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8 How Precise Are Price
Distributions Predicted by
Implied Binomial Trees?

Wolfgang Hardle and Jun Zheng

In recent years, especially after the 1987 market crash, it became clear that
the prices of the underlying asset do not exactly follow the Geometric Brow-
nian Motion (GBM) model of Black and Scholes. The GBM model with con-
stant volatility leads to a log-normal price distribution at any expiration date:
All options on the underlying must have the same Black-Scholes (BS) implied
volatility, and the Cox-Ross-Rubinstein (CRR) binomial tree makes use of this
fact via the construction of constant transition probability from one node to
the corresponding node at the next level in the tree. In contrast, the implied bi-
nomial tree (IBT) method simply constructs a numerical procedure consistent
with the volatility smile. The empirical fact that the market implied volatil-
ities decrease with the strike level, and increase with the time to maturity of
options is better reflected by this construction. The algorithm of the IBT is a
data adaptive modification of the CRR method.

An implied tree should satisfy the following principles:

e It must correctly reproduce the volatility smile.
e negative node transition probabilities are not allowed.
e The branching process must be risk neutral (forward price of the asset
equals to the conditional expected value of it) at each step .
The last two conditions also eliminate arbitrage opportunities.

The basic purpose of the IBT is its use in hedging and calculations of implied
probability distributions (or state price density (SPD)) and volatility surfaces.
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Besides these practical issues, the IBT may evaluate the future stock price dis-
tributions according to the BS implied volatility surfaces which are calculated
from currently observed daily market option prices.

We describe the construction of the IBT and analyze the precision of the pre-
dicted implied price distributions. In Section 8.1, a detailed outline of the IBT
algorithm for a liquid European-style option is given. We follow first the Der-
man and Kani (1994) algorithm, discuss its possible shortcomings, and then
present the Barle and Cakici (1998) construction. This method is character-
ized by a normalization of the central nodes according to the forward price.
Next, we study the properties of the IBT via Monte-Carlo simulations and
comparison with simulated conditional density from a diffusion process with a
non-constant volatility. In Section 8.3, we apply the IBT to a DAX index data
set containing the underlying asset price, strike price, interest rate, time to
maturity, and call or put option price from the MD*BASE database (included
in XploRe), and compare SPD estimated by historical index price data with
those predicted by the IBT. Conclusions and discussions on practical issues are
presented in the last section.

8.1 Implied Binomial Trees

A well known model for financial option pricing is a GBM with constant volatil-
ity, it has a log-normal price distribution with density,

2
p(S¢, ST, v, 7,0) = _ exp | — {ln (%) o ;)T} , (8.1)

StV 2rwo?T 20271

at any option expiration T, where S; is the stock price at time ¢, r is the riskless
interest rate, 7 = T —t is time to maturity, and ¢ the volatility. The model also
has the characteristic that all options on the underlying must have the same
BS implied volatility.

However, the market implied volatilities of stock index options often show ”the
volatility smile”, which decreases with the strike level, and increases with the
time to maturity 7. There are various proposed extensions of this GBM model
to account for ”the volatility smile”. One approach is to incorporate a stochas-
tic volatility factor, Hull and White (1987); another allows for discontinuous
jumps in the stock price, Merton (1976). However, these extensions cause sev-
eral practical difficulties. For example, they violate the risk-neutral condition.
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The IBT technique proposed by Rubinstein (1994), Derman and Kani (1994),
Dupire (1994), and Barle and Cakici (1998) account for this phenomenon.
These papers assume the stock prices in the future are generated by a modified
random walk where the underlying asset has a variable volatility that depends
on both stock price and time. Since the implied binomial trees allow for non-
constant volatility ¢ = (S, t), they are in fact modifications of the original
Cox, Ross and Rubinstein (1979) binomial trees. The IBT construction uses
the observable market option prices in order to estimate the implied distribu-
tion. It is therefore nonparametric in nature. Alternative approaches may be
based on the kernel method, Ait-Sahalia, and Lo (1998), nonparametric con-
strained least squares, Hardle and Yatchew (2001), and curve-fitting methods,
Jackwerth and Rubinstein (1996).

