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Abstract

We study a new type of representation problem for optional processes with
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Introduction

In this paper, we study a new type of representation problem for optional processes.
Specifically, given such a process X = (X(¢), 0 <t < T) our aim is to construct a
progressively measurable process L such that X can be written as an optional projection
of the form

X(s)=E / f(t, sup L(v))dt

s<wv<t

.7:5] (0<s<T)
where f = f(¢,1) is a prescribed function which strictly decreases in [.

This representation problem has some surprising connections to a variety of stochas-
tic optimization problems.

Indeed, our original interest in this problem comes from a singular stochastic con-
trol problem arising in Economics, namely the problem of optimal consumption choice
when consumption preferences are given through a Hindy-Huang—Kreps utility func-
tional; see Hindy, Huang, and Kreps (1992) and Hindy and Huang (1993). In a general
semimartingale setting, Bank and Riedel (2001) show how to reduce this optimization
problem to a representation problem of the above type. The process X is given in terms
of a stochastic price process, the function f is determined by consumption preferences,
and it turns out that a solution L to the corresponding representation problem yields an
explicit description of the optimal consumption plan. Hence, in this context, a represen-
tation problem of the above type serves as a substitute for the Hamilton—Jacobi—Bellman
equation which extends beyond the Markovian framework.

There is also a close connection to dynamic allocation problems where one has to
spend a limited amount of effort to a number of different projects. Each of these projects
accrues a specific reward proportional to the effort spent on it. Of course, one wishes to
allocate the available effort to the given projects so as to maximize the total expected
reward. It is well known that solutions to such problems can be described in terms of
so called Gittins indices which provide a dynamic performance measure for each single
project; see, e.g., El Karoui and Karatzas (1994). It turns out that, a solution to our
representation problem coincides with such a Gittins index process when X describes
the cumulative discounted rewards from a given project and f yields the discount factor.

Moreover, for the special case where f takes the separable form f(t,1) = —g(t)l, we
shall see that a solution L of the representation problem provides the value process for
the non—standard optimal stopping problems

EXTD) - X7 <5<y

L(s) = essTinf - [LTg(t) . ‘ }_S]

where the essinf is taken over all stopping times T > s. For special choices of X, such
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problems also occur in Gittins index theory; see, e.g., Karatzas (1994). We also refer to
Morimoto (1991) for further discussion.

Finally, a solution to our representation problem provides a solution to a certain
obstacle problem of Skorohod type. In this problem, the process X describes some
randomly fluctuating obstacle and one seeks to construct a semimartingale Y with Doob—
Meyer decomposition

dY (t) = f(t,A(t))dt +dM(t) and Y(T)=0

such that ¥ < X where A is an adapted, right continuous and increasing process
satisfying the flat—off condition

E/T X (1) — Y (1) dA(t) = 0.

We will show that, for a large class of optional processes X, there is a unique process A
with these properties, namely the running supremum A(t) 2 SUPg<,<t4 L(v) of a solution
L to our representation problem for X.

Let us now describe our results and techniques in greater detail.

We start with a general uniqueness result and show in Theorem 1 that, up to optional
sections, there can be at most one upper-right continuous, progressively measurable
solution L to the above representation problem.

For the question of existence, we first focus on the case when X is given by a
deterministic function z : [O,T] — R, i.e., we look for a deterministic function [ such
that

ft sup I(v))dt forall 0<s<T.

s<v<t

Our construction of such a functlon [ is based on an inhomogeneous notion of convexity
which allows us to account for the time inhomogeneity introduced by the function f. We
develop analogues to the basic properties of usual convexity. In particular, we introduce
the inhomogeneously convex envelope of a given function. In terms of these envelopes,
we explicitly construct the solution [ to the above problem if x is lower—semicontinuous.
More precisely, Theorem 2 reveals that precisely the lower—semicontinuous functions x
with x(T) = 0 can be represented in the above form when [ varies over the deterministic
upper—semicontinuous functions.

Existence of a solution in the general stochastic case is established in Theorem 3.
The proof of this theorem uses techniques developed by El Karoui and Karatzas (1994)
in their investigation of Gittins’ problem of optimal dynamic scheduling. The main idea
is to consider a family of auxiliary optimal stopping problems of Gittins—type whose
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value functions in the end allow us to describe the solution to our original representa-
tion problem. These auxiliary Gittins problems are analyzed by means of the ‘théorie
generale’ of Snell envelopes as it is developed in El Karoui (1981).

The paper is organized as follows: In Section 1 we give a precise formulation of our
representation problem and present the main results. Section 2 explains the connections
between the representation problem and the mentioned optimization and obstacle prob-
lems in more detail. Proofs and some supplementary results are contained in Section 3;
the more technical arguments are relegated to the appendix.

1 Formulation of the problem and main results

Let X = (X(t), 0<t < T) be a real-valued optional process on some filtered probability
space (2, F,F,P) satisfying the usual conditions of right continuity and completeness.
The time horizon for our setting is 7' € [0,400], and we assume that X is of class
(D), i.e., the family of random variables (X(T'), T < T a stopping time) is uniformly
P-integrable with X (T) = 0. Furthermore we consider a function f meeting

Assumption 1 The mapping f : € x [O,T] x R — R satisfies:

(i) For each w € Q and any t € [O,T], the function f(w,t,.) : R — R is continuous
and strictly decreasing from +oo to —oo.

(ii) For any | € R, the stochastic process f(.,.,1) : Q X [O,T] — R is progressively
measurable with

E/O f(t.0)|dt < +00.

We ask under which conditions does there exist a progressively measurable process
L = (L(t), 0 <t < T)such that X coincides with the optional projection

s<v<t

(1) ( f(t, sup L( ))dt,0§s§T>.

To which extent is such a process L uniquely determined?
Omitting the optional projection, we can state (1) in the equivalent form of the
stochastic backward equation

T
f(t, sup L(v))dt P-a.s. for all stopping times S < T'.

S<v<t

Fs
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Notation. For the sake of notational simplicity, let us introduce the following sets of
stopping times:
Sé{T Q0 — [0,T] | T is a stopping time}  and Sé{T eS| T<TPas}.
Given a stopping time S € S, we shall furthermore make frequent use of

ST eS|T>SPas} and S*(S)2{Te€S|T >8P as on{S<T}}.

Our first result concerning our representation problem (1) is the following uniqueness
theorem:

Theorem 1 Under Assumption 1, any progressively measurable, upper—right continu-
ous solution L to our representation problem (1) satisfies

(2) L(S) = Ygesgi?sf) lst  for every stopping time S € S
where, for S €S and T € 8> (S), s is the unique (up to a P-null set) Fs measurable
random variable satisfying

E[X(S) - X(T)| Fs] = E [ / " fltls) de \ fs] .

In particular, the solution to (1) is uniquely determined on |0, T) up to optional sections.

The proof of this result will be given in Section 3.1. Lemma 3.1 in the same section shows
that with any solution to our representation problem also its upper right continuous
modification satisfies (1). Thus, the assumption of upper-right continuity of a solution
L made in the above theorem comes without loss of generality.

In Section 3.2 we treat the deterministic case, where the process X can be identified
with a function z : [0,7] — R and where Assumption 1 reduces to

Assumption 1’ The mapping f = f(t,1) : [O,T} x R — R is Lebesque integrable in
t € [0,T] for any fixred | € R, and continuous and strictly decreasing from +o00 to —o0
in 1 for any fized t € [0,T).

