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1 Introduction

Estimation tasks that involve discrete dependent or discrete explanatory variables are quite

natural in econometrics. The former is represented, for example, by any member of the

wide class of discrete-response models. The latter is almost omnipresent in econometrics

and occurs when we deal with various categorical variables that are used to represent non-

continuous characteristics such as an individual’s gender or education, or to characterize

a general nonlinear relationship between regressors and the corresponding dependent vari-

able. Thus, reliable and efficient estimation methods for models containing these kinds

of variables are of considerable interest. In this paper, I concentrate on the second case,

namely on the classical linear regression model with discrete explanatory variables.

Linear regression models are in most cases estimated using techniques based on the

least squares principle. Although the least squares method is frequently used in regression

analysis, mainly because of its simplicity and ease of use, it is quite sensitive to data con-

tamination and model misspecification. Therefore, it is a bit surprising that some more

reliable methods are not more widely spread, especially because it is not necessary to

abandon a classical parametric model and its advantages in order to gain more robustness.

The methods of robust statistics retain standard parametric assumptions but take into

account possible misspecification and data contamination and their impact on estimation

procedures in order to design misspecification- and data-contamination-proof estimators.

For example, Orhan, Rousseeuw, and Zaman (2001) demonstrate the use of robust regres-

sion methods on three classical macroeconomics models estimated in the past by the least

squares method. The main result is that the use of robust methods is highly recommended

even in the case of a simple linear regression, because their use together with careful anal-

ysis of data sets lead to significantly different results than the least squares regression, at

least in the case of the data sets analyzed by these authors.

On the other hand, although the asymptotic and robust properties of various robust

estimators have been studied for several decades, at least in the case of regression with one
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explanatory variable, it is understandable from some points of view that robust estimation

methods are not used more frequently in econometrics. There are several reasons for this

and I will document them on the least trimmed squares (LTS) estimator (see Section 4.1 for

more details), which was used by Orhan, Rousseeuw, and Zaman (2001). The first reason

is computational: it is possible to compute LTS only approximately and even obtaining

an approximation is relatively time consuming; moreover, a good approximation algorithm

did not previously exist. However, the recent availability of a good and fast approximation

algorithm (see, for example, Rousseeuw and Van Driessen (1999)), faster computers, and

the presence of this algorithm in some widely-spread statistical packages1 have made LTS

more attractive.

The second reason is more troublesome: whereas discrete regressors do not cause any

particular problems to standard estimation procedures (e.g., the least square or the maxi-

mum likelihood methods) if some regularity assumptions hold, the situation is completely

different in the case of many robust regression methods. The main reason is that some ro-

bust methods completely reject a subset of observations. In other words, they completely

ignore some observations and can consequently exclude a group of observations defined

by categorical variables from regression estimation; this results in the problem of singular

matrices, and consequently, some variables do not have to be identifiable. Given the sig-

nificance of discrete and categorical explanatory variables in econometric practice, this is

a serious shortcoming that was already addressed by Hubert and Rousseeuw (1997), for

instance. Nevertheless, the existing remedies do not represent an optimal solution—above

all because they are limited only to a certain class of models (see Section 3)—and that is

why I present here a new solution to this problem.

I essentially take the LTS estimator as the starting point and create a smoothed version

of this estimator, removing thus the complete rejection of observations, the main cause of

the problem. As we see later, this solution adds some further improvements to the LTS

estimator, such as an decrease of the variance of estimates while preserving the robustness

of LTS. The extent to which variance is improved and robustness is decreased depends

heavily on the smoothing scheme used. Thus, I define first the smoothed LTS estimator in

a general way and study its properties for a general smoothing scheme. Later, I propose

a class of smoothing schemes and a rule that allows us, for a given data set, to adaptively

find a smoothing scheme that minimizes the variance of the estimator while preserving its

robustness properties. This is achieved by searching for an optimal choice among smoothing

1For example, R, S-plus, TSP, and XploRe include procedures for the computation of LTS.
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schemes defining smoothed LTS estimators ranging from the least trimmed squares (“most

robust” option) to the least squares (“most efficient” option). Thus, given a data set, I try

to come as close as possible to the least squares estimator without losing robustness of

LTS, that is, without letting data anomalies significantly affect the estimate.

In the rest of this paper, I first describe basic concepts of robust statistics (Section 2).

Later, I review the existing attempts at robust estimation in the presence of discrete and

categorical explanatory variables (Section 3) and propose a smoothed version of the least

trimmed squares estimator (Section 4). Next, the proofs of consistency and asymptotic

normality are presented together with some elementary assertions that underlie one scheme

for an adaptive choice of smoothing parameters (Section 5). Finally, the features of the

proposed estimator are documented using Monte Carlo simulations (Section 6).

2 Robust statistics

Robust statistics aims to study the behavior of parametric estimators under deviations

from the standard assumptions of parametric models and to develop estimators that be-

have well not only under correct parametric specification, but also in the presence of“small”

deviations from the parametric assumptions. In other words, robust estimation methods

are designed so that they are not easily endangered by the contamination of data. As a

result, a subsequent analysis of regression residuals coming from a robust regression fit can

hint at outlying observations. In addition, the use of a parametric model contributes effi-

ciency, while features of these estimators ensure sufficient robustness. There are two main

approaches to the formalization of robust statistics, namely Huber’s minimax approach

(Huber (1964), Huber (1981)) and Hampel’s infinitesimal approach based on the influence

function (Hampel et al. (1986)). Because of the advantages of the latter (see, for example,

Hampel et al. (1986) and Peracchi (1990))2, a more detailed description of robust statistics

in the next section follows Hampel’s approach.

2.1 Main concepts

Hampel et al. (1986) formalizes the aims of robust statistics by specifying a local measure

of robustness—the influence function—and a global measure of robustness—the breakdown

point. The influence function characterizes the sensitivity of an estimator T to infinitesimal

2Most importantly, Hampel’s approach can be generalized to any parametric model, while Huber’s
minimax strategy cannot.
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contamination placed at a given point x ∈ R
p: it is defined as a derivative of the estimator

T taken as a functional on the space of distribution functions in the direction of x.3 For

example, one finite-sample measure, the sensitivity curve introduced by Tukey (1977),

which in most cases converges to the asymptotically defined influence function, can be

expressed as

SCn(x) = n · (Tn(x1, . . ., xn−1, x) − Tn−1(x1, . . ., xn−1))

for an estimator Tn evaluated at sample x1, . . ., xn−1. There are also several other measures

of robustness derived from the concept of the influence function, for example, the sensitivity

to gross-errors, defined as the supremum of the influence function over all points x ∈ R
p.

On the other hand, the global measure of robustness—the breakdown point—indicates

how much contamination can make an estimate completely “useless”.4 This can be again

illustrated using a finite-sample definition of the breakdown point for an estimator Tn at a

sample x1, . . ., xn (Hampel et al. (1986)):

ε∗n =
1

n
max

{

m

∣

∣

∣

∣

max
i1,...,im

sup
y1,...,ym

|Tn(z1, . . ., zn)| < +∞
}

, (1)

where sample z1, . . ., zn is created from the original sample x1, . . ., xn by replacing obser-

vations xi1 , . . ., xim by values y1, . . ., ym. The breakdown point usually does not depend on

the sample x1, . . ., xn. To give an example, it immediately follows from the definition that

the finite-sample breakdown point of the arithmetic mean equals 0 in a one-dimensional

location model, while for the median it is equal to 1/2. Actually, the breakdown point

equal to 1/2 is the highest one that can be achieved at all; if the amount of contamination

is higher, it is not possible to decide which part of the data is the correct one. Such a result

is proven, for example, in Rousseeuw and Leroy (1987, Theorem 4, Chapter 3) for the case

of regression equivariant estimators (the upper bound on ε∗n is actually ([(n− p)/2] + 1)/n

in this case, where [·] denotes the integer part).

These two concepts are of a different nature. The influence function, which is defined as

a derivative of an estimator, characterizes the behavior of the estimator in a neighborhood

of a given parametric model, in which the effect of contamination can be approximated by a

linear function. On the contrary, the breakdown point specifies how far from the parametric

model the estimator is still useful, in the sense that it produces usable results. In other

3A single point x ∈ R
p corresponds in the space of distribution functions to a degenerated distribution

function.
4For example, how much contamination can make the Euclidean norm of a given estimator higher than

any given real constant.

5



words, while the influence function provides mainly an asymptotic tool that allows us to

characterize and design, in some sense, asymptotically “optimal” estimators that exhibit

certain robustness properties,5 the breakdown point determines the robustness of the same

estimators with respect to outliers and other deviations from the parametric model both

asymptotically and when they are applied to real data.6 As some kind of asymptotic

optimality (e.g., asymptotic efficiency) of an estimator might be worthless if the robustness

of the estimator is not high enough, a sufficiently high breakdown point is an important

property of the estimator. Thus, the influence function and the breakdown point can be

viewed as complementary characteristics. Further, I concentrate on estimators with a high

breadown point, since they are the ones that cannot be easily used in the presence of

discrete variables.

2.2 Examples of robust estimators

Currently, there are many procedures with breakdown points close to 1/2, most of which

are designed for the linear regression model. These high breakdown point estimators serve

several purposes: (1) a reliable estimation of unknown parameters, which is possible be-

cause of their high breakdown point; (2) detection of outliers and leverage points (using

the analysis of the residuals) so that they can be used as diagnostic tools; (3) a robust ini-

tial estimate for iterative estimation procedures. Examples of existing techniques designed

for the linear regression model are the least median of squares (Rousseeuw (1984)), the

least trimmed squares (Rousseeuw (1985)), and the S-estimators (Rousseeuw and Yohai

(1984)). Recently, the least trimmed squares estimator became more preferred to the least

median of squares because it features better asymptotic performance and a fast and reliable

approximation algorithm (Rousseeuw and Van Driessen (1999)). All these estimators can

withstand a high amount of contamination including outliers (observations that are dis-

tant in the direction of the dependent variable) and leverage points (observations outlying

in the space of explanatory variables).7 Unfortunately, they all have inherent problems

with estimation which includes both continuous and categorical variables. Existing robust

5The reason is that the influence function of an estimator does not characterize only one kind of
robustness of the estimator, but is also related to the asymptotic variance of the estimator, see Hampel et
al. (1986).

6Usually, the breakdown point ε∗n is “quite close” to the limit limn→∞ ε∗n for any n ∈ N ; for example,
estimators that achieve the upper bound ([(n − p)/2] + 1)/n have their breakdown point “quite close” to
1/2.

7If the meaning of terms “outliers” and “leverage point” are not intuitive or apparent enough, check, for
example, the classification of outlying points in Rousseeuw (1997).
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methods designed for the estimation of such models are discussed in Section 3.

3 Existing approaches to robust estimation with dis-

crete explanatory variables

There are several estimators that are robust in some way and can cope with discrete and

categorical variables. The most obvious one is the least absolute deviation (L1) estimator.

However, it is not directly comparable with the high breakdown-point estimators discussed

in Section 2.2, because, despite being resistant to outliers, it is not robust against leverage

points. Therefore, new high breakdown point estimators for linear regression model with

binary and categorical variables were designed—first for the special case of distributed

intercept (see Hubert and Rousseeuw (1996)), later for a linear regression model with

continuous and binary variables, where binary variables enter the regression equation only

additively (Hubert and Rousseeuw (1997)). The best (from the viewpoint of robustness and

the speed of convergence) from several proposed estimators is the so-called RDL1 estimator

(Robust Distance and L1 regression). RDL1 is a three stage procedure:

1. The minimum volume ellipsoid (MVE) estimator (Rousseeuw (1985)) of location and

scatter matrix is applied on the set of all continuous explanatory variables, and based

on it, robust distances are computed.

2. Using the robust distances, strictly positive weights wi are defined in such a way

that observations having a large distance from the center of data are down-weighted

(distances are computed only in the space of continuous variables, because all cate-

gorical variables are encoded as dummy variables, which cannot be outlying by their

nature). Then regression parameters are estimated by a weighted L1 procedure with

the constructed weights wi.

3. The scale of residuals is estimated by the median absolute deviation (MAD) estimator

applied on the vector of residuals coming from the L1 regression in point 2.

This estimator achieves a high breakdown point, because the influence of leverage points

is reduced by weights that are indirectly proportional to the robust distances of these

points and the robustness against outliers is obtained by using the L1 estimation method.

On the other hand, the procedure has several disadvantages. One of them is the lack of
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efficiency in most usual cases caused by the use of the L1 estimator; as a possible remedy,

Hubert and Rousseeuw (1997) propose a four stage procedure that adds as the fourth step

computing a weighted least squares estimator with weights based on studentized residuals

from RDL1 estimator. Another disadvantage is that this estimator, which is defined for

linear regression models with dummy variables entering a model only additively, can hardly

be generalized to more complicated models: for example, to general regression models

with dummy and categorical variables (including cross-effects); to instrumental variable

and similar models, for which results concerning least-squares-like estimators are readily

available, but often missing for other types of estimators; or to nonlinear models, in which

it is hard to predict the effect of large values of different variables, and thus, a simple

down-weighting proportional to distances in space of explanatory variables does not make

sense. Finally, RDL1 can be relatively easily influenced by misspecification occurring in

dummy and categorical variables simply because it does not treat dummy variables in any

special way (this is documented in Section 7). Such an effect is naturally bounded so it

does not affect the breakdown point as defined by (1), but it suffices to make the estimator

inconsistent.

