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Estimating State-Price Densities with
Nonparametric Regression

Kim Huynh,! Pierre Kervella and Jun Zheng

1 Introduction

Derivative markets offer a rich source of information to extract the market’s
expectations of the future price of an asset. Using option prices, one may derive
the whole risk-neutral probability distribution of the underlying asset price at
the maturity date of the options. Once this distribution also called State-Price
Density (SPD) is estimated, it may serve for pricing new, complex or illiquid
derivative securities.

There exist numerous methods to recover the SPD empirically. They can be
separated in two classes:

e methods using option prices as identifying conditions

e methods using the second derivative of the call pricing function with re-
spect to K

The first class includes methods which consist in estimating the parameters
of a mixture of log-normal densities to match the observed option prices, Melick
and Thomas (1997). Another popular approach in this class is the implied
binomial trees method, see Rubinstein (1994), Derman and Kani (1994) and
Hirdle and Zheng (2002). Another technique is based on learning networks
suggested by Hutchinson, Lo and Poggio (1994), a nonparametric approach
using artificial neural networks, radial basis functions, and projection pursuits.

The second class of methods is based on the result of Breeden and Litzen-
berger (1978). This methodology is based on European options with identical
time to maturity, it may therefore be applied to fewer cases than some of the
techniques in the first class. Moreover, it also assumes a continuum of strike
prices on R* which can not be found on any stock exchange. Indeed, the strike
prices are always discretely spaced on a finite range around the actual under-
lying price. Hence, to handle this problem an interpolation of the call pricing
function inside the range and extrapolation outside may be performed. In the
following, a semiparametric technique using nonparametric regression of the im-
plied volatility surface will be introduced to provide this interpolation task. A
new approach using constrained least squares has been suggested by Yatchew
and Hérdle (2002) but will not be explored here.

The concept of Arrow-Debreu securities is the building block for the analysis
of economic equilibrium under uncertainty. Rubinstein (1976) and Lucas (1978)
used this concept as a basis to construct dynamic general equilibrium models in
order to determine the price of assets in an economy. The central idea of this
methodology is that the price of a financial security is equal to the expected
net present value of its future payoffs under the risk-neutral probability density
function (PDF). The net present value is calculated using the risk-free interest
rate, while the expectation is taken with respect to the weighted-marginal-rate-
of-substitution PDF of the payoffs. The latter term is known as the state-price
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density (SPD), risk-neutral PDF, or equivalent martingale measure. The price
of a security at time ¢ (P;) with a single liquidation date T and payoff Z(St) is
then:

o0

Py = e " TE[Z(ST)] = 6_””7/ Z(S1) f{ (St)dSt (1)
—0o0
where Ej is the conditional expectation given the information set in ¢ under the
equivalent martingale probability, St is the state variable, r; , is the risk-free
rate at time ¢ with time to maturity , and f;(S7) is the SPD at time ¢ for date
T payoffs.
Rubinstein (1985) shows that if one has two of the three following pieces of
information:

e representative agent’s preferences

e asset price dynamics or its data-generating process
e SPD

then one can recover the third. Since the agent’s preferences and the true data-
generating process are unknown, a no-arbitrage approach is used to recover the
SPD.

2 Extracting the SPD using Call-Options

Breeden and Litzenberger (1978) show that one can replicate Arrow-Debreu
prices using the concept of butterfly spread on European call options. This
spread entails selling two call options at exercise price K, buying one call option
at K~ = K — AK and another at KT = K + AK, where AK is the stepsize
between the adjacent call strikes. These four options constitute a butterfly
spread centered on K. If the terminal underlying asset value St is equal to K
then the payoff Z(-) of <= of such butterfly spreads is defined as:

Uy — U2

Z(Sr, K AK) = P(Sr_7, 7, K5 AK)|rmg = 2

)
Sr=K, =0

where

uy = C(Sr—r, 7, K + AK) — C(S7_r, 7, K),
Uz = C(ST_.,—,T,K) - C(ST_T,T,K - AK)

C(S, 7, K) denotes the price of a European call with an actual underlying price
S, a time to maturity 7 and a strike price K. Here, P(S7—_,, 7, K; AK) is the
corresponding price of this security (55 * butter fly spread(K;AK)) at time
T-rT.

