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Abstract

In this paper, linear errors-in-response models are considered in the pres-
ence of validation data on the responses. A semiparametric dimension re-
duction technique is employed to define an estimator of β with asymptotic
normality, the estimated empirical loglikelihoods and the adjusted empiri-
cal loglikelihoods for the vector of regression coefficients and linear combi-
nations of the regression coefficients, respectively. The estimated empirical
log-likelihoods are shown to be asymptotically distributed as weighted sums
of independent χ2

1 and the adjusted empirical loglikelihoods are proved to be
asymptotically distributed as standard chi-squares, respectively. A simulation
study is conducted to compare the proposed methods in terms of coverage ac-
curacies and average lengths of the confidence intervals.

Key Words. Confidence intervals; Error-in-response; Validation data.

AMS 2000 Subject Classifications. Primary 62J05, Secondary 62E20



1 Introduction

Let Y be a scalar response variable and X be a p-variate explanatory variable in

regression. We consider the linear model

Y = X>β + e, (1.1)

where β = (β1, . . . , βp)
> is a p × 1 vector of unknown regression coefficients, ε is

a random statistical error, and given X, the errors e = Y − X>β are identically

independently distributed.

Regression problems where some of the predictors are measured with error have

been extensively studied. Excellent introductions to the area were provided by Fuller

(1987) and Carroll, Ruppert and Stefanski (1995). Here, we consider the problem

of error-in-response variables. This is a realistic situation. In a study of factors

affecting dietary intake of fat, e.g., sex, race, age, socioeconomic status, etc., true

long-term dietary intake is impossible to determine and instead it is necessary to

use error-prone measures of long term dietary intakes. Wittes, et al (1989) describe

another example in which damage to the heart muscle caused by a myocardial in-

farction can be assessed accurately using arterioscintography, but the procedure

is expensive and invasive, and instead it is common practice to use peak cardiac

enzyme level in the bloodstream as a proxy for the true response. Generally, the re-

lationship between the surrogate variables Ỹ and the true variables Y can be rather

complicated compared to the classical additive error structure usually assumed in

literature The additive error model is often not appropriate, and some authors [e.g.,

Buonaccorsi (1996); Carroll and Stefenski (1990); Pepe (1992)] have considered more

complex measurement error models for either regression or the response. The re-

sulting inferences, however, could be sensitive to the assumed model. Actually, in

many practical settings, it is even difficult to specify the relationship between true

variables and their surrogated variables. The most realistic situation may be that no

model structure between the true variables and surrogate variables or distribution
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assumption of the true variables given the surrogate variables is specified. However,

this situation presents serious difficulties towards obtaining correct statistical anal-

ysis. Biases caused by measurement errors could be difficult to access accurately

without extra observations and information. One of solutions is to use the help of

validation data. Some examples where validation data are available can be found

in Wittes, Lakatos and Probstfied (1989), Duncan and Hill (1985) and Pepe (1992)

among others. With help of validation data, some statisticians developed statisti-

cal inference techniques based on primary observations without specifying any error

structure and the distribution assumption of the true variable given the surrogate

variable. See, for example, Stefanski and Carroll (1987), Carroll and Wand (1991),

Pepe and Fleming (1991), Pepe (1992), Pepe et al (1994), Reilly and Pepe (1995),

Sepanski and Lee (1995), Wang (1999,2000) and Wang and Rao (2002) among oth-

ers.

For model (1.1), we consider settings where no model structure assumption be-

tween the true variables and surrogate variables or distribution assumption of Y

given Ỹ is specified, but some validation data are available to relate Y and Ỹ . With

help of validation data, we define the estimator of β and develop empirical likelihood

inference for β and its linear combinations. To use the surrogate Ỹ ′s, let us rewrite

the model (1.1) such that Ỹ is related to X. Notice that Ỹ and X provide useful

information in predicting the unknown Y . We rewrite the model (1.1) as

u(Z) = X>β + ε (1.2)

where Z = (Ỹ ,X), u(z) = E[Y |Z = z] and ε = e− Y − u(Z). If u(·) was a known

function , (1.2) is then a standard statistical model and hence standard statistical

inference approaches such as the least square and empirical likelihood due to Owen

(1991) for linear model can be applied to inference for β or linear combinations of

β from the primary data. Usually, u(·) is unknown. Hence, the LSE and empirical

log-likelihood functions contain unknown u(·). A natural method is to replace u(·)
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in the LSE and empirical log-likelihood functions by an estimator of u(·) and define

a final estimator of β and estimated empirical log-likelihood functions. Here, we

estimate u(·) by kernel regression approach. This method requires a large validation

data set, which is difficult or expensive to obtain, in order to be feasible because

of the use of kernel regression with p + 1 dimension explanatory variables Z. That

is, “curse of dimension” will limit this approach. We therefore propose a dimension

reduction technique by assuming

u(z) = m(α>z), (1.3)

where m(·) is an unknown function and α is a (p + 1) × 1 vector of unknown pa-

rameter. This assumption is reasonable in many applications. It applies at least to

generalized linear models and is conform with the class of single index models. In

(1.3), α can be first estimated by sliced inverse regression (SIR) techniques [see, e.g.,

Li (1991), Duan and Li (1991) and Zhu and Fang (1996)]. Then, we can estimate

u(·) by the kernel regression with univariate explanatory variable with validation

data. We will prove that the resulting estimator of β is asymptotically normal and

the estimated empirical log-likelihood functions for β and its linear combinations are

asymptotically weighted sums of independent χ2
1 variables with unknown weights,

respectively. As a result, they cannot be applied directly to construct confidence

regions for β. To overcome this difficulty, several different methods may be used. In

the first method, the unknown weights are estimated consistently so that the dis-

tribution of the estimated weighted sums of chi-squared variables can be calculated

from the data. In the second method, the estimated empirical loglikelihood func-

tions are adjusted so that the resulting adjusted empirical loglikelihood functions

are asymptotically distributed as standard chi-squares.