In this framework, we shall show that the characterization (2) of Theorem 1 natu-
rally leads to a generalized notion of convexity which accounts for the problem’s time—
inhomogeneity due to the function f. Using this time-inhomogeneous notion of ‘(— f)—
convexity’, we will prove in Section 3.2 the following
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Theorem 2 Under Assumption 1°, any lower—semicontinuous function x : [O,T] — R
with (1) = 0 admits a representation

(3) ftsupl v)dt (0<s<T)

s<v<t

where [ : [O,T) — R U {—o0} is a uniquely determined upper—semicontinuous func-
tion such that, for each s € [0,T], the above integrand f(.,sup,c,< l(v)) is Lebesque—
integrable over [s,T|. This function l is given by

(4) —f(s.1(s)) = (9%2°) (s) (0<s<T)

where 0T & denotes the density for the (—f) convex envelope &* of the restriction x|[57TA]
introduced in Convention 3.7.

Conversely, any function x : [0, T] — R which admits such a representation is lower—
semicontinuous.

In Section 3.3, we deal with the general stochastic case and study the representation
problem for optional processes X. Here, results from the ‘théorie générale’ of Snell en-
velopes (El Karoui (1981)) and techniques from the theory of Gittins indices (El Karoui
and Karatzas (1994)) allow us to prove the following existence theorem:

Theorem 3 Under Assumption 1, every optional process X of class (D) which is lower—
semicontinuous in expectation with X (T) = 0 admits a representation of the form (1),
e., it can be written as

f(t, sup L(v))dt

S<v<t

]-"s] (SeS)

for some suitable optional process L taking values in R U {—o0}.

In fact, in Section 3.3 we shall construct such a process L explicitly in terms of certain
Snell envelopes.

Remark 1.1 All the above theorems remain valid when passing from a deterministic
to a random time horizon T, provided this is a predictable stopping time. Moreover,
Lebesgue measure dt can always be replaced by any nonnegative random Borel-measure
p(w,dt) on [0,T)], w € Q, whose distribution function (u([0,t]), 0 <t < T) defines an
adapted process with strictly increasing, continuous paths. Indeed, using the time change
induced by this strictly increasing, continuous process, one can reduce this more general
case to the one considered above.
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2 Relation to optimization and obstacle problems

Let us now give a more detailed discussion of the various relations between our repre-
sentation problem and the optimization problems mentioned in the introduction.

2.1 A singular control problem arising in Economics

The original interest in our representation problem (1) stems from a singular control
problem arising in the microeconomic theory of intertemporal consumption choice. In
this problem, one considers an economic agent whose preferences on the set of cumulative
consumption plans

ca {C'> 0| C is aright continuous, increasing and adapted process}

are given through an expected utility functional of the non—time additive form

.
EUKUQE/}u@YC@»ﬁ
0
with .
YO(t) Ene Pt 4 / Be Pt=3) dC(s) .
0

Such preferences have been proposed by Hindy, Huang, and Kreps (1992). The ex-
ponential average of past consumption Y(¢) is interpreted as the level of satisfaction
which the agent derives from his consumption up to time ¢; n > 0 is the initial level
of satisfaction, # > 0 a discount rate. The felicity function u = u(t,y) is assumed to
be strictly concave and increasing in y € [0, +o0) for fixed t € [0, T] with continuous
partial derivative d,u(t,y) € L'(dt) for any y > 0 and d,u(t,0) = +o0, dyu(t, +o0) = 0.

Given some wealth w > 0 and an optional discount process ¥ > 0, the agent’s
problem is then to find his most preferred consumption plan in his budget—feasible set

A@né{CeC

T
E/ P(t)dC(t) < w} :
0
i.e., he aims to
T
Maximize EU(C') subject to IE/ Y(t)dO(t) <w.
0

Bank and Riedel (2001) use a Kuhn-Tucker characterization of optimal plans in
order to show that the optimal consumption plan C* with Lagrange multiplier M > 0
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is to always consume ‘just enough’ to keep the induced level of satisfaction Y™ above
the solution L™ of the representation problem

T
My(S) =E / dyu(t, sup {LM(v)eP=0})Be P9 gt .7:5] (Ses8).

S S<v<t

With
A M 5 A | Oyult,—e Pt D)e Pt 1 <0
and 5
A e’
L(v) = (o)

this problem takes the form (1) of the representation problem studied in the present
paper.

2.2 Gittins’ problem of optimal dynamic scheduling

The Gittins problem amounts to finding an optimal allocation rule for a certain number
of independent projects. When worked on, each of these projects accrues a specific
stochastic reward proportional to the effort spent on the project. The aim is to allocate
the available effort on the given projects so as to maximize the total expected reward.

Gittins’ celebrated idea to solve this typically high—dimensional optimization prob-
lem was to introduce a family of simpler benchmark problems which allowed him to
define a dynamic performance measure  later called Gittins index  for each of the
original projects separately. An optimal schedule could then be given in form of an
index—rule: “always spent your effort on the projects with currently maximal Gittins
index”.

To describe the connection between the Gittins index and our representation prob-
lem (1), let us review some of the results on Gittins’ auxiliary benchmark problems
which can be found in El Karoui and Karatzas (1994). These authors consider a project
whose reward at time ¢ is given by some stochastic rate h(t) > 0. With this project,
they associate the family of optimal stopping problems

T
(5) V(s,m)2 esssupE {/ e~ R(t) dt + me=T9)
TeS(s) s

7] smzo.

The constant m is interpreted as a reward—upon—stopping, the optimization starts at
time s, and a > 0 is a constant discount rate.

El Karoui and Karatzas (1994) show that, under appropriate conditions, the Gittins
index M (s) of this project at time s can, loosely speaking, be described as the minimal
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reward—upon—stopping such that immediate termination of the project is optimal in the
auxiliary stopping problem (5):

(6) M(s) =inf{m >0|V(s,m) =m} (s>0).
Without making further use of it, they also establish the alternative representation

[fTe*atht dt‘]—"]

(7) M(s) = ess sup

Tes>(s [f e atdt’}—} (8>0)

which is provided as equation (3.11) in their Proposition 3.4. Note that this identity be-
comes precisely our equation (9) which characterizes the solution L to the representation

problem (1) in the special case where T2 + oo and where

||l>

FED2 —ae @, X2 -E {/:OO e *h(s) ds

.7-}} (t>0,l€R).

Moreover, in their equation (3.7) El Karoui and Karatzas (1994) note the identity

(8) E[/S+ooe_ath(t)dt'.7:s]:]E{/SJrooae_atsupM dt‘}"] (s>0).

s<v<t

For the above choices of T, f, and X, this transforms into our backward formulation

ft sup M (v))dt

s<v<t

-f;] (5 EiO)

of the representation problem. Thus, in this special case, the Gittins index M for the
project with rewards (h(t), ¢ > 0) coincides with the solution L to our representation
problem (1). Observe, however, that El Karoui and Karatzas consider identity (8)
merely as a property of the Gittins index M and not as a characterization of M as the
solution to a representation problem.

2.3 Non—standard optimal stopping problems

Our representation problem (1) is also related to some non—standard optimal stopping
problems. Indeed, in the special case where f(t,1) = —g(t)l for some constant strictly
positive dt-integrable function g > 0, the characterization given by Theorem 1 takes
the form of a value function for an optimal stopping problem in which one optimizes a
difference quotient—criterion:

E(X(D) =X F] (g, 4.

(9) L(s) = St E [ [E gty dt ( fs]
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Recall that, for special choices of X and g, such a representation has occurred in our
discussion of the connection to Gittins indices in the previous section; see (7). In fact, it
was this similarity which motivated the approach taken in Section 3.3 to prove existence
of a solution to our representation problem (1).

Note furthermore that the above optimal stopping problem is not directly amenable
to a solution following the standard approach via the Snell envelope. For a discussion of
optimal stopping problems similar to (9), we refer the reader also to Morimoto (1991).