As AK tends to zero, this security becomes an Arrow-Debreu security paying
1if ST = K and zero in other states. As it is assumed that St has a continuous
distribution function on R*, the probability of any given level of St is zero
and thus, in this case, the price of an Arrow-Debreu security is zero. However,
dividing one more time by AK, one obtains the price of (m * butter fly



spread(K; AK)) and as AK tends to 0 this price tends to f*(Sr)e "t~ for
St = K. Indeed,

. P(S;, 7, K;AK) . e
A (T)‘K_ST_f (Sr)er. 3)

This can be proved by setting the payoff Z; of this new security

71 (Sr) = (ﬁmx _|Sr — K)1(Sr € [K — AK, K + AK]))

in (1) and letting AK tend to 0. Indeed, one should remark that:

K+AK
V(AK) : / (AK — |St — K|)dSt = (AK)?.
K-AK

If one can construct these financial instruments on a continuum of states
(strike prices) then at infinitely small AK a complete state pricing function can
be defined.

Moreover, as AK tends to zero, this price will tend to the second derivative
of the call pricing function with respect to the strike price evaluated at K:

li P(St,T,K;AK) _ lim Uy — U2
AKS0 AK ~ AK—0 (AK)?
*Cy()
K= - @

Equating (3) and (4) across all states yields:

02Cy(-) ‘
0K? |g_g,

=e "7 f1(ST)

where r; ; denotes the risk-free interest rate at time ¢ with time to maturity 7
and f7(-) denotes the risk-neutral PDF or the SPD in ¢. Therefore, the SPD is
defined as: 920

ft* (ST) = eTt,TTaTtg) K:ST. (5)
This method constitutes a no-arbitrage approach to recover the SPD. No as-
sumption on the underlying asset dynamics are required. Preferences are not
restricted since the no-arbitrage method only assumes risk-neutrality with re-
spect to the underlying asset. The only requirements for this method are that
markets are perfect (i.e. no sales restrictions, transactions costs or taxes and
that agents are able to borrow at the risk-free interest rate) and that C(-) is twice
differentiable. The same result can be obtained by differentiating (1) twice with
respect to K after setting for Z the call payoff function Z(St) = (S — K)*.

2.1 Black-Scholes SPD

The Black-Scholes call option pricing formula is due to Black and Scholes (1973)
and Merton (1973). In this model there are no assumptions regarding prefer-
ences, rather it relies on no-arbitrage conditions and assumes that the evolution



of the underlying asset price S; follows a geometric Brownian motion defined
through

St _ it + odw, (6)
St

Here p denotes the drift and o the volatility assumed to be constant.

The analytical formula for the price in ¢ of a call option with a terminal
date T' =t + 7, a strike price K, an underlying price S;, a risk-free rate r¢ r, a
continuous dividend yield d; ,, and a volatility o, is:

CBS(StaK) T, ,rt,T76t,T;a-) = e_n’f / maX(ST - K: O)fES,t(ST)dST
0
= Ste_ét"'r'l)(dl) — Ke_n”‘r@(dg)
where ®(-) is the standard normal cumulative distribution function and

o 1oB(SU/K) + (riy = B + o)
1 = )

o\T
d2 = dl—O'\/;.

As a consequence of the assumptions on the underlying asset price process
the Black-Scholes SPD is a log-normal density with mean (r¢, — &, — %02)7'
and variance o7 for log(St/S;):

02Cy
fhsulSr) = enTo
BS,t 6K2 Kesy
N 1 ox _ [log(ST/St) — (Tt,‘r — 6t,T — %02)7']2
 S¢V2mer 2027 '

The risk measures Delta (A) and Gamma (T') are defined as:

Aps % 0Cgs

a5, = &(d1)
o def 9’Cps _ ®(dy)
B ™ 7982 T S0/

The Black-Scholes SPD can be calculated in XploRe using the following
quantlet:

bsspd = spdbs(K,s,r,div,sigma,tau)
estimates the Black-Scholes SPD

The arguments are the strike prices (K), underlying price (s), risk-free in-
terest rate (r), dividend yields (div), implied volatility of the option (sigma),
and the time to maturity (tau). The output consist of the Black-Scholes SPD
(bsspd.fbs), A (bsspd.delta), and the I' (bsspd.gamma) of the call options.
Please note that spdbs can be applied to put options by using the Put-Call
parity.