This paper is organized as follows. In Section 2, we define a modified LSE with

asymptotic normality. In Section 3, we define an estimated empirical loglikelihood

and an adjusted empirical loglikelihood for β, and show that the estimated empirical
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loglikelihood is asymptotically distributed as a weighted sum of indepedent χ2 and

the adjusted empirical loglikelihood is asymptotically distributed as a standard chi-

square. In Section 4, we define an estimated empirical loglikelihood and an adjusted

empirical loglikelihood for linear combinations of β and state their asymptotic results

similar to those in Section 3. In Section 5, we report some Monte Carlo simulation

results for the finite sample performation of the proposed approaches. The appendix

presents the proofs of the main results.

2 Estimation

Assume we have a validation data set containing n independent and identically

distributed observations of {(Ỹi, Yi,Xi)
n
i=1} and a primary data set containing N in-

dependent and identically distributed observations of {(Ỹj,Xj)
n+N
j=n+1}. The primary

data set is independent of the validation data set. If u(·) was known in (1.2), the

LSE for β with the primary data can be defined to be

β̃N =




n+N∑

j=n+1

XjX
>
j



−1

n+N∑

j=n+1

Xju(Zj),

In our setup, u(·) is unknown. We therefore use an estimator for u(·) in the above

formula. In what follows, we define the estimator of u(·) based on the dimension

reduction model (1.3).

Denote X = (X1, X2, · · · , Xp), R(Y ) = (R1(Y ), · · · , Rp+1(Y ))T = (E[Ỹ |Y ], E[X1|Y ],

· · · , E[Xp|Y ])T , Λ = Cov(R(Y )) = Cov(E[Z|Y ]). Denote by Zij the jth component

of Zi for i = 1, 2, · · · , n and j = 1, 2, · · · , p + 1. Let

R∗
nj(y) =

1

nh1,n

n∑

i=1

ZijK1

(
y − Yi

h1,n

)
, j = 1, 2, · · · , p + 1

and

f̂n(y) =
1

nh1,n

n∑

i=1

K1

(
y − Yi

h1,n

)
,
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where K1(·) is a kernel function and h1,n is a bandwidth. For each fixed b > 0, let

f̂nb(y) = max(f̂n(y), b)

R̂nb(y) =

(
R∗

nj(y)

f̂nb(y)

)

(p+1)×1

and

Λ̂n =
1

n

n∑

j=1

(R̂nb(Yj))(R̂nb(Yj))
> −


 1

n

n∑

j=1

R̂nb(Yj)





 1

n

n∑

j=1

R̂nb(Yj)



>

Let αn be the eigenvector corresponding to the maximum eigenvalue of Λ̂n. By

Zhu and Fang (1996), we can estimate α by αn. Then, u(z) = m(α>z) can be

estimated by

ûn(z) =

∑n
i=1 K2

(
α>n (z−Zi)

h2,n

)
Yi

∑n
i=1 K2

(
α>n (z−Zi)

h2,n

) (2.1)

where h2,n is a bandwidth and K2(·) is a kernel function. To avoid technical difficul-

ties due to small values in the denominator of ûn(·), we define a truncation version

of ûn(·).
Let f̂n,Z(z) = (n2h2,n)−1 ∑n

i=1 K2

(
α̂n(z−Zi)

h2,n

)
and f̂τn,Z(z) = max{f̂n,Z(z), τn} for

some positive constant sequence τn tending to zero. The truncated version of ûn(z)

is then defined by

ûτn(z) =
ûn(z)f̂n,Z(z)

f̂τn,Z(z)
.

We then can define a final estimator of β, β̂nN say, by replacing u(·) in β̃N with

ûτn(x). That is,

β̂n,N =




n+N∑

j=n+1

XjX
>
j



−1

n+N∑

j=n+1

Xjûτn(Zj).

Let Σ = EXX> and V1(β) = E[(u(Z) −X>β)2XX>] + λE[(Y − u(Z))2XX>],

where λ = N
n
.

Theorem 2.1 Under all the assumptions listed in the Appendix, we have

√
N(β̂n,N − β)

L−→ N(0, V (β)),
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where V (β) = Σ−1V1(β)Σ−1.

Remark 2.1 The first term in the asymptotic covariance of β̂n,N is the contri-

bution of the primary data, the Fisher information for β in the primary sample by

the regression relationship between u(z) and X. The second term represents the

extra cost due to estimation of unknown u(Z).

Remarl 2.2 The asymptotic covariance of β̂n,N can be estimated consistently

by

Vn,N = Σ−1
n,N V̂1(β̂n,N)Σ−1

n,N

where

Σn,N =
1

N

n+N∑

j=n+1

XjX
>
j

and

V̂1(β̂n,N) =
1

N

n+N∑

j=n+1

[(ûγn(Zj)−X>
j β̂n,N)2XjX

>
j ] +

N

n2

n∑

i=1

[(Yi − ûγn(Zi))
2XiX

>
i ].

Remark 2.3 To use information sufficiently, one may define the estimator of β

to be

β̃n,N = Σ̃−1
n,N Ãn,N ,

where Σ̃n,N = 1
n

∑n
i=1 XiX

>
i + 1

N

∑n+N
k=n+1 XkX

>
k and Ãn,N = 1

n

∑n
i=1 XiYi+

1
N

∑n+N
k=n+1 Xkuτn(Zk).

