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Abstract

A linear differential equation with infinite delay is considered in
the generalized form as an integral equation. As usually, the func-
tion space B of the admissible initial conditions is only described
axiomatically. Merely using this abstract description the long time
behavior of the solutions is determined by calculating the Lyapunov
exponents. The calculation is based on a representation of the so-
lution in the second dual space of B. The representation requires a
modified version of the usual weak*-integral.

Key words: Lyapunov exponents, differential equations with infinite
delay, weak*-integral, abstract phase space, variation of constants formula,
stochastic delay differential equations

1 Introduction

For a function z : (—00,a] — C* with some @ € R and d € N define the
history of z by the function x; := {z(t + u),u < 0} for ¢ < a. Consider the
equation

z(t) = ¢(0) + /OtL(xs)ds + h(t), t=0,

o(u) = ¢(u), <0,

(1.1)

*supported by DFG in the Graduiertenkolleg “Stochastische Prozesse und probabilis-
tische Analysis” and using funds made available by the SFB 373.



where the initial condition ¢ is an element of the so-called phase space
B. The space B is a linear subspace of the set of C%valued functions on
the negative real line equipped with a semi-norm ||-||;. The operator L is
linear and bounded on B. The function A : [0,00) — C¢ is assumed to
be continuous with A(0) = 0. A solution of (1.1) is a function z : R —
C* which is continuous on [0, 00) and satisfies equation (1.1). Since every
history z; of a solution = of (1.1) contains for ¢ > 0 the initial data ¢, there
is no suitable function space which involves every history x; independently
of the initial data. Therefore, the phase space B is usually only described
axiomatically in the theory of differential equations with infinite delay [2].
Moreover, this approach has the advantage that the phase space B and
hence the semi-norm may be much better adapted to the application under
consideration. In particular, the long time behavior of the history x; in an
appropriate semi-norm of B is relevant in applications. We determine the
long time behavior by calculating the Lyapunov exponents of equation (1.1)
only using the axiomatic description of B.

In most of the literature treating linear differential equations with delay the
differentiated form of equation (1.1) is considered:

%(t) = L(zy) + f(t) for almost every t > 0, zp = ¢, (1.2)

with a locally integrable function f. Obviously, equation (1.1) includes
this one. Moreover, the integral equation (1.1) contains the stochastic case
where the function h is replaced by a random, possibly non-differentiable,
trajectory of a continuous stochastic process.

If there is a fixed p > 0 such that the operator L depends only on the
bounded history {¢(u);u € [—p, 0]} for every function ¢ € B we say that
equations (1.1) and (1.2) are of finite delay of length p. Then, every history
{z(t + u),u € [—p,0]} of a solution x is a continuous function for ¢t > p.
Therefore, a canonical choice of the phase space B is C([—p, 0], C%), the
space of continuous C%valued functions on [—p,0]. These equations are
considered in [3] but in the differentiated form (1.2).

In the case of a finite delay the Lyapunov exponents of the solution of (1.1)
are studied in [6] on the space of measurable bounded functions on [—p, 0].
There, the equation is perturbed more generally by a locally integrable func-
tion h. The approach is based on the construction of a certain bilinear form,
for which the specification of the phase space is necessary. For equations
with infinite delay on a generalized form of the Delfour-Mitter space such
a bilinear form is given in [7] and the same methods as in [6] apply to de-
termine the Lyapunov exponents. But, if the phase space is only described
axiomatically, such a bilinear form cannot be derived.

In this paper the major tool to determine the Lyapunov exponents in the
general case of an axiomatically described phase space is a representation
of the history of the solution of equation (1.1) in the second dual space
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of B. Such a representation is known for solutions of the differentiated
equation (1.2) and is given in terms of the weak*-integral in the second
dual space [5]. Similar to the usual theory of weak*-integrals we develop
in section 3 a modified weak*- integral which is adapted to the problem for
the more general equation (1.1). Using this weak*-integral we can derive
the representation of the history of the solution in the second dual space.
A well known result in the theory of functional differential equations allows
to decompose the space B into the direct sum of two subspaces in a proper
way. In section 4 we project the representation of the history in the second
dual space onto these subspaces and estimate then their long time behavior.
Applying these results, we can state the Lyapunov exponents in section 5.
For equation (1.2) both, the representation in the second dual space and
the decomposition, are well known. However, to the best of our knowledge,
they have not been applied to calculate the Lyapunov exponents for the
solution of the differentiated equation (1.2) and not even for the equation
(1.1).