The CRR binomial tree is the discrete implementation of the GBM process

ds
=2t = pdt + 0dZy, (8.2)
St
where Z; is a standard Wiener process, and p and o are constants. Similarly,
the IBT can be viewed as a discretization of the following model in which the
generalized volatility parameter is allowed to be a function of time and the
underlying price,
ds
?t = /Ltdt + U(St, t)dZt, (83)
t
where o(S;,t) is the instantaneous local volatility function. The aim of the
IBT is to construct a discrete approximation of the model on the basis of the
observed option prices yielding the variable volatility o(S,t). In addition, the
IBT may reflect a non-constant drift ;.

8.1.1 The Derman and Kani (D & K) algorithm

In the implied binomial tree framework, stock prices, transition probabilities,
and Arrow-Debreu prices (discounted risk-neutral probabilities, see Chapter 9)
at each node are calculated iteratively level by level.

Suppose we want to build an IBT on the time interval [0, T] with equally spaced
levels, At apart. At t = 0,5y = S, is the current price of the underlying, and
there are n nodes at the nth level of the tree. Let s, ; be the stock price of
the ith node at the nth level, s;; = S and F,,; = eTAtsn,,- the forward price
at level n + 1 of s, ; at level n, and p, ; the transition probability of making
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node
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Figure 8.1. Construction of an implied binomial tree

a transition from node (n,¢) to node (n + 1,7 + 1). Figure 8.1 illustrates the
construction of an IBT.

We assume the forward price F, ; satisfies the risk-neutral condition:

Fn,i = Pn,iSn+1,i+1 + (1 - pn,i)3n+1,i- (84)

Thus the transition probability can be obtained from the following equation:

Fni — Sn+41,i
DPn,i = : ’ . (85)
Sn41,i+1 — Sn+1,i

The Arrow-Debreu price A, ;, is the price of an option that pays 1 unit payoff
in one and only one state ¢ at nth level, and otherwise pays 0. In general,
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Arrow-Debreu prices can be obtained by the iterative formula, where A ; =1
as a definition.

Ang1,1 = e A1 = ppi)Ana}s
)‘n+1,i+1 = e—rAt {)‘n,z’pn,i + )\n,i+1(1 - pn,i+1)}7 2 S i S n, (86)
)\n+1,n+1 = e—rAt {)‘n,npn,n} -

We give an example to illustrate the calculation of Arrow-Debreu prices in a
CRR Binomial tree. Suppose that the current value of the underlying S = 100,
time to maturity 7' = 2 years, At = 1 year, constant volatility ¢ = 10%, and
riskless interest rate r = 0.03, and 7 = T'. The Arrow-Debreu price tree can be
calculated from the stock price tree:

stock price

122.15
110.52
100.00 100.00
90.48
81.88
Arrow-Debreu price
0.37
0.61
1.00 0.44
0.36
0.13

For example, using the CRR method, s2 1 = 11772t = 100 x e~%! = 90.48,
and sp9 = 51,1€° At — 110.52, the transition probability p1,1 = 0.61 is obtained
by the formula (8.5), then according to the formula (8.6), A2;1 = e "2%(1 —
p1,1) = 0.36. At the third level, calculate the stock prices according to the
corresponding nodes at the second level, For example, s31 = s21 - € 78f =
122.15, 83,2 = 81,1 = 100.
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Option prices in the Black-Scholes framework are given by:
+o0
C(K,7) = e_"/ max(St — K, 0) p(St, St,r,7)dST, (8.7)
0
+oo
P(K,7) = e‘"/ max(K — St,0) p(S¢, ST, 7, 7)dST, (8.8)
0

where C(K, 1) and P(K, 1) are call option price and put option price respec-
tively, and K is the strike price. In the IBT, option prices are calculated
analogously for 7 = nAt,

n+1

C(K,nAt) = z An+1,; max(sp41,; — K,0), (8.9)
=1
n+1

P(E,nAt) = > Apyrimax(K — sp41,4,0). (8.10)
=1

Using the risk-neutral condition (8.4) and the discrete option price calculation
from (8.9) or (8.10), one obtains the iteration formulae for constructing the
IBT.

