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Abstract

Empirical applications of structural equation modeling (SEM) typically rest on the
assumption that the analysed sample is homogenous with respect to the underlying struc-
tural model or that homogenous subsamples have been formed based on a priori knowl-
edge. However, researchers often are ignorant about the true causes of heterogeneity and
thus risk to produce misleading results. Using a sequential procedure of cluster analy-
sis in combination with multi-group SEM has been shown to be inappropriate to solve
the problem of unobserved heterogeneity. Recently, two encouraging approaches have
been developed in this regard: (1) Finite mixtures of structural equation models and (2)
hierarchical Bayesian estimation. In this paper, we focus exclusively on the MECOSA ap-
proach to finite normal mixtures subject to conditional mean and covariance structures.
Since not much is known about the performance of MECOSA, which is both a specific
model and a software, we present the results of an extensive Monte Carlo simulation. It
was found that MECOSA performed best where homogenous groups were present in the
data in equal proportions and in conjunction with rather large differences in parameters
across the groups. MECOSA performed worse when the proportions were unequal and
parameters were relatively close together across groups. Of the three estimation meth-
ods available in MECOSA the two-stage minimum distance estimation (MDE) in general
performed worse than the alternative EM algorithms (EM and EMG). This effect was
especially pronounced under conditions of close parameters and unequal group propor-
tions. Above that, for these conditions the modified likelihood ratio test turned out to be
inappropriate in the three groups case.�
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1 Introduction
Structural equation modeling (SEM) or mean and covariance structure analysis (both terms
will be used interchangeably) is an established, widely used methodology in the social sci-
ences (e.g., sociology, psychology, marketing). Its key characteristic is the simultaneous
estimation of relationships among unobserved or latent variables, which represent the hy-
pothetical constructs (e.g., attitudes, values, customer satisfaction) of a theory, and between
the latent variables and their observed indicators (see for example Bollen, 1989). Although
the individual manifest variables are conceptualised as imperfect measures of the hypothetical
constructs measurement errors can be controlled by using multiple indicators (e.g., Bagozzi,
Yi & Nassen, 1999).

Empirical applications of SEM typically rest on the assumption that either the analysed sam-
ple is homogenous with respect to the underlying structural model which has generated the
data or that sufficiently homogenous subsamples have been formed based on theoretical con-
siderations about possible sources of heterogeneity. For example, a researcher might suspect
that dependent on their previous buying behaviour (e.g., buying intensity) subjects in a sur-
vey on customers’ attitudes toward specific brands show systematic differences in their re-
sponses. This can have an effect on both the measurement part (e.g., latent variable means
differ across the subjects) and the structural part (e.g., relationships between the latent vari-
ables differ across the subjects) of a structural equation model (see for example Jagpal, 1999).
In this case, the sample might be divided into segments of light and heavy users. Multigroup
analysis, an option available in most SEM software packages (e.g., AMOS, EQS, LISREL,
Mplus), may then be used to test for actual differences between the segments and to estimate
(partially) group-specific models if necessary. As useful as such an analysis can be, often
observable characteristics (e.g., age, gender, loyalty) are insufficient to identify homogenous
groups or researchers are simply ignorant of the true sources of heterogeneity. If unobserved
heterogeneity in an empirical study is substantial, parameter estimates can be seriously dis-
torted, thus leading to erroneous inferences (Jedidi, Jagpal & DeSarbo, 1997a).

As an ad hoc solution to this problem a sequential procedure might be used. In the first step
“homogenous” subgroups are formed by applying cluster analysis (e.g., k-means clustering)
on the data, followed by a multi-group SEM analysis of the identified clusters in the second
step. However, both theoretical considerations as well as simulation evidence lead to the con-
clusion that this approach suffers from serious shortcomings. Whereas researchers typically
develop specific hypotheses about the relationships between the variables of interest, which is
mirrored in the structural equation model tested in the second step, traditional cluster analysis
assumes independence among these variables. In principal, data-reduction techniques (e.g.,
principal component analysis) can precede the cluster analysis in the case of highly correlated
variables (e.g., indicators of the same latent variable), but since the former is based on the as-
sumption of homogeneous data, this approach is conceptually flawed. In addition, simulation
studies have shown that parameter recovery in the two-step procedure is rather weak (Görz,
Hildebrandt & Annacker, 2000, Jedidi, Jagpal & DeSarbo, 1997a).

Meanwhile two encouraging approaches for modeling unobserved heterogeneity in SEM have
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been developed. The finite mixture approach to SEM (e.g., Jedidi, Jagpal & DeSarbo, 1997a,
Arminger, Stein & Wittenberg, 1999) assumes that a heterogenous population consists of a
finite number of groups or components each characterized by a specific multivariate distri-
bution. In contrast to multi-group analysis the number of components and the component-
specific distributions are in general unknown and have to be estimated. Whereas heterogeneity
in finite mixture analysis is represented by a discrete distribution, the hierarchical Bayesian
approach (Ansari, Jedidi & Jagpal, 2000) rests upon the idea that individual-level parameters
follow a continuous heterogeneity distribution. Given that multiple observations are available
for each subject, this methodology allows to estimate parameters (e.g., latent variable means)
at the level of individual subjects. From a methodological viewpoint both approaches have
their pros and cons (for a general discussion see for example Wedel, Kamakura & Böckenholt,
2000, Allenby & Rossi, 1999). For example, if unobserved heterogeneity is such that subjects
do not form relatively homogenous subgroups finite mixture analysis might produce mislead-
ing results. On the other side, assuming that individual-level parameters follow a specific
distribution (e.g., a normal distribution) can be problematic if the true distribution is, for ex-
ample, multi-modal. In addition to this, unlike finite mixture SEM the hierarchical Bayesian
approach requires that multiple observations for the subjects are available. From a managerial
viewpoint, finite mixture analysis seems especially suitable in the context of segmenting large
consumer goods markets whereas hierarchical Bayesian estimation seems more appropriate in
the case of direct one-to-one marketing.

In this paper, we refrain from comparing both methods but exclusively focus on the valid-
ity of the finite mixture approach to SEM when unobserved population heterogeneity is in-
deed correctly captured by a discrete distribution. Compared to the vast amount of simulation
studies which exists for “regular” structural equation models relatively few is known about
the performance of finite mixture SEM. For this reason, we conducted an extensive Monte
Carlo simulation study into the properties of MECOSA (MEan and COvariance Structure
Analysis, Arminger, Wittenberg & Schepers, 1996). MECOSA is both a specific model and a
multi-purpose software which among other things facilitates the estimation of conditional and
unconditional finite mixture models.