However, it is widely known that the Black-Scholes call option formula is not
valid empirically. For more details, please refer to Fengler et al. (2002). Since



the Black-Scholes model contains empirical irregularities, its SPD will not be
consistent with the data. Consequently, some other techniques for estimating
the SPD without any assumptions on the underlying diffusion process have been
developed in the last years.

3 Semiparametric estimation of the SPD

3.1 Estimating the call pricing function

The use of nonparametric regression to recover the SPD was first investigated by
Ait-Sahalia and Lo (1998). They propose to use the Nadaraya-Watson estimator
to estimate the historical call prices C(-) as a function of the following state
variables (S, K, T, rt,T,(St,T)T. Kernel regressions are advocated because there
is no need to specify a functional form and the only required assumption is that
the function is smooth and differentiable, Hardle (1990). When the regressor
dimension is 5, the estimator is inaccurate in practice. Hence, there is a need
to reduce the dimension or equivalently the number of regressors. One method
is to appeal to no-arbitrage arguments and collapse S¢, ry, and &, into the
forward price F; = S;e("=%.7)7 in order to express the call pricing function
as:

C(St;Ka T, rt,‘ra(st,‘r) = C(Ft,raKa T, rt,‘r)- (7)

An alternative specification assumes that the call option function is homo-
geneous of degree one in S; and K (as in the Black-Scholes formula) so that:

C(St, K, T, Tt,T; 6t,7—) = KC(St/K, T, Tt,T; 6t,7—)- (8)

Combining the assumptions of (7) and (8) the call pricing function can be
further reduced to a function of three variables (%, T, t7)-

Another approach is to use a semiparametric’ specification based on the
Black-Scholes implied volatility. Here, the implied volatility ¢ is modelled as a

nonparametric function, o(Fy ., K, T):

C(Sta K; T, rt,‘r; 5t,‘r) = CBS(Ft,T: K; T, Tt,‘r; U(Ft,‘ra K; T)) (9)

Empirically the implied volatility function mostly depends on two parame-
ters: the time to maturity 7 and the moneyness M = K/F; .. Almost equiva-
lently, one can set M = S, /K where S, = S; — D and D is the present value
of the dividends to be paid before the expiration. Actually, in the case of a
dividend yield &;, we have D = Sy(1 — e~%). If the dividends are discrete, then
D= 3 D;e ™= wheret; is the dividend payment date of the it* dividend

t; <t+71
and 7; is its maturity.

Therefore, the dimension of the implied volatility function can be reduced

to o(K/F,,, 7). In this case the call option function is:

C(S, K, T,7r,7,01,7) = Cs(Fir, K, 7,174,750 (K/Fy 7, 7)). (10)



Once a smooth estimate of 6(-) is obtained, estimates of Cy(-), Ay = agfss)’

~ 2 A ~ 205
Iy = 88(:;‘2('), and ff =e™"7 [%ﬂp] can be calculated.
t

3.2 Further dimension reduction

The previous section proposed a semiparametric estimator of the call pricing
function and the necessary steps to recover the SPD. In this section the dimen-
sion is reduced further using the suggestion of Rookley (1997). Rookley uses
intraday data for one maturity and estimates an implied volatility surface where
the dimension are the intraday time and the moneyness of the options.

Here, a slightly different method is used which relies on all settlement prices
of options of one trading day for different maturities to estimate the implied
volatility surface o(K/F; ;,7). In the second step, these estimates are used for
a given time to maturity which may not necessarily correspond to the maturity
of a series of options. This method allows one to compare the SPD at different
dates because of the fixed maturity provided by the first step. This is interesting
if one wants to study the dynamics and the stability of these densities.