4 Smoothed least trimmed squares

Robust estimation of linear regression models with discrete and categorical explanatory

variables has received some attention recently, but there is still vast area for improvement,

as discussed in Section 3. In addition, the least trimmed squares estimator has been gaining

more popularity because of its robustness and a relatively high speed of convergence, but

also there is a need for improvement, as I discuss below. Therefore, I define a smoothed

version of the least trimmed squares estimator that should preserve the robustness of LTS,

and at the same time, allow the estimation of general linear regression models with discrete

explanatory variables and obtain better properties than the existing robust estimators

concerning the variance of estimates. In this section, the smoothed LTS estimator is defined

for a general smoothing scheme. An adaptive choice of smoothing, which should enable us

to obtain as low variance as possible while preserving the robustness of the estimator, is

discussed in more detail in Sections 6.2 and 7.

I first define the linear regression model used throughout this paper and describe the

least trimmed squares estimator (LTS) introduced by Rousseeuw (1985) in Section 4.1. In

Section 4.2 I define the smoothed version of LTS. Finally, I discuss the relation between
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the smoothed LTS and weighted least squares estimators in Section 4.3.

4.1 Linear regression model and least trimmed squares

LTS is a statistical technique for estimation of the unknown parameters of a linear regres-

sion model and provides a robust alternative to the classical regression methods based on

minimizing the sum of squared residuals. Let us consider a linear regression model for

a sample (yi, xi) with a response variable yi ∈ R and a vector of explanatory variables

xi ∈ R
p:8

yi = xT
i β + εi, i = 1, . . ., n. (2)

The least trimmed squares estimator β̂
(LTS)
n is defined as

β̂(LTS)
n = arg min

β∈�
p

h
∑

i=1

s[i](β), (3)

where s[i](β) represents the ith order statistics of squared residuals r2
1(β), . . . , r2

n(β); ri(β) =

yi − xT
i β and β ∈ R

p (p denotes the number of estimated parameters). The trimming

constant h has to satisfy n
2

< h ≤ n. This constant determines the breakdown point of

the LTS estimator since definition (3) implies that n − h observations with the largest

residuals do not affect the estimator (except for the fact that the squared residuals of

excluded points have to be larger than the hth order statistics of the squared residuals).

The maximum breakdown point is attained for h = [n/2] + [(p + 1)/2] (see Rousseeuw

and Leroy (1987, Theorem 6)), whereas for h = n, which corresponds to the least squares

estimator, the breakdown point is equal to 0. There is, of course, a trade-off: lower values

of h, which are close to the optimal breakdown-point choice, lead to a higher breakdown

point, while higher values of h improve performance of the estimator (if the data are not

too contaminated) since more (presumably correct) information in the data is utilized.

4.2 Definition of smoothed least trimmed squares

In this section, I define the smoothed least trimmed squares (SLTS) estimator. Let us

consider a linear regression model (2) for a sample (yi, xi), i = 1, . . ., n. Moreover, let

w = (w1, . . ., wn) be a vector of weights such that w1 ≥ w2 ≥ . . . ≥ wn ≥ 0. Then the

8Although this linear regression model is completely general for the purpose of the LTS definition, the
assumptions introduced later do not allow for lagged dependent variables. An extension covering lagged
dependent variables is one of priorities for future research.
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smoothed least squares estimator β̂
(SLTS,w)
n is defined by

β̂(SLTS,w)
n = arg min

β∈B

n
∑

i=1

wir
2
[i](β), (4)

where

• β ∈ B ⊆ R
p is a p-dimensional vector of unknown parameters and B ⊆ R

p is the

corresponding parameter space,

• s[i](β), i = 1, . . ., n, represent the ordered sample of squared residuals si(β) = (yi −
xT

i β)2 for any β ∈ B, and

• w is a weighting vector : w1 ≥ w2 ≥ . . . ≥ wn ≥ 0.

The estimator is quite similar to the weighted least squares (WLS) estimator, which min-

imizes
∑n

i=1 wir
2
i (β) for some given weights wi, with one important difference: weights

are assigned to the order statistics of squared residuals instead directly to the residual.

Clearly, the behavior and properties of the SLTS estimator are given entirely by the choice

of weights. Let me provide two simple and one complex examples:

1. w1 = . . . = wn = 1: SLTS is equivalent to the least squares estimator;

2. w1 = . . . = wh = n/h for n
2

< h ≤ n and wh+1 = . . . = wn = 0: SLTS is equivalent to

the least trimmed squares estimator;

3. wi = f( i
n
; ω1, . . ., ωm) for all i = 1, . . ., n, where f(x; ω1, . . ., ωm) is a real-valued

function on 〈0, 1〉 parameterized by ω1, . . ., ωm ∈ R
m: in this case, weights follow a

function f(x; ω1, . . ., ωm) and are actually given by the parameters ω1, . . ., ωm. For

example, such a function can be defined as

f(x; ω) =
1

1 + eω(x−1/2)

for all x ∈ 〈0, 1〉 and one parameter ω ∈ 〈0,∞). Then we have a smoothing scheme

wi = f( i
n
, ω) for any given, but fixed value of ω, and moreover, we can choose among

such smoothing schemes by selecting a suitable value of parameter ω. Note that this

smoothing scheme converges to the one introduced in point 1 (least-squares weights)

for ω → 0 (as then wi → 1) and also to the smoothing scheme in point 2 (LTS

weights) for w → +∞ (wi → 1 for i ≤ hn =
[

n
2

]

and wi → 0 for i > hn =
[

n
2

]

).
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Apparently, this estimator can share its robustness properties (namely a high breakdown

point) with the already reviewed LTS, at least for choices of weights like in point 2 and

in point 3 for ω � 1. Additionally, once we restrict our attention only to strictly positive

weights, i.e., w1 ≥ w2 ≥ . . . ≥ wn > 0, we obtain an estimator that does not reject any

observation completely. This means that all observations are included in the regression and

binary and categorical variables do not cause problems anymore; moreover, removing the

discontinuity of the objective function significantly reduces the sensitivity of SLTS to small

changes of data. On the other hand, there are many similarities between LTS and SLTS.

SLTS can still eliminate the effect of outliers and other data-contaminating observations

in the same way as LTS does as long as weights are properly chosen, that is, if the effect of

large residuals on the SLTS objective function is sufficiently reduced. Further, as I show

later, the computation of SLTS could be done by using the weighted least squares (WLS)

method with weights w = (wP1 , . . ., wPn
) for each of n! permutations P = (P1, . . ., Pn) of

{1, . . ., n} and taking as the final estimate the WLS estimate for the permutation that

controls the minimum sum of squared residuals. Therefore, if the WLS estimator exists

for all permutations of weight vectors, then SLTS also exists (it is the minimum of a finite

number of values).

The crucial point is, of course, the choice of weights. There are several possibilities how

weights can be chosen:

1. A fixed smoothing scheme, such as the least squares one (w1 = . . . = wn = 1):

the only advantage of this option is that we can use the resulting estimator in lin-

ear regression models with discrete explanatory variables if all weights are positive.

However, in such a case, the robustness of the estimator suffers.

2. A data-dependent smoothing scheme: weights are based on data statistics. If we

want to be on the safe side, the weights can be defined, for example, so that the

smallest weights are inversely proportional to the distance of the point most distant

from the center of data; or they can be based on some robust distances as in the case

of the RDL1 estimator.

3. An adaptive choice from a given class of smoothing schemes: given a class of smooth-

ing schemes f(x; ω1, . . ., ωm) parameterized by ω1, . . ., ωm and requirements on ro-

bustness, we try to find an optimal choice of parameters ω1, . . ., ωm for a given data

set.
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There are certainly many possibilities how weight vectors can be defined. A fixed choice of a

smoothing scheme (point 1) is neither robust, nor flexible. The strategy described in point

2 is also not suitable because we do not assign weights directly to residuals and because

usual weight choices provide sufficient robustness only under some additional assumptions

about a model. Therefore, the strategy that I would like to discuss in this paper is the

adaptive choice of weighting scheme described in point 3. Consider, for example, such a

weighting scheme defined by one parameter: wi = f( i
n
, ω), where ω ∈ R and f is chosen

so that the corresponding SLTS estimate converges to the least squares for some values

of parameter ω (e.g., for ω → 0) and to the least trimmed squares for other ones (e.g.,

ω → ∞). Then we can by means of this single parameter ω choose how far or close the

corresponding SLTS estimator is to LTS and LS. In other words, we control the balance

between the robustness of the estimator and the amount of information it employs from

data. See Section 5.2 and 6 for more information on this topic.

4.3 Relation between SLTS and WLS estimators

Now, I derive a lemma describing the relation between the SLTS and weighted least squares

(WLS) estimator. This result will be useful not only for a better understanding of the

behavior of SLTS, but also for computation of the SLTS estimator.

We observed in Section 4 that the SLTS estimator corresponds to a weighted least

squares estimator with specially assigned weights. Let us make this assertion more precise.

Lemma 1 Let (yi, xi)
n
i=1 be a fixed realization of random sequence (yi = xT

i β0 + εi, xi)
n
i=1

and w = (w1, . . ., wn) be a weighting vector, w1n ≥ w2n ≥ . . . ≥ wnn > 0. Consider

β̂(SLTS,w)
n = arg min

β∈B

n
∑

i=1

wir
2
[i](β), (5)

where ri(β) = yi−xT
i β. Let ki(β) : R → {1, . . ., n} be a function such that ki(β) is the index

of the observation with the ith largest squared residual at β, r2
ki(β)(β) = r2

[i](β). Define now

weights v
ki(β̂

(SLTS,w)
n )

= wi for all i = 1, . . ., n. Then the weighted least squares estimator

with weights vi, i = 1, . . ., n,

β̂(WLS,v)
n = arg min

β∈B

n
∑

i=1

vir
2
i (β) = arg min

β∈B

n
∑

i=1

vi

(

yi − xT
i β

)2
, (6)

is equal to the smoothed least trimmed squares estimator: β̂
(SLTS,w)
n = β̂

(WLS,v)
n .
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Proof: I prove the lemma by contradiction. Let β̂
(SLTS,w)
n 6= β̂

(WLS,v)
n . Moreover, let

Ss(Xn, Yn, w; β) =
∑n

i=1 wir
2
[i](β) represent the objective function of SLTS at β and let

Sw(Xn, Yn, w; β) =
∑n

i=1 wir
2
i (β) denote the objective function of the weighted least squares

estimator at β. Then it follows from the definition of weights v and estimates β̂
(SLTS,w)
n

and β̂
(WLS,v)
n (ordering of squared residuals r2

i (β) at β̂
(SLTS,w)
n is given) that

Ss

(

Xn, Yn, w; β̂(SLTS,w)
n

)

= Sw

(

Xn, Yn, v; β̂(SLTS,w)
n

)

> Sw

(

Xn, Yn, v; β̂(WLS,v)
n

)

. (7)

Since the objective function of the weighted least squares estimator can be rewritten as

({k1(β), . . . , kn(β)} = {1, . . ., n} for any β)

Sw

(

Xn, Yn, v; β̂(WLS,v)
n

)

=

n
∑

i=1

vir
2
i

(

β̂(WLS,v)
n

)

=
n

∑

i=1

v
ki(β̂

(WLS,v)
n )

r2

ki(β̂
(WLS,v)
n )

(

β̂(WLS,v)
n

)

=

n
∑

i=1

v
ki(β̂

(WLS,v)
n )

r2
[i]

(

β̂(WLS,v)
n

)

and the sets of weights {vi}n
i=1 and {wi}n

i=1 are identical, it follows that

Sw

(

Xn, Yn, v; β̂(WLS,v)
n

)

=

n
∑

i=1

v
ki(β̂

(WLS,v)
n )

r2
[i]

(

β̂(WLS,v)
n

)

≥
n

∑

i=1

wir
2
[i]

(

β̂(WLS,v)
n

)

. (8)

The argument behind this result is simple: if weights v
ki(β̂

(WLS,v)
n )

are sorted in descending

order, that is v
k1(β̂

(WLS,v)
n )

≥ . . . ≥ v
kn(β̂

(WLS,v)
n )

, then the sums in (8) are equal; otherwise,

we just order weights v
ki(β̂

(WLS,v)
n )

, i = 1, . . ., n, decreasingly to get vector w, and thus,

put more weight on smaller squared residuals and less weight on larger squared residuals.