2.4 A variant of Skorohod’s obstacle problem

Let us now view the optional process X as a randomly fluctuating obstacle on the real
line. We then may consider the class of processes Y which never exceed the obstacle X
and which follow a backward semimartingale dynamics of the form

(10) dY (t) = —f(t. A(t)) dt +dM(t) and Y (T)=0

for some increasing, right continuous and adapted process A and some uniformly inte-
grable martingale M. Rewriting the above equation in integral form and taking condi-
tional expectations, we see that any such process is of the form

(11) Y@:EL/fQMMﬁ

.7:8] (0<s< T) )
In particular, the martingale M is uniquely determined by A and the terminal condition
Y(T) =0 as
T
M(s)=E / ft, A(t))dt
0

Since f is decreasing to —oo in its second argument, it is easy to see that many increasing,

right continuous adapted processes A induce a process Y with dynamics (10) (or (11))
which stays below the obstacle, i.e., which satisfies Y < X. However, one may wonder
whether there is any such process A which does so in the minimal sense that it only
increases at points in time when its associated process Y hits the obstacle X, i.e., so
that it satisfies the flat—off condition

(12) EA|X@—Y@MMQ:U

Remark 2.1 By convention, the initial time 0 is always a time of increase (put
A(0—) 2_ 00). Hence the above flat-off condition implies, in particular, X (0) =Y (0).

This problem may be viewed as a variant of the classic Skorohod problem to construct
an adapted increasing process A such that X + A > 0 under the restriction that A only
increases in times s when X (s) + A(s) = 0.
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Given a solution L to our representation problem for X, existence and uniqueness
of a solution to our variant of the Skorohod problem can be obtained easily:

Proposition 2.2 If L solves the representation problem for the obstacle process X then
the right continuous version of its running supremum

A®)2 sup Lv) (0<t<T)
0<v<t+
is the unique adapted, increasing and right continuous process such that Y with (11)
stays below X and which is minimal in the sense of the flat off condition (12).

PrOOF : To verify that A has the desired properties, only the flat—off condition (12)
has to be checked. By the properties of optional projections and definition of L and A,
we have

E /0 (X(s) = Y(s)} dA(s)

e [ [ -t g 200] f e

T t
:E/ {/ {f(t, sup L(v)) — f(t, sup L(v))] dA(s)} dt .
0 0 s<v<t+ 0<v<t+

Now observe that, if s is a point of increase for A(w,.), then sup,.,«;, L(w,v) =
SUPg<y<iy L(w,v). Thus the dA(s)-integral in the above expression vanishes, and we
obtain the desired flat—off condition.

In order to prove uniqueness, let A’ be a further adapted, increasing and rightcon-
tinuous process such that the right continuous version of

Y'(s)2E / Ft, A1) dt

satisfies Y’ < X and such that the flat—off condition

T
IE/ | X (s) = Y'(s)|dA'(s) =0
0
holds true. Consider the stopping times
S2inf{te[0,7)| At) > AWOINT €8

and
T2 inf{t € [S,T) | A'(t) > A} AT € S(9).
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Then, by right continuity of A and A’, we have 7" > S almost surely on {S < T}
Moreover, since S is a point of increase for A on {S < T'}, the flat—off condition entails

x()=v(s) <[ [ se.a0) ERRIGIES

By definition of T and montonicity of f, the first of these conditional expectations
is < E [fST f(t, A’(t))dt‘fs] on {T" > S} D {S < T} while the second is always

< E[X(T)|F,| since Y < X by assumption. Hence, on {S < T} we obtain the
following contradiction:

X(8) <E [/STf(t,A’(t))dt ‘ }"s} FE[X(T)| F

E [/STf(t,A’(t))dt ‘ fs} +E[Y(T)| Fs]
=Y'(S) < X(8)

where the first equality is due to the flat—off condition on A" which implies Y'(T") = X(7T')
at the time of increase T for A’. It follows that P[S < T] = 0, i.e., A < A’ on [0,7)
almost surely. Reversing the roles of A and A’ in the above argument finally yields the
assertion. O

3 Proofs and supplementary results

In this section we will give the proofs for our main results. Section 3.1 proves uniqueness
of a solution to our representation problem (1), Section 3.2 constructs a solution in the
deterministic case, and, finally, Section 3.3 is devoted to the question of existence in the
general stochastic case.

3.1 Uniqueness

As a first step to prove uniqueness of a solution to our representation problem (1), let
us note the following

Lemma 3.1 If L is a progressively measurable process satisfying (1), so is its upper—
right continuous modification

L(t) 2 limsup L(s)=1lim sup L(s) (0<t<T).
s\t L0 et (t4e)AT)
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PROOF : Due to Théoreme 1V.2.33 in Dellacherie and Meyer (1975), the upper-right
continuous process L is again progressively measurable. Moreover, we have for each
we Qandall s €[0,7) that

sup L(w,v) = sup L(w,v)

s<v<t s<v<t

at every point t € (s, T) where the increasing function on the left side in this equation
does not jump. Since, for fixed w and s, this happens at most a countable number of
times, we obtain

7
f(t, sup L(w,v))dt = ftsuprv))dt

s<v<t s<v<t

for every s € |0, T] and all w € Q. Consequently, we can indeed replace L by L in (1)
without changing the optional projection. O

Let us now turn to the

Proof of Theorem 1 (Uniqueness) Fix a stopping time S < 1" Consider 7' € §>(5)
and use the representation property of L to write
fS] |

As f(t,.) is decreasing, we may estimate the first integrand from above by f(¢, L(S))

fS] |

From the representation property of L at time T, it follows that we may write the second
of the above two summands as

/ f(t, sup L(v))dt

S<v<t S<v<t

T
E{/ f(t, sup L(v dt'}"s}—FE
S

and the second integrand by f(t,supy<,<; L(v)) to obtain

Tf(t, sup L(v))dt

T<v<t

X(S)<E [/ST (£, L(S)) dt ‘ fs] +E

ft sup L(v))dt

T<v<t

Fs| =E[X(T)] Fs]

and, therefore, we get the estimate

E[X(5) - X(7) | 7] <E | [ () de .

As L(S) is Fs—measurable (Dellacherie and Meyer (1975), Théoreme IV.64b), this shows
L(S) < ls almost surely. Since in the above estimate 7" € S~ (S) is arbitrary, we deduce

L(S) < gsginf I



A Stochastic Representation Theorem 13

For the converse inequality, consider the sequence of stopping times

T2 inf{t > S| sup L(v) > K"}AT (n=1,2,...)

S<v<t
where
K" = (L(S) + 1/n)1{1(8)>—o0} — N {£(8)=—o0} -
Observe that 7™ € §7(.S) due to the upper right continuity of L. Observe furthermore
that this path property also implies
sup L(v) = sup L(v) forall te[I™T).

S<v<t Tn<v<t
Thus, we may write

X(S):E[ Tnf(t sup L(v dt'}"g]JrE

S S<v<t
TTL

Tf(t, sup L(v))dt
o

Tn<v<t

.

where the last estimate follows from our definition of 7™ and from the representation

>E { Ft K" dt ‘ fs} FE[X (1) F],

S

property of L at time T™. As K" is Fs—measurable, the above estimate allows us to
deduce

K" > lggn > essinf g .
TeS>(S)

Now note that for n T 400, we have K™ | L(S) and so we obtain

HE) > g e

Remark 3.2 For the above uniqueness theorem we did not assume any path regularity
for X explicitly. All we needed to establish uniqueness is the representation property (1)
and upper—right continuity of the progressive process L.

3.2 The deterministic case

Let us now study the case of certainty where f satisfies Assumption 1’ and where X
can be identified with some deterministic function z : [0,7] — R such that z(T) = 0.
In this case, Theorem 1 shows that the only candidate for an upper-right continuous
function 7 : [0,7)) — R with

(13) ft sup l(v))dt forall 0<s<T

s<v<t
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is characterized by
[(s) = inf Iy

s<t<T

where [, € R is the unique constant satisfying

x(s) —z(t) = / flu,lsy) du.

As a motivation for our further steps to solve this problem, let us consider the special

case where
ft,l)y=-l (te0,T], leR).