Fixing the maturity also allows us to eliminate 7 from the specification of the
implied volatility function. In the following part, for convenience, the definition
of the moneyness is M = S, /K and we denote by o the implied volatility. The

8f(z1,..

notation »Zn) denotes the partial derivative of f with respect to x; and

%(;) the total derivative of f with respect to x.
Moreover, we use the following rescaled call option function:

oy = Cit
g2 St7

S

M = 2t
i K;

where Cj; is the price of the i** option at time ¢t and K; is its strike price.
The rescaled call option function can be expressed as:

Cit = C(Mz’t; O’(Mzt)) = (I)(dl) - %{:(dﬂa
P log(Mit) + {re + 20 (M)} 7
T o(Mi)\/T ’

d2 = d1 —U(Mit)\/7_'.

The standard risk measures are then the following partial derivatives (for nota-
tional convenience subscripts are dropped):
A= oCc o0 Oc

= % = 85" —C(M,O’(M))“‘Sﬁ,

_0A_9C _9C _,0c g8
TS T 082 8% a8S | T



where

Jdc  dceOM dc 1
a8 ~ dM 35  dM K’
¢ _ d% (1\°
5~ (k)

The SPD is then the second derivative of the call option function with respect
to the strike price: \ \
f*(‘) — e'I"T SKC; — T 66KCZ A
The conversion is needed because ¢(-) is being estimated not C'(-). The analytical
expression of (13) depends on:

(13)

e _ de (M, de M
8K? = dM2\ K dM K?
The functional form of dd—AC/I is:
de ' dd1 _ ’~I>I(d2) dd2 _ @(dz)
" . rT et rT 14
ar "YW T an T e (14)
Whiledd%is:
d?c , d*d, dd; \?
ez (I)(dl)[dedl(d_M)]
_ () [dPdy 2 ddy  (dda )
M dM?  MdM ~ \dM
2e"T®(d
_ Mg( 2) (15)

The quantities in (14) and (15) are a function of the following first derivatives:

dd oy Oy Do
dM — O0M = 9o OM’
ddy _ Oy Oy Do
dM — O0M = 9o OM’
o _ 0y _ 1
OM ~— OM =~ MoyT’
ody  _ _log(M) +r7 VT
oo o2\T 27
ody _ _log(M) +r7 _ VT
oo o?\/T 27
For the remainder of this chapter, we define:
V = oMM),
o (M)
T
V= o
0%a(M)
"o
vt = M (16)



The quantities in (14) and (15) also depend on the following second derivative
functions:

1 1 V(YT les(M) 47
dm? MoyT|M o 2 o2\/T
log(M) +r1 1
v 2v! — 17
+ [ a3\/T Moz\/?]’ (17)
@ — _; i+z _y" ﬁ_}_w
dM2 Moyt |M o 2 o?\/T
log(M) +r1 1
"2v! — . 1
v [ v o3\ MU2\/7_'] (18)

Local polynomial estimation is used to estimate the implied volatility smile and
its first two derivatives in (16). A brief explanation will be described now.

3.3 Local Polynomial Estimation
Consider the following data generating process for the implied volatilities:
o= g(MaT) + U*(MaT)Ea

where E(¢) = 0, Var(¢) = 1. M,7 and ¢ are independent and o*(my, 7o) is
the conditional variance of o given M = mg, T = 79. Assuming that all third
derivatives of g exist, one may perform a Taylor expansion for the function g in
a neighborhood of (mg,70):

9y 1 9% 2
g(m, 1) = g(mo,10) + oM oo (m —mo) + 2 9M?2 oo (m —mg)
Og 10%g 9
+ o (r—70) + 252 (1 — 7o)
mo,T0 mo,T0
1 8%
+ §6M8T (m—mo)(T—To). (].9)

mo,To

This expansion suggests an approximation by local polynomial fitting, Fan
and Gijbels (1996). Hence, to estimate the implied volatility at the target
point (mq, 7o) from observations o; (j = 1,...,n), we minimize the following
expression:

S5 {3 = [fo + 510045 — m0) + 52(0; =m0 + Ba(ry — )
2 (20)
+Ba(7j — 70)? + B5 (M — mo) (75 — To)] } Khar b, (Mj —mo,7j — 7o)

where n is the number of observations (options), hys and h, are the bandwidth
controlling the neighborhood in each directions and Kjp,, 5, is the resulting
kernel function weighting all observation points. This kernel function may be a
product of two univariate kernel functions.