In most applications, however, the primary data set is large relative to the validation

data, i.e., λ is large. For example, in the nurses health study described by Rosner

et al (1989), λ = 517.6. In such cases, there is little information about β in the

validation data set, and there will be little difference between β̃n,N and β̂n,N . On

the other hand, It is much simpler to consider β̂n,N . For these reasons, we consider

β̂n,N only.
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3 Estimated and adjusted empirical likelihood for

β

We first give some motivations for defining an estimated empirical likelihood. Let

Aj(β) = Xj(u(Zj)−X>
j β). Then, we have EAj(β) = 0. Let Fp be the distribution

function which assigns probability pj at point (Xj, Ỹj), respectively, for j = n +

1, · · · , n + N . Then, we may define the empirical loglikelihood, evaluated at β, as

lN(β) = −2 max
n+N∑

j=n+1

log(Npj),

where the maximum is over
∑n+N

j=n+1 pjAj(β) = 0 and
∑n+N

j=n+1 pj = 1. If β is the

true parameter, then lN(β) can be shown to be asymptotically distributed as a

standard χ2 with p degrees of freedom. However, this result cannot be used to make

inference about β because lN(β) contains the unknown terms u(Zj), and hence β is

not identifiable. Naturally, we replace u(·) in lN(β) by an estimator of it and define

an estimated empirical log-likelihood, l̂N(β). Here, we replace u(·) in lN(β) with

ûτn(·) and define an estimated empirical log-likelihood by

l̂N(β) = −2 max∑n+N

j=n+1
pjÂj(β)=0

n+N∑

j=n+1

(NPj), (3.1)

where Âj(β) is Aj(β) with u(·) replaced with ûτn(·).
By using the Lagrange multiplier method, the optimal values of p′js satisfying

(3.1) can be shown to be

pj =
1

N

1

1 + λ>Âj(β)
,

where λ is the solution of the equation

1

N

n+N∑

j=n+1

Âj(β)

1 + λ>Âj(β)
= 0. (3.2)

This yields

l̂n,N(β) = 2
n+N∑

j=n+1

log{1 + λ>(ûτn(Zj)−X>
j β)}. (3.3)
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Let V0(β) = E[XX>(u(Z)−X>β)2].

Theorem 3.1 Under the assumptions given in the Appendix, if β is the true

parameter, we have

l̂n,N(β)
L−→

p∑

i=1

wiχ
2
1,i,

where χ2
1,i for 1 ≤ i ≤ p are independent χ2

1 variables and w1, w2, · · · , wp are the

eigenvalues of D(β) = V −1
0 (β)V1(β) with V1(β) defined in Theorem 2.1.

To apply Theorem 3.1 to construct a confidence region or inteval for β, we must

estimate the unkown weights wi consistently. By the “plug in” method, V1(β) and

V0(β) can be estimated consistently by V̂1(β̂n,N), which is defined in Section 2, and

V̂0(β̂n,N) = N−1
n+N∑

j=n+1

[XjX
>
j (ûτn(Zj)−X>

j β̂n,N)2]

respectively. This implies that the eigenvalues of D̂(β̂n,N) = V̂ −1
0 (β̂n,N)V̂1(β̂n,N), ŵi

say, estimate wi consistently for i = 1, 2, · · · , p. Let ĉα be the 1 − α quantile of

the conditional distribution of the weighted sum Ŝ = ŵ1χ
2
1,1 + · · · + ŵpχ

2
1,p given

the data. Then the confidence region for β with asymptotically correct coverage

probability 1− α can be defined to be

Îα(β̃) = {β̃ : l̂n,N(β̃) ≤ ĉα}.

In practice, the conditional distribution of the weighted sum Ŝ given the data

{(Xi, Yi, Ỹi)
n
i=1} and {(Xj, Ỹj)

n+N
j=n+1} can be obtained using Monte Carlo simulations

by repeatedly generating independent samples χ2
1,1, · · · , χ2

1,p from the χ2
1 distribution.

In the absence of measurement error, D(β) reduces to an identity matrix so that

wi = 1 for 1 ≤ i ≤ p and Theorem 3.1 reduces to Owen’s (1991) result that the

empirical loglikelihood is asymptotically χ2
p. Next, we define an adjusted empirical

log-likelihood whose asymptotic distribution is a standard chi-square.

Let

Ĥ(β) = {
n+N∑

j=n+1

Âj(β)}{
n+N∑

j=n+1

Âj(β)}>.
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By examing the asymptotic expansion of l̂n,N(β), we define an adjusted empirical

loglikelihood by

l̂ad(β) = r̂(β)l̂n,N(β), (3.4)

which can be proved to be asymptotically χ2
p, where

r̂(β) =
tr(V̂ −1(β)Ĥ(β))

tr(V̂ −1
0 (β)Ĥ(β))

.

Theorem 3.2. Under the regularity conditions given in the appendix, if β is

the true value of the parameter, we have

(a) as n →∞
l̂ad(β)

L−→ χ2
p,

where χ2
p is a standard chi-square random variable with p degrees of freedom.

(b)

lim
n→∞P (β ∈ Îad,α(β̃)) = 1− α,

where Îad,α(β̃) = {β̃ : l̂ad(β̃) ≤ χ2
p,α} with χ2

p,α the 1−α quantile of the χ2
p distribution

for 0 < α < 1.

4 Estimated and adjusted empirical likelihoods

for linear combinations of β

In practice, statisticians are often confronted with the problem of constructing con-

fidence intervals or regions for a particular regression coefficient, a subvector of β or

linear combinations of β. To address this problem, we develop empirical likelihood

method to make inference for a vector of linear combinations θ = Cβ of β, where

C = (C1, C2), C1 is a k × k matrix and C2 is a k × (p − k) matrix. For example,

θ is the subvector of the first k regression coefficients if C1 = Ik and C2 = 0. If

k = 1, then θ reduces to a single linear combination, which includes an individual

regression coefficients and the mean response at a given X level as special cases.

Without loss of generality, we assume that C−1
1 exists.
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Let γ = (θ>, β>0(k))
>, where β0(k) denotes the column subvector of the last p− k

elements of β. Let Xi = (X>
i1,X

>
i2)

>, where Xi1 and Xi2 are k × 1 and (p− k) × 1

subvectors. Let X̃i = (X̃>
i1, X̃

>
i2)

> = (X−1
i1 C−1

1 ,X>
i2 − X>

i1C
−1
1 C2)

>. Then, model

(1.2) reduces to

u(Zj) = X̃>
j γ + ε, j = n + 1, · · · , n + N.

If u(·) was known, the LSE of γ can be defined to be γ̃n,N = (
∑n+N

j=n+1 X̃jX̃
>
j )−1

(
∑n+N

j=n+1 X̃ju(Zj)). Let β̃n(k) denote the subvector of the last p− k elements of γ̃n,N .