For this choice of f, it is easy to see that [, is the difference quotient

SEECES. U

and, thus, {(s) has to be the smallest slope of a secant in the graph of x which starts
in (s,z(s)) and which ends in some point (¢, z(t)) with £ > s; compare Figure 1. This

Figure 1: A function x (thick black line), its convex envelope #° (thick grey line),
and various secants (thin lines) starting in (s, z(s)).

figure suggests a further representation of I(s), namely as the initial slope (07%*)(s) of
the convex envelope z* of the restriction x| 1,47 Indeed, as we shall see in the subsequent
sections, this observation allows us to give a constructive existence proof for a solution
to (13) not only in the special case considered in the above example, but also for general
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deterministic functions f satisfying our Assumption 1’. The main idea is to pass to
a suitably generalized notion of convexity which will be introduced in the following
Section 3.2.1. The proof of Theorem 2 will be given after that in Section 3.2.2.

3.2.1 A time—inhomogeneous notion of convexity

In this section we shall introduce an inhomogeneous notion of convexity which will
prove to be useful for solving the deterministic representation problem (13). This special
form of convexity accounts for the time—inhomogeneity introduced to our representation
problem by the function f. As we shall see, it inherits many properties of usual convexity,
the most important being a characterization in terms of derivatives and the existence
of an inhomogeneously convex envelope of a given function.

As a framework for this section, we fix an interval I C [—o00, +00] on the extended
real line with non—empty interior intl # @, and we consider a measurable function
g=g(t,]) : I x R — R which is di-integrable for any [ € R and continuous and strictly
increasing from —oo to +o00 in [ for any t € L.

Remark 3.3 In our subsequent application to the representation problem (13), the func-
tion g will be defined as gé — f with f as in Assumption 1°.

Now, let x be a real valued function on I.

Definition 3.4 We call x inhomogeneously convex with respect to g, or g convex for
short, if for all s,t,u € I such that s <t < u we have

(14) o) < a(s) + [ glv.la)do

where 15, € R is the unique constant satisfying

(15) z(u) = x(s) + /ug(v, lsu)dv.

We call x strictly g—convex if we always have strict inequality in (14).

Remark 3.5 The preceding definition is equivalent to the usual definition of convexity
in case the function g : I x R — R is time—homogeneous in the sense that it does not
depend on its first argument.

In complete analogy to usual convexity, there are the following alternative charac-
terizations of g—convexity whose proof is given in Appendix A.1.

Proposition 3.6 The following properties are equivalent:



A Stochastic Representation Theorem 16

(i) x is (strictly) g convex.

(i1) For all s,t,u € I such that s <t < u we have

(16) ls,t S lt,u (T’€8p- ls,t < lt,u)
where lsy and l;,, are defined as in (15).

(iii) x is absolutely continuous on int 1 with a density & of the form
x(t) = g(t,l(t)) (t €int])

for some (strictly) increasing function | : intl — R and, on the boundary, x
satisfies
limz(s) < z(t) for teolnl.

s—t

Convention 3.7 Since Lebesgue measure has no atoms, we may always assume the
increasing function [ : int I — R of Proposition 3.6 (iii) to be right continuous. Putting

()2 lim  (s) € [-oo,+oo] (t€dINT)

s—t, s€int 1

extends | canonically to all of 1. The corresponding density of the g—convex function x
will be denoted by
Ota(t) =g(t,1(t) (tel).

Like usual convexity, also g convexity allows for a definition of convex envelopes:

Definition and Proposition 3.8 The set X' of g—convex functions £ : 1 — R which
are dominated by x is stable with respect to taking suprema. In particular, if X # @,
there exists a pointwise maximal g—convex function & : 1 — R which is dominated by x.
This function is called the g—convex envelope of x.

PROOF : See Appendix A.1. O
Remark 3.9 IfI is compact then, for x to possess a g—convex envelope T, it is necessary
and sufficient that x is bounded from below.
Let us finally record some properties of g—convex envelopes in the following
Proposition 3.10 Let x : I — R have g convex envelope & : I — R and denote by
2, (t) 2 1ign_ét11fm(s) (t el

its lower—semicontinuous envelope. Then:
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(i) T=x on 0INI, and & < z, on int 1.

(i) The unique increasing, right continuous function [:int]T — R such that g(., lv())
1s a density for & on int 1 induces a Borel measure dl on int I with support

suppdl C {t € intT | Z(t) = z.(t)} .

191) T is absolutely continuous on 1 iff it x© is lower—semicontinuous in the boundar
Y Y
poinh;conumnedinjaﬂ I.

(iv) Fort €1, let &' denote the g—convex envelope of the restriction x|y +o0). Then
we have

(07" )(s) = (07Z")(s)

for any t1,ts, s € int 1 such that t; <ty < s.

PROOF : See Appendix A.1. O

3.2.2 Proof of Theorem 2

Uniqueness of a function [ with (3) follows immediately from Theorem 1.

Let us next show that [ with (4) indeed satisfies (3) for any s € [0,7]. For ease
of notation, we put gé — f and we let [ [S,T) — [—00,400) denote the unique
right continuous function such that g(., lvs()) is a Lebesgue density for the ¢ convex
envelope #° of the restriction z° 2 |57y (s € [0, T))). Note that these envelopes do exist,
because z is lower—semicontinuous and, hence, bounded on the compact interval [0, T]
by assumption.

In this notation, we have to verify that [(v) 2 (v) solves the deterministic represen-
tation problem. Apply Proposition 3.10 (i) and (iii) to write

T T
2(s) = #(s) — #(T) = — / (0+2°) (t) dt = / f (t, z“S(t)) dt .
Obviously, it now suffices to show that, for all ¢ € (s, T), we have

(17) I(t) = sup [*(v).

s<w<t

By Proposition 3.10 (iv), 072%(v) is decreasing in s € [0, v]. Thus,

v

°(v) < P(v) < I°(¢)
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where, for v < ¢, the last estimate follows from monotonicity of 5 Taking the supremum
over v € |[s,t], this proves that ‘<’ holds true in (17).
To establish the remaining >-inequality, consider the set

VE {velst] |#0) =2()}

and let v* 2 sup V. We claim that

*

A
1) =L -

(18) z*

For this it suffices to show that #*(v*) = x(v*). To this end, let v, (n = 1,2,...)
be a sequence in }V which converges to v*. Using the continuity of #* and the lower—
semicontinuity of x, we obtain
7°(v*) = lim 2°(v,) = limz(v,) > liminf z(v) = z(v*) > 2°(v") .
n n v—v*

Consequently, equality must hold everywhere in this line and this proves our claim (18).
Now, applying first Proposition 3.10 (ii) and then our claim (18), we see that
B(t) = P(v*) = 1" (v") < sup I*(v),

s<v<t
proving '>"in (17).
We next establish the upper—semicontinuity of {. From (17) we infer that

°(t) > I*(t)

for any t > s. For t | s, the left side of this inequality converges to [(s) = lvs(s), while
in the limit its right side is not larger than lim sup, I1(t) = lim sup, 15 1(t). This proves
upper—semicontinuity of [ from the right.
Now, consider ¢ < s and fix u € (s,T). Since & is g-convex with #(t) = x(t), we
have
(1) = I'(1)) < Atu. ' (u) —a(t).

where A(t,u, A) € R is the unique constant A with

/ g(v,\)dv=A.
t
As A(t,s,A) is continuous in (¢, s, A) and increasing in A, the above inequality yields

limsup ((t) < A(s, u, limsup{a*(u) — 2(t)}).
tls tTs
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S

Using #' < #° on s, T] and also lower—semicontinuity of x, we derive the estimate

lin:iupl(t) < A(s,u, 2% (u) — x(s)) = (s, u, &% (u) — 2%(s)) .

Due to the g-convexity of %, the last expression decreases to [*(s)) = I(s) as u | s.
This yields upper—semicontinuity of [ from the left.