For convenience use the following matrix definitions:
1 M1—m0 (M1—m0)2 T1 — 70 (7’1—7‘0)2 (M1—m0)(7’1—7'0)
1 My—mo (Ma:— m0)2 -1 (12— 7’0)2 (M2 — mo) (12 — 70)
X =

1 My—mo (Mp—m0)® Tn—70 (Tn—10)% (Mnp—mo)(tn— 7o)
o1 Bo

o=| : |, W=diag{Knynr (Mj—mo,7j —70)} and B=

On Bs
Hence, the weighted least squares problem (20) can be written as
min (0—XB) W (0—XB). (21)
and the solution is given by
f=(EXTWX)" X Wo. (22)

A nice feature of the local polynomial method is that it provides the esti-
mated implied volatility and its first two derivatives in one step. Indeed, one
has from (19) and (20):

99
oM
g
o>

= /BAla

mo,To

= 26s.

mo,7To

One of the concerns regarding this estimation method is the dependence on
the bandwidth which governs how much weight the kernel function should place
on an observed point for the estimation at a target point. Moreover, as the
call options are not always symmetrically and equally distributed around the
ATM point, the choice of the bandwidth is a key issue, especially for estimation
at the border of the implied volatility surface. The bandwidth can be chosen
global or locally dependent on (M, 7). There are methods providing ”optimal”
bandwidths which rely on plug-in rules or on data-based selectors.

In the case of the volatility surface, it is vital to determine one bandwidth
for the maturity and one for the moneyness directions. An algorithm called
Empirical-Bias Bandwidth Selector (EBBS) for finding local bandwidths is sug-
gested by Ruppert (1997) and Ruppert, Wand, Holst and Hossler (1997). The
basic idea of this method is to minimize the estimate of the local mean square
error at each target point, without relying on asymptotic result. The variance
and the bias term are in this algorithm estimated empirically.

Using the local polynomial estimations, the empirical SPD can be calculated
with the following quantlet:

lpspd = spdbl(m,sigma,sigmal,sigma2,s,r,tau)
estimates the semi-parametric SPD.




The arguments for this quantlet are the moneyness (m), V (sigma), V'
(sigmal), V" (sigma2), underlying price (s) corrected for future dividends,
risk-free interest rate (r), and the time to maturity (tau). The output con-
sist of the local polynomial SPD (1pspd.fstar), A (1pspd.delta), and the I’
(1pspd.gamma) of the call-options.

4 An Example: Application to DAX data

This section describes how to estimate the Black-Scholes and local polynomial
SPD using options data on the German DAX index.

4.1 Data

The dataset was taken from the financial database MD*BASE located at CASE
(Center for Applied Statistics and Economics) at Humboldt-Universitat zu Berlin.
Since MD*BASE is a proprietary database, only a limited dataset is provided
for demonstration purposes.

This database is filled with options and futures data provided by Eurex.
Daily series of 1, 3, 6 and 12 months DM-LIBOR rates taken from the Thomson
Financial Datastream serve as riskless interest rates. The DAX 30 futures
and options settlement data of January 1997 (21 trading days) were used in this
study. Daily settlement prices for each option contract are extracted along with
contract type, maturity and strike. For the futures, the daily settlement prices,
maturities and volumes are the relevant information. To compute the interest
rates corresponding to the option maturities a linear interpolation between the
available rates was used.

The DAX is a performance index which means that dividends are reinvested.
However, assuming no dividend yields when inverting the Black-Scholes for-
mula results in different volatilities for pairs of puts and calls contrary to the
no-arbitrage assumption contained in the Put-Call parity. This remark can be
explained by the fact that until January 2002 domestic investors have an advan-
tage as they may receive a portion or all of the dividend taxes back depending
on their tax status. Dividend tax means here the corporate income tax for
distributed gains from the gross dividend.