Consequently, we get

Ss

(

Xn, Yn, w; β̂(SLTS,w)
n

)

> Sw

(

Xn, Yn, v; β̂(WLS,v)
n

)

≥
n

∑

i=1

wir
2
[i]

(

β̂(WLS,v)
n

)

= Ss

(

Xn, Yn, w; β̂(WLS,v)
n

)

and this is the contradiction: β̂
(SLTS,w)
n does not minimize Ss (Xn, Yn, v; β). �

Lemma 1 actually states that the SLTS estimator corresponds to a weighted least
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squares estimator with specially assigned weights. These weights are a permutation of the

weight vector w defining SLTS. However, this permutation is specific to a given realization

of random variables, so we get a different permutation of weights (and thus a different

WLS estimator) for every sample (yi, xi)
n
i=1. Unfortunately, it is not possible to easily find

out, which permutation defines a WLS estimator equivalent to SLTS in a given sample.

Nevertheless, this lemma is very important for the rest of this paper in two ways: it helps

us to understand the asymptotic results concerning SLTS and it provides a way (although

not a straightforward one) to compute the SLTS estimator.

5 Properties of smoothed least trimmed squares

In this section, I first introduce the assumptions necessary for proving consistency and

asymptotic normality of the proposed estimator and then I derive these important asymp-

totic results in Section 5.1. Later, I discuss some elementary properties of the SLTS esti-

mator, its objective function and corresponding regression residuals as functions of weights

(Section 5.2). This will be useful for designing rules driving the proposed adaptive choice

of smoothing schemes (Section 6.2).

Before doing so, let us introduce the assumptions and notation used in the theoretical

part. Consider a linear regression model (2) for a sample (yi, xi) with a response variable

yi and a vector of explanatory variables xi:

yi = xT
i β + εi, i = 1, . . ., n. (9)

Let us denote Yn = (y1, . . ., yn)
T and Xn = (x1, . . ., xn)T , whereby the j th element of a

vector xi is referred to by xij; similarly, En = (ε1, . . ., εn)
T . Moreover, let 1n represent

n-dimensional vector of ones, 0n be n-dimensional vector of zeroes, and In be the n × n

identity matrix of dimension n.

Further, let β0 represent the true value of regression parameters and β̂
(SLTS,w)
n the SLTS

estimator defined by

β̂(SLTS,w)
n = arg min

β∈B

n
∑

i=1

wir
2
[i](β) (10)

for weights w = (w1, . . ., wn). The objective function of SLTS at β is further referred to

by Ss(Xn, Yn, w; β) =
∑n

i=1 wir
2
[i](β); if it is written without weights, w = 1n is assumed,

and thus, Ss(Xn, Yn; β) =
∑n

i=1 r2
[i](β) =

∑n
i=1 r2

i (β) is the objective function of the least

14



squares estimator at β. The objective function of the weighted least squares estimator at

β is denoted Sw(Xn, Yn, w; β) =
∑n

i=1 wir
2
i (β) and again Sw(Xn, Yn; β) =

∑n
i=1 r2

i (β).

Further, we discussed the possibility to define weights for the SLTS by means of a

real function in Section 4.2. To make this concept more precise, let us consider a real-

valued non-increasing function f(·; ω1, . . ., ωm) ∈ L1(〈0, 1〉) parameterized by ω1, . . ., ωm ∈
R

m (L1(C) represents the space of all absolutely integrable functions on C) such that

f(x; ω1, . . ., ωm) ≥ 0 for all x ∈ 〈0, 1〉. For the given values of parameters ω1, . . ., ωm, it is

possible to define weights

wi = f

(

2i − 1

2n
; ω1, . . ., ωm

)

for all i = 1, . . ., n.9 Then the function f(·; ω1, . . ., ωm) is the generating function of the

SLTS smoothing scheme parameterized by ω1, . . ., ωm and the weights are generated by the

function f . In the following analysis, I focus only on strictly positive generating functions,

which prevent a complete rejection of observation. Moreover, I discuss mainly the so-called

stepwise generating functions:10 f(x) is a stepwise function on 〈0, 1〉 if there are kf ∈ N

and real constants 0 = α0 < α1 < . . . < αkf
= 1 and c1, . . ., ckf

∈ R such that f(x) = ci for

all αi−1 < x < αi and all i = 1, . . ., kf . Because we require that w1 ≥ w2 ≥ . . . ≥ wn > 0

for a weighting vector w = (w1, . . ., wn), it has to hold c1 ≥ c2 ≥ . . . ≥ ckf
> 0 for values

of a stepwise generating function. Additionally, we can always assume without loss of

generality that constants αi and ci are chosen such that c1 > c2 > . . . > ckf
> 0.

Finally, note that if we assume that weights w = (w1, . . ., wn) are generated by a

stepwise function defined by constants kf , 0 = α0 < α1 < . . . < αkf
= 1, and c1 > c2 >

. . . > ckf
> 0, we can rewrite the definition (10) of SLTS as11

β̂(SLTS,w)
n = arg min

β∈B

n
∑

i=1

r2
i (β) ·





kf−1
∑

j=1

(cj − cj+1) I
(

r2
i (β) ≤ s[αjn](β)

)

+ ckf



 . (11)

To obtain this formula, one has to realize that the [α1n] smallest residuals are assigned

weight c1, the [α2n] smallest residuals have weight c2 ≤ c1, and so on. Moreover, for a

given value of β ∈ B, the set of the [αjn] smallest squared residuals corresponds to a set

of those residuals that satisfy r2
i (β) ≤ r2

[αjn](β).12 For notational convenience, I denote the

9Fraction 2i−1

2n
is used instead of the simple i

n
in order to obtain evenly spread values inside the open

interval (0, 1).
10This allows me to employ existing asymptotic results for LTS.
11By I(property describing a set A) we denote the indicator of the set A.
12In general, this definition is not equivalent to the original one. They are exactly equivalent if and only
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sum of indicators in (11)

SI(i, β; α, c) =

kf−1
∑

j=1

(cj − cj+1) I
(

r2
i (β) ≤ s[αjn](β)

)

+ ckf
(12)

where α = (α1, . . ., αkf
) and c = (c1, . . ., ckf

), so we can rewrite (11) as

β̂(SLTS,w)
n = arg min

β∈B

n
∑

i=1

r2
i (β) · SI(i, β; α, c),

and similarly, the objective function of SLTS at β is Ss(Xn, Yn, w; β) =
∑n

i=1 r2
i (β) ·

SI(i, β; α, c). Additionally, I define an asymptotical equivalent of SI(i, β; α, c). I simply

replace s[αjn](β) in (12) by its probability limit:

SIT (i, β; α, c) =

kf−1
∑

j=1

(cj − cj+1) I
(

r2
i (β) ≤ G−1

β (αj)
)

+ ckf
, (13)

where G−1
β (αj) represents the αj-quantile of the distribution function of s[αjn](β).

Now, let us finally specify the assumptions needed for the consistency and asymptotic

normality of the SLTS estimator.

Assumption A.

A1 Let Wn = (win)
n
i=1 be a sequence of weight vectors generated for all n ∈ N by a

fixed stepwise generating function fw(x) : 〈0, 1〉 → R+. We assume that there are

constants kf ∈ N, 0 = α0 < α1 < . . . < αkf
= 1, and +∞ > c1 > c2 > . . . > ckf

> 0

such that fw(x) = ci for all αi−1 < x ≤ αi and all i = 1, . . ., kf . Hence, w1n ≥ w2n ≥
. . . ≥ wnn > 0.

Remark 1 As stated above, I derive consistency and asymptotic normality only for step-

wise generating functions. However, this does not present a considerable restriction on the

choice of smoothing schemes since every continuous function on 〈0, 1〉 can be approximated

with an arbitrary precision by a stepwise function. See Section 6.2 for more details.

if all the residuals are different from each other. Under Assumption A stated below, this happens with
zero probability and definitions (10) and (11) are equivalent almost surely as the cumulative distribution
function of ri(β) is assumed to be absolutely continuous. Therefore, I use definition (11) for convenience.
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A2 Let (xi, εi) ∈ R
p ×R, i = 1, . . ., n, be a sequence of independent identically distributed

random vectors, whereby εi and xi have finite second and fourth moments, respec-

tively. Moreover,

n−1/4 max
i,j

|xij| = Op(1). (14)

Remark 2 Assumption A2 requires the explanatory variables xi to be stochastic. This

assumption is mainly made for the sake of simplicity and the use of nonstochastic variables

(e.g., seasonal dummies) in regression does not invalidate the presented results. The same

applies to the requirement that εi are identically distributed: the consistency and asymptotic

normality of SLTS can be also proved under heteroscedasticity, for instance. On the other

hand, the independence of observations (xi, εi) is currently necessary, so Assumption A2

does not permit the use of lagged dependent variables.

Remark 3 The necessity to include restriction (14) is caused by the discontinuity of the

objective function of LTS, which the SLTS objective function is composed of. A nonrandom

version of this assumption was used for the first time by Jurečková (1984) and the presented

version (14) was introduced by Vı́̌sek (1999) and used by Čı́̌zek (2001). Apparently, this

condition does not affect a random variable with a finite support at all. Moreover, Čı́̌zek

(2001, Proposition 1) showed that equation (14) holds even for some distribution functions

with polynomial tails, namely for those that have finite second moments. As the existence of

finite second moments is almost always utilized, and moreover, it is implied by Assumption

A2, assumption (14) should not pose a considerable restriction on the explanatory variables.

A3 We assume

• E
[

x1x
T
1

]

= Q and E
[

x1x
T
1 · SIT (1, β; α, c)

]

= Q(β), where Q and Q(β) as a

matrix function of β are nonsingular (positive definite) matrices for β ∈ B,

where B is a compact parametric space,

• E [ε1 · SI(1, β0; α, c)|x1] = 0,

• E [ε2
1 · SI(1, β0; α, c)|x1] = σ2

T , where σ2
T ∈ (0, +∞).

Remark 4 These moment assumptions are nothing but a natural analogy to the usual

orthogonality E(ε|x) = 0 and spheriality E(ε2|x) = σ2 conditions used for the least squares

regression. They also closely resemble similar conditions used for LTS

E
[

ε1I
(

s1

(

β0
)

≤ s[λn]

(

β0
))∣

∣x1

]

= 0, E
[

ε2
1I

(

s1

(

β0
)

≤ s[λn]

(

β0
))∣

∣ x1

]

= σ2
T , (15)
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λ ∈
〈

1
2
, 1

〉

; see, for example Čı́̌zek (2001). Note that Assumption A2 is weaker than its

counterparts (15) for LTS.

The same applies to the regularity condition regarding explanatory variables—Ex1x
T
1 =

Q, where Q is a nonsingular matrix, is a standard identification condition for the least

squares estimator.

A4 Further, let us denote Fβ0(x) as the distribution function of εi and assume that Fβ0(x)

is absolutely continuous. Let fβ0 denote the probability density of Fβ0, which is

assumed to be positive, bounded by a constant Mf > 0 and differentiable on the

whole support of the distribution function Fβ0 .

Remark 5 This assumption, which actually implies the continuity of the quantile func-

tion, is typical when trimmed order statistics of random variables are analyzed; see Vı́̌sek

(1999) and Čı́̌zek (2001), for instance.Notice that Fβ0 can be an arbitrary distribution func-

tion as long as it is absolutely continuous (Assumption A4), symmetric around zero (this

is in most cases a necessary condition for the below stated Assumption A5), and has finite

fourth moments (Assumption A2).

Let Gβ0(z) represent the distribution function of ε2
i ≡ r2

i (β). It follows that Gβ0(z) =

Fβ0(
√

z) − Fβ0(−√
z) for z > 0, Gβ0(z) = 0 otherwise, and hence, it is also absolutely

continuous. Therefore, we can define gβ0(z) to be the corresponding probability density

function. Moreover, sometimes it is necessary to refer to the distribution function of ri(β)

and r2
i (β); in such a case, Fβ and Gβ are used for the cumulative distribution functions

and fβ and gβ for the corresponding probability densities.

A5 Finally, assume that for any ε > 0 and an open neighborhood U(β0, ε) of β0 such that

B\U(β0, ε) is compact, there exists α(ε) > 0 such that it holds

min
β∈B\U(β0 ,ε)

E
[

r2
i (β) · SIT (1, β; α, c)

]

− E
[

r2
i (β

0) · SIT (1, β0; α, c)
]

> α(ε).

Remark 6 This is nothing but a standard identification condition—the expectation of

the objective function is assumed to have asymptotically a unique global minimum at β0.

Compare, for example, to Čı́̌zek (2001) and White (1980).