To begin with, we introduce in section 2 the axiomatic approach describing
the phase space B and summarize some necessary prerequisites of the theory
of differential equation with infinite delay. This section and the notation
used are based on the monograph [5] and the paper [8].

2 Linear Autonomous Systems
Consider the linear autonomous differential equations with infinite delay:
(t) = L(zy) forae. t>0, zo=¢p€B. (2.3)

We say, that a solution is a function z = z(-,¢) on R which is locally
absolutely continuous on [0, 00) and satisfies the equation (2.3) with zy = .
One of the desirable properties which shall characterize a phase space B
is that the history of each possible ”candidate® for a solution, that is a
continuous prolongation of an element of the phase space, is again included
in the space B. Such a ”candidate“ is called admissible:

Definition 2.1. A function = : (—o00,a) — C* for some a > 0 is said to be
admissible for the space B if xy € B and x is continuous on [0, a).

In the theory of differential equation with infinite delay some conditions on
the phase space B are required. The Euclidean metric in C? is denoted by

Condition (A). For all admissible functions z : (—o0o,a) — C* for B and
with some a > 0 the following conditions hold:

1) a) zx € B for every t € [0,a);



b) there exists H > 0, such that |x(t)| < H ||z for every t € [0,a);

c) there exists N : [0,00) — [0,00), continuous, independent of ,
there ezists M : [0,00) — [0,00), locally bounded, independent of z,
such that:

lze|| g < N(t) sup |z(u)| + M(2)||zo|lz for every t €[0,a).

\u\
2) t — x4 is a B-valued continuous function for every t € [0, a).

It is known that the homogeneous equation (2.3) has a unique solution if B
satisfies Condition (A) and the operator L is bounded on B. Moreover, the
Condition (A) already implies that the phase space contains C.(R_, C%),
the set of continuous functions with compact support. For, every function
¢ which is continuous on [0, 00) and vanishes on (—o0,0] is an admissible
function.

The Condition (A) gives an inner characterization of a phase space. For
linear systems semi-group theory offers a powerful technique, but it requires
some Banach space structures.

Condition (B). The phase space B is complete.

Condition (C). For every Cauchy sequence {p,} C B with respect to the
semi-norm |||z, which converges uniformly on every compact subset of R
to a function ¢, the function ¢ is in B and ||¢, — ¢||z tends to zero for
n — 0o.

For ¢ € B the symbol ¢ denotes the equivalence class {9 : |7/ — ¢||; = 0}.
Hence, the quotient space B := B/ ||-||5 is a Banach space with the norm
|2ll5 = |l¢l|g if the Condition (B) is fulfilled. For a bounded linear operator
T on B let T be the induced operator T'¢ = Ty for some ¢ € §.

In the sequel suppose that the phase space B satisfies condition (A) and
that L is a linear bounded operator from B into C%. Define the solution
operators for ¢t > 0

Tt):B— B, T(t)p=ux,

where z = (-, ¢) is the solution of equation (2.3).

Since the space B includes C,(R_, C%) the Riesz representation theorem
implies that a Borel prolongation L exists uniquely on the space of bounded
measurable functions mapping R_ into C? with compact support such that
Ly = Ly for every function ¢ € C,(R.,C?%. We define the C**?-valued
function

() = {°’~ v=0 (2.4)



where I € C%*? is the identity matrix. According to Theorem 3.4.2 in [5] the
function p is a measurable function which is locally of bounded variation
and is normalized, that is continuous from the left and satisfies p(0) = 0.
Moreover, Theorem 3.4.2 in [5] states

Ly = /d,u(u)go(u) for all ¢ € C.(R.,C%), (2.5)
Var (i, [a1, as]) < ¢||L]|,, N(ag — a1)M(=az) fora; <ay <0, (2.6)

where Var (f, J) denotes the total variation of a function f on the interval
J and c is a constant.