Since the dividends are rebated to domestic investors the DAX should fall
by an amount contained between 0 and these dividend taxes. Indeed, the value
of this fall depends on the level of these taxes which may be equal to zero and on
the weights of domestic and foreign investors trading the DAX. These dividend
taxes have the same effects as ordinary dividends and should therefore be used
for computing the implied volatilities and the future price implicit in the Black
Scholes formula.

Hafner and Wallmeier (2001) suggest a method in order to get around this
problem which consists in computing dividends implied by the Put-Call parity.
Indeed, combining the futures pricing formula

Firp = Sie"™7™ — Dy r,
and the Put-Call parity

Ci— P =5 — Dt,ro — Ke "tmoTe
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we obtain:
Ci— P =Fyrpe™ " + Dy rp oy — Ke 77070 (23)

where 7o is the maturity of the options, 7 is the maturity of the nearest forward
whose volume is positive and Dy ;.. r, = D¢ 7, — Dy 5o is the difference between
the present values of the dividends.

Using (23), implied dividends were computed for each pair of put and call
with the same strike. Theoretically, for a given time to maturity there must
be only one value for these implied dividends. For each maturity the average
of these implied dividends was used to compute the corrected price. Using this
method implied volatilities are more reliable as the systematic “gap” between
put and call volatilities disappears. The only uncertainty at this stage is due to
the interpolated rates for the maturity 7o.

The dataset consists of one file XFGData9701 with 11 columns.

Day

Month

Year

Type of option (1 for calls, 0 for puts)
Time to maturity (in calendar days)
Strike prices

Option prices

Corrected spot price (implied dividends taken into account)
Risk-free interest rate

10 Implied volatility

11  Non-corrected spot price

00O Utk LN~

©

The data can be read into XploRe by loading the quantlib finance and then
issuing the following command:

data=read ("XFGData9701.dat")

Next extract all call options on January 3, 1997 with the paf command:

data=paf (data, (datal[,1]==3)&& (datal,4]==1))

4.2 SPD, delta and gamma

This section provides an example using XploRe to calculate the semiparametric
SPD using DAX index options data. It is assumed that the quantlib finance
has been loaded.

Q XFGSPDonematurity.xpl plots the SPD of the series of options closest to
maturity. This first example only uses smoothing method in one dimension.

Q XFGSPDoneday . xpl calculates and plots the local polynomial SPD for Jan-
uary 10, 1997 for different times to maturity (r = 0.125,0.25,0.375). After
loading the data, the implied volatility is estimated using the volsurf quantlet,
while the first and second derivatives are estimated using lpderxest quantlet.

In this example the grid size is 0.01. The bandwidth is chosen arbitrarily
at 0.15 and 0.125 for the moneyness and maturity directions respectively. The
criteria used is a visual inspection of the first and second derivatives to ensure
that they are continuous and smooth. Next the quantlet spdbl is used to
calculate the SPD which is finally displayed in Figure 1.

11



This figure shows the expected effect of time to maturity on the SPD, which is
a loss of kurtosis. The z-axis represents the terminal prices S7. The local poly-
nomial SPD displays a negative skew compared to a theoretical Black-Scholes
SPD. The major reason for the difference is the measure of implied volatility.
Using the local polynomial estimators one captures the effect of the “volatility
smile” and its effects on the higher moments such as skewness and kurtosis.
This result is similar to what Ait-Sahalia and Lo (1998) and Rookley (1997)
found in their study.

Semi-parametric SPD: 10-01-1997

w_ | —
N
T & -
v -
2
7 < -
: p—
[
A | -
o_ —

2500 3000 3500
Stock price at expiry

Figure 1: Local Polynomial SPD for 7 = 0.125 (blue,filled), 7 = 0.25
(black,dashed) and 7 = 0.375 (red,dotted).

Q XFGSPDoneday .xpl

Figure 2 and Figure 3 show Delta and Gamma for the full range of strikes
and for three different maturities. This method allows the user to get in one
step both greeks in one estimation for all strikes and maturities.