The paper is organised as follows: First, we give a brief introduction to finite mixture structural
equation modeling and explain the main differences between the proposed models. Second,
the MECOSA approach to conditional finite mixtures is presented in more depth, including
the model and the estimation procedures implemented in MECOSA. Third, the experimental
design and the results of the simulation study are presented. Finally, we summarise the results
of our study and discuss their implications for empirical applications of MECOSA. We also
suggest directions for further research.
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2 Finite Mixture Structural Equation Models

2.1 Conditional Versus Unconditional Models for Normal Mixtures
The finite mixture approach assumes that a heterogeneous population consists of a limited,
but generally unknown number of subpopulations or groups each characterised by a specific
distribution (for general descriptions of this methodology see for example Everitt & Hand,
1981, McLachlan & Basford, 1988, McLachlan & Peel, 2000). The purpose of finite mixture
analysis therefore is to determine the number of groups in the population and to estimate the
component-specific parameters. Based on these estimates probabilities of group membership
can be calculated and subjects be assigned to the different groups. This method has found
increasing interest over the last decades especially since the seminal paper by Dempster, Laird
& Rubin (1977) on the EM algorithm. But though Blåfield (1980) proposed a confirmatory
factor model for finite normal mixtures even more than ten years ago, it was only recently that
the application of finite mixtures to structural equation models has gained momentum.

With respect to the distributional assumptions for the observed variables, two types of finite
mixture SEM can be distinguished. Unconditional models (Yung, 1994, 1997, Jedidi, Jagpal
& DeSarbo, 1997a, Dolan & van der Maas, 1998) presume that the endogenous and exogenous
variables follow a multivariate normal distribution within the different mixture components.
In contrast, for conditional models (Arminger & Stein, 1997, Arminger, Stein & Wittenberg,
1999, Muthén & Shedden, 1999) the somewhat weaker assumption applies that the depen-
dent variables are normally distributed given some arbitrarily distributed exogenous regressor
variables (e.g., socio-demographics like age, gender, or occupation). Whereas in the single or
multi-group case the estimators (e.g., ML or GLS) remain consistent even if the assumption of
multivariate normality is violated because of non-normal regressors (see for example Bollen,
1989), obviously this does not hold for finite mixture structural equation models as simulation
studies have shown (Arminger, Stein & Wittenberg, 1999). Because in empirical applications
multivariate normality is more the exception than the rule, conditional models seem to have
more practical relevance.

To the best of our knowledge only two general software programmes for the estimation of
conditional finite mixture SEM are presently available (MECOSA, Arminger, Wittenberg &
Schepers, 1996, and Mplus, Muthén & Muthén, 1998). We decided to employ MECOSA in
our simulation study largely because it offers three estimation methods, one of which (the EM
algorithm to be described later on) is very similar to the algorithm used in Mplus. Thus, we
expect that our simulation results to a large extent also apply to the Mplus software.

2.2 The MECOSA Approach to Conditional Finite Mixture SEM
2.2.1 MECOSA Model for Conditional Finite Normal Mixtures

The following description of the MECOSA model for conditional normal mixtures is drawn
closely from (Arminger, Stein & Wittenberg, 1999). For subject ���	��

����������������� , let ��� be a � -
dimensional vector of continuous dependent random variables and ��� a � -dimensional vector
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of independent variables. The latter may include continuous and/or dummy-type variables.
The sample points ���! #"%$&�('�)&�%* are i. i. d. with +,"%$-�.'/)&�0*1 324"%$&��5 )&�0*7698&"%)&�0* , where 24"%$&��5 ):�0*
is the conditional density of $,� given )&� and 8:"0)&�%* is the marginal density of the exogenous
variables. If the dependent variables $,� are multivariate normal in each component conditional
on the regressors )&� , the conditional density is given by the following mixture:

2!"0$&�/5 )&�%*; =<&>�?!"%$&�.@BAC�D>B@�EF>/*-GH<JIK?�"0$&�L@BAC�MI�@�ENIK*-GO6P6P6PGH<RQC?!"0$:�.@BAC�SQ1@�ETQC*�' (1)

where <JUV'�WX #Y�'BZ�'�[�[�[K'B\ , are the mixing proportions for the \ components of the mixture
and ? denotes the multivariate normal density with mean vector A]�MU and covariance matrix E^U .
The mixing proportions are subject to the following constraints: <:U`_ba and c QUBde> <JUf gY .
The conditional mean hi"0$-�/5 )&�L'�Wj* is specified as a reduced form multivariate linear model

AC�MUk ml-UnGpoqUK)&�.' (2)

where l-U is a r -dimensional vector of regression constants, oXU is a risut matrix of regression
parameters, and the conditional covariance matrix EvU contains the variances and covariances
of the regression residuals. The elements of l�U , oqU and ENU are called reduced form pa-
rameters and are collected in an w -dimensional vector x . Augmenting the vector x by the
non-redundant mixing proportions yields the vector xzyz {"�"0<&>B'�[�[�[�'�<JU�|}>/*�'�x7~�*�~S* .
The conditional means and conditional covariance matrices are parameterised by component-
specific mean and covariance structure models, where the free, fundamental parameters are
collected in the � -dimensional vector � . The conditional density can thus be written as

24"0$&�/5 )&�%*n m<&>/?!"%$&�.@	A���>�"��1*�@�EF>�"���*�*-Gm6P6P6�GH<RQ�?�"0$&�L@BAC�SQ]"��1*�@�ETQ�"���*�*K[ (3)

Within each component the conditional mean and the conditional covariance matrix can be pa-
rameterised as, for example, a conditional LISREL model. In this case, the structural equation
model for the latent variables is

� ��5M"0)&�L'�Wj*7 ��^U � ��G��nU�):�jGp�-� UB�� ' (4)

with �&� UB�� �g� "��-'��iUP* . The latent endogenous variables are connected to the observed en-
dogenous indicator variables by group-specific factor analytic models

$&�: ��JUzGp�NU � � U	�� G���� U	�� ' (5)

where � � UB��  � ��5M"0)&�L'�Wj* and ��� UB�� �#� "��,'K�uU�* . For the conditional mean of the endogenous
variables this implies

hu"%$&��5 )&�.'BWj*n ��JUzGp�NU�"��z�H�^U�* |}> �nU�):�& =l-U;G�o�UK):�.' (6)

where l-Uk ��JU and oqUk ��NU�"0�!�`�^UP* |}> �;U . The conditional covariance matrix is specified as
� "%$&��5 )&�.'�W�*7 ��NU�"��C� �fU�* |}> �iU�"0�C�H�fUP* |}>0¡ � ¡ U G¢�uUk £ETU¤[ (7)

Given that the individual component-specific mean and covariance structure models are iden-
tified (this is analogous to the multi-group case), normality of the dependent variables in each
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component given the regressors is sufficient and necessary to establish the identifiability of
finite mixture structural equation models (Jedidi, Jagpal & DeSarbo, 1997a). Here, we im-
plicitly assume that the restriction ¥,¦z§¢¥J¨©§£ª�ª�ªj§¢¥R« (Aitkin & Rubin, 1985) is imposed to
solve the problem of arbitrary permutations of the components labels (McLachlan & Basford,
1988).

2.2.2 Parameter Estimation

MECOSA currently offers three estimation methods (for a detailed description see Arminger,
Stein & Wittenberg, 1999): Minimum Distance Estimation (MDE), Direct EM (EM) and EM
Gradient (EMG).