The representation of the solution of equation (1.1), given in the next sec-
tion, strongly depends on the differential resolvent. This is a function
r: Ry — C%% solving the matrix equation

7(t) = / du(u)r(t +u) for almost every t >0, 7(0)=1. (2.7)
-4,0]

There exists a unique locally absolutely continuous function » which is a
solution of equation (2.7). Let C* be the space of d-dimensional row-
vectors and consider the adjoint equation of (2.3)

y(s) +/ y(u)p(s — u)du = b(s), s<0, (2.8)

with the forcing function b : R. — C% being locally of bounded variation.
According to Theorem 4.1.4 in [5] equation (2.8) has a unique solution
y = y(-,b), which is locally of bounded variation:

Var (y, [s,0]) < Var (b, [s,0]) + sup |b(u)] (e‘cs”L”op”N||0[o,—s] _ 1) (2.9)

s<u0

with a constant ¢ > 0. If the forcing function b is normalized then so is the
solution y(-,b). Furthermore, by Corollary 4.1.7 in [5] the solution of (2.8)
is given by

y(s) =b(0)r(—s) — /[ . db(u)r(u—s), s<0. (2.10)

Let B* and B be the dual spaces of B and B, respectively, which are Banach

spaces. We denote by (9, ) the duality pairing of ¢» € B* and ¢ € B. B* is

1sometr1cally isomorph to B by the mapping p*+ @* for ¢* € B*, where
¢* € B is defined by (g%, ) = (p*, gp) for every ¢ € B. In the same way
one can identify the adjoint operator T of T with the adjoint operator 1T
of T for a bounded linear operator T on B.
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By Theorem 3.4.2 in [5], for every 1) € B* one can find a unique P :R.— C*
which is locally of bounded variation and normalized such that

(0, @) = /di(u)gp(u) for every ¢ € C.(R.,C?%), (2.11)

and Var (1, [~1,0]) < ¢N () [[v

g fort >0, (2.12)

with a constant ¢. Now we can formulate the connection between the
adjoint operators {T™(t)}:>o of the solution operators {T'(¢)}:>o and the
solution y of the adjoint equation (2.8). This formula is the basis for all of
the following considerations.

For all ¢ € B* the following equation holds

[T*()y] (0—) = y(—t,¢) for every ¢ > 0. (2.13)

A proof is given in Theorem 4.2.2 in [5].

3 Representation in the second dual space

Denote by BV ([a,b], C**), k,1 € N, the space of functions of bounded
variation mapping the interval [a,b] into C**!. Equipped with the norm
1 flpviy = [f(a)] + Var (f,[a,b]), it is a Banach space. Recall, that for
functions f € BV ([a,b], C**!) and h € C([a, b], C') the integral on the left
hand side of

[ ]f(S)dh(S) = - /[ ][df(S)]h(S) + f(b)h(b) — f(a)h(a) (3.14)
a,b a,b

is well defined by the right hand side, where the integral is understood
as a Riemann-Stieltjes integral. Since h is continuous, the integral on the
right hand side coincides with the Lebesgue integral. Define for ¢ > 0 the
operator

K(t):C([0,t],C% — B,

(K()h)(u) =

et — s +u)dh(s), u € [~t,0],
0, u < —t.

Since K (t)h is a continuous function with compact support for ¢ > 0 and
h € C([0,],C%, it is an element of the phase space B. Similar to Theorem
4.2.1 in [5], one establishes that for all £ > 0 the operator K (¢) is linear and
bounded on C([0,#], C%). Furthermore, for every ¢ € B and h € C(R,, C?)
with h(0) = 0 there exists uniquely a solution = = z(-, ¢, h) of equation
(1.1) which is given in the phase space B by

z, = T(t)¢ + K(t)h. (3.15)



Evaluating z; in zero yields the solution in the state space C¢ at time ¢. By
using the representation (2.5) of L on C,(R., C%) the proof is similar to the
one of Theorem 1 in [6].

Later on, we shall use the relation (2.13) of the adjoint operators 7* and
the solution y of the adjoint equation (2.8) to estimate the history of the
solution of equation (1.1). With a glance at the representation (3.15) of the
history we need a relation of the operator K (¢) and the adjoint operator
T*(t), which is provided by the next lemma.