There are (2n + 1) parameters which define the transition from the nth to
the (n + 1)th level of the tree, i.e., (n + 1) stock prices of the nodes at the
(n + 1)th level, and n transition probabilities. Suppose (2n — 1) parameters
corresponding to the nth level are known, the s,11; and p, ; corresponding to
the (n + 1)th level can be calculated depending on the following principles:

We always start from the center nodes in one level, if n is even, define s,1,; =
s10 =8, for i = n/2+ 1, and if n is odd, start from the two central nodes
Snt1,i and Spy1,441 for i = (n + 1)/2, and suppose Spy1,; = Si,i/sn_l,_l’i_l,_l =
S?/8p+1,i+1, which adjusts the logarithmic spacing between s, ; and sp41,i+1
to be the same as that between s,; and sp41,;. This principle yields the
calculation formula of $p41,541, see Derman and Kani (1994),

o S{eNO(S A + AniS ~ pu}
nt+1,i4+1 = An,iFni — er2tC(S,nAt) + py,

for i=(mn+1)/2. (8.11)

Here p,, denotes the following summation term

n
pu=" Ani(Fnj—sni); (8.12)
j=it1
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C(K, ) is the interpolated value for a call struck today at strike price K and
time to maturity 7. In the D & K construction, the interpolated option price
entering (8.11) is based on a CRR binomial tree with constant parameters
0 = Oimp(K, T), where the BS implied volatility o, (K, 7) can be calculated
from the known market option prices. Calculating interpolated option prices
by the CRR method has a drawback, it is computational intensive.

Once we have the initial nodes’ stock prices, according to the relationships
among the different parameters, we can continue to calculate those at higher
nodes (n +1,5), j = i+ 2,...n + 1 and transition probabilities one by one
using the formula:

s . — Sn,i{erAtC(Sn,ia nAt) - pu} - )\n,isn,i(Fn,i - sn—i—l,i)
i {720 (50,i,n) = pu} — Ani(Fi = $ng1i)

(8.13)

where the definition of p,, is the same as (8.12).

Similarly, we are able to continue to calculate the parameters at lower nodes
(n+1,5), j=14—1,...,1 according to the following recursion:

_ 3n,i+1{erAtP(sn,i7nAt) - Pl} - )\n,isn,i(Fn,i - 3n+1,i+1)
Sn—i-l,z' - A 5 (8.14:)
{er tP(Sn,i:nAt) - Pl} + /\n,i(Fn,i - 5n+1,z’+1)

where p; denotes the sum 23;11 An,j(8ni — Fn,j), and P(K,T) is similar to
C(K,T), again these option prices are obtained by the CRR binomial tree
generated from market options prices.

8.1.2 Compensation

In order to avoid arbitrage, the transition probability p, ; at any node should
lie between 0 and 1, it makes therefore sense to limit the estimated stock prices

Fn,,’ < Spt1,i+1 < Fn,z‘+1- (815)

If the stock price at any node does not satisfy the above inequality, we redefine
it by assuming that the difference of the logarithm of the stock prices between
this node and its adjacent node is equal to the corresponding two nodes at the
previous level, i.e.,

log(spt1,i+1/8n+1,i) = 10g(8n,i/Sn,i—1)-
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Sometimes, the obtained price still does not satisfy inequality (8.15), then we
choose the average of F, ; and F, ;11 as a proxy for spi1,i41-

In fact, the product of the Arrow-Debreu prices Ay ; at the nth level with the
influence of interest rate e”(® 12t can be considered as a discrete estimation
of the implied distribution, the SPD, p(St, S;,r,7) at 7 = (n — 1)At. In the
case of the GBM model with constant volatility, this density is corresponding
to (8.1).

After the construction of an IBT, we know all stock prices, transition proba-
bilities, and Arrow-Debreu prices at any node in the tree. We are thus able
to calculate the implied local volatility oyoc(sn,;, mAt) (which describes the
structure of the second moment of the underlying process) at any level m as a
discrete estimation of the following conditional variance at s = s, ;, 7 = mA{.
Under the risk-neutral assumption

01e(s,7) = Var(log Syy-|S: = s)
= /(log St+r — Elog St1+)°p(St4+[St = 8) dSiyr

= /(log Sivr — Elog Si1+)°p(St, St4r7,7) dSpir. (8.16)

In the IBT construction, the discrete estimation can be calculated as:

Sn+41,i+1

Oloc(8n,is Ot) = 1/Pn,i(1 — pn,i) |log

Sn+41,i

Analogously, we can calculate the implied local volatility at different times. In
general, if we have calculated the transition probabilities p;, j = 1,...,m from
the node (n,%) to the nodes (n +m,i+ j), j =4,...,m, then with

m
mean = E(log(s(n-{—m—l)At)|S(n—1)At = Sn,i) = ij IOg(sn+m,i+j)7
j=1

Uloc(sn,iamAt) = zpj (IOg(3n+m,z’+j) - mean))2' (8'17)

Jj=1

Notice that the instantaneous volatility function used in (8.3) is different from
the BS implied volatility function defined in (8.16), but in the GBM they are
identical.
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If we choose At small enough, we obtain the estimated SPD at fixed time to
maturity, and the distribution of implied local volatility o7,.(s, 7). Notice that
the BS implied volatility oimp(K,7) (which assumes Black-Scholes model is
established (at least locally)) and implied local volatility oy,.(s,7) is different,
they have different parameters, and describe different characteristics of the
second moment,.

