim lim pi*Y(f) = lim pe(f),

tp—>00 N —00 Np—o00 tp—00 Np—00

for any bounded continuous function f on R. Hence the accumulation point p¥ does
not depend on the initial value, i.e., u¥ = p. Thus, we may as well assume that the
starting point is distributed according the stationary measure p*. In this case u; = p*,

and so

() = [ (gm0 ) ) = i [ () = ()

tr—00 Nj—00 tp—r00
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by dominated convergence. Thus,

w(f)= lim pMY(f) = lim lim p¥(f) = lim p¢(f).

(N,t)—o0 t—00 N—oo t—o0

This finishes the proof. O

Proposition 4.1 gives us convergence in law of the process {Y; };en under P}, to a unique
limiting distribution p*. In order to establish our global convergence result stated in Theorem
2.10 it is now enough to show that the driving sequence {(A¢, Bt)}ten defined on (Q.F,P7)

is nice with respect to the measure
@)= [ BOw @), (34

Proposition 4.4 Assume that the assumptions of Theorem 2.10 are satisfied. Let T be a
Lipschitz continuous equilibrium in Markov strategies for the stochastic game ¥ and denote
by p* be unique limiting distribution of the Markov chain {Y:}ten under Pj,. Then the driving

sequence {(A¢, Bt) hten s nice with respect to the measure Q7 defined by (34).

PROOF: Since the Markov chain {Y;};en defined on (2, F,P}) converges in law to the unique
limiting distribution p*, the sequence {Y;}icn is stationary and ergodic under Q". Thus, it
remains to show that the asymptotic distribution of the random environment {(A¢, B;) }ten
is the same under ) and under Q7.

To this end, we denote by C' < oo the Lipschitz constant associated to the stochastic
kernel ) from X to R?:

oazor) (i)

i€l el

< Clyr — 2l (35)

B
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Let v := {(A1,B1),...,(As, By)} and let B; € B;, the Borel-o-field on R?. Our aim is to

show that there is a constant L* < oo such that
[Py [4be € Be] — Py, [y € By]| < L*|y1 — 2| for all y1, 70 € R. (36)

For this, we proceed by induction. For ¢ = 1, (36) follows from (35). Let us therefore assume

that there is a; such that
|P7 [ € Be] — Py, [ € By]| < aulyr —yo| for all yp, 9 € R.

For the induction step observe first that it suffices to prove (36) for sets B; of the form
B; = B} x --- x B! with B! € B;. The induction hypothesis along with our mean contraction

condition yields

[Py, [Wbe11 € Biy1] — Pj, [thr11 € By

1Bt1+1({A’B}) Ay +B[Yr € BilQ (% ZTi(yl);dA,dB>

el

_lBtl+1({A,B}) Lyz-}—B[/l)bt € B)Q (%ZTi(yQ);dA,dB)

el

IN

/ |Plhy, + B[ € Bl — Py, [t € Bi]| Q (% ZTi(yl);dA,dB>

el
+sup Py, [th1 € B1] — Py, [th1 € By
1

C .
< C|y1—y2|+at/|Ay1—Ay2| Q(MZTZ(yl);dA,dB>

il
< (CHray) |y — v

where 7 < 1 is defined in (20). Thus, a;,; < C + ray, and this yields (36) with L* := <.

1-r

Since the maps y — P} [1; € By] are Lipschitz continuous, because the Lipschitz constants

do not depend on ¢t € N nor on B; € B,, Proposition 4.1 gives us
[Py, — QTHFU < L*d(pd, p") foralll e N.
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Here d(u!, u*) denotes the distance of the measures p and p* in the Vasserstein metric. In

view of Remark 2.2, this proves that 1 is nice with respect to Q. O

We are now ready to prove Theorem 2.13.
PROOF OF THEOREM 2.13: Due to Theorem 2.10 there is a Lipschitz continuous equilibrium
in Markov strategies 7 for the stochastic game ¥. It follows from Proposition 4.4 that the
random environment ¢ defined on (2, F,P7) is nice with respect to the measure Q" on (£, F),

and so the assertion follows from Theorem 2.4 in Horst (2001). O

A Parameter dependent optimization problems

The proof of Lemma 3.3 uses a result about Lipschitz continuous dependence of solutions to
parameter dependent optimization problem. It is a special case of Theorem 3.1 in Montrucchio

(1987):

Theorem A.1 Let X C R be closed and convez and let (Y,|| - ||) be a normed space. Let

F: X xY — R be a finite function which satisfies the following conditions:*

(i) For ally € Y, the mapy) 43 ddficave and two times continuously differentiable

on X. Moreover, there ezists o > 0 such that 32F (z,y) < —a.

i) The derivative 2 F(z,y) of F at (z,y) satisfies the Lipschitz continuity condition
oz

0

0
%F(x,yl) - %F(%yz) < Lllyr — val|

for all y1,yo €Y and all x € X.

"Montrucchio (1987) formulates this theorem under the additional assumption of ¥ being a closed and

convex subset of a Hilbert space. His proof, however, shows that this assumptions is redundant.
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Under the above assumptions there exists a unique map 6 :' Y — X that satisfies sup,ex =

F(z,y) = F(0(y),y). Moreover, 6 is Lipschitz continuous and

L
10(y1) — 0(y2)l < —llyr — w2l for all yr, 42 €Y.
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