5.1 Consistency and asymptotic normality

Now, I derive the main asymptotic results, namely the consistency and asymptotic nor-

mality of SLTS.
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Theorem 1 Let Assumption A hold for a sequence Wn = (win)n
i=1 of weight vectors. Let

qj =
√

G−1
β0 (αj), j = 1, . . ., kf , and

kj−1
∑

i=1

(cj − cj+1) · {αj − qj [fβ0(−qj) + fβ0(qj)]} + ckf
6= 0. (16)

Then the smoothed least trimmed squares estimator β̂
(SLTS,Wn)
n is

√
n-consistent

√
n

(

β̂(SLTS,Wn)
n − β0

)

= Op(1) (17)

and asymptotically normal,

√
n

(

β̂(SLTS,Wn)
n − β0

)

L→ N(0, V ) (18)

as n → +∞, where

V =







kj−1
∑

i=1

(cj − cj+1) · {αj − qj [fβ0(−qj) + fβ0(qj)]} + ckf







−2

×Q−1
var

(

ε1x1 · SIT (1, β0; α, c)
)

Q−1. (19)

Proof: First of all, the objective function

Ss(Xn, Yn, Wn; β) =
n

∑

i=1

(yi − βT xi)
2 · SI(i, β; α, c) (20)

=

kf
∑

j=1

(cj − cj+1) ·
[

n
∑

i=1

(yi − βTxi)
2 · I

(

si(β) ≤ s[αjn](β)
)

]

+ ckf
·
[

n
∑

i=1

(yi − βT xi)
2

]

is actually a sum of the objective functions of the LTS estimators (the sums in the square

brackets are the mentioned LTS objective functions with trimming constants αj). Because

Assumption A covers all the assumptions relevant for the linear regression model used in

V́ı̌sek (1999) and Č́ıžek (2001), I simply employ the existing results for LTS from these two

papers by applying them to every element of sum (20).
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Next, the SLTS estimator, minimizing its objective function Ss(Xn, Yn, Wn; β), can be

also obtained from the normal equations ∂Ss(Xn,Yn,Wn;β)
∂β

= 0. As derived by V́ı̌sek (1999,

page 6) and Č́ıžek (2001, Section 3.3.1 and Lemma 1), the normal equations can almost

surely be expressed as

∂Ss(Xn, Yn, Wn; β)

∂β
=

n
∑

i=1

(yi − βT xi)x
T
i · SI(i, β; α, c) = 0. (21)

The second derivative of the objective function ∂2Ss(Xn,Yn,Wn;β)
∂β2 can be analogously expressed

as
∂2Ss(Xn, Yn, Wn; β)

∂β2
=

n
∑

i=1

xix
T
i · SI(i, β; α, c).

Moreover, because of Assumption A, we can use the results from Č́ıžek (2001, Corollary 5

and Lemma 7), which imply uniformly in β

1

n

n
∑

i=1

xix
T
i · SI(i, β; α, c)

P→ E
(

xix
T
i · SIT (i, β; α, c)

)

= Q(β)

in probability for n → ∞, where Q(β) is a nonsingular positive definite matrix (see As-

sumption A3). Hence, for any ε > 0 it is possible to find n0 ∈ N such that the matrix
1
n

∑n
i=1 xix

T
i ·SI(i, β; α, c) is positive definite for all β with a probability greater than 1−ε.

Consequently, the normal equations (21) have a unique solution with an arbitrarily high

probability for a sufficiently high n.

Now, I will find the solution to the normal equations (21). Because it is unique, it has to

be equal to the SLTS estimate. To find this solution, I use the asymptotic linearity of LTS:

it says that the first derivative of the SLTS objective function behaves almost surely as a

linear function of β in a neighborhood U(β0, n− 1
2 M) of β0, where M is a positive constant.

To characterize all possible values of β ∈ U(β0, n− 1
2 M), they are usually expressed as

β = β0 − n− 1
2 t for any t from the set TM = {t : ‖t‖ ≤ M}. Thus, using the asymptotic

linearity theorem for LTS (see V́ı̌sek (1999, Theorem 1) and Č́ıžek (2001, Theorem 1)) we
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can write that for any M > 0

∂Ss(Xn, Yn, Wn; β0 − n− 1
2 t)

∂β
=

∂Ss(Xn, Yn, Wn; β
0)

∂β
(22)

− n
1
2 Qt ·







kj−1
∑

i=1

(cj − cj+1) · Cj(α) + ckf







+ Op

(

n
1
4

)

uniformly for all t ∈ TM , where

Cj(α) = αj − qj (f (−qj) + f (qj))

(notation qj =
√

G−1
β0 (αj) is used). We show that there is some t ∈ TM such that

∂Ss(Xn,Yn,Wn;β0−n−
1
2 t)

∂β
= 0 with an arbitrarily high probability. This means that β =

β0 − n− 1
2 t is then the only solution of normal equations. From equation (22), it follows

that, for the solution of the normal equations,

∂Ss(Xn, Yn, Wn; β
0)

∂β
= n

1
2 Qt ·







kj−1
∑

i=1

(cj − cj+1) · Cj(α) + ckf







+ Op

(

n
1
4

)

and (remember,
∑kj−1

i=1 (cj − cj+1) · Cj(α) + ckf
6= 0 and Q(β0) is a nonsingular matrix)

t = Q−1 · 1√
n

∂Ss(Xn, Yn, Wn; β0)

∂β
·







kj−1
∑

i=1

(cj − cj+1) · Cj(α) + ckf







−1

+ Op

(

n− 1
4

)

(23)

as n → ∞. Since the random variable

1√
n

∂Ss(Xn, Yn, Wn; β
0)

∂β
=

1√
n

n
∑

i=1

(yi − xT
i β0)xT

i · SI(i, β0; α, c)

has asymptotically the normal distribution with zero expectation and variance

var

(

1√
n

∂Ss(Xn, Yn, Wn; β0)

∂β

)

= var
(

ε1x1 · SIT (1, β0; α, c)
)
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(see V́ı̌sek (1999, proof of Theorem 2) and Č́ıžek (2001, proof of Theorem 4 and Lemma

6)), it is bounded in probability. Hence, t defined in (23) is bounded in probability as

well and for any ε > 0 there is M > 0 such that term (22) equals zero for some t ∈ TM

with probability higher than 1 − ε. Then β0 − n− 1
2 t is the unique solution of (21), and

consequently, the SLTS estimate itself is β̂
(SLTS,Wn)
n = β0−n− 1

2 t. Apparently, it holds that
√

n
(

β̂
(SLTS,Wn)
n − β0

)

= t.

This finding has two important implications: the
√

n-consistency and asymptotic nor-

mality of SLTS. First, because we can find a compact set TM and the solution to the

normal equations β̂
(SLTS,Wn)
n such that

∥

∥

∥

√
n

(

β̂
(SLTS,Wn)
n − β0

)∥

∥

∥
= ‖t‖ ≤ M with an arbi-

trarily high probability, it follows that

√
n

(

β̂(SLTS,Wn)
n − β0

)

= Op(1)

as n → +∞ (this is the
√

n-consistency of SLTS). Second, we found that the solution t of

the normal equation (21) considered as a random variable equals

t = Q−1 ·







kj−1
∑

i=1

(cj − cj+1) · Cj(α) + ckf







−1

· Z + Op

(

n− 1
4

)

(see (23)), where Z = 1√
n

∂Ss(Xn,Yn,Wn;β0)
∂β

is asymptotically normally distributed with zero

expectation and variance var Z = var (ε1x1 · SIT (1, β0; α, c)). Hence,

√
n

(

β̂(SLTS,Wn)
n − β0

)

= t ∼ N (0, V )

for n → +∞, where

V =







kj−1
∑

i=1

(cj − cj+1) · Cj(α) + ckf







−2

· Q−1
var

(

ε1x1 · SIT (1, β0; α, c)
)

Q−1.

�

The proof of asymptotic normality is not useful just on its own, it gives us also an idea

about the asymptotic variance of the SLTS estimator. This provides a comparison to the

least squares estimator, and more importantly, an idea how a choice of weighting scheme

used to define SLTS influences the asymptotic variance of the estimator. Moreover, it jus-

tifies (for larger data sets) the use of standard test procedures that assume the normality of
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an estimator in the case of SLTS. In such a case, we need to be able to evaluate the asymp-

totic variance (19) for real data. Since the expression itself seems to be quite complicated,

let me indicate how to compute this variance in practice. First, the finite sample alterna-

tive of SIT (i, β0; α, c) is clearly SI(i, β0; α, c) defined in (12). Next, having a consistent

estimate β̂ of β0, we can evaluate both samples xix
T
i SI(i, β̂; α, c) and eixiSI(i, β̂; α, c) at

β̂, where ei = yi−xT
i β̂ (α and c are known vectors defining some SLTS smoothing). Hence,

the variance var (ε1x1 · SIT (1, β0; α, c)) and the matrix Q(β0) = E
(

x1x
T
1 · SIT (1, β; α, c)

)

can be estimated by standard means (e.g., the expectation defining Q(β0) is estimated by

the arithmetic mean or median of the sample xix
T
i SI(i, β̂; α, c)). The same is true for the

square roots of quantiles qj =
√

G−1
β0 (αj), which are to be estimated using sample quantiles

of {e2
i }n

i=1. The only missing elements are the values of the probability density function fβ0

at points q1, . . . , qkf−1. Since fβ0 is in general unknown, it is necessary to use some kernel

density estimation for the sample of regression residuals {ei}n
i=1 at points q1, . . . , qkf−1 to

obtain estimates f̂β̂(qj), j = 1, . . . , kf − 1.

Although the use of kernel estimation implies that we have to have a sufficient amount

of data (e.g., one hundred observations and more), I do not consider this to be a seri-

ous limitation. Remember that these results, especially the variance (19), describe only

the asymptotic behavior of SLTS. For really small data set, it is reasonable to employ

alternative simulation approaches, such as bootstrap, for estimating the variance of SLTS.

Therefore, to complement the asymptotic results derived in this section, I study the finite

sample performance behavior of SLTS using Monte Carlo simulations in Section 7.

5.2 Properties of the estimator as a function of weights

As I indicated in Section 4, the main focus of this paper is on the adaptive choice of

weights, which should enable us by a choice of one or more parameters to control the

balance between the robustness of the estimator and the amount of information it employs

from data. As the first step in this direction, I derive some theoretical properties concerning

the SLTS objective function Ss(x, y, w; β) as a function of weights. In order to make the

subsequent explanations and analysis tractable, I first restrict the choice of weights to a

family of weighting schemes. Later, I discuss the principles of the adaptive weight choice

and the corresponding theoretical results.

It is interesting to study SLTS not only for a fixed weighting scheme, but it is prefer-

able to search for optimal weights from a class of weighting schemes. For this purpose, I

introduced weights-generating functions that are parameterized by a vector of parameters.
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Whereas this concept requires a non-increasing function that is positive and integrable on

〈0, 1〉, the asymptotic properties of SLTS were proved only for stepwise functions. Both be-

cause the results derived in the rest of this paper can be proved generally for any generating

function and because it is easier and more transparent to work with a general generating

function, I assume from now on that a weights-generating function is a non-increasing con-

tinuous function that is positive and integrable on 〈0, 1〉. However, keeping in mind that

only stepwise generating functions should be used for practical computation (asymptotic

properties of SLTS are derived only for stepwise generating functions in Section 5.1), I

assume that some fixed 1 > εp > 0 and np = [ε−1
p ] + 1 are given, describing the precision of

approximation by a stepwise function. This means that we use for practical computation

a stepwise approximation f̄(x) instead of a general continuous function f(x) on 〈0, 1〉:

f̄(x) = f

(

2i − 1

2np

)

if
i − 1

np
≤ f(x) ≤ i

np

for all i = 1, . . ., np.

Now, let us specify the restrictions regarding generating functions used in the rest of

this section.

Assumption W.

Let Wn(ω) = (win)n
i=1 be a sequence of weight vectors generated by function f(x; ω) :

〈0, 1〉 → R parameterized by ω from an interval (ω1, ω2) ⊆ R. Assume that for any

ω ∈ (ω1, ω2)

W1 f(x; ω) with respect to x is a continuous, non-increasing, and everywhere positive

function bounded on 〈0, 1〉 by constant Kw > 0 uniformly for all ω ∈ (ω1, ω2)

W2
∫ 1

0
f(x; ω)dx = Kf is constant with respect to ω, and

W3 there is λ ∈
〈

1
2
, 1

〉

such that

• f(x; ω) ≥ f(x; ω′) for any ω > ω′ and x ≤ λ

• f(x; ω) ≤ f(x; ω′) for any ω > ω′ and x > λ.

W4 Optionally, we can require that there are ω1 < ω2 ∈ Pω such that

• for ω → ω1 it holds that f(x; ω) → a1 > 0 for all x ∈ 〈0, 1〉,
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• for ω → ω2 it holds that f(x; ω) → a2 > 0 for all x ≤ λ and f(x; ω) → 0 for all

x > λ.

Remark 7 Assumption W2 is just a normalization condition that allows us to compare

the values of the SLTS objective function for weighting schemes corresponding to different

ω. Assumption W3 formalizes the requirement that we put less weight on large residuals

for some (here greater) values of parameter ω and vice versa. Optional assumption W4

states that the least squares and LTS estimators should be at least limiting cases within the

class of smoothing schemes defined by f(·; ω).