Lemma 3.1. For every ¢ € B* and h € C([0,t], C*) the following relation
holds for everyt > 0

¢
(W, K@) =~ [ 17t = 0T (0-)dns).
0
Proof. The integral is well defined because [T*(t — $)Y (0-) = y(s — t, )
holds by (2.13) and the solution y(-, 1) of equation (2.8) is locally of bounded
variation. Note that K (t)h is an element of C.(R., C?). First, we assume

that h is a continuously differentiable function on [0,¢]. Thus, one obtains
for every ¢ € B* by (2.11), (2.10) and (2.13)

<mem=/ 4 (u) K (£)h] ()

[7t70}

_ /[w i (u) ( /0 = s+ u)dh(s))
_ /[w d(u) ( /0 -+ u)h(s)ds>
_ /0 t ( /[ » d(u)r(t — s + u)> h(s)ds

__ /Oty(s — 1, d)h(s)ds
=—AW%—®M@%M@-

Since both sides of the equation depend continuously on A with respect to
the supremum norm and the continuously differentiable functions are dense
in C([0,1], C%) the assertion follows. O

In the sequel we define a weak*-integral in the dual space of a Banach space,
which corresponds to the integral (3.14) in a similar way as the usual weak*-
integral to the Lebesgue integral. Let X be an arbitrary Banach space with
the norm ||-||x and denote by (z*, z) the dual pairing of 2* € X* and z € X.



Definition 3.2. A function f : [a,b] — X* is called (Riemann-Stieltjes)
integrable on [a, b] with respect to continuous functions in the weak* topology
of X* if

1) the function t — (f(t),z) is of bounded variation on [a,b] for each
Tz € X;

2) the linear operator
F:X 5 BV(a,b,C), F()(s)=(f(s)2), s€lab],
18 coOntinuous.

Note that the first assumption already implies that the function (f(-),x) is
measurable.

Lemma 3.3. Let f : [a,b] = X* be a weak*-integrable function with respect
to continuous functions and h € C([a,b],C). Then there erists a unique
element x* € X* such that

(z*,z) = / (f(s),z)dh(s) for all z € X.

Proof. Define the operator F' : X — BV ([a, b], C) as in the Definition 3.2.
Since the operator F' is assumed to be continuous, one obtains

[ 4yt

< 2|7l cpa 1F @) 5y ja

<2 ”h’HC[a,b] ||F||0p ]| x -

Hence, the linear functional z — f:(f(s),:r)dh(s) is bounded and is thus
an element of B*. O

The Lemma 3.3 allows to define a weak*-integral with respect to a contin-
uous function.

Definition 3.4. Let f : [a,b] — X* be a weak*-integrable function with
respect to continuous functions and h € C([a,b], C). We define the weak*-
integral of f with respect to h by the functional

*/f(S)dh(S)GX*i (*f f(s)dh(s),z) ¢=/<f(8),l“>dh(8)

forallz € X.



For f = (fi,---, fq) with f; : [a,0] = X* weak*-integrable with respect
to continuous functions and h € C([a,b], C%) the weak*-integral # fdh is
defined componentwise.

In the classical definition of a weak*-integrable function the assumption 1)
in Definition 3.2 is replaced by demanding that the function (f(-),z) is
measurable and integrable with respect to the Lebesgue measure. These
properties are already sufficient to show that the operator F' in the second
assumption is closed when BV ([a, b], C) is replaced by the space of Lebesgue
integrable functions, see Theorem 3.7.1 in [4]. Hence, the operator F' is
continuous in this case. However, if the weak*-integral shall correspond to
the Riemann-Stieltjes integral (3.14) we have to require the continuity of
the operator F' in the Definition 3.2.

Now, let T' be a bounded linear operator on X with values in X, then 7™ f is
weak*-integrable with respect to continuous functions for a weak*-integrable
function f : [a,b] — X* and it holds

T**/ f(s)dh(s):ﬂf T f(s)dh(s). (3.16)

This can be shown analogously to the same property of the usual weak*-
integral, see e.g. Lemma 3.14 in the Appendix II of [1].
Define for 1 =1, --- , d the functionals

VB C, () = —4(0-), (3.17)

where 1 denotes the i-th component of . In [5] it is shown that ¢ is an
element of the second dual space B* of the phase space B fori=1,---,d.
Denote by 7 the vector () := (4}(¥),---,7%(¥)) = —(0—) and we set
Ty := (Ty',---,T~% for an operator T on B**.