It remains to prove the converse assertion that representable x are necessarily
lower—semicontinuous. Define

i5(t) 21,5 (t) S (¢, sup I(v))

s<v<t
such that z( fo is(t) dt for all s € [0,T]. Obviously,
(19) i(t) > 0 A (8, sup 1(v)) € 20,71, d
0<v<t

for every s € [0,T], i.e., the family of integrands (i5(.), s € [0,7]) is bounded from
below by some Lebesgue integrable function

Now, let us show that z( fo t)dt is lower—semicontinuous at each point
s* € [0,7]. Indeed, on the one hand, we have

A

limis(t) = 1, 4(2) f(t, sup [(v)) forevery te€0,7),

sls* s*<v<t

and, because of estimate (19), we may use Fatou’s lemma to obtain

liminfx(s)Z/ hmzs t)dt = ft sup [(v))dt > z(s").
0

s|s* s*<v<t

On the other hand, we have

lim i, (t) = 1. 4(t) f(t, sup I(v)) forall t€ [0,7]

sTs* s*<v<t

since [(.) is upper—semicontinuous by assumption. Thus, by Fatou’s lemma again,

hminf:v(s)z/ limig(t) dt = / f(t, sup l(v))dt = x(s").
0

sTs* sTs* s*<o<t

Hence, liminf,_, o 2(s) > z(s*) as we wanted to show. O
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3.3 Existence in the stochastic case

Let us now turn to the general stochastic case and assume that the optional process X
and the function f satisfy the assumptions of Theorem 3.

A natural approach to prove existence in the stochastic case could be to proceed
in a similar way as in the deterministic case. In such an approach, one would specify
L as the value process of the non—standard optimal stopping problems (2) derived in
our Uniqueness Theorem 1, and try to verify then that this process indeed solves our
representation problem (1). However, this would lead to tedious measurability issues
as it is not obvious how to choose a progressively measurable version of such a value
process L. Moreover, even granted such a process does exist, the verification that this
process solves the representation problem could not be carried out along the same lines
as in the deterministic case since, in the present stochastic framework, a suitable notion
of convex envelopes does not seem to be available; see, however, our discussion at the
end of Section 3.3.

For these reasons, we shall take a different approach, exploiting the connection be-
tween our representation problem and the Gittins index presented in Section 2.2. This
connection suggests to consider the family of auxiliary optimal stopping problems

T
(20) YH(S) = ?Fbebsl(%gE {X(T) +/S f(t,0)dt ‘ .7:5} (Ses, leR)

and to introduce the associated ‘Gittins index’ L in analogy to (6) as
(21) Lw, )2 sup{l e R | Yi(w,t) = X(w,t)} for (w,t) €Qx[0,T).

In contrast to formula (2) obtained in our uniqueness theorem, this representation of L
is given in terms of the value functions for standard optimal stopping problems. This
will allow us to apply the well established theory of Snell envelopes as it is presented in
El Karoui (1981) when verifying that L given by (21) does in fact solve our representation
problem (1).

To make this precise, we shall first analyze in detail the structure of the auxiliary
Gittins problems (20) in the following Section 3.3.1 before we proceed to the proof of
Theorem 3 in Section 3.3.2.

3.3.1 On the family of Gittins problems (20)

Let us start our investigation of the auxiliary Gittins problems (20) and note some
consequences of our assumption that X be an optional process of class (D) which is
lower—semicontinuous in expectation.

Lemma 3.11 Any process X satisfying the assumptions of Theorem 3 has the following
properties:
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(i) There are two martingales M, and M* such that M, < X < M* P-a.s.

(ii) Almost surely, X has paths which are lower—semicontinuous from the right at every
point t € [0, T) and which are lower—semicontinuous from the left in t = T.

(i1i) X satisfies a conditional version of Fatou’s lemma:

liminf E[X(T") | Fs| > E |liminf X (7T™)

.7:5] P-a.s.

for any S € S and for every monotone sequence of stopping times T™ € S(S) (n =
1,2,...).

PROOF : See Appendix A.2 O

In our second lemma we collect those results which rely on techniques from the
theory of Gittins indices as developed in El Karoui and Karatzas (1994):

Lemma 3.12 Under the assumptions of Theorem 3, there is a product—-measurable map-
ping
Y:Qx[0,T]xR—R
(w,t,1) = Y(w,t)
with the following properties:

(i) Forl € R fized, Y':Q x [O,T] — R is an optional process such that

(22) Y!(S) = essinf E [X(T)+/ST [0 dt'}“g] P-a.s.

TeS(S)
for every stopping time S € S.

(ii) For anyl € R, S € S, the stopping time

TL2imf{t>5 | Yi(t)=X(1)} <T

f].

Moreover, this stopping time depends on | € R in a monoton manner: for any
S € S we have

is optimal in (22), i.e.,

Tl

X(TE) + f(t, 1) dt
S

YI(S)=E

Thw) <TL(w) forall weQ andanytwo 1<1.
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(iii) For fized (w,s) € Q0 X [O,T], the mapping | — Y'(w,s) is continuously decreasing
from
Y (w,s) 2 l}im Yiw,s) = X(w,s).
In particular, there is a canonical extension of Y to Q x [0,T] x (R U {—o0}).
(iv) For every stopping time S € S, the negative random measure dY'(S) associated
with the decreasing random mapping | — Y'(S) can almost surely be disintegrated

.

PROOF : See Appendix A.2 O

in the form

“+o00

(23) p(1)dY'(S) =E

for any nonnegative, Fs @ B(R)-measurable ¢ : Q2 x R — R.

Remark 3.13 In the deterministic case, Y'(s) coincides with the time s value of the
mazimal (—f)—convex function £ on [s,T] which is dominated by = on this interval
and whose density Y¢S is of the form 0TES (L) = — (4, lu(t)) for some right continuous
increasing function lUZ l.

Taking the version of Y = Y'(t,w) given in the preceding lemma, we now can use (21)
to define our candidate L for a solution to the representation problem (1).

Lemma 3.14 ForY as in Lemma 3.12, the process L defined by (21) is optional and
takes values in [—oo,+00) almost surely. Moreover, for every S € S, each of the
following sets is contained in the next:

AS{(w,t,))|1> sup L(w,v)}

S(w)<v<t
C B2 {(w,t,]) | Th(w) > t}
CC2{(w.t,])|1> sup L(w,v)},

S(w)<wv<t

and for P@ dt-a.e. (w,t) € Qx [0,T] the (w,t)-sections A«D, B@H CWh R differ
by at most countably many points | € R.

PRrROOF : See Appendix A.2 O
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3.3.2 Proof of Theorem 3

With the results of the preceding section at hand, we now can give the proof of our
existence theorem in the stochastic case. We proceed in four steps:

Step 1 We first prove the relation

" f(t, sup L(v))dt

S S<v<t

X(S)=E[X(Ty)|Fs] +E

FS] on {L(S) <}

for every [ € R.
Fix o € R. The definition of L(S) and the monotonicity of [ — Y!(S) allow us to
write

+o00
X(8) = YH(8) = ¥(8) = [ liugsyag@) d¥(s)

— 00

almost surely on {L(S) < lp}. Due to our disintegration formula (23) for the
random measure dY(S), the last expression is

T “+oo
/s {/ 1[L(S),lo](l)1{ngt} df(tal)} dt

Now, let I denote the above conditional expectation. Since for P ® dt-a.e. (w,1)
the sections B! and C“? of Proposition 3.14 differ by at most countably many
points [ € R, continuity of the measures df (¢,.) allows us to replace the set {T% >

t} in the above expression by {I > L(S,t)} where L(S,t) 2 SUPg<,<¢ L(v). This

yields
i T “+o00
I=E /S {/ Liz(s,yniono) (1) df (2, l)} dt | Fs

f4_
We claim that

(25)  f(t, Do) — f(t. L(S,t) Alo) = (f(t. o) — f(t, L(S,1)) Liglosy dbae.