8.1.3 Barle and Cakici (B & C) algorithm

Barle and Cakici (1998) proposed an improvement of the Derman and Kani
construction. The major modification is the choice of the stock price of the
central nodes in the tree: their algorithm takes the riskless interest rate into
account. If (n + 1) is odd, then s,41,; = s1,1€" "t = Se" ™At for i = n/2 + 1,
if (n + 1) is even, then start from the two central nodes spy1,; and sp41,i+1
for i = (n 4 1)/2, and suppose sny1: = F7;/sny1i41. Thus s,41; can be
calculated as:

)\n an i {GTAtC(Fn iy TLAt) - pu} .
;= F : 2 2 2 f - 1)/2 1
St = Ay i+ {e SO (F g nS) — put (n+1)/2, (818)

where C(K, 1) is defined as in the Derman and Kani algorithm, and the p,, is

n
pu= Anj(Fnj— Fny). (8.19)
j=i+1

After stock prices of the initial nodes are obtained, then continue to calculate
those at higher nodes (n+1,5), 7 =i+ 2,...n+1 and transition probabilities
one by one using the following recursion:

S . — Sn—i-l,i{erAtC(Fn,ia TLAt) - pU} - )\n,iFn,i (Fn,z — 3n+1,i)
nt1,it1 {erBtC(Fy i, nN) — pu} — Mni(Fni — Snt1) ;

(8.20)

where p,, is as in (8.19), py; is defined as in (8.5).

Similarly, continue to calculate the parameters iteratively at lower nodes (n +
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L), j=i—1,...1.

AiFyi(Sni1,iv1 — Fni) — Sni1,iv11€" 2P (Fn i, nAt) — pi}

S ;= , (8.21
e An,i(Snt1,it1 — Fryi) — {e"2tP(Fy i, nAt) — pi} (8:21)

where p; denotes the sum Z;;ll An,j(Frn,i — Fy j). Notice that in (8.13) and
(8.14), C(K, ) and P(K,7) denote the Black-Scholes call and put option prices,
this construction makes the calculation faster than the interpolation technique
based on the CRR method.

The balancing inequality (8.15) and a redefinition are still used in the Barle
and Cakici algorithm for avoiding arbitrage: the algorithm uses the average of
F,; and F,, ;41 as the re-estimation of sp41,i41.

8.2 A Simulation and a Comparison of the SPDs

The example used here to show the procedure of generating the IBT, is taken
from Derman and Kani (1994). Assume that the current value of the stock is
S = 100, the annually compounded riskless interest rate is r = 3% per year
for all time expirations, the stock has zero dividend. The annual BS implied
volatility of an at-the-money call is assumed to be ¢ = 10%, and the BS
implied volatility increases (decreases) linearly by 0.5 percentage points with
every 10 point drop (rise) in the strike. From the assumptions, we see that
oimp (K, 7) = 0.15 — 0.0005 K.

In order to investigate the precision of the SPD estimation obtained from the
IBT, we give a simulation example assuming that the stock price process is
generated by the stochastic differential equation model (8.3), with an instan-
taneous local volatility function o(S,t) = 0.15 — 0.0005 S;, pz = r = 0.03. We
may then easily compare the SPD estimations obtained from the two different
methods.