In the sequel we identify the space B with the subspace of the second dual
space B** in the usual manner. The dual pairing of ¢y € B* and ¢** € B*
is denoted by (1, o**).

We obtain from Lemma 3.1 by use of the weak*-integral a representation of
the history of the solution of equation (1.1) in the second dual space B**.
A major part of calculating the Lyapunov exponents will be based on this
representation.

Theorem 3.5. Let z = z(-, ¢, h) be the solution of (1.1). Then T**(t—-)7" :
[0,t] — B™ is weak*-integrable with respect to continuous functions for all
1=1,---,d and

¢
= T(t) gb+>i/ T*(t — s)ydh(s) fort > 0. (3.18)
0



Proof. Denote by y* the i-th component of the solution of the adjoint equa-
tion (2.8). For each ¢ € B* we obtain by (3.17) and (2.13)

W, T*(t — s)7") = (T*(t — 8)v,7") = —y'(s — t,¥).

Consequently, the function s — (b, T**(t — s)7*) is of bounded variation on
[0,%]. The equations (2.9) and (2.12) yield

66,7t = 97 gy < \y >\+Var y(,9), [-4,0])

<

< CC(t)N( ) |I¢ B
with constants ¢ and c(t). Hence, the function s — T**(t — s)7" is weak*-
integrable with respect to continuous functions for s = 1,--- d. Moreover,

Lemma 3.1 implies
<¢,*/0 T (t - s)ydh(s)) = / (T*(t — s, 7)dh(s)
- / (Tt — 5)l (0—)dh(s)

By means of (3.15) the assertion follows. O

What is the advantage of the representation (3.18) in the second dual space
B** over the representation (3.15) in B? In the latter the integral K (¢)h is
an element of B but in general the integrand r is not. Consequently, one
cannot estimate ||K(t)h||z by estimating the integrand r. Although in the
representation (3.18) the integrand of the weak*-integral is in the second
dual space B** one can benefit from the close association of the solution
operators 17" and 7™* via the adjoint operator 7™ and the adjoint equation
(2.8).

4 Estimates on the subspaces

First, we report on a result concerning a decomposition of B as it is stated
in Chapter 5 of [5]. Assume in the sequel that the phase space B satisfies
the Conditions (A), (B) and (C) and that the operator L is bounded on B.
From Condition (A), the semi-groups {T(t)};s0 and { T(t)};s¢ are strongly
continuous semi-groups of bounded operators on B and B, respectively.
Denote the generator of {7'(t)}is0 by A. For the trivial equation L = 0,
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the solution semi-group is given by

¢(0), u € [=t,0],

4.19
ot+u), u< -t ( )

Sit)y:B—B, (S{t)p)(uw)= {

for t > 0. Define a parameter 5, depending only on the phase space B, by
the following relation

log a(5(t))
§ = Jim L2

t—o0

where « is the Kuratowski measure of non-compactness of bounded opera-
tors, see e.g. Definition 4.20 in the Appendix II of [1]. For a fixed A € C
define the function (e(A\)b)(u) := e*b for u < 0 and an arbitrary b € C?. If
Re) > 3 then the functions e(\)b are elements of B for every b € C?. The
point spectrum of the generator Ais given by

op(A)={AeC:3beC\{0}: e(\)be B and \b— L(e(\)b) = 0}.

Let A = {)\y,---,),} be a finite set of eigenvalues of A such that Re); > f
for j = 1,---,p. For every \; there exists a basis ®; = (®y,---,®,,;) of
the generalized eigenspace M();) := ker((\;Id — A)¥), k; € N. For such
a basis there are matrices B; € C™*™ with the single eigenvalue \; and
A®; = &; B;. Define ®, = (&,,---,®,), By = diag(B,,---,B,) and
m =my + -+ m,. For every vector a € C™, T(t) ®, a with initial value
P, a at t = 0 may be defined on R by the relation

T(t)®ra=®)ePra, ®x(u) = B,(0)er", u<O0. (4.20)
Furthermore, there exists a 7'(t)-invariant subspace Q4 of B such that

B= P & Qy, (4.21)

where Py = {¢ € B: ¢ = ®,a for some a € C™}. In the special case of

A = A(s) :== {\ € 0p(A) : ReX > s} for some s > f the set A(s) is finite
and one obtains for every ¢ > 0 the estimate

k(e)et 9 |@ll;  fort >0, ¢ € Qq, (4.22)