A natural question that may arise is how do the SPDs evolve over time. In
this section an illustrative example is used to show the dynamics of the SPD
over the month of January 1997. Q XFGSPDonemonth.xpl estimates and plots
the SPD for each trading day in January 1997. The z-axis is the moneyness,
y-axis is the trading day, and the z-axis is the SPD. Figure 4 shows the local
polynomial SPD for the three first weeks of January, 1997.

4.3 Bootstrap confidence bands

Rookley’s method serves to estimate the SPD, where V, V' and V" from (16)
are computed via local polynomials. The method is now applied to estimate a
SPD whose maturity is equal to the maturity of a series of options. In this case,
the nonparametric regression is a univariate one.

With a polynomial of order p = 2 and a bandwidth A = (n~'/?), it can be

shown that A
Blf; - f*P =0 (n7*"),
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Semi-parametric Delta: 10-01-1997
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Figure 2: Local Polynomial Delta for 7 = 0.125 (blue,filled), 7 = 0.25
(black,dashed) and 7 = 0.375 (red,dotted).

Semi-parametric Gamma: 10-01-1997
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Figure 3: Local Polynomial Gamma for 7 = 0.125 (blue,filled), 7 = 0.25
(black,dashed) and 7 = 0.375 (red,dotted).
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Local-Polynomial SPD: 01-1997, tau=0.250
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Figure 4: Three weeks State-Price Densities on a moneyness scale.
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because
E[V,-V|? = O(n_s/g),
BV, -V = 0(n*?),

E, -V = 0(n*?).

This result can be obtained using some theorems related to local polynomial
estimation, for example in Fan and Gijbels (1996), if some boundary conditions
are satisfied.

An asymptotic approximation of f;‘b is complicated by the fact that f; is
a non linear function of V', V' and V". Analytical confidence intervals can be
obtained using delta methods proposed by Ait-Sahalia (1996). However, an
alternative method is to use the bootstrap to construct confidence bands. The
idea for estimating the bootstrap bands is to approximate the distribution of

s%plf*(k) — (k-

The following procedure illustrates how to construct bootstrap confidence
bands for local polynomial SPD estimation.

1. Collect daily option prices from MD*BASE, only choose those options
with the same expiration date, for example, those with time to maturity
49 days on Jan 3, 1997.

2. Use the local polynomial estimation method to obtain the empirical SPD.
Notice that when 7 is fixed the forward price F is also fixed. So that the
implied volatility function o(K/F) can be considered as a fixed design
situation, where K is the strike price.

3. Obtain the confidence band using the wild bootstrap method. The wild
bootstrap method entails:

e Suppose that the regression model for the implied volatility function
o(K/F) is:

K;
e Choose a bandwidth g which is larger than the optimal h in or-
der to have oversmoothing. Estimate the implied volatility function

(K /F) nonparametrically and then calculate the residual errors:

K.
gi=m_ah(7’).

e Replicate B times the series of the {¢;} with wild bootstrap obtaining
{e;’}for j =1,--- , B, Hirdle (1990), and build B new bootstrapped

samples:
*.1 N K *.7
v =6, ( z) erd,
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e Estimate the SPD f*J using bootstrap samples, Rookley’s method
and the bandwidth A, and build the statistics

Tj = sup /77 (2) = f*(2)]-

e Form the (1 —a) bands [f*(2) — tf+1—a, [*(2) + tr+1—al;
where t4+ 1o denotes the empirical (1 — a)-quantile of T}.

Two SPDs (Jan 3 and Jan 31, 1997) whose times to maturity are 49 days
were estimated and are plotted in Figure (5). The bootstrap confidence band
corresponding to the first SPD (Jan 3) is also visible on the chart. In Figure (6),
the SPDs are displayed on a moneyness metric. It seems that the differences
between the SPDs can be eliminated by switching to the moneyness metric.
Indeed, as can be extracted from Figure 6, both SPDs lie within the 95 percent
confidence bands. The number of bootstrap samples is set to B = 100. The
local polynomial estimation was done on standardized data, h is then set to 0.75
for both plots and g is equal to 1.1 times h. Notice that greater values of g are
tried and the conclusion is that the confidence bands are stable to an increase
of g.