We have

E{X̃j1(u(Zj)− X̃>
j1θ − X̃>

j2β̃n(k)} = 0, j = n + 1, · · · , n + N.

Let γ̂n,N be γ̃n,N with u(·) replaced by ûτn(·). Let β̂n(k) denote the subvector of the

last p− k elements of γ̂n,N .

Similar to the previous section, for a given θ, we introduce the following auxiliary

variables

Ŵj(θ) = X̃j1(ûτn(Zj)− X̃>
j1θ − X̃>

j2β̂n(k))

and define an estimated empirical log-likelihood function

l̃n,N(θ) = 2
n+N∑

j=n+1

log(1 + ζ>Ŵj(θ)),

where ζ is the solution of the following equation

n+N∑

j=n+1

Ŵj(θ)

1 + ζ>Ŵj(θ)
= 0.

Let X̃ = (X̃>
1 , X̃>

2 )> and

K = E(X̃1X̃
>
2 )

P = E(X̃2X̃
>
2 )

η = X̃1 − E(X̃1X̃
>){E[X̃X̃>]}−1X̃

+E[X̃1X̃
>
1 ]{E(X̃1X̃

>
1 )−K>P−1K}−1(X̃1 −K>P−1X̃2),

V ∗
0 (θ) = E[X̃1X̃

>
1 (u(Z)− X̃>

1 θ − X̃>
2 β(k))

2],

V ∗
1 (θ) = E[(u(Z)− X̃>

1 θ − X̃>
2 β(k))

2ηη>]] + λE[(Y − u(Z))2ηη>]
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Theorem 4.1 Under the assumptions listed in the Appendix, we have

l̃n,N(θ)
L−→

k∑

i=1

w̃1,iχ1,i,

where w̃1,i, 1 ≤ i ≤ k are the eigenvalues of V ∗
0
−1(θ)Ṽ ∗

1 (θ) and χ2
1,i is independent

standard χ2
1 variables for i = 1, 2, · · · , k.

Let

KN =
1

N

n+N∑

j=n+1

X̃j1X̃
>
j2,

PN =
1

N

n+N∑

j=n+1

X̃j2X̃
>
j2,

ηj = X̃j1 −

 1

N

n+N∑

j=n+1

X̃j1X̃
>
j





 1

N

n+N∑

j=n+1

X̃jX̃
>
j



−1

X̃j,

+


 1

N

n+N∑

j=n+1

X̃j1X̃
>
j1





 1

N

n+N∑

j=n+1

X̃j1X̃
>
j1 −K>

NP−1
N KN



−1 (

X̃j1 −K>
NP−1

N X̃j2

)
,

V̂ ∗
0 (θ) =

1

N

n+N∑

j=n+1

X̃jX̃
>
j (ûτn(Zj)− X̃>

j1θ − X̃>
j2β̂(k))

2,

V̂ ∗
1 (θ) =

1

N

n+N∑

j=N+1

[(ûτn(Zj)− X̃>
j1θ − X̃>

j2β̂(k))
2η̂j η̂

>
j ]

+
N

n2

n∑

i=1

[(Yi − ûτn(Zi))
2η̂iη̂

>
i ]

and

H̃(θ) =


 1√

N

n+N∑

j=n+1

Wj(θ)





 1√

N

n+N∑

j=n+1

Wj(θ)



>

.

An adjusted empirical loglikelihood is then defined by

l̃ad(θ) = r̃(θ)l̃n,N(θ),

where

r̃n(θ) =
tr(V̂ ∗−1

1 (θ)H̃(θ))

tr(V̂ ∗−1

0 (θ)H̃(θ))
.

Theorem 4.2 Assume the assumptions listed in the Appendix, if θ is the true

value of the parameter,we have

11



(a) as n →∞
l̃ad(θ)

L−→ χ2
k,

where χ2
k is a standard chi-square random variable with k degrees of freedom.

(b)

lim
n

P (θ ∈ Ĩad,a(θ̃)) = 1− α,

where Ĩad,α(θ̃) = {θ̃ : l̃ad(θ̃) ≤ χk,α} with χ2
k,α the 1−α quantile of the χ2

k distribution

for 0 < α < 1.

5 Simulation Studies

We conducted simulation to better understand the finite-sample performances of the

proposed inferential procedures.

In our simulation studies, we consider the two cases of p = 1 and p = 2.

For the case of p = 1, The surrogates Ỹ were generated as the standard nor-

mal random variables. The linear model considered was Y = X>β + e, where

β = 2.30 and X was generated from a standard exponential distribution, while

e given Z = (X, Ỹ ) was normally distributed with mean (α>Z)2 − 2.30X + 0.69

and variance σ2 = 1, where α = (1.23, 0.32)>. We estimate α using αn given in

Section 2. The simulation were run with validation data and primary data sizes

of (n,N) = (10, 30), (30, 90), (60, 180), (10, 50), (30, 150) and (60, 300). The band-

widths h1,n = n−
15
96 and h2,n = n−

2
5 , and the kernel functions K1(·) and K2(·) are

taken to be

K1(u) =

{
−15

8
u2 + 9

8
, −1 ≤ u ≤ 1

0, otherwise

and

K2(u) =

{
15
16

(1− 2u2 + u4), −1 ≤ u ≤ 1
0, otherwise

bn and τn were taken to be n−
1
24 respectively. We calculated the coverage proba-

bilities and the average lengths of the confidence intervals, with nominal level 0.90

12



and 0.95, respectively, by using 5000 simulation runs. The simulation results are

presented in Tables 1 and 2.

Insert Tables 1 and 2 here

From Tables 1 and 2, the estimated and adjusted empirical log-likelihood con-

fidence intervals have higher coverage accuracies and shorter average lengths than

the normal approximation based confidence intervals. It is easily observed that the

normal approximation based confidence intervals are consistently over-covering, but

they do this by using long intervals. The adjusted empirical log-likelihood performs

slightly better than the estimated empirical log-likelihood in terms of coverage ac-

curacies and average lengths.