A reasonable choice of weighting functions f(x; ω) might be, for example, functions of

the form 1 − F (x; ω), where F (x; ω) represents a cumulative density function from some

suitable family of distributions. Let me give an example from Section 4, which actually

corresponds to a generating function based on a transformed logistic distribution function:

fλ(x; ω) =
1

1 + eω(x−λ)

[
∫ 1

0

1

1 + eω(x−λ)
dx

]−1

(24)

for ω ≥ 0 and x ∈ 〈0, 1〉 (λ ∈
〈

1
2
, 1

〉

is a fixed number here). The function fλ(x; ω) for

various choices of ω is depicted later on Figure 2.

Now, I would like to roughly describe the principle of the adaptive choice of weights

defined by the weighting parameter ω. At the time of estimation, only a few characteris-

tics of the estimate are readily available: the value of the objective function at the point

of the current estimate Ss

(

x, y, Wn(ω); β̂
(SLTS,Wn(ω))
n

)

and the corresponding regression

residuals. So, if we want to find the best choice of the weighting parameter ω, we have

to base our decision on some characteristics of regression residuals or on the behavior of

Ss

(

x, y, Wn(ω); β̂
(SLTS,Wn(ω))
n

)

for different values of ω. Let me give some examples of pos-

sible adaptive-choice procedures. One possible idea is based on the fact that the estimator

minimizes the weighted sum of squared residuals and that the smaller sum represents a

better fit. If there is contamination or a deviation from a regression model that makes the

estimate for a given ω inconsistent, the value of the objective function will grow rapidly.

This can, indeed, help to differentiate “good” and “bad” choices of the weighting param-

eter. Another possibility is to use regression residuals. Regression residuals have some

mean value and variance, which indicate which residuals are acceptable or which residu-

als are suspicious. If there is contamination or a deviation from a regression model that

makes the estimate for a given ω inconsistent, some regression residuals will be suspiciously

25



large. This will again differentiate “good” and “bad” choices of the weighting parameter.

Finally, knowing which values of the weighting parameter ω are acceptable (“good” ones),

we choose the one providing the lowest variance of estimates. In order to find out which

values of ω are acceptable and which are not, I now analyze some fundamental properties

of the objective function as a function of ω. Later, I will discuss some theoretical results

concerning regression residuals, again as a function of the weighting parameter ω.

So, let us analyze the behavior of Ss

(

x, y, Wn(ω); β̂
(SLTS,Wn(ω))
n

)

, that is, of the objective

function of SLTS at the optimum β̂
(SLTS,Wn(ω))
n , as a function of the parameter ω. We show

first that this function is decreasing for all ω ∈ (ω1, ω2).

Proposition 1 Let (yi, xi)
n
i=1 be a fixed realization of random sequence (yi = xT

i β0 +

εi, xi)
n
i=1 and Wn(ω) be a sequence of weight vectors satisfying Assumption W. Consider

β̂(SLTS,Wn(ω))
n = arg min

β∈B

n
∑

i=1

win(ω)r2
[i](β). (25)

Then

Ss

(

Xn, Yn, Wn(ω); β̂(SLTS,Wn(ω))
n

)

≥ Ss

(

Xn, Yn, Wn(ω′); β̂(SLTS,Wn(ω′))
n

)

holds for any ω < ω′ from (ω1, ω2).

Proof: Let ω < ω′. Assumption W3 implies that f(x; ω) ≤ f(x; ω′) for x ≤ λ and

f(x; ω) ≥ f(x; ω′) for x > λ. In other words, a higher ω′ causes bigger weights to be

assigned to smaller residuals and smaller weights to larger residuals (compared with weights

for ω). Hence,

Ss

(

Xn, Yn, Wn(ω); β̂(SLTS,Wn(ω))
n

)

≥ Ss

(

Xn, Yn, Wn(ω
′); β̂(SLTS,Wn(ω))

n

)

.

since the objective function Ss is evaluated at the same point β̂
(SLTS,Wn(ω))
n on both sides

of the inequality, so all residuals stay the same. Now, by the definition of SLTS,

Ss

(

Xn, Yn, Wn(ω′); β̂(SLTS,Wn(ω))
n

)

≥ Ss

(

Xn, Yn, Wn(ω′); β̂(SLTS,Wn(ω′))
n

)

,

and consequently, it follows that

Ss

(

Xn, Yn, Wn(ω); β̂(SLTS,Wn(ω))
n

)

≥ Ss

(

Xn, Yn, Wn(ω′); β̂(SLTS,Wn(ω′))
n

)

.

26



�

So, we know now that the objective function at optimum is decreasing in ω. Unfortu-

nately, we can hardly analyze the shape of Ss

(

Xn, Yn, Wn(ω); β̂
(SLTS,Wn(ω))
n

)

for the general

weighting scheme introduced in Assumption W. On the other hand, the complete specifica-

tion of weighting schemes in Assumption W provides another guideline: for small values of

ω (close to ω1), the SLTS estimates should converge to the least squares estimates; for large

values of ω (close to ω2), the SLTS estimates should converge to the least trimmed squares

estimates. Thus, the lower and upper bound for the values of the SLTS objective function

are given by the LS and LTS objective functions. Of course, these bounds cannot be esti-

mated on a real data set because we do not know whether the (least squares) estimates are

consistent. However, assuming a linear regression model with a known distribution of the

error term, it is possible to compute the asymptotic ratio of the upper and lower bounds

of the SLTS objective function. I compute this ratio in the case of the normal distribution

in Proposition 2.

Proposition 2 Let Assumption A hold and the error term be normally distributed εi ∼
N(0, σ2), i = 1, . . ., n. Consider two special choices of weight vectors: W 1

n = (w1
in), w1

in = 1

(the least squares weights), and W 2
n = (w2

in), w2
in = n

hn
I(i ≤ hn), where hn = [λn] and

λ ∈
〈

1
2
, 1

〉

(the least trimmed squares weights), for all i = 1, . . ., n and n ∈ N. Then

Ss

(

Xn, Yn, W
1
n ; β̂

(SLTS,W 1
n)

n

)

Ss

(

Xn, Yn, W 2
n ; β̂

(SLTS,W 2
n)

n

) =

∑n
i=1 r2

[i]

(

β̂
(SLTS,W 1

n)
n

)

n
hn

∑hn

i=1 r2
[i]

(

β̂
(SLTS,W 2

n)
n

)

a.s.→ λ

Fχ2
3

(

F−1
χ2

1
(λ)

)

almost surely as n → +∞, where Fχ2
d

represents the χ2
d cumulative distribution function

with d degrees of freedom and F−1
χ2

d

the quantile function of χ2
d distribution.

Proof: Assumption A guarantees that both estimators β̂
(SLTS,W 1

n)
n and β̂

(SLTS,W 2
n)

n are

consistent—they converge to the true parameter vector β0 in probability. Hence, the resid-

uals ri

(

β̂
(SLTS,W l

n)
n

)

= εi + xT
i

(

β̂
(SLTS,W l

n)
n − β0

)

converge in probability to εi for l = 1, 2

and i = 1, . . ., n. Thus, the squared residuals divided by σ2 are asymptotically distributed

according to χ2
1 distribution with one degree of freedom. Consequently, by the strong law

of large numbers, 1
nσ2

∑n
i=1 r2

[i]

(

β̂
(SLTS,W 1

n)
n

)

= 1
nσ2

∑n
i=1 r2

i

(

β̂
(SLTS,W 1

n)
n

)

converges almost

surely to the expectation of the χ2
1 distribution, that is

1

nσ2

n
∑

i=1

r2
[i]

(

β̂(SLTS,W 1
n)

n

)

a.s.→
∫ ∞

0

x · fχ2
1
(x)dx = 1,
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where fχ2
1
(x) represents the probability density function of χ2

1. Similarly,

1

hnσ2

hn
∑

i=1

r2
[i]

(

β̂(SLTS,W 2
n)

n

)

a.s.→
∫ F−1

χ2
1

(λ)

0

x ·
fχ2

1
(x)

Fχ2
1

(

F−1
χ2

1
(λ)

)dx =
1

λ

∫ F−1

χ2
1

(λ)

0

x · fχ2
1
(x)dx.

We can transform the integral in the following way:

∫ z

0

x · fχ2
1
(x)dx =

∫ z

0

x · 1

2
1
2 Γ(1

2
)
x− 1

2 e−
x
2 dx

=

∫ z

0

1

2
3
2 Γ(3

2
)
x

1
2 e−

x
2 dx

=

∫ z

0

fχ2
3
(x)dx.

This leads directly to

1

hnσ2

hn
∑

i=1

r2
[i]

(

β̂(SLTS,W 2
n)

n

)

a.s.→ 1

λ

∫ F−1

χ2
1

(λ)

0

fχ2
3
(x)dx =

1

λ
Fχ2

3

(

F−1
χ2

1
(λ)

)

.

�

Such a result can be computed in a similar way also for other absolutely continuous

distribution functions. See Section 6 for further discussion and the use of this result.

Besides the objective function Ss

(

x, y, w; β̂
(SLTS,Wn(ω))
n

)

, we have one more character-

istic of an estimate available: the corresponding regression residuals. Like in Proposition

2 for the SLTS objective function, it is possible to asymptotically compare some statistics

(e.g., variance) of regression residuals for the two limiting cases, LS (ω → ω1) and LTS

(ω → ω2). Assuming a linear regression model with normally distributed errors, I compare

regression residuals in these two cases in Proposition 3.

Proposition 3 Let Assumption A hold and the error term be normally distributed εi ∼
N(0, σ2), i = 1, . . ., n. Consider two special choices of weight vectors: W 1

n = (w1
in), w1

in = 1

(the least squares weights), and W 2
n = (w2

in), w2
in = n

hn
I(i ≤ hn), where hn = [λn] and

λ ∈
〈

1
2
, 1

〉

(the least trimmed squares weights), for all i = 1, . . ., n and n ∈ N. Moreover,

given a sample of regression residuals ri(β) = yi − xT
i β, i = 1, . . ., n, let r{i}(β) refer to the
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ith smallest residual in absolute value. Then

1

n

n
∑

i=1

r{i}

(

β̂(SLTS,W 1
n)

n

)

=
1

n

n
∑

i=1

ri

(

β̂(SLTS,W 1
n)

n

)

a.s.→ E εi = 0 (26)

and
1

hn

hn
∑

i=1

r{i}

(

β̂(SLTS,W 2
n)

n

)

a.s.→ lim
n→∞

E
(

εi · I
(

ε2
i ≤ ε2

[hn]

))

= 0 (27)

almost surely as n → +∞. Similarly,

1

n

n
∑

i=1

r2
{i}

(

β̂(SLTS,W 1
n)

n

)

=
1

n

n
∑

i=1

r2
i

(

β̂(SLTS,W 1
n)

n

)

a.s.→ var εi = σ2 (28)

and

1

hn

hn
∑

i=1

r2
{i}

(

β̂(SLTS,W 2
n)

n

)

a.s.→ lim
n→∞

E
(

ε2
i · I

(

ε2
i ≤ ε2

[hn]

))

=

=
1

λ
Fχ2

3

(

Φ−1

(

1 + λ

2

))

· var εi (29)

=
σ2

λ
· Fχ2

3

(

Φ−1

(

1 + λ

2

))

almost surely as n → +∞, where Φ is the standard normal distribution function, Fχ2
d

represents the χ2
d cumulative distribution function with d degrees of freedom and F −1

χ2
d

the

quantile function of χ2
d distribution.

Proof: Assumption A guarantees that both estimators β̂
(SLTS,W 1

n)
n and β̂

(SLTS,W 2
n)

n are

consistent—they converge to the true parameter vector β0 in probability. Hence, the resid-

uals ri

(

β̂
(SLTS,W l

n)
n

)

= εi + xT
i

(

β̂
(SLTS,W l

n)
n − β0

)

converge in probability to εi for l = 1, 2

and i = 1, . . ., n. Consequently, the first assertions (26) and (27) are an immediate result

of the consistency of the LS and LTS estimators and of the strong law of large numbers

(see Assumption A3). The same is true for (28) (var ε2
i = σ2): by the strong law of large

numbers, 1
nσ2

∑n
i=1 r2

{i}

(

β̂
(SLTS,W 1

n)
n

)

= 1
nσ2

∑n
i=1 r2

i

(

β̂
(SLTS,W 1

n)
n

)

converges almost surely

to the variance of the standard normal distribution N(0, 1),

1

nσ2

n
∑

i=1

r2
{i}

(

β̂(SLTS,W 1
n)

n

)

=
1

nσ2

n
∑

i=1

r2
i

(

β̂(SLTS,W 1
n)

n

)

a.s.→
∫ ∞

−∞
x2 · φ(x)dx = 1, (30)
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where φ(x) represents the probability density function of N(0, 1). Thus, the only assertion

to be proved is (29). Similarly to (30),

1

hnσ2

hn
∑

i=1

r2
{i}

(

β̂(SLTS,W 2
n)

n

)

a.s.→
∫ Φ−1( 1+λ

2
)

Φ−1( 1−λ
2

)

x2 · φ(x)

Φ
(

Φ−1(1+λ
2

)
)

− Φ
(

Φ−1(1−λ
2

)
)dx

=
1

λ

∫ Φ−1( 1+λ
2

)

Φ−1( 1−λ
2

)

x2 · φ(x)dx.