The MDE proceeds in two stages. In the first stage, for a given number of components an
expectation-minimization (EM) algorithm is used to estimate the reduced form parameters¬-­¤®B¯q­ and ° ­ of an unrestricted regression of ± on ² . Following, the asymptotic covariance
matrix ³F´ of the vector µ¶ ´ is determined, which includes the asymptotic covariance matrix ³
of the estimated reduced form parameters in µ¶ as a submatrix. In the second stage, minimum
distance estimation is used to determine the group specific-fundamental parameters µ· based
on the reduced form parameter estimates and their asymptotic covariance matrix. This is done
by minimizing the function

¸i¹0·1º7»3¼ µ¶¾½H¶ ¹�·1º(¿�À µ³ÂÁ ¦ ¼ µ¶Ã½p¶ ¹�·1º(¿ ª (8)

Under the null hypothesis that the component-specific mean and covariance structure mod-
els represent the true underlying models which gave rise to the reduced form parameters,
i. e. ¶ » ¶ ¹0·1º , we obtain a test statistic

¸Â¹ µ·kº which is asymptotically distributed as a Ä ¨
variable with Å ½HÆ degrees of freedom.

In contrast to MDE, maximisation of the log-likelihood function during the M step of the
EM and the EMG algorithms is directly performed with respect to the fundamental parame-
ters

·
instead of the reduced form parameters. EM and EMG only differ with respect to the

number of iterations in the M step: In EMG only one iteration is performed in each M step,
whereas in the EM algorithm iterations proceed until convergence is achieved. Starting values
for EM and EMG can be provided directly or can be generated by using the parameter esti-
mates of the MDE procedure.

Since in the M-step of MDE weighted regression is used instead of an iterative procedure
like in EM and EMG the former is much faster than both EM and EMG, with EM beeing the
slowest. It is not the purpose of this paper to explain or debate pros and cons of each method
(see Arminger, Stein & Wittenberg, 1999), but simply to examine their properties in a simula-
tion. However, it should be noted that Arminger, Stein & Wittenberg (1999) recommend that
MDE should be used when the model has few parameters, and EM Gradient in combination
with the first stage of the MDE procedure when the structural equation model is large.

6



2.2.3 Deciding on the Number of Groups

Because in applications of the finite mixture approach the number of components is typically
unknown, statistical criteria are required to decide on this issue. Violations of the regular-
ity conditions prevent the application of a conventional likelihood ratio test in this case (see
McLachlan & Basford, 1988). Modifications of this test (Wolfe, 1971), a parametric bootstrap
of the likelihhod ratio (Aitkin, Anderson & Hinde, 1981, McLachlan, 1987) and information
criteria like AIC, BIC or CAIC (see for example Jedidi, Jagpal & DeSarbo, 1997b) have been
proposed instead. In MECOSA both an extension of the ad hoc test of Wolfe (1971) to more
than two groups (as default) and the simplified parametric bootstrap procedure proposed by
Aitkin, Anderson & Hinde (1981) are implemented (Arminger, Stein & Wittenberg, 1999).

The ad hoc procedure tests the null hypothesis ( ÇÂÈ ) that the sample consists of É compo-
nents against the alternative hypothesis ( ÇËÊ ) of ÉÍÌÏÎ components. The null hypothesis is
rejected at a given significance level Ð if

Ñ Ò Ó,Ô ÕMÖ7× Ê�Ø ÕÚÙ�Û(ÜÝÙ�Þ Ø�ß (9)

where
Ñ

is the conventional likelihood ratio statistic, à�Ê is the number of parameters under ÇËÊ
and à�È is the number of parameters under ÇfÊ , both without the mixing proportions.

Although there is some evidence (e.g., Everitt, 1981) that the ad hoc test does not perform
well and that bootstrapping seems to be a more promising way forward (McLachlan, 1987,
Feng & McCulloch, 1996), the ad hoc test has been used in this study because of the hith-
erto prohibitive cost in terms of computing requirements even for only moderately complex
models. With increasing computing power this may be less of a problem in future simulation
studies.

3 Simulation Study
The purpose of our Monte Carlo simulation is to investigate if MECOSA is an appropriate tool
to control for unobserved heterogeneity in SEM when the population consists of a finite but
unknown number of relatively homogenous groups (for a comprehensive description of the
study see Williams, 2002). To this end a great variety of conditions researchers are likely to
encounter in empirical applications has been analysed. Specifically, we address the following
questions:

1. How do MECOSA’s estimation methods perform with regard to the absolute goodness
of parameter recovery?

2. What are the important factors which influence the relative goodness of parameter re-
covery?

To assess the absolute performance of MECOSA in situations where the researcher is unsure
about the number of mixture components we recorded the number of times MECOSA failed
to determine the correct number. In addition, we calculated the coverage rate of the nominal
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95% interval for the parameter estimates. For the overall goodness-of-fit statistic we tested if
the distributions in our simulation actually resemble the theoretically derived á4â distribution
for large samples.

Relative goodness of parameter recovery is examined by calculating mean bias and mean
variance. Since these are highly aggregated measures which might hide major differences at
the level of individual parameters, ANOVA has been used to analyse which factors influence
the individual parameter estimates.

3.1 Experimental Design
The experimental design of our study considerably extends the one underlying the Monte
Carlo simulation on MECOSA published by Arminger, Stein & Wittenberg (1999) in Psy-
chometrika. The single experimental factor “Estimation method” (MDE, EM, EMG) varied
in their study has been augmented by five additional factors:

1. Distribution of exogenous variables (normal, skewed)

2. Number of groups (two, three)

3. Group proportions (equal, unequal (80:20 in the two groups case and 50:15:35 in the
three groups case))

4. Separation of parameter values (far, close)

5. Knowledge about number of groups (known, unknown)

Even though Arminger, Stein & Wittenberg (1999) examined the effect of skewed exogenous
regressors on the performance of MECOSA, a simulation study was only performed for the
first stage of the MDE procedure and was based on a simple regression model. The results
clearly showed that the conditional finite mixture approach in the case of non-normal regres-
sors outperforms the unconditional approach. For this reason, the unconditional model was
not further considered in our study. We nevertheless analysed if the distribution of the re-
gressor variables has an influence on the quality of the MECOSA results in the context of a
conditional structural model.

Since a mixture with two groups and equal group proportions as analysed in Arminger, Stein
& Wittenberg (1999) represents a somewhat stylised situation we also explored cases with
three groups and mixed group proportions. Given that both mixture components in the study
by Arminger, Stein & Wittenberg (1999) were distinctly separated with respect to the popula-
tion parameters of the underlying structural model, we additionally analysed groups where the
parameters were closer together. Finally, we also considered situations where the true number
of components is unknown and has to be estimated from the data. In total, this generates a six-
way balanced factorial design with 96 unique experimental conditions (see Table 1). For each
condition 500 valid data sets with 2000 observations each have been simulated with GAUSS
(version 3.2.38).
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Far Parameters
2 Groups 3 Groups

Equal Unequal Equal Unequal
Skewed Normal Skewed Normal Skewed Normal Skewed Normal

MDE ASW
Known EM ASW

EMG ASW
MDE

Unknown EM
EMG

Close Parameters
MDE

Known EM
EMG
MDE

Unknown EM
EM Grad

Note: The acronym ASW indicates the conditions examined in Arminger, Stein & Wittenberg (1999)

Table 1: Full Experimental Design of the Monte Carlo Simulation

3.2 Model for Data Generation
For reasons of comparability we selected the conditional structural equation model used by
Arminger, Stein & Wittenberg (1999) to simulate the data. Their recursive model has two
endogenous latent variables ã�ä and ãVå , each of which is measured by three continuous indica-
tor variables ( æçäKè	æéå�è	æéê and æéëPè�æVì�è	æéí ). The endogenous variables are both influenced by three
exogenous regressor variables î,äKè�îJå and îJê . In addition, the variable ã�ä has a direct effect on
the variable ãVå . A diagram of the structural equation model is shown in Figure 1. Data are
generated using group-specific parameterisations of this model. Apart from the factor load-
ings all parameters are varied across the components. For example, for the two components
mixture the population values and the differences between the group parameters are reported
in Table 2. The parameters used by (Arminger, Stein & Wittenberg, 1999) are designated as
the “far” condition, Here, parameter differences are between 0.20 and 1.00 in absolute values.
In contrast, for the “close” condition the corresponding values range from 0.00 to 0.30 with
the exception of the intercepts (for the second group the intercepts in the measurement model
are the same for “far” and “close” conditions).