For the case of p = 2. The surrogates Ỹ were generated as the standard normal

random variables. Consider the linear model (1.1) with β = (−1.24, 3.10)> , where

X was generated from a standard bivariate normal distribution with correlation

coefficient ρ = 0.62; while e given Z = (X>, Ỹ )> was normally distributed with

mean (α>Z)2 − X>β − 4.79 and variance σ2 = 1, where α = (0.25,−1.31, 1.85)>.

We estimate α using αn given in Section 2. The simulation were run with the same

validation data and primary data sizes as in the case of p = 1. Also, h1,n, h2,n, K1(·),
K2(·), bn and τn were taken to be the same as in the case of p = 1. We calculated the

coverage probabilities of the confidence intervals, with nominal level 0.90 and 0.95,

respectively, by using 5000 simulation runs. The simulation results are reported in

Tables 3.

Insert Table 3 here
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From Table 3, the normal approximation method leads to significantly lower

coverage probabilities than the norminal levels when sample sizes are not large. The

estimated and adjusted empirical log-likelihood methods outperform the normal

approximation based methods in terms of coverage accuracy when sample sizes are

small or moderate. Generally, the adjusted empirical log-likelihood behaves better

slightly than the estimated empirical log-likelihood.

From Tables 1, 2 and 3, all the methods perform better in terms of coverage

accuracies and average lengths as N increases with n constants. However, this

improvement is small compared to increasing both n and N .

6 Appendix

(C.u): u(·) has bounded partial derivatives of order two

(C.X): E[X4
ir] < ∞, r = 1, 2, · · · , p

(C.Ỹ ): E|Ỹ |4 < ∞
(C.Y): supz∈Z E[Y 2|Z = z] < ∞
(C.e)i: E[e|Z] = 0

ii: supz∈Z E[e2|Z = z] < ∞
(C.Σ): E[XXτ ] is a positive definite matrix

(C.K1)i: K1(·) is symmetric about 0 with bounded support [−1, 1]

ii:
∫ 1
−1 K1(u) du = 1 and

∫ 1
−1 uiK1(u) du = 0, i = 1, 2, 3

(C.h1,n): As n → ∞, h1,n ∼ n−c1 , b ∼ n−c2 with positive numbers c1 and c2

satisfying that 1
8
+ c2

4
< c1 < 1

4
− c2, and the notation ”∼” means that two quatities

have the same coverage order.

(C.K2): K2(·) is a bounded nonnegative kernel function of order one with bounded

support.

(C.h2,n)i: nh
3
2
2,nτn →∞

14



ii:
nh3

2,n

τn
→ 0

(C.f)i:
√

NE{‖Xu(Z)‖I[fZ(Z) ≤ τn]} −→ 0

ii: fZ(z) has bounded partial derivatives of order one.

(C.Nn): N
n
→ λ, where λ is a nonnegative constant

(C.R∗): R∗
i (y) for i = 1, 2, · · · , p + 2, and fY (y) are 3-times differentable and

their third derivatives satisfy the following conditions: there exists a neighborhood

of the orign, say U1, and a constant c > 0 such that for any u ∈ U

|f (3)
Y (y + u)− f

(3)
Y (u)| ≤ c|u|,

|R∗
i
(3)(y + u)−R

∗(3)
i (u)| ≤ c|u|, i = 1, 2, · · · , p

(C.R)i: For pair 1 ≤ i, l ≤ p + 2 and for any u ∈ U

|Ri(y + u)Rl(y + u)−Ri(y)Rl(y)| ≤ c|u|

ii:
√

nERi(Y )Rl(Y )I[fY (Y ) < b] = o(1) as n → ∞, for 1 ≤ i, l ≤ d, where

I[·] is the indicator function and b satisfies (C.h1,n)

Remark: (C.X), (C.Y), (C.K1), (C.h1,n), (C.R∗), (C.R) are used in Zhu and

Fang (1997) to obtain the result α̂n − α = Op(n
− 1

2 ). The remaining conditions are

standard.

Clearly

β̂n,N − β = Σ−1
n,NAn,N (A.1)

and

Σn,N
p−→ Σ, (A.2)

where Σn,N and Σ are defined in Section 2 and

An,N =
1

N

n+N∑

k=n+1

Xk(ûτn(Zk)−X>
k β)

To prove Theorem 2.1, we need prove the following lemmas

Lemma A.1 Under the assumptions of Theorem 2.1, we have

An,N = 1
N

∑n+N
k=n+1 Xk(u(Zk)−X>

k β)

+ 1
nN

∑n+N
k=n+1

∑n
i=1

Xk(Yi−u(Zk))K2

(
α>(Zi−Zk)

h2,n

)

h2,nfZ(Zk)
+ op(N

− 1
2 )

(A.3)
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Let ũτn(·) be ûτn(·) with αn replaced By α. Let fτn(·) = max{fZ(·), τn} and uτn(·) =

u(·)fZ(·)
fτn (·) . Then, we have

An,N = 1
N

n+N∑
k=n+1

Xk(u(Zk)−X>
k β)

+ 1
N

n+N∑
k=n+1

Xk(uτn(Zk)− u(Zk))

+ 1
N

n+N∑
k=n+1

Xk(ũτn(Zk)− uτn(Zk))

+ 1
N

n+N∑
k=n+1

Xk(ûτn(Zk)− ũτn(Zk))

(A.4)

Let R, S and T be the second, third and fourth terms on the right hand side of

(A.4). For any ε > 0, we have

P (
√

N‖R‖ > ε)

≤ P ( 1√
N

n+N∑
k=n+1

‖Xku(Zk)‖[fZ(Zk) < τn] > ε)

≤ ε−1
√

NE{‖Xu(Z)‖I[fZ(Z) < τn]} −→ 0

(A.5)

by condition (C.f). This proves

R = op(n
− 1

2 ). (A.6)

Let

4n(z) = f̂n,Z(z)− f(z)

and

4τn(z) = f̃τn,Z(z)− f(z).