=Yh(S)-E Fs| on {L(S) <ly}.

(24) k| [ e - e LS oA a

Indeed, the left side of this equality is equal to
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Step 2 As our second step, we show that 7§ 2 limy oo T =T.
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where both estimates are due to the inclusions derived in Proposition 3.14. Since
L(S,.) is increasing in ¢, we have L(S,t) = L(S,t—) for Lebesgue-a.e. t and,
therefore, the last term in the preceding estimate coincides with the first term

7.

Now, resuming our initial calculation, we see that this representation and opti-
mality of 7 imply that on {L(S) < Iy} we have

dt-a.e. This proves our claim (25).

Claim (25) in conjunction with (24) gives us

[=E /SS{f(t,lo)—f(t,E(S,t))}dt

X(S)=Yh(S) -1

=K X(Téo)+/TS f(t,lo)dt fs]
S
_E / (1) = £t L(S. 1)} dt | Fs
S

=E[X(T¥)|Fs] +E

/ & F(6L(S, 1)) dt ]—"5]

This is what we wanted to show in this first step.

~

Note first that by Lemma 3.12 (ii) [ — T% is monotone. Hence, 74> exists as a
monotone limit of stopping times. Moreover, by optimality of T, we have
T§
X(Tg)+ | ft.0)at Fs|
s

Yi(S)=E Fs| <E

X(T) + /T f(t, 1) dt

fs] |

Hence, for any [y € R, we have by monotonicity of f(¢,.) that

7
/ f(t,lo)dt
T3

~

or equivalently, as X(7') = 0 by assumption,

T
Ft ) dt

1
TS

E[X(T) | Fs] <E

(26) M.(S) < limsupE [ X(T§) | Fs| < Jim E
IT400 00

.

T
f(ta lO) dt

—+ 00
TS

~E Fs

?
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where M, < X is the martingale of Lemma 3.11 (i). For [y T +o00, the right side
in this estimate tends to —oo on the set {]P’ [T;r o .7:5} > O} while the left

side yields an almost surely finite lower bound. Hence, P[T4d> < T ] =0.

Step 3 We next show that lim;j; E [X(Té) ‘ ]—"s} =0.

From (26), we immediately infer that limsupy ., E[X(7%)|Fs] < 0 almost
surely. On the other hand, Lemma 3.11 (iii) yields

{1400 T+00

liminfE [ X (7%) }.7:5]>E[hm1an( )

] P a.s.

But by Step 2, liminfj;o X (7%) > liminf
Lemma 3.11 (ii).

¢ X (t), and this liminf is 0 by

Step 4 The results of Steps 2 and 3 allow us to let [ T +oo in the representation of
X(S) derived in Step 1. This proves

ft sup L(v))dt

S<v<t

fs] on {L(S) < +o0}.

As the event {L(S) < 400} has probability one by Proposition 3.14, this shows
that indeed L solves the representation problem (1). O

Let us discuss briefly how the above proof is related to our proof of existence in the
special case where both X and f are deterministic. Then, as mentioned in Remark 3.13,
we may view Y(s) as the time s value of the maximal (— f)-convex function €% on [s, T]
which is dominated by X on this interval and whose initial slope is greater or equal
to —f(s,1). The definition of L(s) yields the maximal index [ for which &*! actually
coincides with the (—f)-convex envelope of X|, ;). This observation implies also that

s — YO (s)  where I_J(s)é sup L(v)

0<v<s

coincides with the (—f)-convex envelope of X.
For the stochastic case, this suggests to consider the semimartingale

A

ft sup L(v))dt

0<v<t

}"5] (s €[0,1))

as some stochastic kind of inhomogeneously convex envelope for the optional process X.
In fact, as our analysis of the Skorohod—type obstacle problem in Section 2.4 reveals, X
is the only semimartingale dominated by X with dynamics

dX(t) = f(t, A(t))dt +dM(t) and X(T)=0



A Stochastic Representation Theorem 26

where A is an adapted, right continuous, increasing process satisfying the minimality
condition

E/O X (s) — X(s)|dA(s) = 0.
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A Appendix

A.1 Proofs in the deterministic case

Proof of Proposition 3.6 The argument for the characterization of strict convexity
being similar, we only prove the characterization of convexity.

(1) = (4i) We shall show l;; <, and ls, < li4.

For the first inequality we note that, by definition of [, and (i),

/stg(v, Loe) dv = 2(t) — 2(s) < /:g(v’ ) dv.

Similarly, we obtain the second inequality from

/tu 90, 1y0) dv = (u) — (x(s) + / . dv)

<zx(u) —z(t) = /u (v, L) dv.
t
(27) = (¢) Using the definition of /,; and [, ,, we may write
x(u) —x(s) = /tg(v, ls+) dv + /tu g(v, 1) dv.
By (ii) and the definition of [, ,,, this yields

/ g(vvls,u) dv Z / g(vals,t) dv.

Thus, l5; <5, and therefore

t t
o0)—2(6) = [ el dv < [ glw.t)do
as was to be shown.

(113) = (ii) Because of the boundary conditions, it suffices to show (16) for s <t < u
contained in the interior int I of our interval. The monotonicity of [(.) implies

£(t) — 2(s) = / 9(v,1(v)) dv < / g0, 1(t)) dv
which yields I5; < (t). Moreover,
2(u) — 2(t) = / (0, 1(w)) dv > / " (. 1(t)) do,

whence we deduce (t) < ly,.
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(i7) = (7ii) The same argument as in (i¢) = (¢) shows that, for ¢ € intI fixed, both [ ;
and [, are increasing functions on their respective domains. Hence, we may define

[7(t)2 liml,, and I7(t)=2 liml,,.
sTt slt
By (16) we have, for s <t < w in int 1,
Lo < T (8) <UH(t) <y -

In particular, both [~ and [T are increasing, real-valued functions on int I.

We next show that z is absolutely continuous on intl. To this end, we fix a
compact interval [a,b] C int] and associate with each partition 7 = {t; = a <
ty < ...t, = b} the integrand

N A =
T2 gt b)) () (L€ [a,b]).
i=1
By definition of [ and g-convexity of , we then have that the function

r(s)%(a)+/sf(t) dt (s € [a.b])

interpolates x at each point s € 7 while dominating x otherwise. Moreover, by
(i), refining the partition 7 indefinitely makes ¢” converge to

i(t) 2 g(t, 1 () = g(t,1" (1))

in any point ¢t € (a,b) such that {*(t) = [7(¢), i.e., in all but countably many
points. Since, in addition, g(.,l"(a)) < i < g(.,I7 (b)), dominated convergence
entails that the finer and finer interpolations I” of x converge to

z(s) = I(s) 2 z(a) +/ g(t, 15 () dt (s € [a,b]).
In particular, x is absolutely continuous with density

(1) = g(t,17 (1)) = g(t, 1" (1))

for almost every ¢ € intI. As both [~ and [ are increasing, either representation
of & is of the desired form.

To check the boundary conditions z(t) > lims_;x(s) for t € I NI, let us for

instance consider the case where ¢ = supl € 0TI NI Note first that lim_; x(s)
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exists as a number in RU{+o0}. Indeed, take an arbitrary to € int I, and consider
the function Z defined by

#(s) 2 a(ty) + /ts {g(v,1*(v)) — g(v. 1" (t0))} dv (s € int]).

Since [ is increasing, ¥ is increasing on (¢, t) and, therefore, has a possibly infinite
limit for s T ¢. By integrability of g(.,1"(to)), this property carries over to x.

As we know already that property (ii) implies g—convexity, we have for any s € int I
with s > ¢, the estimate

x(s) < z(t) —/ 9(v, Ly t) dv .

Obviously, the right side converges to z(t) as s T ¢t while the left side converges to
lim,_,; x(s) = x(t—), establishing the desired boundary condition.