Under the “normal” conditions all three exogenous variables are normally distributed with
mean 0 and variance 1. For the “skewed” conditions the exogenous regressor variables consist
of a standard Normal variable with mean 1 and variance 1 ( î�ä ), a ï å ä variable with mean 1 and
variance 2 ( îRå ), and a Bernoulli variable with mean 0.7 and variance 0.21 ( î&ê ). The last two
variables were standardised. The remaining error variables for which random values had to be
generated are normally distributed.
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Group 1 Group 2ð�ñ
Far Diff ò�ó Close Diff ò�óô ó�ò 0.50 -0.50 1.00 0.20 0.30õ ò(ò 0.20 0.50 -0.30 0.10 0.10õ ò�ó 0.50 -0.50 1.00 0.40 0.10õ ò�ö 1.00 0.50 0.50 1.00 0.00õ ó�ò -0.30 0.30 -0.60 -0.10 0.20õ ó(ó 0.00 1.00 -1.00 0.20 0.20õ ó(ö 0.50 -0.50 1.00 0.30 0.20÷ ò(ò 0.50 0.25 0.25 0.70 0.20÷ ó(ó 0.50 0.25 0.25 0.70 0.20ø ò(ò 1.00 1.00 0.00 1.00 0.00ø ó�ò 0.80 0.80 0.00 0.80 0.00ø ö�ò 0.70 0.70 0.00 0.70 0.00ø�ù ó 1.00 1.00 0.00 1.00 0.00øÝú ó 0.90 0.90 0.00 0.90 0.00øÝû ó 0.60 0.60 0.00 0.60 0.00ð9üò(ò 0.25 0.50 -0.25 0.30 -0.05ð üó(ó 0.40 0.60 -0.20 0.50 -0.10ð9üö(ö 0.40 0.60 -0.20 0.50 -0.10ð üù(ù 0.25 0.50 -0.25 0.30 -0.05ð9üú(ú

0.30 0.60 -0.30 0.40 -0.10ð üû(û 0.50 0.80 -0.30 0.50 0.00ý ò 0.00 1.00 -1.00 1.00 -1.00ý ó 0.00 1.00 -1.00 1.00 -1.00ý ö 0.00 1.00 -1.00 1.00 -1.00ý ù 0.00 1.00 -1.00 1.00 -1.00ý ú 0.00 1.00 -1.00 1.00 -1.00ý û 0.00 1.00 -1.00 1.00 -1.00

Table 2: Population Parameters (2 groups)
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γ12
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λ21

λ31

1
λ52

λ62

Figure 1: Structural Equation Model for Data Simulation

3.3 Results
The simulated data has been analysed using MECOSA 3.08 under Windows 98. The output
files generated by the GAUSS simulation programme have been post-processed and analysed
by the statistical computing software R.

The results we report are structured as follows:

þ Comparison of our results with Arminger, Stein & Wittenberg (1999)

þ Frequency of incorrectly estimated number of groups

þ Coverage of the 95% confidence intervall

þ Distribution of the MDE test statistic

þ Mean bias

þ Mean MAD

þ Parameter-specific analysis of variance
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3.3.1 Comparison With the Results of Arminger, Stein, and Wittenberg (1999)

We first compared our simulation results with those reported in (Arminger, Stein & Witten-
berg, 1999). For the experimental conditions which were analysed in their study (see Table
1), Table 3 shows the means of the parameter estimates for both studies, calculated from
500 Monte Carlo replications each. In addition, the mean of the standard errors output by
MECOSA and the standard deviations of the parameter estimates are given in parentheses.
With respect to the means of the parameter estimates we obtained virtually identical results
(differences occured only for the third decimal place). However, for the parameters ÿ������/ÿ����
and ÿ	��� some noticeable differences exist for the mean standard errors/standard deviations.
Despite these deviations, overall our results agree well with those of (Arminger, Stein & Wit-
tenberg, 1999). Since the means of the estimated parameters are almost identical with the true
parameters, parameter recovery is quite good for all three estimation methods in the case of
two groups with equal proportions and far parameters.

MDE
First Component Second Component
��

True Arminger This study True Arminger This study
�� 0.500 0.500 (0.017/0.011) 0.500 (0.015/0.010) 0.500 0.500 (0.000/0.011) 0.500 (0.000/0.010)�����
0.500 0.505 (0.052/0.052) 0.506 (0.051/0.051) -0.500 -0.505 (0.094/0.100) -0.500 (0.074/0.075)� ��� 0.200 0.202 (0.030/0.031) 0.200 (0.028/0.028) 0.500 0.500 (0.027/0.026) 0.500 (0.024/0.024)� ��� 0.500 0.501 (0.020/0.020) 0.500 (0.028/0.028) -0.500 -0.500 (0.019/0.019) -0.502 (0.023/0.022)� ��� 1.000 0.996 (0.064/0.064) 1.000 (0.028/0.029) 0.500 0.500 (0.056/0.057) 0.501 (0.023/0.023)� ��� -0.300 -0.303 (0.032/0.034) -0.304 (0.031/0.030) 0.300 0.303 (0.056/0.059) 0.300 (0.044/0.043)� ��� 0.000 -0.004 (0.034/0.034) -0.006 (0.040/0.038) 1.000 0.997 (0.053/0.055) 1.000 (0.045/0.046)� ��� 0.500 0.500 (0.083/0.082) 0.497 (0.056/0.056) -0.500 -0.495 (0.078/0.080) -0.498 (0.045/0.047)� ���
0.500 0.492 (0.037/0.037) 0.493 (0.035/0.036) 0.250 0.245 (0.030/0.031) 0.246 (0.026/0.026)� ���
0.500 0.491 (0.038/0.039) 0.492 (0.035/0.035) 0.250 0.242 (0.036/0.038) 0.247 (0.027/0.029)