By some algebra, we have

S = 1
nN

n+N∑
k=n+1

n∑
i=1

Xk(Yi−u(Zk))K2

(
α>(Zi−Zk)

h2,n

)

h2,nfZ(Zk)

+rnN,1 + rnN,2 + rnN,3 + rnN,4,

(A.7)

where

rn,N1 = − 1
N

Xk(ûn(Zk)−u(Zk))f̃n,Z(Zk)(fτn,Z(Zk)−f(Zk))

fτn,Z(Zk)fZ(Zk)

rn,N2 = 1
N

n+N∑
k=n+1

Xku(Zk)[fτn,Z(Zk)f̂n,Z(Zk)−fZ(Zk)f̂bn(Zk)]

f2
τn,Z(Zk)

rn,N3 = − 1
N

n+N∑
k=n+1

Xk(ũn(Zk)f̃n,Z(Zk)−u(Zk)fZ(Zk))4τn (Zk)

f2
τn,Z(Zk)

rn,N4 = 1
N

n+N∑
k=n+1

Xkũn(Zk)f̃n(Zk)42
bn

(Zk)

f2
τn(Zk)f̃τn (Zk)
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Note that

rn,N1 =
1

nN

n+N∑

k=n+1

n∑

i=n

Xk(Yi − u(Zk))K2

(
α>(Zi−Zk)

h2,n

)

h2,nfτn,Z(Zk)fZ(Zk)
(fτn(Zk)− f(Zk)).

Hence, by (C.f) and (C.K2) and some standard arguments we have

√
NE‖rn,N1‖ ≤

√
N
n

n∑
i=1

E{‖Xi(Yi − u(Zi))‖I[f(Zi) < τn]}
≤ √

NE{‖X(Y − u(Z))‖I[fZ(Z) < τn]} −→ 0
(A.8)

Let

Cn(Zk) =
Xku(Zk)(fτn(Zk)f̂n,Z(Zk)− fZ(Zk)f̂τn,Z(Zk))

f 2
τn

(Zk)

Then, we have

rn,N2 = 1
N

n+N∑
k=n+1

Cn(Zk)I[fZ(Zk) < τn, f̂n,Z(Zk) ≤ −τn]

+ 1
N

n+N∑
k=n+1

Cn(Zk)I[fZ(Zk) < τn,−τn < f̂n,Z(Zk) < τn]

+ 1
N

n+N∑
k=n+1

Cn(Zk)I[fZ(Zk) ≥ 2τn, f̂n,Z(Zn) < τn]

+ 1
N

n+N∑
k=n+1

Cn(Zk)I[τn ≤ fZ(Zk) < 2τn, f̂n,Z(Zk) < τn]

+ 1
N

n+N∑
k=n+1

n+N∑
k=n+1

Cn(Zk)I[fZ(Zk) < τn, f̂n,Z(Zk) ≥ 2τn]

+ 1
N

n+N∑
k=n+1

Cn(Zk)I[fZ(Zk) < τn, τn ≤ f̂n,Z(Zk) < 2τn)

:=
6∑

i=1
Jn,Ni

(A.9)

For any ε > 0, we have

P (
√

N |Jn,N1| > ε) ≤ P (sup
z
|f̂n,Z(z)− fZ(z)| > τn). (A.10)

By some standard arguments, it can be shown that

P (sup
z
|f̂n,Z(z)− fZ(z)| > τn) −→ 0 (A.11)

by (C.K2) and (C.h2,n). This together with (A.10) proves

|Jn,N1| = op(N
− 1

2 ). (A.12)
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It is easy to see that |fτn(Zk)f̂n(Zk) − fZ(Zk)f̂τn(Zk)| ≤ 2τ 2
n as f(Zk) < τn and

−τn ≤ f̂n(Zk) ≤ τn. Hence, we have

|Jn,N2| ≤ 2

N

n+N∑

k=n+1

‖Xku(Zk)‖I[f(Zk) < τn]

By Markov inequality and condition (C.f), we get

Jn,N2 = op(N
− 1

2 ). (A.13)

If f(Zi) > τn and f̂n(Zi) < τn, we have

|fτn(Zi)f̂n(Zi)− f(Zi)f̂τn(Zi)| ≤ τnf(Zi). (A.14)

This together with the fact fτn(Zi) ≥ τn and fτn(Zi) ≥ f(Zi) proves

|Jn,N3| ≤ 1

N

n+N∑

k=n+1

‖Xku(Zk)‖I[fZ(Zk) ≥ 2τn, f̂n,Z(Zk) < τn] (A.15)

and

|Jn,N4| ≤ 1
N

n+N∑
k=n+1

‖Xku(Zk)‖I[τn < f(Zk) < 2τn, f̂n,Z(ZI) < τn]

≤ 1
N

n+N∑
k=n+1

‖Xku(Zk)‖I[fZ(Zk) ≤ 2τn].
(A.16)

By (A.15) and (A.11), for any ε > 0 we have

P (
√

N |Jn,N3| > ε) ≤ P [sup
z
|f̂n,Z(z)− fZ(z)| > τn) → 0.

This proves

Jn,N3 = op(N
− 1

2 ). (A.17)

Similarly, we have

Jn,N5 = op(N
− 1

2 ). (A.18)

By (A.16) and (C.f), similar to (A.13) we have

Jn,N4 = op(N
− 1

2 ). (A.19)

18



Similarly, we have

|Jn,N6| = op(N
− 1

2 )

This together with (A.9), (A.12), (A.13), (A.16)-(A.20) together prove

rn,N2 = op(N
− 1

2 ). (A.20)

Let

An(z) = (nh2,n)−1
n∑

i=1
(Yi − u(Zi))K2

(
α>(z−Zi)

h2,n

)

Bn(z) = (nhn,2)
−1

n∑
i=1

(u(Zi)− u(z))K2

(
α>(z−Zi)

h2,n

)

Then, we have

rn,N3 = − 1
N

n+N∑
k=n+1

XkAn(Zk)4τn (Zk)
f2

τn,Z(Zk)
− 1

N

n+N∑
k=n+1

XkBn(Zk)4τn (Zk)
f2

τn,Z(Zk)

− 1
N

n+N∑
k=n+1

Xku(Zk)4n(Zk)4τn (Zk)
f2

τn,Z(Zk)
:= rn,N31 + rn,N32 + rn,N33

(A.21)

Clearly,

|rn,N31| ≤

 1

N

n+N∑

k=n+1

∣∣∣An(Zk)Xk

f 2
τn,Z(Zk)

∣∣∣

 sup

z
|4τn(z)|.