T(t) ¢ 5 <

where s’ := sup{Re\ : A € op( A)\A(s)} VB and k() is a constant depend-
ing on €. Let 7p : B— B be the pI‘O_]eCtIOII on PA along the direct sum
(4.21): mp(p) = p¥ 1fg0 of + ¢, o € Py, ¢9 € Q4 and Q= Id —7p.
Since the operator T( ) is invariant on the spaces P, and QA the projec-
tions mp and mg and their adjoints commute with the operator T(t) and
its adjoints T*(t) and T**(t). Furthermore, 7% B* = (Q4)+, where (Q4)*
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denotes the annihilator of QA, and there exists a basis ¥ = (U, -+, ¥,,)7"
for 73 B* C B* such that (¥;, ®;) = §;; for i,7 = 1,--- ,m. One obtains

e =) (U;,@)®; = Bx(¥y,¢) forall ¢ €B, (423)
=1

TEE" =) (U, 0™)®; = B (T, ™) for all o € B, (4.24)

=1

using the notations (¥y, @) = (1, P), -+, (¥, @))" and similarly for
(s, 67). A

For such a decomposition of the phase space B into two subspaces with
respect to a given subset of eigenvalues of the generator A we project the
representation (3.18) onto these subspaces. We denote by Cs the half plane
{z € C: Rez > f}.

Theprem 4.1. Let B= P, o QA be a decomposition with respect to A C
op(A)NCgs. Then the solution x = z(-, ¢, h) of (1.1) can be represented by

t
wpi = 2O §) ++f T - )mdhls), (129
0
t
roi = T(t)(mo @) +>¢ T**(t — 5) () dh(s). (4.26)
0
Proof. 1t follows easily from Theorem 3.5 O

In the sequel we estimate these projections of the history onto the respective
subspaces. By combining the estimates we obtain the Lyapunov exponents
in the last section. For the estimate of the projection onto the finite dimen-
sional subspace P, we simplify the representation (4.25). The equations
(4.23), (4.24) and (4.20) yield

T(t)(mp ¢) = T(1)(2A(Ta, @) = Ba ™ (T, ), B
T™(t = s)(mpy) = T(t — 5)(Ra(Pa, 7)) = = Bae™ W, (0-).

Therefore, we obtain the representation
t
TpTy = Py (eBAt<‘I’A; ®) —/ €BA(t_S)‘I’A(0—)dh(3))
0

The function U, defined in (4.27) is called the coordinate process as it
represents the coordinate of the projection m,%; with respect to the basis
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P, for a fixed t > 0. Note that the coordinate process U, is the solution of
the ordinary integral equation in C™:

u(t) = (T p, &) + /0 Byu(s)ds — ®p(—0)h(s), ¢3>0.

By the representation (4.27) we can establish the estimate for the projection
||Tp] 5 in the next theorem in a similar way as in [6]. Let B=Py®Qybe

a decomposition with respect to A C {\ € op(A) : ReA > v} with v > 8.
Assume h(t) = O(e*) for t — oo with some £ < v. Then for ¢ > 0 define

Ya(t) == /too ePA)W, (0—)dh(s).

The indefinite integral is well defined in the sense of (3.14) since h is
Lebesgue integrable on R, with respect to eZA¢—)W, (0-).

Theorem 4.2. Let B = PA &) QA be the decompositions with respect to

;= {\ € op(4) : Re/\—v,}wzthvl> - > > f fori=1,---,p.
Denote the basis of (Q,)* by ;. Assume h(t) = O(e) for t — oo with
some k < vy. Then

1) Zf<\pu¢)) = YA’L(O) forz': 15"' :l_ 17 le {1: ap} and <\Illa¢> 7é
Y4, (0) 4t follows

o1
lim -
t—oo {
2) if (¥, ¢) = Ya,(0) fori=1,---,p it follows

< K.

1
lim sup
t—

Here mp denotes the projection onto P, iof the phase space s decomposed
according to B=P,® Q4 with respect to A :== Ay U --- U A,p.