EM
First Component Second Component
��

True Arminger This study True Arminger This study
 � 0.500 0.500 (0.017/0.011) 0.501 (0.015/0.010) 0.500 0.500 (0.000/0.011) 0.499 (0.000/0.010)�����
0.500 0.505 (0.052/0.050) 0.500 (0.050/0.053) -0.500 -0.506 (0.094/0.096) -0.508 (0.074/0.074)� ��� 0.200 0.202 (0.030/0.030) 0.201 (0.028/0.027) 0.500 0.500 (0.027/0.026) 0.501 (0.024/0.024)� ��� 0.500 0.500 (0.020/0.019) 0.500 (0.028/0.027) -0.500 -0.500 (0.019/0.019) -0.501 (0.023/0.022)� ��� 1.000 0.996 (0.064/0.062) 1.001 (0.028/0.029) 0.500 0.500 (0.056/0.055) 0.503 (0.023/0.023)� ��� -0.300 -0.302 (0.032/0.033) -0.300 (0.031/0.031) 0.300 0.303 (0.056/0.057) 0.303 (0.045/0.044)� ��� 0.000 -0.003 (0.034/0.033) 0.001 (0.039/0.041) 1.000 0.997 (0.052/0.054) 0.995 (0.046/0.045)� ��� 0.500 0.497 (0.083/0.080) 0.499 (0.055/0.057) -0.500 -0.495 (0.078/0.078) -0.496 (0.046/0.046)� ���
0.500 0.496 (0.037/0.036) 0.498 (0.035/0.034) 0.250 0.246 (0.030/0.030) 0.246 (0.025/0.025)� ���
0.500 0.495 (0.038/0.038) 0.493 (0.035/0.034) 0.250 0.244 (0.035/0.037) 0.246 (0.027/0.025)

EMG
First Component Second Component
��

True Arminger This study True Arminger This study
�� 0.500 0.500 (0.017/0.011) 0.499 (0.015/0.010) 0.500 0.500 (0.000/0.011) 0.500 (0.000/0.010)�����
0.500 0.505 (0.052/0.050) 0.501 (0.051/0.051) -0.500 -0.507 (0.094/0.096) -0.503 (0.073/0.073)� ��� 0.200 0.202 (0.030/0.030) 0.202 (0.029/0.029) 0.500 0.500 (0.027/0.026) 0.500 (0.024/0.022)� ��� 0.500 0.500 (0.020/0.019) 0.503 (0.028/0.026) -0.500 -0.500 (0.019/0.019) -0.500 (0.023/0.023)� ��� 1.000 0.995 (0.064/0.062) 1.004 (0.028/0.029) 0.500 0.500 (0.056/0.055) 0.500 (0.023/0.022)� ��� -0.300 -0.302 (0.032/0.033) -0.300 (0.031/0.031) 0.300 0.303 (0.056/0.057) 0.302 (0.044/0.042)� ��� 0.000 -0.003 (0.034/0.033) 0.001 (0.039/0.038) 1.000 0.996 (0.052/0.054) 0.998 (0.045/0.045)� ��� 0.500 0.496 (0.083/0.080) 0.500 (0.056/0.054) -0.500 -0.495 (0.078/0.078) -0.498 (0.045/0.047)� ���
0.500 0.496 (0.037/0.036) 0.496 (0.035/0.035) 0.250 0.246 (0.030/0.030) 0.250 (0.026/0.026)� ���
0.500 0.495 (0.038/0.038) 0.498 (0.036/0.035) 0.250 0.243 (0.035/0.037) 0.247 (0.026/0.026)

Note: The first values in parentheses are the mean standard errors of 500 replications and the second values are the
standard deviations of the parameter estimates caculated from the replications

Table 3: Comparison With Arminger, Stein, and Wittenberg (1999)
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3.3.2 Estimating the Number of Components

The determination of the “correct” number of components in the data is a crucial step in
finite mixture analysis since it has a major impact on the validity of the parameter estimates.
For all experimental conditions with an unknown number of groups we used the modified
likelihood ratio test (ad hoc test) implemented in MECOSA as the default option to estimate
the number of groups (see Section 2.2.3). The simulation programme was set up such that if
MECOSA identified an incorrect number of groups for a specific sample the results of that
replication would be discarded and the iteration started again. This procedure secured that
we achieved 500 valid data sets, which is a prerequisite for meaningful comparisons between
results for different conditions (Paxton et al. 2001). Whereas for all “two groups” conditions
and the “three groups” conditions with equal group proportions the number of components was
almost always estimated correctly, for those “three groups” conditions with close parameters
and mixed proportions we had to simulate between 1669 and 2197 samples to achieve the
required number of 500 valid samples (see Table 4). Since the time needed to let the parametric
bootstrap test detect the number of components for at least 500 replications in 96 conditions
was prohibitive, we focused on a specific condition to compare its performance with that of the
ad hoc test. Using the MDE procedure, the failure rate of the parametric bootstrap test under
the condition of three components, mixed proportions, close parameters and normal regressors
was 16.7% compared to 76.5% for the ad hoc test. Although these results come from only one
condition and thus need further investigations, the differences are considerable. Thus, on the
basis of our results it is recommended that researchers use the parametric bootstrap test (and
alternative measures like BIC) whenever possible to estimate the number of components in
their data.

Two Groups Three Groups
Equal Uneq. Equal Uneq.

Close Parameters
MDE 0 1 1 1697

Skewed EM 0 0 3 1532
EMG 0 1 3 1691
MDE 0 0 3 1631

Normal EM 1 0 3 1169
EMG 0 0 4 1260

Far Parameters
MDE 3 0 2 4

Skewed EM 0 1 2 2
EMG 3 0 2 4
MDE 0 0 0 17

Normal EM 2 3 0 19
EMG 1 2 0 15

Table 4: Frequency of Incorrectly Estimated Number of Groups
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3.3.3 Absolute Goodness of Estimation

Coverage of the Nominal 95% Confidence Interval Coverage was estimated by calcu-
lating the proportion of replications for which the 95% confidence interval contains the true
parameter value. The results are summarised in Table 5. For “far parameters” 95% coverage is
quite close to the expected nominal value under almost all conditions. With coverage around
90% MDE, however, does not perform as good as the other estimation procedures in the three
groups cases. A similar picture emerges for “close parameters”. Although compared to the
“far” conditions results for the two groups cases as well as for the three groups conditions with
equal group proportions are slightly worse, coverage is still rather good. A significant drop in
coverage occurs for unequal group proportions, especially with respect to the MDE procedure
where coverage is only about 82%. Thus, whereas for the two groups conditions the choice of
the estimation procedure has little effect, it becomes relevant for “close” parameters when the
three groups proportions are mixed.