Standard arguments can be used to prove that

1

N

n+N∑

k=n+1

∣∣∣An(Zk)Xk

f 2
τn,Z(Zk)

∣∣∣ = Op((nhn,2)
− 1

2 τ−2
n ) (A.22)

and

sup
z
|4τn(z)| ≤ sup

z
|4n(z)| = Op((nh2,n)−

1
2 ) + Op(h

2
2,n) (A.23)

Hence, (A.22) and (A.23) together with (C.h2,n) prove

rn,N31 = op(N
− 1

2 ). (A.24)

Clearly,

‖rn,N32‖ ≤ 1

N

∥∥∥∥∥∥

n+N∑

k=n+1

XkBn(Zk)

fτn(Zk)

∥∥∥∥∥∥
supz |4τn(z)|

τn

(A.25)

By (C.u), (C.X) and (C.K2), standard arguments can be used to prove

1

N

∥∥∥∥∥∥

n+N∑

k=n+1

XkBn(Zk)

fτn,Z(Zk)

∥∥∥∥∥∥
= Op((nh2,n)−

1
2 τ−2

n ). (A.26)
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By (A.23), (A.25), (A.26) and (C.h2,n), it follows that

‖rn,N32‖ = op(N
− 1

2 ). (A.27)

For rn,N33, we have

‖rn,N33‖ ≤ τ−2
n (sup

z
|4n(z)‖)2


 1

N

n+N∑

k=n+1

‖Xku(Zk)‖

 .

By (A.23) and conditions (C.h2,n), it follows that

‖rn,N33‖ = op(N
− 1

2 ). (A.28)

(A.21), (A.24), (A.27) and (A.28) together prove

rn,N3 = op(N
− 1

2 ). (A.29)

Note that f̃n(Zk)/f̃τn(Zk) ≤ 1 and hence we have

‖rn,N4‖ ≤ 1

N

n+N∑

k=n+1

‖Xkũn(Zk)

f 2
τn

(Zk)
42

n(Zk)‖.

Similar to (A.28), we get

rn,N4 = op(N
− 1

2 ). (A.30)

By Theorem 2 of Zhu and Fang (1996), we have

αn − α = Op(n
− 1

2 ). (A.31)

Hence, the same arguments as those used in the proof of Härdle and Stoke (1981)

can be applied to the proof of the following

P (sup
z
|f̂τn,Z(z)− f̃τn,Z(z)| > τn) −→ 0 (A.32)

as τnN
2
5 →∞, which is implied by (C.h2,n). Using (A.31), (A.32) and the inequality

of Theorem 3.3 of Härdle and Stoke (1989), we have

T = op(N
− 1

2 ). (A.33)
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By (A.4), (A.6), (A.7), (A.8), (A.20), (A.29), (A.30) and (A.33), we prove Lemma

A.1.

Lemma A.2. Under the assumptions of Theorem 2.1, we have

√
NAn,N

L−→ N(0, V1(β)).

Proof. Let Vi = (Yi, Ỹi,Xi) and Wk = (Xk, Ỹk). Let

Ψn(Vi,Wk; h2,n) = Xk(u(Zk)−X>
k β) +

Xk(Yi − u(Zk))K2

(
α>(Zi−Zk)

h2,n

)

h2,nfZ(Zk)

and

Un,N =
1

n
√

N

n∑

i=1

n+N∑

k=n+1

Ψ(Vi,Wk; h2,n).

Clearly, Un,N is a two sample statistic. By (C.u), we have

E[Ψn(V, W ; h2,n)|V ] −→ X(Y − u(Z)) (A.34)

By (C.u) and (C.K2), we have

E[Ψn(V, W ; h2,n)|W ]
= X(u(Z)−X>β)

+
X

∫
(u(z)−u(Z))K2

(
α>(z−Z)

h2,n

)
f(z) dz

h2,nfZ(Z)

−→ X(u(Z)−X>β)

(A.35)

Clearly,

E[Ψn(V,W ; h2,n)] = E{E[Ψn(V, W ; h2,n)|W ]}

= E
X

∫
(u(z)−u(Z))K2

(
α>(z−Z)

h2,n

)
fZ(z) dz

h2,nfZ(Z)
.

(A.36)

By derivative mean theorem and (C.u), we have

∣∣∣
∫

(u(z)− u(Z))K2

(
α>(z − Z)

h2,n

)
fZ(z) dz

∣∣∣ ≤ ch2
2,nfZ(Z). (A.37)

By (A.36) and (A.37), we get

‖EΨn(V,W ; h2,n)‖ ≤ Ch2,n. (A.38)
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Condition (C.h2,n) implies nh2
2,n → 0. This together with (A.38) proves

√
NEΨn(V, W ; h2,n) −→ 0. (A.39)

Lemma B.1 of Sepanski and Lee (1995) together with (A.34), (A.35) and (A.39)

proves Lemma A.2.

Proof of Theorem 2.1. Theorem 2.1 is a direct result of (A.1), (A.2), Lemma A.1

and A.2.

Proof of Theoerm 3.1 By Wang and Rao (2002), standard arguments can be used

to prove 



maxn+1≤j≤n+N Âj(β) = op(N
1
2 ),

1
N

n+N∑
j=n+1

Â>
j (β)Âj(β) = Op(1)

λ = Op(N
− 1

2 ).