8.2.1 Simulation using Derman and Kani algorithm

With the XploRe quantlet XFGIBTO1.xpl, using the assumption on the BS
implied volatility surface, we obtain the following one year stock price implied
binomial tree, transition probability tree, and Arrow-Debreu price tree.
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Q xrGIBTO1.xpl

Derman and Kani one year (four step) implied binomial tree

stock price

119.91
115.06
110.04 110.06
105.13 105.13
100.00 100.00 100.00
95.12 95.12
89.93 89.92
85.22
80.01
transition probability
0.60
0.58
0.59 0.59
0.56 0.56
0.59 0.59
0.54
0.59
Arrow-Debreu price
0.111
0.187
0.327 0.312
0.559 0.405
1.000 0.480 0.343
0.434 0.305
0.178 0.172
0.080
0.033

This IBT is corresponding to 7 = 1 year, and At = 0.25 year, which shows the
stock prices, and the elements at the jth column are corresponding to the stock
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prices of the nodes at the (j — 1)th level in the tree. The second one, its (n, 5)
element is corresponding to the transition probability from the node (n,j) to
the nodes (n + 1,5 + 1). The third tree contains the Arrow-Debreu prices of
the nodes. Using the stock prices together with Arrow-Debreu prices of the
nodes at the final level, a discrete approximation of the implied distribution
can be obtained. Notice that by the definition of the Arrow-Debreu price, the
risk neutral probability corresponding to each node should be calculated as the
product of the Arrow-Debreu price and the factor e"”.

If we choose small enough time steps, we obtain the estimation of the implied
price distribution and the implied local volatility surface ooc(s, 7). We still use
the same assumption on the BS implied volatility surface as above here, which
means oimp(K,7) = 0.15 — 0.0005 K, and assume Sp = 100, = 0.03,T =5
year.

Q XFGIBTO02.xpl

Two figures are generated by running the quantlet XFGIBT02.xpl, Figure 8.2
shows the plot of the SPD estimation resulting from fitting an implied five-year
tree with 20 levels. The implied local volatilities oj,c(s,7) in the implied tree at
different time to maturity and stock price levels is shown in Figure 8.3, which
obviously decreases with the stock price and increases with time to maturity
as expected.

8.2.2 Simulation using Barle and Cakici algorithm

The Barle and Cakici algorithm can be applied in analogy to Derman and
Kani’s. The XploRe quantlets used here are similar to those presented in
Section 8.2.1, one has to replace the quantlet IBTdk by IBTdc. The following
figure displays the one-year (four step) stock price tree, transition probability
tree, and Arrow-Debreu tree. Figure 8.4 presents the plot of the estimated SPD
by fitting a five year implied binomial tree with 20 levels to the volatility smile
using Barle and Cakici algorithm, and Figure 8.5, shows the characteristics of
the implied local volatility surface of the generated IBT, decreases with the
stock price, and increases with time.
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Estimated Implied Distribution

[Te}
— .
(=}
b
g < L
2 °
3
e}
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=}
ol L
T T T
50 100 150
stock price

Figure 8.2. SPD estimation by the Derman and Kani IBT.

Implied Local Volatility Surface

50.00 75.00 100.00 125.00

Figure 8.3. Implied local volatility surface estimation by the Derman
and Kani IBT.

Barle and Cakici one year implied binomial tree

stock price
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123.85
117.02
112.23 112.93
104.84 107.03
100.00 101.51 103.05
96.83 97.73
90.53 93.08
87.60
82.00
transition probability
0.46
0.61
0.38 0.48
0.49 0.49
0.64 0.54
0.36
0.57
Arrow-Debreu price
0.050
0.111
0.185 0.240
0.486 0.373
1.000 0.619 0.394
0.506 0.378
0.181 0.237
0.116
0.050

8.2.3 Comparison with Monte-Carlo Simulation

We now compare the SPD estimation at the fifth year obtained by the two IBT
methods with the estimated density function of the Monte-Carlo simulation
of St,t = 5 generated from the model (8.3), where o(S;,t) = 0.15 — 0.0005 S,
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Estimated Implied Distribution

probability*0.1

T T T
50 100 150
stock price

Figure 8.4. SPD estimation by the Barle and Cakici IBT.

Implied Local Volatility Surface

T 0.24
T 0.16
J 0.08

50.00 75.00 100.00 125.00

Figure 8.5. Implied local volatility surface by the Barle and Cakici
IBT.

e =1 = 0.03. We use the Milstein scheme, Kloeden, Platen and Schurz (1994)
to perform the discrete time approximation in (8.3). It has strong convergence
rate 1. We have set the time step with § = 1/1000 here.



192 8 How Precise Are Price Distributions Predicted by IBT?

In order to construct the IBT, we calculate the option prices corresponding
to each node at the implied tree according to their definition by Monte-Carlo
simulation.