We can transform the integral in the following way (qλ = Φ−1(1+λ
2

) is used for simplicity

of notation):

∫ Φ−1( 1+λ
2

)

Φ−1( 1−λ
2

)

x2 · φ(x)dx = 2

∫ qλ

0

x2 · 1

2
1
2 Γ(1

2
)
e−

x2

2 dx

=

∫ q2
λ

0

1

2
1
2 Γ(1

2
)
t

1
2 e−

t
2 dt

=

∫ q2
λ

0

1

2
3
2 Γ(3

2
)
t

1
2 e−

t
2 dt

=

∫ q2
λ

0

fχ2
3
(x)dx.

This leads directly to

1

hnσ2

hn
∑

i=1

r2
{i}

(

β̂(SLTS,W 2
n)

n

)

a.s.→ 1

λ

∫ q2
λ

0

fχ2
3
(x)dx =

1

λ
Fχ2

3

(

Φ−1

(

1 + λ

2

))

.

�

Proposition 3 describes the ratio between the variances of all regression residuals and

the hn smallest residuals (in absolute value), see (28) and (29). These hn smallest residuals

correspond to those observations that actually enter the objective function of the LTS

estimator. The dependence of the ratio between the two variances is depicted in Figure 1.

6 Computational aspects

Any practical computation of an estimate usually raises some further issues that need to be

solved in additional to the theoretical problems. The choice of weights for SLTS can serve

30



0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

l

R
(l)

Figure 1: The ratio of variances (28) to (29) as a function of λ.

in our case as an important example. While we require only their positivity in the theory,

the smallest weights in reality should not be chosen below ε· Ss(Xn,Yn,w;β)
maxi|ri(β)| , where ε > 0 is the

smallest positive number such that 1+ε > 1 in a used computer representation—otherwise

the residuals with such small weights cannot affect the minimized function. Nevertheless,

most important is naturally the existence of an algorithm that computes the proposed

SLTS estimate in an acceptable time and with an acceptable precision, see Section 6.1.

Some specific choices of weights as well as possible schemes for adaptive choices of weights

are discussed in Section 6.2.

6.1 Computation of SLTS for given weights

First of all, let me briefly discuss the traditional strategy for determining the least trimmed

squares estimates because it motivates the procedure I propose for computing SLTS. This

strategy relies on the search through subsamples of size h and the consecutive least squares

estimation: choose randomly an h-tuple of observations, apply the least squares method to

it, and evaluate the residuals for all n observations given the estimated regression coeffi-
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cients. Then select an h-tuple of data points with the smallest squared residuals and repeat

the LS estimation for the selected h-tuple. If the sum of the h smallest squared residuals

decreases, this step is repeated. When no further improvement can be found this way, a

new subsample of h observations is randomly generated and the whole process is repeated.

The search is stopped as soon as we get s times the same estimate or when we reach a

pre-specified number of iterations. A more refined version of this algorithm suitable also

for large data sets was proposed and described by Rousseeuw and Van Driessen (1999),

who also provided theoretical arguments (the so-called C-step property) supporting the

above outlined algorithm. The following lemma describes a similar property in the case of

SLTS.

Lemma 2 Let (yi, xi)
n
i=1 be a fixed realization of a random sample and w = (w1, . . ., wn) be

a weighting vector, w1n ≥ w2n ≥ . . . ≥ wnn > 0. Moreover, let ki(β) : R → {1, . . ., n} be a

function such that ki(β) is the index of the observation with the ith largest squared residual,

r2
ki(β)(β) = r2

[i](β) at β. Consider an arbitrary estimate β̂0
n of the regression parameters and

define weights vki(β̂0
n) = wi for all i = 1, . . ., n. Next, denote β̂1

n as the weighted least squares

estimator with weights vi, i = 1, . . ., n,

β̂1
n = β̂(WLS,v)

n = arg min
β∈B

n
∑

i=1

vir
2
i (β). (31)

Then it holds for the SLTS objective function that

Ss(Xn, Yn, w; β̂0
n) ≥ Ss(Xn, Yn, w; β̂1

n).

Remark 8 The definition of weights v in Lemma 2 is the same as in Lemma 1.

Proof: The property is almost trivial and is based on inequalities (7), (8), and (??) derived

in the proof of Lemma 1:

Ss(Xn, Yn, w; β̂0
n) = Sw(Xn, Yn, v; β̂0

n) ≥ Sw(Xn, Yn, v; β̂1
n) ≥ Ss(Xn, Yn, w; β̂1

n).

�

Lemma 2 offers a way to improve the approximation of the SLTS estimate. Having

an initial estimate β̂0
n, we can define weights v1 as described in Lemma 2 and compute

the weighted least squares estimate β̂1
n, which attains the same or a better value of the

SLTS objective function than the initial β̂0
n. Next, we can use β̂1

n in place of the initial

32



estimate, define new weights v2 and compute the WLS estimate β̂2
n, which again improves

Ss(Xn, Yn, w; β). Repeating these steps yields an iterative process for the sequence β̂0
n,

β̂1
n, β̂2

n, . . . such that Ss(Xn, Yn, w; β̂k
n) ≥ Ss(Xn, Yn, w; β̂k+1

n ) for k = 1, 2, . . .. The process

stops when Ss(Xn, Yn, w; β̂k
n) = Ss(Xn, Yn, w; β̂k+1

n ) for some k = ke (the sequence always

converges and always has a minimum as it is a decreasing sequence of a finite number

of nonnegative quantities). Unfortunately, this is not sufficient for β̂ke

n to be the global

minimum of the SLTS objective function. Therefore, more such sequences are needed and

the sequence that converges to the smallest value of Ss should be kept. This concept leads

to the proposal of the following algorithm (we assume that data Xn, Yn and weights Wn

are given and Ks ∈ N is a fixed integer):

SLTS Algorithm:

1. Draw a random permutation Πn = (π1, . . ., πn) of {1, . . ., n}.

2. Define weights v = (v1, . . ., vn), vi = wπi
for all i = 1, . . ., n.

3. Compute the weighted least squares estimate β̂0
n with weights v and set k = 0.

4. Sort the absolute values of residuals ri(β̂
k
n), which give rise to a new permutation

Πn = (π1, . . ., πn) such that

∣

∣

∣
rπ1

(

β̂k
n

)∣

∣

∣
≤

∣

∣

∣
rπ2

(

β̂k
n

)∣

∣

∣
≤ . . . ≤

∣

∣

∣
rπn

(

β̂k
n

)∣

∣

∣
.

5. Define weights v = (v1, . . ., vn), vi = wπi
for all i = 1, . . ., n.

6. Compute the weighted least squares estimate β̂k+1
n with weights v.

7. If Ss(Xn, Yn, w; β̂k
n) > Ss(Xn, Yn, w; β̂k+1

n ), set k = k + 1 and continue at point 4.

Otherwise go to point 8.

8. If Ss(Xn, Yn, w; β̂k
n) ≤ Ss(Xn, Yn, w; β̂k+1

n ), compare the value Ss(Xn, Yn, w; β̂k
n) with

the values obtained from previously created sequences. If it is smaller, continue at

point 1. Otherwise, check how many sequences have been tried without improving the

global minimum of Ss(Xn, Yn, w; β). If less than KS, continue at point 1; otherwise

stop.

I implemented this algorithm in the S and XploRe language, and as confirmed by many

simulations, this algorithm converges fast enough for smaller data sets (no more than
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several thousands of observations). Its speed can be further improved in a similar way as

proposed for LTS in Rousseeuw and Van Driessen (1999), but this is not the aim of this

paper.

6.2 Adaptive choice of weights

Having all the theoretical results and working computational procedures in hand, it is now

possible to discuss the adaptive choice of weights for SLTS (for a fixed choice of weights,

one can simply use the asymptotic results in Section 5.1 and the algorithms described

in Section 6.1). I first describe the adaptive choice of weights theoretically (based on an

abstract decision rule). Second, I propose two decision rules and combine them together

into one final procedure for the adaptive choice of weighting schemes.

The choice of weights for SLTS and the corresponding theoretical results derived to

this point are limited only by Assumption A (Section 5) and Assumption W (Section 5.2).

However, to exemplify the results and procedures discussed in this section, it is beneficial

to demonstrate them on weights generated by functions from a specific class. For this

purpose, I choose weighting schemes generated by logistic functions (they were introduced

already in Section 5.2, equation (24), and they will be used in Section 7 as well):

wi = fλ(
2i − 1

n
; ω), where fλ(x; ω) =

1

1 + eω(x−λ)

[
∫ 1

0

1

1 + eω(x−λ)
dx

]−1

(32)

for i = 1, . . ., n, λ ∈
〈

1
2
, 1

〉

is a fixed trimming constant (equivalent to λ in Assumption

W), and ω ≥ 0 is the parameter controlling the shape of the generating function fλ(x; ω).

Apparently, this weighting scheme satisfies Assumption W, including convergence to the

least squares weights (ω → 0) and to the least trimmed squares weights (ω → +∞). One

can see the shape of function fλ(x; ω) for different ω in Figure 2. The advantage of the

presented logistic weights is that they satisfy Assumption W including the optional part

and that they react quite sensitively to changes of the weighting parameter ω within a

relatively small interval, but on the other hand, values outside of this interval produce only

negligible changes in the estimates.

Let me describe now how an adaptive procedure for choosing a weight scheme works.

For weighting schemes generated by a function f(x; ω) satisfying Assumption W, it holds

that the corresponding SLTS estimator (see Figure 2)

• is more robust for ω → ω2 because the largest residuals are assigned very small
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Figure 2: Logistic generating functions for ω = 0.01, 0.1, 1, 10, 100.

weights (decreasing with ω approaching ω2),

• uses data more effectively for ω → ω1 because all residuals have similar weights, none

are extremely downweighted, and all observations influence significantly the SLTS

objective function.

Altogether, decreasing the parameter ω increases efficiency and decreases the robustness

of SLTS and vice versa. Therefore, an adaptive choice of weights can work in the following

way: it starts with the highest possible ω (closest to ω2) to obtain the most robust estimate.

Given a data set, we do not know whether this maximum level of robustness is necessary

at all, so the next step is to decrease ω. A decrease in ω improves the variance of the

estimator (more information from data is used), but because it also decreases the robustness

of SLTS, it is possible that the estimate is for lower values of ω already adversely affected

by contamination or other data problems. Hence, we need a decision criterion that tells us

how much we can decrease ω without threatening the robustness of the estimator. Having

such a decision rule, the adaptive search for an optimal ω simply has to start with ω close
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to ω2 and then to decrease ω toward ω1 until the decision rule indicates that ω is already

too low and the corresponding estimate not sufficiently robust. Thus, we obtain as low ω

as possible, which means as efficient an estimator as possible. So, the aim of this section

is to construct a decision criterion

D
(

ω, Ss

(

Xn, Yn, w(ω); β̂(SLTS,w)
n

)

, ri

(

β̂(SLTS,w)
n

))

that indicates whether the current value of parameter ω is acceptable (i.e., does not lower

robustness of the estimate too much) or not. Such a decision rule can be based either on

the values of the objective function Ss or the regression residuals ri and their statistics.

First, let us summarize what we know about the SLTS objective function as a func-

tion of weights: it is decreasing, it is bounded by Ss(Xn, Yn; β̂
(LS)
n ) from above and by

Ss(Xn, Yn, wLTS,h; β̂
(LTS,h)
n ) from below (wLTS,h = n

hn
(1hn

, 0n−hn
), whereby hn = [λn] and

the multiplication by n
hn

normalizes weights (see Assumption W and Lemma 3). Further,

the ratio

R =
Ss(Xn, Yn; β̂

(LS)
n )

Ss(Xn, Yn, wLTS,h; β̂
(LTS,h)
n )

converges for normally distributed errors to

RN =
λ

Fχ2
3

(

F−1
χ2

1
(λ)

)

(see Proposition 2), which for the choice λ = 1/2 results asymptotically in

RN =
1

2

[

Fχ2
3

(

F−1
χ2

1
(1/2)

)]−1 .
= 7.01.