(A.40)

Applying Taylor’s expansion to (3.3), and using (A.40), we get

l̂n,N(β) = 2
n+N∑

j=n+1

{λ>N Âj(β)− 1

2
(λ>N Âj(β))2}+ op(1). (A.41)

Applying Taylor’s expansion to (3.2), and using (A.40), we have

n+N∑

j=n+1

λN Âj(β) =
n+N∑

j=n+1

(λ>N Âj(β))2 + op(1) (A.42)

and

λN =




n+N∑

j=n+1

Âj(β)Â>
j (β)



−1

n+N∑

j=n+1

Âj(β) + op(n
− 1

2 ). (A.43)

(A.41), (A.42) and (A.43) together yield

l̂n,N(β) = { 1√
N

n+N∑

j=n+1

Âj(β)}>V̂ −1
0 (β){ 1√

N

n+N∑

j=n+1

Âj(β)}+ op(1). (A.44)

where V̂0(·) is defined in Section 3.

It can be shown that V̂0(β)
p−→ V0(β) by the fact α̂n − α = Op(n

− 1
2 ) and some

standard arguments. This together with (A.44) proves

l̂n,N(β) = { 1√
N

V − 1
2 (β)

n+N∑

j=n+1

Âj(β)}>D(β){ 1√
N

V − 1
2 (β)

n+N∑

j=n+1

Â(β)}+ op(1)

(A.45)
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where D(β) = V
1
2 (β)V −1

0 (β)V
1
2 (β).

Using arguments similar to Wang and Rao (2002), Theorem 3.1 can be proved

by Lemma A.2 and (A.45).

Proof of Theorem 3.2

By Lemma A.2 and the facts V̂1(β)
p−→ V1(β) and V̂0(β)

p−→ V0(β), it can be

shown

r̂(β) = Op(1). (A.46)

This together with (A.44) proves

l̂ad(β) = { 1√
N

n+N∑

j=n+1

Âj(β)}V̂ −1
1 (β){ 1√

N

n+N∑

j=n+1

Âj(β)}+ op(1).

By Lemma A.2 and the fact V̂1(β)
p−→ V1(β), Theorem 3.2 (i) is then proved.

Theorem 3.2 (ii) is a direct result of (i).

Proof of Theorem 4.1. Similar to (A.44), we have

l̃n,N(θ) = { 1√
N

n+N∑

j=n+1

Ŵj(θ)}V̂ ∗−1
0 (θ){ 1√

N

n+N∑

j=n+1

Ŵj(θ)}+ op(1), (A.47)

where V̂ ∗
0 (θ) is defined in Section 4.

Observe that

1√
N

n+N∑
j=n+1

Ŵj(θ) = 1√
N

n+N∑
j=n+1

X̃j1(ûτn(Zj)− X̃>
j γ)

+ 1√
N

n+N∑
j=n+1

X̃j1X̃
>
j (γ − γ̂n)

+ 1√
N

n+N∑
j=n+1

X̃j1X̃
>
j1(θ̂n − θ)

:= TN1 + TN2 + TN3

(A.48)

Standard arguments can be used to get

TN2 = −{E[X̃j1X̃
>
j ]}{EX̃jX̃

>
j }{

1√
N

n+N∑

j=n+1

X̃j(uτn(Zj)− X̃>
j γ)}+ op(1) (A.49)

and

TN3 = E{X̃j1X̃
>
j1}{E(X̃j1X̃

>
j1)−K>P−1K}−1

×
[

1√
N

n+N∑
j=n+1

(X̃j1 −K>P−1X̃j2)(ûτn(Zj)− X̃>
j γ)] + op(1).

(A.50)
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It follows from (A.48)—(A.50)

1√
N

n+N∑

j=n+1

Ŵj(θ) =
1√
N

n+N∑

j=n+1

ηj(ûτn(Zj)− X̃>
j γ) + op(1)

L−→ N(0, V ∗
1 (θ)), (A.51)

where V ∗
1 (θ) is as defined in Section 4. Note that V̂ ∗

0 (θ)
p−→ V ∗

0 (θ), where V ∗
0 (θ) is

defined in Section 4. This together with (A.47) proves Theorem 4.1 by arguments

similar to Lemmas A.1 and A.2.

Proof of Theorem 4.2 The arguments are similar to that of Theorem 3.2 from

Theorem 4.1.
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Table 1. Simulated coverage probabilities of the 1− α normal approximation
(NA),estimated empirical likelihood (EEL) and adjusted empirical likelihood (ADEL)

confidence intervals for β

1− α = 90% 1− α = 95%

Sample size NA EEL ADEL Normal EEL ADEL

(10,30) 0.975 0.841 0.847 0.992 0.917 0.925
(30,90) 0.942 0.878 0.889 0.981 0.934 0.937
(60,180) 0.910 0.894 0.897 0.961 0.945 0.947

(10,50) 0.970 0.844 0.833 0.984 0.921 0.928
(30,150) 0.934 0.881 0.894 0.969 0.939 0.941
(60,300) 0.912 0.894 0.899 0.958 0.946 0.945



Table 2. Simulated average lengths of the 1− α normal approximation (NA),estimated
empirical likelihood (EEL) and adjusted empirical likelihood (ADEL) confidence

intervals for β

1− α = 90% 1− α = 95%

Sample size NA EEL ADEL Normal EEL ADEL

(10,30) 2.202 1.685 1.512 2.487 1.714 1.658
(30,90) 1.751 1.450 1.386 2.125 1.543 1.486
(60,180) 1.327 0.971 0.874 1.641 1.072 0.985

(10,50) 2.171 1.600 1.496 2.478 1.682 1.646
(30,150) 1.747 1.446 1.274 2.086 1.539 1.473
(60,300) 1.256 0.968 0.802 1.607 0.998 0.980



Table 3. Simulated coverage probabilities of the 1− α normal approximation
(NA),estimated empirical likelihood (EEL) and adjusted empirical likelihood (ADEL)

confidence intervals for β

1− α = 90% 1− α = 95%

Sample size NA EEL ADEL Normal EEL ADEL

(10,30) 0.847 0.855 0.862 0.894 0.909 0.920
(30,90) 0.859 0.864 0.882 0.918 0.926 0.931
(60,180) 0.892 0.892 0.895 0.939 0.943 0.942

(10,50) 0.842 0.849 0.861 0.903 0.914 0.928
(30,150) 0.863 0.868 0.889 0.922 0.928 0.936
(60,300) 0.894 0.895 0.893 0.942 0.947 0.944