Q XFGIBT03.xpl @ XFGIBTcdk.xpl @ XFGIBTcbc.xpl

Estimated State Price Density

probability*0.1

50 100 150 200

stock price
Figure 8.6. SPD estimation by Monte-Carlo simulation, and its 95%
confidence band, the B & C IBT, from the D & K IBT (thin), level
=20, T = 5 year, At = 0.25 year.

Here we use the quantlets IBTcdk and IBTcbc (which are included in
XFGIBTcdk.xpl and XFGIBTcbc.xpl respectively), these two are used to con-
struct the IBT directly from the option price function, not starting from the
BS implied volatility surface as in quantlets IBTdk and IBTbc. In the data
file ”IBTmcsimulation20.dat”, there are 1000 Monte-Carlo simulation sam-
ples for each S; in the diffusion model (8.3), for t = i/4 year, i = 1,...20, from
which we calculate the simulated values of the option prices according to its
theoretical definition and estimate the density of Sy, T = 5 year as the SPD
estimation at the fifth year.

From the estimated distribution shown in the Figures 8.2.3, we observe their
deviation from the log-normal characteristics according to their skewness and
kurtosis. The SPD estimation obtained from the two IBT methods coincides
with the estimation obtained from the Monte-Carlo simulation well, the differ-
ence between the estimations obtained from the two IBTs is not very large.
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On the other hand, we can also estimate the implied local volatility surface
from the implied binomial tree, and compare it with the one obtained by the
simulation. Compare Figure 8.7 and Figure 8.8 with Figure 8.9, and notice that
in the first two figures, some edge values cannot be obtained directly from the
five-year IBT. However, the three implied local volatility surface plots all actu-
ally coincide with the volatility smile characteristic, the implied local volatility
of the out-the-money options decreases with the increasing stock price, and
increase with time.

Implied Local Volatility Surface
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Figure 8.7. Implied local volatility surface of the simulated model,
calculated from D& K IBT.

We use the data file ”IBTmcsimulation50.dat” to obtain an estimated BS
implied volatility surface. There are 1000 Monte-Carlo simulation samples for
each S; in the diffusion model (8.3), for ¢t = /10 year in it, ¢ = 1,...50, because
we can calculate the BS implied volatility corresponding to different strike
prices and time to maturities after we have the estimated option prices corre-
sponding to these strike price and time to maturity levels. Figure 8.10 shows
that the BS implied volatility surface of our example reflects the characteris-
tics that the BS implied volatility decrease with the strike price. But this BS
implied volatility surface does not change with time a lot, which is probably
due to our assumption about the local instantaneous volatility function, which
only changes with the stock price.
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Implied Loca Volatility Surface
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Figure 8.8. Implied local volatility surface of the simulated model,
calculated from B& C IBT.

Q xFGIBTO4. xpl

8.3 Example — Analysis of DAX data

We now use the IBT to forecast the future price distribution of the real stock
market data. We use DAX index option prices data at January 4, 1999, which
are included in MD*BASE, a database located at CASE (Center for Applied
Statistics and Economics) at Humboldt-Universitét zu Berlin, and provide some
dataset for demonstration purposes. In the following program, we estimate the
BS implied volatility surface first, while the quantlet volsurf, Fengler, Hardle
and Villa (2001), is used to obtain this estimation from the market option
prices, then construct the IBT using Derman and Kani method and calculate
the interpolated option prices using CRR binomial tree method. Fitting the
function of option prices directly from the market option prices is hardly ever
attempted since the function approaches a value of zero for very high strike
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Implied Local Volatility Surface
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Figure 8.9. Implied local volatility surface of the simulated model,
calculated from Monte-Carlo simulation.

prices and option prices are bounded by non-arbitrage conditions.
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Figure 8.11 shows the price distribution estimation obtained by the Barle and
Cakici IBT, for 7 = 0.5 year. Obviously, the estimated SPD by the Derman
and Kani IBT can be obtained similarly. In order to check the precision of
the estimated price distribution obtained by the IBT method, we compare it
to use DAX daily prices between January 1, 1997, and January 4. 1999. The
historical time series density estimation method described in Ait-Sahalia, Wang
and Yared (2000) is used here. Notice that Risk-neutrality implies two kinds
of SPD should be equal, historical time series SPD is in fact the conditional
density function of the diffusion process. We obtain the historical time series
SPD estimation by the following procedure:

1. Collect stock prices time series
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Figure 8.10. BS implied volatility surface estimation by Monte-Carlo

simulation.