Two Groups Three Groups
Known Unknown K & U �

Equal Uneq. Equal Uneq. Equal Uneq.
Close Parameters

MDE 90.9 90.9 92.3 90.4 90.3 82.1
Skewed EM 93.6 92.6 93.2 93.5 93.8 90.0

EMG 91.5 90.9 91.5 91.5 93.5 90.2
MDE 90.9 90.2 92.3 90.5 88.2 82.3

Normal EM 93.3 93.1 91.0 92.9 91.0 89.8
EMG 91.4 91.3 93.0 92.7 93.4 90.1

Far Parameters
MDE 92.2 93.9 94.5 94.2 89.8 88.8

Skewed EM 93.2 95.1 93.2 93.3 94.7 94.0
EMG 95.2 93.3 93.1 93.2 94.6 94.2
MDE 94.5 94.2 94.3 94.1 90.3 90.3

Normal EM 95.3 93.0 95.2 93.6 94.8 93.7
EMG 93.2 94.9 93.1 93.3 94.5 94.4� Known and unknown conditions are merged

Table 5: Coverage of the Nominal 95% Confidence Interval

Distribution of Test Statistic Under the null hypothesis that the hypothesised component-
specific models are the true models the MDE test statistic ��� �!#" follows asymptotically a
central $ % distribution with &('*) degrees of freedom. In order to assess if this holds true for
the different experimental conditions in our simulation the values of �+�,�!#" were recorded for
each of the 500 replications. We then compared the resulting distributions with the appropriate$-% distribution (with 44 degrees of freedom in the “two groups” case) using a Kolmogorov-
Smirnov test. Table 6 summarises the test results only for the two components mixtures and
Figure 2 shows both the theoretical and empirical distributions for the ”unknown-2 groups”
conditions. We do not report the results for the three components simulation data because
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the . values of the Kolmogorov-Smirnov test were all less than /102/3/3/3/ , which means that
the corresponding observed distribution of the test statistic does not follow a 465 distribution.
Even for the “two groups” conditions several tests yielded significant . values ( 798:02/<; ), but
no clear pattern emerged. Overall, the results suggest that the theoretical behaviour of =�>6?@BA
is not well reproduced even in data sets with a rather large number of observations.

Known Unknown
Equal Uneq. Equal Uneq.

Close Parameters
Skewed 0.00016 0.51821 0.00209 0.10759
Normal 0.03201 0.05199 0.00027 0.01669

Far Parameters
Skewed 0.00415 0.04312 0.03549 0.00000
Normal 0.91119 0.00012 0.00359 0.00000

Table 6: . Values of Kolmogorov-Smirnov Test on 4C5 Distribution of =�> ?@DA (2 Groups)

3.3.4 Relative Goodness of Estimation

To evaluate the relative performance of the different estimation procedures in MECOSA we
use measures of estimator bias and variability. Since the experimental design resulted in 96
different conditions it is not possible to report these measures for every parameter. Instead,
for each condition we aggregate over all parameters and replications although we note that we
hereby risk to lose some important information. For example, a high mean bias for a specific
condition might be the result of having only a few parameters showing extremely high biases
or due to all parameters having moderately high biases.

Mean Bias The fundamental measure of estimator bias for a single parameter is EGFH?IKJMLNI
.

The magnitude of this measure among other things obviously depends on the size of
I
. Divid-

ing this expression by the true parameter
I

would eliminate the scale effect, but this relative
bias is only defined for non-zero population values. Since there are a few zero population
parameters in our study, we define our measure of mean bias as follows:

mean OP8 QRMS TVUWXZYM[ \^] QRM_ T�`Wa YM[ ?I a XHb LcI Xed (10)

with f#8 Q3g 0�0�0 g RM_ , where RM_ is the number of replications (here, 500 in all conditions), andh 8 Qig 0�0�0 g RjS , where RjS is the number of free parameters (here, for example, 48 in all con-
ditions of the two components mixtures). ?I a X denotes the f th estimate of parameter

h
and

I X
its true value. Although the “close” and “far” conditions use different parameter sets, it can
reasonably be assumed that the scale effect is so small that comparisons of the estimator bias
across these conditions are admissible.

The mean biases for the estimation of two components mixtures are shown in Table 7. First of
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Figure 2: Distribution of k�lnmo#p (Unknown group number, 2 Groups)
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Known Unknown
Equal Uneq. Equal Uneq.

Close Parameters
MDE q 0.0049 q 0.0116 q 0.0049 q 0.0127

Skewed EM q 0.0010 q 0.0018 q 0.0014 q 0.0012
EMG q 0.0021 q 0.0018 q 0.0013 q 0.0020
MDE q 0.0047 q 0.0134 q 0.0061 q 0.0118

Normal EM q 0.0015 q 0.0020 q 0.0020 q 0.0016
EMG q 0.0018 q 0.0019 q 0.0029 q 0.0033

Far Parameters
MDE q 0.0016 q 0.0033 q 0.0022 q 0.0028

Skewed EM q 0.0003 q 0.0004 q 0.0002 q 0.0007
EMG q 0.0004 q 0.0006 q 0.0007 q 0.0006
MDE q 0.0018 q 0.0026 q 0.0019 q 0.0024

Normal EM q 0.0007 q 0.0010 q 0.0004 q 0.0004
EMG q 0.0002 q 0.0005 q 0.0005 q 0.0006

Table 7: Mean Bias for Each Condition (2 Groups)

all, we notice that the mean biases are all negative (although some biases for individual param-
eters were positive). This means that on average the estimates are less than the true population
values. Compared to the EM and EMG algorithms, using the MDE procedure consistently
produces a considerably higher mean bias. For the two other estimation procedures only mi-
nor differences occur and none seems to have an advantage over the other. Overall, the “close”
conditions lead to higher biases than the “far” conditions, where especially high biases occur
for the “MDE-close-unequal” conditions. Given that only those replications were included
where MECOSA correctly estimated the number of groups it is plausible that “known” and
”unknown” conditions lead to similar results.

Mean MAD Estimator variability can be determined, for example, by calculating the mean
squared error or the mean MAD (mean absolute deviation). Since in our study both mea-
sures lead to similar interpretations with respect to the relative performance of the estimation
procedures under the different conditions, we exclusively focus on the mean MAD:

mean MAD r stMuwvVxyzZ{M|~} stM� vV�y� {M|n������ � z�� � z ��� � (11)

The mean MAD’s for all “two groups” conditions are shown in Table 8. The results show
that the MDE procedure consistently produces the highest variance although the distance to
the EM and EMG biases is only modest. This is especially true for the “far” conditions. For
EM and EMG again only negligible differences occur. A pronounced effect on the variance
results from the separation of the population parameters. Here, the “close” conditions have a
considerably higher variance. Overall, the highest variance is reported for the “closed-mixed”
treatments in combination with the MDE procedure.
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Known Unknown
Equal Uneq. Equal Uneq.

Close Parameters
MDE 0.0339 0.0443 0.0338 0.0452

Skewed EM 0.0316 0.0409 0.0319 0.0400
EMG 0.0317 0.0399 0.0317 0.0392
MDE 0.0337 0.0456 0.0340 0.0451

Normal EM 0.0320 0.0400 0.0322 0.0396
EMG 0.0323 0.0398 0.0319 0.0402

Far Parameters
MDE 0.0230 0.0283 0.0227 0.0282

Skewed EM 0.0221 0.0272 0.0226 0.0268
EMG 0.0223 0.0270 0.0224 0.0272
MDE 0.0222 0.0269 0.0223 0.0271

Normal EM 0.0216 0.0265 0.0216 0.0259
EMG 0.0215 0.0265 0.0217 0.0257

Table 8: Mean MAD for Each Condition (2 Groups)

To sum up, it can be noticed that the two-stage MDE procedure leads both to the highest
mean bias and variance. This applies especially to conditions with unequal group proportions
and close parameters. A possible explanation for the poor parameter recovery in this situa-
tions is that the group proportions were not estimated well. In this case, a large number of
observations is assigned to the wrong group, leading to a high variance in the components and
degrading the chance of retrieving the correct parameters.