Proof. Similar to Theorem 8 in [6]. O

For calculating the Lyapunov exponents of the projection moZ; onto the
other subspace Q A we use the representation (4.26). Determining the asymp-
totic behavior of the weak*-integral in the representation (4.26) results in
estimating the variation of the solution of the adjoint equation (2.8). By
doing this, we benefit from the restriction of the integrand 7** on 77y B*
n (4.26). Therefore, we establish in the next lemma an upper bound of
the variation of the solution y(-,b) of the adjoint equation, if the forcing
function b lies in a subspace. This is a sharper estimate than it is provided
by (2.9) for the general case of arbitrary forcing functions.
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Lemma 4.3. Let B = P, & QA be a decomposition of B with respect to
A = {\ € gp(A) : Rel > s} for some s > B and mg be the projection
onto Qu. Then for every ¢ > 0 there exist some constants ko = ko(¢)
and ky = ki(g), such that the solution y of the equation (2.8) satisfies the
following estimate for all v € B* and t > 0:

Var (y(, [’]T*Qw]~)’ [_t’ 0]) < <k0N(t) + kl/o N(t _ u)e(s'+6)udu) ||w

where s' := sup{ReX : A\ € op(A)\ A(s)} V 8.

Proof. We denote by c a generic constant only depending on €. The estimate
(4.22) yields for every ¢ € Band ¢t > 0

B*

|(me T1) ¢, < climadlls e < clinalla s pllg . (4.28)

The equations (2.13) and (2.12) imply for the solution y of the adjoint
equation (2.8) for every ) € B* and ¢t > 0 and § > 0

‘y —t, [WQ@/J ‘ = HT*(t) WQw)] (0 )|

< Var ([T (t)(mgu)] (), [-6,0])
< eN(9) HT* 7TQ¢7 -
S eNQ©) [y 7rQ||B .
VAT
< eN (D) ||9]| g €.
Since ¢ > 0 is arbitrary this yields
|y(=t, 7] )| < eN(0) [[]] - €+, (4.29)

Set pu(u) = 0 for u > 0 and define with y = y(-, [wawr):

Due to the estimates (2.6) and (4.29) it follows

Var (F,[t,0]) < / Iy Var [t = .0 do

‘ / "NO) v

/ N(t — u)el+udy. (4.30)

g € HEN 1L p N (¢ + u) M(0)du
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From (2.12), for every 1) € B* and t > 0 we get

Var ([r59] , [—t,0]) < eN(t) |75 g SeN@) ImQllp_p 19l - (4.31)
The equations (4.30) and (4.31) establish the required estimate. O

Due to the upper bound of the variation of the solution of the adjoint equa-
tion (2.8) in Lemma 4.3 we can now provide an estimate of the projection
moZy of the solution z of equation (1.1).

Theorem 4.4. Let B = P, @ QA be a decomposition with respect to A =

A

{\ € op(A4) : ReX > s} for some s > 3. Then for alle > 0 and ¢ € B
there ezists a constant k = k(e, @), such that the projection onto QA of
the history of the solution z(-) = z(-,,h) of equation (1.1) satisfies the
following estimate:

t
Il <k (&4 Il (NG + [ NG = welsau) ).
0
Proof. The Theorem 4.1 implies

(4.32)

t
ol < | T0)rap)|, + |5 T = 9z

B
Due to Lemma 4.3 the second term in (4.32) can be estimated by

B

o 7= 9wz

= r | %t T™(t — s)(m5y)dh(s))

" ol /ot“”’ T (t = 5)(n5 7)) dh(s)

" ol /otm(t — s)(mg), v)dh(s)

" ollgr | /Ot[T*(t — 5)(m5)] (0—)dh(s)
st | /Ot y(s = t, [moy] )dh(s)
<2hllgpy sup {Var (y(, w5yl ), [-¢,0]) }

Il <1
t
< 2c[hll g (N () + / N(t - u)e<sf+s)udu> ,
0

with a constant ¢ = ¢(¢) > 0. Applying (4.28) for estimating the first term
in (4.32) finishes the proof. O
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5 The exponents and some examples

On applying the decomposition of the phase space B with respect to

A(s)=AU---UA,, peN, (5.33)
Ai={)N€op(A): Reh=v;} forsome vy >--->w, > s,

we determine the Lyapunov exponents of the solution of equation (1.1)
subject to the initial condition ¢ € B. As in Theorem 4.2, the vector
W, denotes the basis for (Qa,)" with respect to the decomposition B =
P A; D QA