4.4 Comparison to Implied Binomial Trees

In Hardle and Zheng (2002), the Implied Binomial Trees (IBT) are discussed.
This method is a close approach to estimate the SPD. It also recovers the SPD
nonparametrically from market option prices and uses the Black Scholes formula
to establish the relationship between the option prices and implied volatilities
as in Rookely’s method. In Hirdle and Zheng (2002), the Black Scholes for-
mula is only used for Barle and Cakici IBT procedure, but the CRR binomial
tree method used by Derman and Kani (1994) has no large difference with it
in nature. However, IBT and nonparametric regression methods have some
differences caused by different modelling strategies.

The IBT method might be less data-intensive than the nonparametric regres-
sion method. By construction, it only requires one cross section of prices. In the
earlier application with DAX data, option prices are used with different times
to maturity for one day to estimate the implied volatility surface first in order
to construct the tree using the relation formula between option prices and risk-
neutral probabilities. The precision of the SPD estimation using IBT is heavily
affected by the quality of the implied volatility surface and the choice of the
levels of the implied tree. Furthermore, from the IBT method only risk-neutral
probabilities are obtained. They can be considered as a discrete estimation of
the SPD. However, the IBT method is not only useful for estimating SPD, but
also for giving a discrete approximation of the underlying process.

The greatest difference between IBTs and nonparametric regression is the
requirement of smoothness. The precision of Rookley’s SPD estimation is highly
dependent on the selected bandwidth. Even if very limited option prices are
given, a part of the SPD estimation still can be obtained using nonparametric
regression, while the IBT construction has to be given up if no further structure
is invoked on the volatility surface. Rookley’s method has on first sight no
obvious difference with Ait-Sahalia’s method theoretically, Ait-Sahalia and Lo
(1998). But investigating the convergence rate of the SPD estimation using
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SPDs and bootstrap CB, tau= 49 days
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SPD estimations: 19970103, tau= 77 days
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Figure 7: Comparison of different SPD estimations, by Rookley’s method (blue)
and IBT (black, thin).
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Ait-Sahalia’s method allows one to conduct statistical inference such as test of
the stability of the SPD and tests of risk neutrality.

The quantlet @ XFGSPDcom.xpl shows a comparison of the SPD estimates by
IBT and Rookley’s methods. The differences between these two SPD estimates
may be due to the selection of the bandwidths in Rookley’s method, the choice
of steps in the construction of the IBT and the use of DAX implied dividends
in Rookley’s method. Figure 7 shows the implied binomial trees and the local
polynomial SPDs for January, 3 1997.

Both densities seems to be quiet different. Indeed, the IBTs SPD shows a
fatter left tail than the Rookley’s one and the Rookley’s SPD shows a larger
kurtosis. To test which of both densities is more reliable, a cross-validation
procedure is performed. The idea of this test is to compare the theoretical prices
based on (1) with those observed on the market. However, as the whole tails
are not available for the Rookley’s SPD, the test is done on butterfly spreads
defined in Section 2 since their prices should not be influenced by the tails of
the SPDs. For cross-validation, we remove the three calls used to calculate the
observed butterfly prices from the sample before estimating the SPD. Moreover,
since the largest difference between both SPDs is observed at the ATM point
(see Figure 7), the test is applied only to the two butterfly spreads whose centers
surround the ATM point. The width 2AK of the butterfly spread is set to 200.
This procedure is done for the 21 days of January 1997. Figure 8 displays the
results in term of relative pricing error E:

E = Pobser'ued - PSPD

PobseTved

where P,pserveq 1S the observed price of the butterfly spread and Pspp is the
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Pricing errors for butterfly spread
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Figure 8: The upper graph display the relative pricing errors for the butterfly
spread centered on the nearest strike on the left side of the ATM point. The
second graph corresponds to the butterfly spread centered on the nearest strike
on the right side of the ATM point. The black lines represent the IBT’s pricing
errors and the blue the Rookley’s errors.
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price computed using the SPD estimate and (1). It seems that both SPDs have
a too small kurtosis since the observed prices of butterfly spreads are larger than
those of both SPDs in most of the cases. However, Rookley’s SPD is in mean
nearer to the observed price than the IBT’s one.
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