3.3.5 Parameter-Specific Analysis of Variance

Because mean bias and mean MAD are highly aggregated measures of the quality of an esti-
mation procedure, we additionally explored which factors influence parameter estimates at the
level of individual parameters by performing analysis of variance (ANOVA). The dependent
variable contains the group-specific parameter estimate for each replication in each condition,
which results in a balanced ANOVA with 500 replications in each cell. The independent vari-
ables were the four binary variables denoting (1) known or unknown number of groups, (2)
equal or unequal group proportions, (3) close or far parameters and (4) skewed or normally
distributed regressors. Here, one indicates the attribute level mentioned first (e.g., known =
1) and zero the alternative level (e.g., unknown = 0). To determine the influence of the esti-
mation method we additionally employed dummy coding: Two exogenous dummy variables
were created indicating whether EM or EM Gradient estimation was used (= 1) or not used
(= 0). Thus using MDE is the baseline condition. Since for the first group only a single set
of population values has been used for simulation, the dummy variable “close” was not in-
cluded in the ANOVA of parameter estimates for this group. Regarding the second group,
the interesting question is if there are some significant effects on the parameter estimates after
controlling for the dominant influence of the variable “close”.
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���
Intercept Known Equal Close Skewed EM EM Grad Adj. ����^� ������ � 0.4912 � 0.0056 0.6939 0.93� � ������ 0.5032 � 0.3991 � 0.0027 0.96� � ������ � 0.5003 0.9015 0.99� � ������ 0.5009 � 0.0022 0.4985 0.97� � ������ 0.2952 0.0037 � 0.3996 0.92� � ������ 1.0037 � 0.8027 0.98� � ������ � 0.4999 0.8082 0.95� � ������ 0.2373 0.0081 0.4360 0.0072 0.0069 0.91� � ������ 0.2371 0.0114 0.4332 0.0066 0.0050 0.92����� � ������ 0.2856 0.0054 0.1962 0.0127 0.0122 0.80� ��� � ������ 0.2844 0.0073 0.1957 0.0124 0.0129 0.49����� � ������ 0.3809 0.0078 0.1941 0.0161 0.0165 0.53����� � ������ 0.4770 0.0102 0.2931 0.0174 0.0170 0.79� ��� � ������ 0.7988 0.2996 0.0015 0.79����� � ������ 0.2012 0.2993 0.0014 0.88� values� ���� 0.00 0.59 0.00 0.00 0.50 0.05 0.04� ���� 0.00 0.74 0.20 0.00 0.06 0.00 0.10� ���� 0.00 0.48 0.75 0.00 0.56 0.45 0.23� ���� 0.00 0.00 0.13 0.00 0.10 0.68 0.08� ���� 0.00 0.76 0.00 0.00 0.74 0.03 0.18� ���� 0.00 0.46 0.55 0.00 0.02 0.29 0.99� ���� 0.00 0.77 0.17 0.00 0.25 0.08 0.08� � ��� 0.00 0.33 0.00 0.00 0.75 0.00 0.00� ���� 0.00 0.05 0.00 0.00 0.80 0.00 0.00����� � ������ 0.00 0.10 0.00 0.00 0.72 0.00 0.00����� � ������ 0.00 0.92 0.00 0.00 0.70 0.00 0.00� ��� � ������ 0.00 0.86 0.00 0.00 0.97 0.00 0.00����� � ������ 0.00 0.49 0.00 0.00 0.91 0.00 0.00����� � ������ 0.00 0.41 0.00 0.00 0.32 0.21 0.01� ��� � ������ 0.00 0.40 0.00 0.00 0.32 0.22 0.01

Table 9: ANOVA Results for the Main Effects Model (2 Groups)

The results for a simple main effects model with no interaction effects are given in Table 9.
The parameter superscript contains the group number in parentheses and the subscript indi-
cates the position of the parameter in the corresponding LISREL matrix. An entry in the table
means that the variable has an effect at the 1% level of significance (see the � values in the
lower half of the table). ANOVA results with an adjusted ��� less than 10% are not reported.

As can be seen from the parameters included in the first column of Table 9, the most striking
result is that estimates for group one are not affected (besides the fact that all ANOVA’s had
an adjusted �(� lower than 10%, the important aspect is that although there were a few sig-
nificant coefficients no clear pattern emerged). This is most probably due to the sample size
and misclassification problems already discussed before. In contrast, estimates for the pa-
rameters in group two are consistently affected by some experimental conditions. Given that
the true parameters for group two belong either to the “close” or “far” condition it is obvious
that every parameter is influenced by the variable “close”. After controlling for this factor,
some further significant effects on the parameter estimates, especially the error variances, ex-
ist. The variable “equal” as well as the estimation methods used have an influence. However,
the parameter estimates are not affected by the distribution of the regressor variables and the
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 �¡
Intercept Equal Close Equal ¢ Close EM EM Grad Adj. £�¤¥K¦ ¤�§¤�¨ © 0.493 0.761 © 0.065 © 0.023 © 0.016 0.93ª ¦ ¤�§¨�¨ 0.502 © 0.390 © 0.008 0.96ª ¦ ¤�§¨�¤ © 0.499 0.908 © 0.008 © 0.003 © 0.003 0.99ª ¦ ¤�§¨�« 0.500 0.496 0.004 0.97ª ¦ ¤�§¤�¨ 0.299 © 0.420 0.019 0.008 0.006 0.93ª ¦ ¤�§¤�¤ 0.992 © 0.826 0.028 0.011 0.006 0.97ª ¦ ¤�§¤�« © 0.503 0.780 0.026 0.007 0.005 0.95¬ ¦ ¤�§¨�¨ 0.245 0.005 0.470 © 0.030 © 0.006 0.92¬ ¦ ¤�§¤�¤ 0.242 0.006 0.449 © 0.007 © 0.004 0.93 �­�® ¦ ¤�§¨�¨ 0.286 0.170 0.029 0.016 0.012 0.79 �­�® ¦ ¤�§¤�¤ 0.480 0.006 0.089 0.009 0.016 0.014 0.53  ­�® ¦ ¤�§«�« 0.482 0.005 0.086 0.014 0.016 0.013 0.51 �­�® ¦ ¤�§¯�¯ 0.286 0.004 0.173 0.026 0.016 0.011 0.78 �­�® ¦ ¤�§°�° 0.382 0.006 0.174 0.023 0.018 0.013 0.79  ­�® ¦ ¤�§±�± 0.478 0.006 0.281 0.016 0.020 0.017 0.89² ¦ ¤�§¨ 0.979 © 0.091 0.090 0.038 0.026 0.24² ¦ ¤�§¤ 0.981 © 0.092 0.091 0.036 0.025 0.25² ¦ ¤�§« 0.980 © 0.090 0.087 0.038 0.025 0.26² ¦ ¤�§¯ 0.980 © 0.084 0.086 0.034 0.022 0.22² ¦ ¤�§° 0.978 © 0.085 0.086 0.035 0.024 0.23² ¦ ¤�§± 0.982 © 0.086 0.084 0.032 0.022 0.24³ ¨ 0.793 © 0.300 © 0.038 0.042 0.012 0.008 0.96³ ¤ 0.207 0.300 0.039 © 0.042 © 0.012 © 0.008 0.96´ values¥ ¦ ¤�§¤�¨ 0.000 0.019 0.000 0.000 0.000 0.000ª ¦ ¤�§¨�¨ 0.000 0.351 0.000 0.000 0.024 0.069ª ¦ ¤�§¨�¤ 0.000 0.193 0.000 0.000 0.001 0.005ª ¦ ¤�§¨�« 0.000 0.871 0.000 0.009 0.030 0.271ª ¦ ¤�§¤�¨ 0.000 0.033 0.000 0.000 0.000 0.000ª ¦ ¤�§¤�¤ 0.000 0.127 0.000 0.000 0.000 0.000ª ¦ ¤�§¤�« 0.000 0.644 0.000 0.000 0.000 0.011¬ ¦ ¤�§¨�¨ 0.000 0.006 0.000 0.000 0.000 0.625¬ ¦ ¤�§¤�¤ 0.000 0.000 0.000 0.001 0.008 0.464  ­�® ¦ ¤�§¨�¨ 0.000 0.064 0.000 0.000 0.000 0.000 �­�® ¦ ¤�§¤�¤ 0.000 0.000 0.000 0.000 0.000 0.000 �­�® ¦ ¤�§«�« 0.000 0.000 0.000 0.000 0.000 0.000  ­�® ¦ ¤�§¯�¯ 0.000 0.006 0.000 0.000 0.000 0.000 �­�® ¦ ¤�§°�° 0.000 0.000 0.000 0.000 0.000 0.000 �­�® ¦ ¤�§±�± 0.000 0.000 0.000 0.000 0.000 0.000² ¦ ¤�§¨ 0.000 0.655 0.000 0.000 0.000 0.000² ¦ ¤�§¤ 0.000 0.787 0.000 0.000 0.000 0.000² ¦ ¤�§« 0.000 0.775 0.000 0.000 0.000 0.000² ¦ ¤�§¯ 0.000 0.785 0.000 0.000 0.000 0.000² ¦ ¤�§° 0.000 0.759 0.000 0.000 0.000 0.000² ¦ ¤�§± 0.000 0.669 0.000 0.000 0.000 0.000³ ¨ 0.000 0.000 0.000 0.000 0.000 0.000³ ¤ 0.000 0.000 0.000 0.000 0.000 0.000