Theorem 5.1. Let A = A(s) for some s > BV 0 be given as in (5.33).
Assume for every € > 0 and for t — oo:

1All oo = Ole =) for some 0 < K < s, (5.34)

/ N (s +e) Uduy = O(e(a_'ﬁ'f)t) fOT‘ some 0 < 0 < s. (535)

Then the following holds for the solution x(-, @, h) of equation (1.1)

1) Zf <lIJ27¢> = YAz(O) for 1= ]-7 7l_17 l € {17 7p}7 and <‘Ill7¢> 7&
Y, (0) 4t follows:

L og iy _

t—o0

2) if (®p, @) =Ya(0) it follows:

log [|2:/1
t

lim sup <kKVs V.

t—o0

Proof. Independent of the assumptions on ¢, Theorem 4.4 implies
1
lim sup log |mit||z < s V0. (5.36)
s
If ¢ satisfies the assumptions under 1), Theorem 4.2 yields
.1 R
fim —log||mpd||5 = v.
Therefore, one obtains
lim = log ||| = lim ~ log |p: + mqir
Jim ~ og ||z = lim - og || TpEs + Tod|
.1 .
= Jim ~og (|l 1+ (1))

= .
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If the assumptions under 2) hold we have

. 1 "
lim sup — log ||7pZ¢||z < &

t—o00 t
according to Theorem 4.2 which finishes the proof in combination with
(5.36). O

Not only the Lyapunov exponents in the arbitrary norms are useful but also
the results on the way to establish Theorem 5.1. For, the combination of
the Theorems 4.2 and 4.4 allows to decompose the history of the solution in
a bounded and a dominating — the growing — part, respectively, in the semi-
norm under consideration. We give an example for this, which also displays
the connection of the functions h and N in Theorem 5.1. For simplicity, we
assume that the operator L of the equation (1.1) is given by

Ly = / e(ur(du), ¢ € B,
(_0010]

with a locally finite measure v. For the phase space B, we fix some p > 1,
set g(u) := exp(vyu) and define

B =T xI(g)

= {(u,9) [ @1 (00,0 = €, u = (0), / lo(s)F g(s)ds < oo},

—00

0 1/p
lells = o)1+ ([ toPatehas)
—0oQ

where the constant 7 is chosen, such that the operator L is continuous
on B. This phase space satisfies the conditions (A), (B) and (C) and the
constants which are relevant for the application of Theorem 5.1 turn out to
be 8 = —y/pand N(t) = 14+ P(1—e~")Y/P for details see Theorem 1.3.8 in
[5]. Hence, the parameter s has to be chosen larger than max{0, —y/p}. By
setting # = k+max{0, s'} an exponential growth of the function & is possible
for every parameter  less than min{s — s’, s}. To obtain the partition of
the history of the solution in a bounded part and in a dominating part,
we set s = 0. This choice is only possible, if the parameter ~ is positive,
which implies by the inequality (2.6) that the measure v has to be finite.
If we now assume that h(t) = O(exp(et)) holds for increasing values of ¢
and for every ¢ > 0, Theorem 4.2 implies, that the projection ||7pZp||j
grows exponentially fast. Moreover, Theorem 4.4 yields that the projection
||m@#||5 is bounded. Consequently, if the function A in the equation (1.1)
grows too fast or if the history is over-weighted by the operator L, the
asymptotic behavior of the projections of the solution z; does not differ as
explicitly as above.
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The result of Theorem 5.1 also allows to consider the case of a finite delay
of positive length p under various phase spaces and norms. The phase
space C* xLP(g) with g(u) = exp(yu) can be used as a phase space for
differential equations with a finite delay if we set the function ¢ to zero
outside the interval [—p, 0]. Even for arbitrary functions g which are set to
zero outside the interval [—p, 0] and fulfill some conditions mentioned in [5]
the space C¢ xL? (g9) can be chosen as an phase space for equations with a
finite delay. In particular, for p = 2 the Hilbert space C¢ xL?(g) is often
encountered in control theory. Then Theorem 5.1 describes the long time
behavior of the solution of the delay equation (1.1) in terms of the Hilbert
space norm.
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