Proof of Proposition 3.8 It suffices to show that the pointwise supremum

B(t) = supé(t) (tel)

of the g—convex functions £ < x is again g—convex. So fix s <t < w in I and consider
& € X. Since £ is g—convex, we have

where . .
2(6.6) 26 +/8 g(v, 1) dv=E& — /t g(v, 1) dv
with [ = 1(&1,&2) € R such that
§1+/ug(v,l)dv:§2.
It is easy to see that the function = is increasing in both arguments. Thus,
§(t) < E(&(s), 2(u)) -

As this holds true for any £ € X', we deduce

E(E(s), 2 (u)),

which means that indeed  is g—convex. O

(1]

(1)

IA
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Proof of Proposition 3.10

(1)

(i)

Let € be an arbitrary g—convex function dominated by z. Define & é{“ on int I and
put & 22 on 91N Then ¢ is another g—convex function dominated by z. Since
7 is the largest of these functions, this yields in particular z = & on 01N 1. The
property £ < x, on int I holds since, on this set, ¥ is continuous and dominated
by z.

Consider ¢t € T with #(t) < z.(t). By (i), t € intI and we have to show that
t ¢ suppdl. To this end, we note first that, by assumption on ¢, there are real
numbers ¢, > 0 such that

T(s)+c<x(s) forall selft—o,t+d] Cl.

For 0 < h < &, consider the function 2" defined by 2" 2 # on I\(t — h, ¢ + h) and
2" (s) é:i’(t —h)+ / g(v,I"ydv for s€&(t—h,t+h)
t—h
where [" € R is the unique constant satisfying

t+h
&(t — h) +/ g(v, "y dv = Z(t +h).
t—h

As # is g convex, we have & < 2" on [t — h,t + h] and, hence, Z < z" on all of L.

Since supp_, 4] 2" depends continuously on A through #(t4h) and because &+c <
x on [t — &, + 4], we may choose h > 0 small enough to ensure z" < x on this

h

interval and, hence, even on all of I. Then, by construction, z" is a g—convex

function dominated by z and, thus, 2" is also dominated by #.

Altogether, we find that in fact 2 has to coincide with #. This implies [ = " on
(t — h,t 4+ h) and, in particular, ¢ & supp dl.

We know already that z is absolutely continuous on intI. Thus, in order to
establish this property on all of I, it suffices to show that & is continuous on
the boundary points infl, supl if these are contained in I. The argument for
the inf—case being similar, we restrict ourselves to show continuity of ¥ in case
b2 supl € L

By Proposition 3.6, lim;_, Z(t) exists and is < #(b) = z(b). For the converse
inequality, we distinguish two cases.
If b = sup supp dl with [ as in (ii), there is a sequence of points ¢,, € supp dl which
increases to b. By (ii), we thus have

yrr; z(t) = limz(t,) = limz.(t,) > lirtn iglf T4(t) = z,.(b) = z(b)
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which establishes the converse inequality in this case.

fo>r2 sup supp dlv, then
t
Z(t) = Z(s) +/ g, (1)) dv forall 7<s<t<b.

Thus, in case lim;;, Z(t) < x(b) = x.(b), there is a constant ¢ > 0 such that
for s < b large enough we have #(t) + ¢ < z(t) for all ¢t € [s,b). This, however,
contradicts the maximality of Z as a g—convex function dominated by .

Consider s, t1, ty € int I with t; < 5 < s and put
u® inf{t > s | #1(t) = #2(1)}.
As 7 < 72 on [s,+00] N1, we then have
(27) i |[u,+oo]ﬁ]l = ft2|[u,+oo]m]1-
If u = s, this immediately yields that our assertion
ot (s) > ot (s)

holds true with equality.

In case u > s and u € I, let Z;u, Eu denote the constants associated via (15) with

7% and %%, respectively; let furthermore lul, I2 be the right continuous increasing
functions such that o%#™ = g(., [1(.)), 872 = g(.,12(.)). Since 1 (s) < #(s), it
follows that lu;u > fgu Using (iii), our identity (27) and montonicity of [2, we thus
obtain the series of (in-) equalities

01 (s) = g(s,11) > 9(s,12.,) = 9. 12,) = (s, 1%(s5)) = 07" (s)

) Ys,u »Us,u 7 Us,u

as claimed.

Finally, if u > s is not contained in I, then #* < #*2 < x, on [s,u). By (iii), this
implies

T2(t) = 2™ (s) +/ g(v,1M(s)) dv.

Hence, by integrability of g(.,const. ), we may extend both #? and x canonically
to TU{u} and apply the reasoning of the preceding case to conclude the assertion.

O
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A.2 Proofs in the stochastic case

A.2.1 Proof of Lemma 3.11

(i)

By Proposition 2.29 in El Karoui (1981), the optional versions of the Snell-
envelopes

J.(S) = esssupE [ X (T') | Fs] and J*(S) = esssupE [XT(T) | Fs] (S €S)
TeS(S) TEeS(S)

are of class (D) since so is X = X — X~. By the same proposition, J, (resp. J*)
can be written as the difference of a

martingale —M, (resp. M*) and a nonnegative increasing process. It follows that
M, <—J. <X <X<Xt'<J <M
which proves assertion (i).

Since X is optional and of class (D), pathwise lower—semicontinuity from the right
follows from Dellacherie and Lenglart (1982). In order to prove liminf,; X (Z) >
X(T) = 0 almost surely, suppose to the contrary that for some ¢ > 0 we have
P[lim inf,,» X (t) < —2¢] > 0. Put T° 20 and define

T2 inf{t >T" Vv S" | X(t) < —e} AT

where S™ (n = 1,2,...) may be any sequence of stopping times announcing 7.

Then obviously T™ T T and, since the paths of X are lower-semicontinuous from
the right, it holds that X (7") < —e on {T™ < T’} while X(T") = 0 on {T™ = T}.
Hence,

EX(T") = E[X(T")1ipn_iy] < —eP[T" < T]

and using that X is lower—semicontinuous in expectation we may let n T 400 in
the above relation to deduce

EX(T) < liminf EX(T") < —eP[T" < T for alln = 1,2,..].
However, as EX (T ) = 0, this is a contradiction to our initial assumption that the
event

{liminf X (t) < =2c} c {T" < T foralln =1,2,...}
v

has strictly positive probability.
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(iii) Apply Fatou’s lemma to X (7™) — M, (T™) >0 (n =1,2,...) to deduce
liminf E [ X (T™) — M.(T") | Fs] > E | liminf{ X (T") — M.(T™)} ‘ Fs| -

Since M, is a martingale we may rewrite the left side in this expression
as liminf, E [ X(T™)|Fs] — M.(S). Furthermore, the martingale property of
M, in conjunction with the monotonicity of 7" (n = 1,2,...) implies that
lim,, M, (T™) exists almost surely and in L'(P) so that the right side equals
E [liminf,, X (77) — lim,, M,.(T") | Fs] = E [liminf, X (7™) | Fs] — M.(S). O

A.2.2 Proof of Lemma 3.12

The proof of Lemma 3.12 is rather lengthy and technical. We therefore split it into
several parts and start with some

Preliminaries Due to our assumptions on f and X, we may apply Théoreme 2.28 in
El Karoui (1981) to obtain existence of optional processes Y' (I € R) such that

TeS(s)

Y!(S) = essinf [X(T) +/ST f(t,0) dt'}"s] < X(9)

for every stopping time S € S and every [ € R. Moreover, Théoreme 2.41 in El Karoui
(1981) implies that, for S € S fixed,

fgéinf{tzs ‘f/l(t):X(t)} <T

is optimal in the sense that

X(T%) + f(t,1)dt
S

Yi(S)=E Fs

For [, I’ € R with [ <’, the monotonicity of f(¢,.) (0 <t < T) yields
T T
E [X(T) +/ F(6,1) dt ' ]—"5] <E [X(T) +/ F(t,0)dt ' ]—“5]
S S

for all T € S(S). As Y¥(S) (resp. Y!(S)) is the essential infimum of the left (resp. the
right) side of this inequality where T" ranges over S(.9), this implies

(28) YI(S) <YU(S) P as.
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In addition, we have

_E|x@)+ [ s S - fn)y dr

s |
.

where the last equality follows from optimality of Th. For I < I, we have f(t,1) —
f(t, ') >0 for any t € |0, T], and thus the preceding estimate yields

Fs| +E

S

T
(29) Yis) <YY(S)+ / |f(t, 1) — f(t, )| dt P-as.
0
Since both estimates (28) and (29) hold true for every stopping time S € S, optionality
of both Y' and Y entails the pathwise estimate

YV(s) <Y(s) <Y(s)+ /T 1f(, 1) — f(t.D)|dt forall se[0,7] P as.
0

by Meyer’s optional section theorem. In fact, we may even choose Y for [ € Q such that
the above relation holds true simultaneously at each point w € € for all rational [ < I'.
Similarly, we may assume that Y'(w, t) < X (w,t) foralll € Q and any (w,t) € Qx[0,7].