2. Assume this time series is a sample path of the diffusion process

pidt + o (Sy, t)dZy,

dS;
Sy
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Figure 8.11. The estimated stock price distribution, 7 = 0.5 year.

where dZ; is a Wiener process with mean zero and variance equal to dt.

3. Estimate diffusion function o(-,-) in the diffusion process model using
nonparametric method from stock prices time series

4. Make Monte-Carlo simulation for the diffusion process with drift function
is interest rate and estimated diffusion function

5. Estimate conditional density function g = p(St|St, i, ) from Monte-
Carlo simulated process

From Figure 8.12 we conclude that the SPD estimated by the Derman and Kani
IBT and the one obtained by Barle and Cakici IBT can be used to forecast fu-
ture SPD. The SPD estimated by different methods sometimes have deviations
on skewness and kurtosis. In fact the detection of the difference between the
historical time series SPD estimation and the SPD recovered from daily option
prices may be used as trading rules, see Table 8.1 and Chapter 10. In Table
8.1, SPD estimated from daily option prices data set is expressed by f and the
time series SPD is g. A far out of the money (OTM) call/put is defined as
one whose exercise price is 10% higher (lower) than the future price. While a
near OTM call/put is defined as one whose exercise price is 5% higher (lower)
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State Price Density Estimation
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Figure 8.12. SPD estimation by three methods, by historical estima-
tion, and its 95% confidence band (dashed), by B & C IBT, and by D
& K IBT (thin), 7 = 0.5 year.

but 10% lower (higher)than the future price. When skew(f) < skew(g), agents
apparently assign a lower probability to high outcomes of the underlying than
would be justified by the time series SPD (see Figure 8.13). Since for call op-
tions only the right ‘tail’ of the support determines the theoretical price the
latter is smaller than the price implied by diffusion process using the time series
SPD. That is we buy calls. The same reason applies to put options.

Trading Rules to exploit SPD differences

Skewness (S1) | skew(f)< skew(g) sell OTM put,
buy OTM call
Trade (S2) | skew(f) > skew(g) buy OTM put
sell OTM call
Kurtosis (K1) | kurt(f)> kurt(g) sell far OTM and ATM
buy near OTM options
Trade (K2) | kurt(f) < kurt(g) buy far OTM and ATM,
sell near OTM options

Table 8.1. Trading Rules to exploit SPD differences.

From the simulations and real data example, we find that the implied binomial
tree is an easy way to assess the future stock prices, capture the term structure
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Figure 8.13. Skewness Trade, skew(f)< skew(g).
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Figure 8.14. Kurtosis Trade, kurt(f)> kurt(g).

of the underlying asset, and replicate the volatility smile. But the algorithms
still have some deficiencies. When the time step is chosen too small, negative
transition probabilities are encountered more and more often. The modification
of these values loses the information about the smile at the corresponding
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nodes. The Barle and Cakici algorithm is a better choice when the interest
rate is high.Figure 8.15 shows the deviation of the two methods under the
situation that » = 0.2. When the interest rate is a little higher, Barle and
Cakici algorithm still can be used to construct the IBT while Derman and
Kani’s cannot work any more. The times of the negative probabilities appear
are fewer than Derman and Kani construction (see Jackwerth (1999)).

Estimated State Price Density

probability*0.1

100 120 140 160
stock price
Figure 8.15. SPD estimation by Monte-Carlo simulation, and its 95%
confidence band (dashed), the B & C IBT, from the D & K IBT (thin),
level =20, 7 =1 year, r = 0.20.

Besides its basic purpose of pricing derivatives in consistency with the market
prices, IBT is useful for other kinds of analysis, such as hedging and calculating
of implied probability distributions and volatility surfaces. It estimate the
future price distribution according to the historical data. On the practical
application aspect, the reliability of the approach depends critically on the
quality of the estimation of the dynamics of the underlying price process, such
as BS implied volatility surface obtained from the market option prices.

The IBT can be used to produce recombining and arbitrage-free binomial trees
to describe stochastic processes with variable volatility. However, some serious
limitations such as negative probabilities, even though most of them appeared
at the edge of the trees. Overriding them causes loss of the information about
the smile at the corresponding nodes. These defects are a consequence of the
requirement that a continuous diffusion is approximated by a binomial process.
Relaxation of this requirement, using multinomial trees or varinomial trees is
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possible.
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