Next, let us compare this outcome with some simulation results. Several estimates

of ratio R are presented in Table 1. They come from a Monte Carlo simulation for the

linear regression model yi = 0.3 + xi + εi, where xi ∼ N(0, 100) and εi ∼ N(0, 4); the

sample size is n = 100 and the results are based on 1000 simulations. Clearly, estimates

for cases with normally distributed errors are a little bit higher than the asymptotically

derived value. Nevertheless, most important is a drastic increase in R whenever outliers

appear in the data13 (the value for one percent of outliers is smaller mainly because this

case represents only one randomly generated outlying observation (n = 100) which often

13Although I used a simple linear regression, the results are the same for multiple regression models.
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Error distribution Outliers (%) R̂ σR

N(0, 1) 0 8.264 1.610
N(0, 4) 0 8.251 1.782

U 〈−1, 1〉 0 5.813 1.045
t3
∗ 0 16.70 1.680

N(0, 1)∗ 1 9.875 1.212
N(0, 1)∗ 5 269.1 8.410
N(0, 1)∗ 15 1231.1 13.91

Table 1: Estimates of R: Simulation for yi = 0.3 + xi + εi with various error distributions.
Outliers are randomly generated from the uniform distribution on 〈−100, 100〉.

Entries in rows marked by ∗ correspond to the median and the median absolute deviation,

which were used instead of mean and standard deviation because of some extreme results in

simulations concerning the least squares estimator.

does not outlie at all). It also seems that the value for the Student distribution t3 is too

large compared to the values for the normal distribution, but this is completely correct—if

errors are distributed according to td with small degrees of freedom d, then the least squares

estimator loses its efficiency and behaves as if the data were slightly contaminated (more

information on this topic is presented in Section 7). Thus, we can conclude that the ratio

R of the objective function of SLTS for ω → 0 and ω → +∞ indicates quite well how much

the data are contaminated, or in other words, how probable it is that the least squares

estimator misbehaves.

Given these results, we can now propose the following decision rule (function Ss(Xn, Yn,

w(ω); β̂
(SLTS,w)
n ) is further referred to by S∗

s (ω) for simplicity):

• start from a reasonably high ω0
14 (e.g., ω0 = 50 for our logistic weights), estimate

SLTS and remember the value of the objective function S∗
s (ω0) at this point;

• gradually decrease the value of ω and stop when the estimated objective function

S∗
s (ω) is greater than M · S∗

s (ω0), where M = cRN and RN is the asymptotic value

of the ratio R derived at the beginning of this section (cRN with c ≥ 1 can be

used instead of RN to allow for small sample deviations from the asymptotic value,

although c = 1 is preferable from the robustness point of view).

14By reasonably high ω0 we understand ω0 as close to ω2 from Assumption W as possible, but such that
it does not result in complete trimming numerically, that is, trimming caused by the limited computer
precision (see Section 6).
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We showed that an increase in S∗
s (ω) indicates quite well whether data are contaminated.

However, the described decision rule can work quite well in practice only for data that

are not too contaminated. In general, it is possible that the estimate is already affected

too much by contamination when we stop decreasing parameter ω (remember, S∗
s (ω) >

MS∗
s (ω0), where M ≥ Rn > 7). Therefore, the above rule should be complemented by

another rule which is able to cope with highly contaminated data and will stop decreasing

ω in time.

Such a rule can be constructed based on regression residuals: we assume that the initial

estimate corresponding to ω0 is consistent and we know that the principle of most robust

estimator is “to constrain the influence of observations with extremely large residuals on

the estimate.” Hence, we can construct estimates of location and scale for the consistently

estimated residuals computed at ω0 (most robust choice) and then compare them with the

weighted residuals for a current ω to see whether some of them are already too large and

thus have too big of an influence on the objective function and on the estimate itself. This

decision rule can be summarized as follows:

• start from a reasonably high ω0 (e.g., ω0 = 50 for our logistic weights), estimate SLTS

and compute corresponding regression residuals along with robust estimates of their

mean m0 and variance v0;

• gradually decrease the value of ω and stop when some weighted regression residu-

als
√

wiri(b) do not lie inside the interval 〈m0 − Cv0, m + Cv0〉 anymore (weighted

regression residuals are used because they describe the effect of observations on the

SLTS objective function).

The check for weighted residuals is based on the following principle. The mean value

of residuals ri(b0) (consistently estimated for ω0) is m0 and their variance is v0. Hence,

〈m0 − Cv0, m + Cv0〉 represents a kind of confidence interval, and for a suitable choice of

C, residuals should lie inside of this interval with a probability close to 1. It is, of course,

possible that some residuals can lie outside of this interval, but such residuals should not

have a bigger influence on the objective function of the SLTS estimate because they are

most probably outliers.

Now, the crucial question is the choice of constant C for the confidence interval. As-

suming normal distribution of the error term, it is tempting to choose C ∈ 〈2.5, 3.0〉 as

this corresponds to 99%–99.9% confidence intervals. However, this would destroy the ro-

bustness of the SLTS estimator. Hence, in the same way as for LTS, we assume that only
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some fraction λ ∈
〈

1
2
, 1

〉

of observations closely follow a specified regression model. This

is also reflected by Assumption W: the generating function is chosen so that weights for

the [λn] smallest residuals increases for more robust choices of ω and the other weights

converge to zero. Therefore, only these smallest residuals fully affect the SLTS objective

function and all other observations are downweighted. Consequently, the adaptive decision

rule should follow the same strategy: the [λn] smallest residuals can fully influence the

SLTS objective function and the influence of all other residuals should be limited so that

it will not be greater than the influence of these [λn] smallest residuals. This means that

〈m0 − Cv0, m + Cv0〉 should represent the confidence interval for the [λn] smallest residu-

als and all greater residuals have to be downweighted so that they fall into this interval.

Hence, assuming that the error term has normal distribution, constant C can be written

as

C = D · VN(λ) = D · 1

λ
· Fχ2

3

(

Φ−1

(

1 + λ

2

))

,

where D ∈ 〈2.5, 3.0〉 is a constant we would use for the standard confidence interval of a

normally distributed random variable and

VN(λ) =
1

λ
· Fχ2

3

(

Φ−1

(

1 + λ

2

))

(33)

is the ratio of variances of the [λn] smallest residuals (in absolute value) and all residuals;

this is derived in Lemma 3. For λ = 1/2, we get

VN (
1

2
) = 2Fχ2

3

(

Φ−1

(

3

4

))

.
= 0.24.

Finally, let us combine both proposed decision rules with a general principle of the

adaptive choice of SLTS weights. As a result, we obtain this adaptive-choice procedure

(examples are always meant for the case of logistic generating function and weights, see

(32)):

Adaptive choice 1 (one parameter)

1. Set the initial value of the weighting parameter ω to a reasonably high ω0; for example,

ω = ω0 = 50.

2. Compute the SLTS estimate b0 for ω0, evaluate S∗
s (ω0) and the characteristics of

regression residuals: m0 = medi ri(b0) and v0 = MADi ri(b0).
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3. Decrease the weighting parameter, for example, ω = 0.8ω. If ω < ω1, set ω = ω1 and

stop (ω1 is the lower bound for ω).

4. Compute the SLTS estimate b for the new ω and evaluate S∗
s (ω).

5. If S∗
s (ω) > c · RN · S∗

s (ω0), return to the previous value of ω and stop.

6. Compute the weighted regression residuals
√

wi

maxi
√

wi
· ri(b) and check whether all of

them are inside the interval 〈m0 − D · VN(λ) · v0, m + D · VN(λ) · v0〉. If not, return

to the previous value of ω and stop. Otherwise continue at point 3.

As a result, we obtain some ω, which define the optimal SLTS estimator within the used

class of smoothing schemes for a given data set. In the following text, we refer to SLTS

used with a smoothing scheme chosen by means of “Adaptive choice 1” as SLTS-AC1.

Remark 9 Constants c and D determine the maximum accepted increase of S∗
s (ω) and

the width of the confidence interval for the [λn] smallest residuals, respectively. Reasonable

values are c ∈ 〈1, 2〉 and D ∈ 〈2, 3〉, as discussed above. The effects of the choice of D are

also studied in Section 7.1.

Remark 10 There is one more important issue to be discussed. The algorithm for the

adaptive choice of a weighting scheme, which I propose in this section, is based on the-

oretical results derived for normally distributed errors. Although this might seem to be

non-robust, it is in fact robust. The least squares estimators generally perform best under

errors having the normal distribution, and moreover, they are easily affected by observa-

tions with large residuals. Therefore, the decision rules discussed above are designed so

that they are optimized for normal errors and they stop too early if the error term has a

distribution with heavier tails or outliers are present. This implies that ω stays closer to

ω2 (more robust choice) and the SLTS-AC1 estimator “prefers” more robust, although less

precise estimates to efficient, but rather unprecise ones.

On the other hand, this implies that an undersmoothing can occur (actually for two

reasons: either the optimal smoothing is not reached—the adaptive procedure stops too

early, or there is a better smoothing in a family of smoothing schemes not taken into

account). To find the optimal decision rule and smoothing class, it is necessary to study

the behavior of SLTS not only at a given distribution function, but also in its neighborhood.

Unfortunately, SLTS under such distributional assumptions is hard to study because the

asymptotic results concerning LTS that I used throughout the analysis of SLTS are not
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readily available under these assumptions. However, I will argue that the proposed adaptive

procedures, although sub-optimal in this sense, are superior to the existing solutions in many

aspects, see simulations in Section 7.

The proposed adaptive choice of SLTS weights describes a situation when a weighting

scheme is controlled only by one parameter. This is not always optimal. We can consider,

for instance, the logistic weighting scheme used throughout this section: it is generated

by functions fλ(x; ω), where the trimming constant λ is a fixed number, λ ∈
〈

1
2
, 1

〉

(it is

depicted in Figure 2). For ω → 0, it gives (almost) the same weight to all observations; for

ω → ∞, the weights assigned to [(1 − λ)n] largest residuals converges to zero. Now, from

the shape of the function, it is obvious that if more observations have to be significantly

downweighted (let us say more than 1–5%), then all [(1 − λ)n] observations with largest

residuals are significantly downweighted as well. This means that most of the information

of all [(1 − λ)n] observations with largest residuals is not used in the presence of any

contamination, which in turn leads to a loss of efficiency. Apparently, this inefficiency can

be fixed when it is possible to adjust the parameter λ as well. Then, adaptively choose

two parameters—λ and ω—and the logistic generating functions have to be considered as

a function of these two parameters:

f(x; λ, ω) = fλ(x; ω) =
1

1 + eω(x−λ)

[
∫ 1

0

1

1 + eω(x−λ)
dx

]−1

.

The adaptive choice of two parameters λ and ω can be done relatively easily using the

same decision rules that were used for the adaptive choice of one parameter ω. Start again

with the most robust choice: λ = λ0 = 1
2

and ω = ω0. As the next step, find the optimal

value for λ (i.e., the amount of observations that does not have to be downweighted at

all) without changing ω—increase λ and stop when the decision rules indicate to do so.

Finally, fix λ and start to search for the optimal value of ω in the same way as in Adaptive

choice 1. The complete adaptive procedure for the two parameters can be summarized as

follows (examples are again provided for the logistic generating functions):

Adaptive choice 2 (two parameters)

1. Set the initial value of the weighting parameters λ = λ0 = 1
2

and ω to a reasonably

high ω0; for example, ω = ω0 = 50.
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2. Compute the SLTS estimate b0 for λ0, ω0, evaluate S∗
s (λ0, ω0) and the characteristics

of regression residuals: m0 = medi ri(b0) and v0 = MADi ri(b0).

3. Increase the trimming constant λ and keep parameter ω fixed (for example, λ =

λ + 0.05). If λ > 1, set λ = 1 and stop (1 is the upper bound for λ).

4. Compute the SLTS estimate b for the new λ and ω and evaluate S∗
s (λ, ω).

5. If S∗
s (λ, ω) > c · RN · S∗

s (λ0, ω0), return to the previous value of λ and continue at

point 7.

6. Compute the weighted regression residuals
√

wi

maxi
√

wi
· ri(b) and check whether all of

them are inside the interval 〈m0 − D · VN(λ) · v0, m + D · VN(λ) · v0〉. If not, return

to the previous value of λ and continue at point 7. Otherwise continue at point 3.

7. Decrease the weighting parameter ω (λ is already fixed at its optimal level); for

example, ω = 0.8ω. If ω < ω1, set ω = ω1 and stop (ω1 is the lower bound for ω).

8. Compute the SLTS estimate b for the new λ and ω and evaluate S∗
s (λ, ω).

9. If S∗
s (λ, ω) > c · RN · S∗

s (λ0, ω0), return to the previous value of ω and stop.

10. Compute the weighted regression residuals
√

wi

maxi
√

wi
· ri(b) and check whether all of

them are inside the interval 〈m0 − D · VN(λ) · v0, m + D · VN(λ) · v0〉. If not, return

to the previous value of ω and stop. Otherwise continue at point 7.