Table 10: ANOVA Results for the Interaction Model (2 Groups)
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knowledge of the true number of groups. The latter result confirms the finding of (Arminger,
Stein & Wittenberg, 1999) that parameter recovery was not negatively affected by skewed re-
gressors in the context of a conditional finite mixture model.

Table 10 reports the significant coefficients and µ values for an additional model with an
“Equal ¶ Close” interaction term and no terms for the variables “known” and “skewed” as
they were not significant in the main effects model. Although the factors “group proportions”
and “separation of parameter values” where orthogonal in our simulation design the interac-
tion term has a consistently significant effect on the parameter estimates. Compared to the
main effects model the estimation method has a significant effect on a much larger number
of parameters. This result is in line with the finding that MDE in conjunction with mixed
proportions and close parameters had a quite pronounced effect on mean bias and variance.

4 Summary and Conclusions
In this study we report the results of an extensive Monte Carlo simulation analysing the per-
formance of the MECOSA approach to conditional finite mixture structural equation models
when unobserved heterogeneity exists in a population. Here, we assume that a heterogenous
population consists of an unknown, but limited number of relatively homogenous subpopula-
tions. Specifically, we tested the three estimation methods (MDE, EM and EMG) available
in MECOSA and examined which experimental factors had a substantial influence on their
(relative) performance.

We first compared our results with those reported in Arminger, Stein & Wittenberg (1999)
and found that both were in close correspondence. Thus, for two groups with equal propor-
tions and a clear separation of the parameter sets, the parameters used for simulations were
very well recovered by all three estimation methods.

Since in empirical applications of the finite mixture approach the true number of components
is typically unknown to the researcher, he/she has to rely on statistical criteria to determine
the number of groups. The findings of our study clearly show that the modified likelihood
ratio test (ad hoc test) is inappropriate when the sample consists of three groups with unequal
mixing proportions and parameters are rather close together. Because such a situation does not
seem to be unrealistic for empirical applications, we thus recommend to use other criteria, for
example the parametric bootstrap test which is also implemented in MECOSA, to determine
the number of components.

Overall, MECOSA performed best when the group proportions where equal and parameters
where distinctly separated. Even in this situation both EM algorithms (EM and EMG) which
directly estimate the fundamental parameters performed slightly better with regard to mean
bias and variability than the two-stage MDE procedure. MECOSA performed worst under
conditions of close parameters and mixed proportions. As an ANOVA at the level of individ-
ual parameters has shown, a clear interaction effect between both factors exist. The results
also made clear that the MDE procedure performs considerably worse under these conditions.
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Since these are situations which typically occur in empirical studies (mixed proportions and/or
close parameters), we suggest to use only the first stage of the MDE procedure to test for the
number of components and to estimate the fundamental parameters by using the EMG method.
Such a strategy was already proposed by Arminger, Stein & Wittenberg (1999) albeit for very
large models.

Although our simulation design was set up such that various conditions researchers are likely
to encounter in their empirical applications were covered, it inevitably is subject to a whole
lot of restrictions. For example, sample size ( ·¹¸»ºi¼3¼i¼ ) has not been varied in our study.
Thus, future research should analyse the effect different sample sizes have on the performance
of MECOSA. Also the structural model used for data simulation was rather small for which
reason more complex models should be considered. Further investigations are also needed
concerning alternative overall test statistics (e.g., RMSEA). Because the ad hoc test used
to estimate the number of mixture components performed badly under specific conditions,
a comprehensive simulation study on alternative criteria is essential. Finally, an interesting
aspect for further studies concerns the robustness of MECOSA against violations of the as-
sumption that the endogenous variables are normally distributed conditional on the exogenous
regressors.

22



References
Aitkin, M., Anderson, D., and Hinde, J. (1981). Statistical modeling of data on teaching

styles. Journal of the Royal Statistical Society A 144, 419–461.

Aitkin, M. and Rubin, D. B. (1985). Estimation and hypothesis testing in finite mixture
models. Journal of the Royal Statistical Society B 47, 67–75.

Allenby, G. M. and Rossi, P. E. (1999). Marketing models of consumer heterogeneity.
Journal of Econometrics 89(4), 57–78.

Ansari, A., Jedidi, K., and Jagpal, H. S. (2000). A hierarchical bayesian methodology for
treating heterogenity in structural equation models. Marketing Science 19(4), 328–347.

Arminger, G. and Stein, P. (1997). Finite mixtures of covariance structure models with
regressors. Sociological Methods & Research 26(2), 148–182.

Arminger, G., Stein, P., and Wittenberg, J. (1999). Mixtures of conditional mean- and
covariance-structure models. Psychometrika 64(4), 475–494.

Arminger, G., Wittenberg, J., and Schepers, A. (1996). MECOSA 3 User Guide. Friedrichs-
dorf/Ts.: ADDITIVE GmbH.

Bagozzi, R. P., Yi, Y., and Nassen, K. D. (1999). Representation of measurement error
in marketing variables: Review of approaches and extension to three-facet designs.
Journal of Econometrics 89(1–2), 393–421.
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