With this choice of the auxiliary processes Y (I € Q), we now come to the

Construction of Y and Proof of Lemma 3.12 (i) For ecach [ € R, define the
process

~

l AL ST . Yau
Yi(s)= (élarﬁlY (s) = l<1£1€fQY (s) (s€]0,1]).

We claim that Y7 is indistinguishable from Y for every | € R. Indeed, Y is obviously
optional. As Y” > Y for all rational 7 > [, we also have Y! > Y!. For the remaining
converse inequality, fix S € § and note that, for every T' € §(55),

l T T
Yi(S) = lim ¥7(S)

T T

< ligliBfE {X(T) +/ f(t,r)dt ‘ .7-"5] =E [X(T) +/ f(t, 1) dt ‘ .7-"5] .
or S S

Since this estimate holds true for all 7" € S(S), we may pass to the essential infimum

on its right side to obtain Y*(S) < Y(S) almost surely. By optionality, this entails

Vi(t) < YU(t) for all t € [0, 7] P-a.s., which is the asserted converse inequality.
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Proof of Lemma 3.12 (ii) and (iii) Y’ and Y? being indistinguishable by construc-
tion, optimality of T follows from optimality of T%.

To prove the first part of assertion (iii), recall that we have chosen Y (I € Q) such
that

T
Yiw,s) < Y'w,s) <Y (w,s) —I—/O |f(w,t,1") — f(w,t,1)|dt

for allw € Q, s € |0, T] and all rational [ < [’. Taking rational limits, we infer from this
that

Y (w,8) < Vi(w,s) < V! (w,5) + / ot 1) — ot D) de
0

forallw € Q, s € |0, T | and all real I < I'. This inequality proves the claimed continuity
and monotonicity of | — Y (w, s).

We next show that, for S € S fixed, we have T§(w) < Th(w) simultaneously for all
[ <1 and all w € Q. Indeed, by construction, we

have Y (w,s) < Yiw,s) < X(w,s) for every I’ <1, s € [0,7] and all w € Q. For
fixed w, this yields

{t>SwW) | Y (w,s) = X(w,s)} C{t>Sw)|Y(w,s)=X(w,s)}

whence T (w) > Th(w) by definition of these stopping times.
To complete the proof of (iii), we next determine the limit Y ~°°. By optimality of T%,

we have l
TS
X(S)=Y'(S)=E | X(T5)+ | [(t,1)dt|Fs
s
for any [ € R. Letting [ | —oo, this entails
T§
(30)  X(S)>Y~2(S) > lim inf E [ X(T§) | Fs] + lim inf & ft,)dt| Fs| .
— 0o — 00 S

From the monotonicity of [ — Té we deduce that T'¢™ 2 limy| o Té exists. Moreover,
from Lemma 3.11 (iii) we may infer the estimate

(31) liminf E [ X(T§) | Fs] > E {lilrflian(Té)

l|—oco

£ 2 E[x(15)| 7]

for the first summand on the right side of (30). Here, the second inequality follows by
pathwise lower—semicontinuity from the right of X (Lemma 3.11 (ii)).
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The second summand can be estimated from below by

Tl
lim infE f(t,1)dt ]—“]
l|— S
T Tg™®
(32) > esssup liminf E ftly)dt| Fs| =E / f(t,—o0)dt| Fs
loekR =0 s s

— +001{T§oo>s} .

Hence, it follows from (30) that 7¢> = S almost surely. Combining this with our
estimates (30)—(32) yields Y ~°°(S) = X(.5) almost surely as claimed.

It finally remains to prove our version of the Envelope Theorem.

Proof of Lemma 3.12 (iv) Fix S € S and [, < [* in R. We have to show that
Y (S) — Y(9) is a version of the conditional expectation

[ s aol al =]

To this end, fix aset A € Fg and consider a partition 7 = {l, =y <} < ... < l,41 ="}
of the interval [I,,[*]. Write

E (Y = YE)14] = ZE[( i = vE) 14l

1+1

E

and use optimality of T¢*" and Téj, respectively, to estimate

H—l

(33)  E[(v§ - ZE /

Ft linr) — f(£, 1)} dt 1A] 2
and

(34) B[V -YE) 14 <> R

1=0

TSl{f(ta liv1) = f(t, 1)} dt 1A] 2.

S

We may rewrite I” in terms of the measures df(t,.) (t € [0,T]) as

Té,i+1 +o00
r=yE /S {/_m 1[li,li+1)(l)df(t,l)} dtlA]

T +oo T
/ { | b 0 dre n} it u] .
p3

1=
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For mesh |[|7| tending to zero, the above sum of indicator products converges to
1[1*,1*)(1)1[57Té+](t) and is dominated uniformly in 7 by 1, 1+)(1)1(54(t). Since the latter
product is in L} (P ® dt @ df(t,1)) due to our integrability assumption on f, we may
conclude by dominated convergence that

T +oo
LA g oden} a 1,4] .

An analogous argument shows
T “+o0
/ { / Lo (D1 e (D dF z)} dt 1A] |
S -0

For every w € Q, theset {I € R | T4 (w) < T (w)} is countable due to the monotonicity
of Th(w) in I. In conjunction with our estimates (33) and (34), this yields the identities

lim I"=T2E

=0

lim II" = T2E

I7ll—0

(35) I=T=E[(Y§ —YE)1a] .

Moreover, monotonicity of 7% , T%, and T in conjunction with 74 < T4 < T4
and df (t,.) < 0 implies

T “+o00
A e aen) @ u] s

Together with (35), the preceding inequality finally implies

I >E

/sT {/_;OC Lty (D523 () df (2, 1)} dt 1,4] ,

As A € Fg is arbitrary, this completes the proof of assertion (iv). O

E[(v§ - i) 1] = E

A.2.3 Proof of Lemma 3.14

The process L is optional since, for every [ € R, we have

{wt) e Qx[0.T]| Lw,t) > 1} = |J {y" =X}

I<reQ

where the latter set is optional by optionality of Y and X. To see that L takes values
in [—00, +00), consider S € S and note that on {L(S) = +o0o} we have X(S) = Y!(S)
for all [ € R almost surely. This entails, in particular, that

X(S)<E [X(T) /ST F(t.0) dt

.7:5] +E

fs] on {L(S)=+o0} forall [€eR
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almost surely. Letting [ T +o0o, this implies
{L(S) = +oo} C {X(5) = —o0}

up to a P—null set. The right event has probability zero by assumption on X and, thus,
also P[L(S) = +o00] = 0.

The claimed inclusions A C B C C are easily derived from the definitions of L and
TL. Moreover, for (w,t) € Q x [0, 7] such that the running supremum SUPg(w)<o<. L(V)
does not jump at time ¢, the only point contained in the difference of the (w, t)—sections
CMALD s | = supgy<pep L(v). 0
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