At the end of this algorithm for the adaptive choice of two parameters λ and ω, we ob-

tain two values, ω and λ, which define the optimal SLTS estimator within the used class

of smoothing schemes for a given data set. The main difference to SLTS-AC1 is that

we have extended the class of smoothing schemes from {fλ(·; ω) : ω ∈ R+} (λ fixed) to
{

f(·; λ, ω) : λ ∈
〈

1
2
, 1

〉

, ω ∈ R+

}

. Once again, we refer to SLTS using a weighting scheme

found via “Adaptive choice 2” as SLTS-AC2. The simulations using the described adaptive

procedures are presented in Section 7.

7 Simulations

In Section 6.2, we constructed adaptive choice procedures for the SLTS estimator, which

allow us to select an optimal set of weights from a family of weighting schemes param-

eterized by one or two real parameters. As an example, we used weights generated by

42



standardized logistic functions (32). In this section, I would like to demonstrate finite

sample properties of the SLTS estimator with weights generated by logistic functions with

one adaptively chosen parameter in Section 7.1 (SLTS-AC1) and with two parameters in

Section 7.2 (SLTS-AC2). Please note that, despite the limitation to only one smoothing

scheme, the qualitative results presented later in this section are valid also for some other

weighting schemes (e.g., one generated by the cumulative distribution function with poly-

nomial tails). Finally, I examine the effect of misspecification of categorical variables on

the LS, RDL1, and SLTS estimators in Section 7.3.

Before discussing the simulation results, let me describe the models used in Monte Carlo

simulations. First, for most simulations, I use the linear regression model

yi = 0.3 + xi + εi, i = 1, . . . , n, (34)

where xi is a continuously distributed random variable, xi ∼ N(0, 10); the error term εi

has a continuous distribution, for example, normal, Student, or exponential. Continuous

random variables are used in many cases so that it is possible to compare SLTS and LTS.

Second, for simulations involving both continuous and discrete variables, I use

yi = 0.3 + xi − 1.5di + εi, i = 1, . . . , n, (35)

where xi ∼ N(0, 10) and di ∼ Bi(0.5, 1). Both models (34) and (35) are sufficiently simple,

enable a comparison of SLTS with other existing estimators, and most importantly, the

simulation results are qualitatively the same as for more complicated models. Finally,

some simulations study the effects of contamination on the estimators. In these cases,

contamination is simulated as a uniform random noise. This is actually one of the most

favorable cases for the RDL1 estimator because it treats observations only according to

their robust distance from the center of the data cloud. On the other hand, LTS and SLTS

treat any type of observations and any kind of contamination in the same way, so it does

not matter so much for the simulations, which type of contamination we simulate.

7.1 Adaptive choice with one parameter

The simulation results presented in this section are for models (34) and (35). The results

are in all cases based on 1000 simulations and samples consisting of 100 observations.

Nevertheless, I obtained the same qualitative results for sample sizes ranging from 50 to
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500 observations. Further, I present here results for the least squares, LTS with trimming

constant h = [n/2] + [(p + 1)/2], SLTS-AC1 with logistic weights (see Section 6.2), and

RDL1 estimators—first, under different error distributions, later, under contamination.

Now, the use of the adaptive-choice algorithm deserves one additional note. One of the

decision rules discussed in Section 6.2 checks whether all weighted residuals belong to a

confidence interval 〈m0 − Cv0, m0 + Cv0〉. For example, for normally distributed errors, we

obtain the 99% confidence interval for C = 2.58. However, we argued that it is necessary

to construct this confidence interval only for the [λn] smallest residuals in order to preserve

robustness of the SLTS estimator. Therefore, we should set C = D · VN (λ). However, to

see the effect of such a choice, simulations are performed for a range of values—from 3.0

to 0.72 = 3.0 · VN(0.5).

Estimator Parameter Coefficient ε ∼ N(0, 1) ε ∼ t3 ε ∼ Exp(1)
C Mean Var Mean Var Mean Var

LS Intercept 0.290 0.099 0.294 0.178 0.305 0.139
LS Slope 0.998 0.033 1.002 0.057 1.001 0.045

SLTS 2.5 Intercept 0.290 0.099 0.297 0.135 0.303 0.117
SLTS 2.5 Slope 0.998 0.033 1.002 0.043 1.001 0.038
SLTS 1.5 Intercept 0.290 0.102 0.299 0.139 0.303 0.112
SLTS 1.5 Slope 0.999 0.035 1.002 0.043 1.001 0.035
SLTS 1.0 Intercept 0.289 0.110 0.299 0.149 0.303 0.116
SLTS 1.0 Slope 0.999 0.038 1.002 0.046 1.001 0.036
SLTS 0.75 Intercept 0.289 0.119 0.299 0.157 0.302 0.120
SLTS 0.75 Slope 0.999 0.042 1.002 0.049 1.001 0.038
LTS Intercept 0.286 0.278 0.292 0.248 0.302 0.176
LTS Slope 0.994 0.089 1.001 0.079 1.003 0.057

RDL1 Intercept 0.290 0.129 0.300 0.150 0.303 0.119
RDL1 Slope 0.997 0.049 1.000 0.051 1.000 0.043

Table 2: Simulations for clear data sets of size n = 100 and SLTS-AC1.
Entries in column “Parameter” indicate which confidence interval for residuals was used for

the decision rule within the algorithm Adaptive choice 1: 〈m0 − C · v0,m + C · v0〉, where m0 =

medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.

The first set of simulations studies the behavior of the estimators for a clean data set (no

contamination) and model (34) under different error distributions, namely, the standard

normal distribution N(0, 1), the Student distribution t3 with 3 degrees of freedom, and

the exponential distribution with parameter 1. The simulation results are presented in

Table 2 (I obtained very similar results also for distributions N(0, σ2), σ2 ∈
(

1
4
, 4

)

and
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td, d ∈ {1, . . ., 10}). In all cases and for all distributions, the estimators provide consistent

results. For normal distribution N(0, 1), the least square method is the most efficient one

(measured by variance of the estimate) with SLTS closely following it. For SLTS, a more

strict decision rule (i.e., lower C) leads to higher robustness and higher variance. The

performance of RDL1 is a bit weaker, but still much better than that of the LTS estimator.

For the Student distribution t3, the final picture is quite similar with one exception: the

variance of the least squares estimator increases in such a way that LS performs worse than

all robust estimators except for LTS. This documents that robust estimators can provide

more efficient estimates than the least squares in situations when the least squares estimator

is consistent, but the error distribution has heavier tails than the normal distribution.

Finally, the exponential distribution is presented as well, because it represents the optimal

case for estimators minimizing the sum of absolute values of residuals. In this last case, the

least squares estimator is (besides LTS) the worst-performing estimator. Moreover, SLTS

performs about the same or even better than RDL1.

Estimator Parameter Coefficient ε ∼ N(0, 1)
C Mean Var

LS Intercept 0.295 0.142
LS Slope 0.999 0.033
LS Dummy -1.494 0.203

SLTS 2.5 Intercept 0.294 0.142
SLTS 2.5 Slope 0.999 0.034
SLTS 2.5 Dummy -1.494 0.203
SLTS 1.0 Intercept 0.291 0.162
SLTS 1.0 Slope 0.999 0.039
SLTS 1.0 Dummy -1.490 0.233
SLTS 0.75 Intercept 0.290 0.180
SLTS 0.75 Slope 0.999 0.043
SLTS 0.75 Dummy -1.489 0.258
RDL1 Intercept 0.290 0.184
RDL1 Slope 1.000 0.050
RDL1 Dummy -1.489 0.262

Table 3: Simulations with one dummy variable for clear data sets of size n = 100 and
SLTS-AC1.

Entries in column “Parameter” indicate which confidence interval for residuals was used for

the decision rule within the algorithm Adaptive choice 1: 〈m0 − C · v0,m + C · v0〉, where m0 =

medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.
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The second simulation repeats the first one for the case of normally distributed errors,

but a dummy variable is included in model (35). The results are summarized in Table 3

and they are quite similar to those described in the last paragraph. The main conclusion

is that the simulation confirms that SLTS can cope with discrete explanatory variables as

well as with continuous ones.

Estimator Parameter Coefficient Cont. 1% Cont. 10% Cont. 40%
C Mean Var Mean Var Mean Var

LS Intercept 0.294 0.214 0.242 0.552 0.317 0.958
LS Slope 0.849 0.200 0.292c 0.234 0.077c 0.142

SLTS 2.5 Intercept 0.295 0.159 0.311 0.205 0.333 0.379
SLTS 2.5 Slope 0.981 0.059 0.881a 0.097 0.589a 0.258
SLTS 1.5 Intercept 0.296 0.178 0.316 0.208 0.338 0.321
SLTS 1.5 Slope 0.990 0.059 0.935 0.082 0.649a 0.257
SLTS 1.0 Intercept 0.297 0.192 0.317 0.217 0.323 0.265
SLTS 1.0 Slope 0.993 0.061 0.958 0.078 0.756 0.242
SLTS 0.75 Intercept 0.298 0.198 0.318 0.219 0.314 0.243
SLTS 0.75 Slope 0.995 0.063 0.964 0.077 0.819 0.218
LTS Intercept 0.296 0.279 0.322 0.271 0.299 0.208
LTS Slope 1.003 0.087 1.000 0.080 0.993 0.080

RDL1 Intercept 0.297 0.134 0.307 0.138 0.313 0.195
RDL1 Slope 0.999 0.047 0.987 0.048 0.903a 0.075

Table 4: Simulations for contaminated data sets of size n = 100 and SLTS-AC1.
Entries in column “Parameter” indicate which confidence interval for residuals was used for

the decision rule within the algorithm Adaptive choice 1: 〈m0 − C · v0,m + C · v0〉, where m0 =
medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate. Constant C actually
corresponds to D · VN (λ).

abc For these estimates, the one-sided test of the hypothesis that the parameter is equal to its

true value is rejected at 10% (a), 5% (b), or 1% (c) levels, respectively. The one-sided test is used

since the simulated contamination biases slope estimates towards zero.

The third set of simulations studies the behavior of the estimators again using model

(34) and normally distributed errors, but a positive amount of contamination is present in

this case. Three cases presented in Table 4 correspond to contamination levels 1%, 10%,

and 40% (this means that the respective amount of observations is replaced by random

noise). To indicate which estimates are significantly biased, I test the one-sided hypothesis

that the slope parameter equals its true value (all estimators have asymptotically normal

distribution). The one-sided test is used since the simulated contamination leads to a bias

towards zero. The estimates for which we reject this hypothesis are marked. First, the least
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squares estimator seems to be biased a bit already for 1% contamination and it does not

provide any reasonable results for higher levels of contamination (the intercept is estimated

consistently by LS, but it is just because the random noise simulating contamination is

symmetric around zero). Second, the robust estimators LTS and RDL1 can cope with

contamination quite well. RDL1 performs best at lower levels of contamination, but it is

biased at high levels of contamination. On the other hand, LTS, which has the highest

variance in most cases, provides the best and most precise estimates for the 40% level of

contamination. Finally, let us discuss SLTS. For non-robust choices of the decision rule

(C > 1), lower levels of contamination do not affect the estimates too much (except for

C = 2.5), but extreme 40% contamination destroys them completely. A quite robust choice

C = 0.75 can cope relatively well with contamination, although it seems to be biased for

the 40% contamination level. If necessary, it is possible to use an even more robust choice

C = 0.5. Nevertheless, these results show that

• it is necessary to stick to robust decision rules (C = 1) even though it might increase

variance of estimates in the ideal case of normally distributed errors and a clean data

set,

• the performance of SLTS is not very good in presence of contamination (it is certainly

worse than that of RDL1). The reason for this was already discussed in Section 6.2:

SLTS-AC1 with logistic weights has to downweight almost half of all observations if

contamination is present.

Altogether, we can conclude that SLTS performs quite well for clean data sets regardless

of the error distribution. It provides robust estimates under contamination, but loses

efficiency already under moderate contamination. These deficiencies are addressed by the

proposed SLTS-AC2 and we examine its behavior in Section 7.2.

7.2 Adaptive choice with two parameters

The simulation results presented in this section are for model (34) and they correspond

to the simulations in Section 7.1. The results are again based on 1000 simulations and

sample size n = 100. The main difference is that SLTS-AC2 (see Section 6.2) is added and

compared with all other estimators. This second adaptive SLTS estimator optimizes not

only the parameter ω, controlling the shape of smoothing, but also the trimming constant

λ, see (32). Moreover, the decision rule is now based only on robust confidence intervals
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〈m0 − Cv0, m + Cv0〉, that is, C = D · VN(λ), where D = 3 or D = 4. For the fixed choice

of λ = 0.5, these two cases, D = 3 and D = 4, correspond to SLTS-AC1 with constants

C = 1 and C = 0.75 presented in Section 7.1.

Estimator Parameter Coefficient ε ∼ N(0, 1) ε ∼ t3 ε ∼ Exp(1)
nP: D Mean Var Mean Var Mean Var

LS Intercept 0.297 0.101 0.304 0.187 0.303 0.139
LS Slope 1.002 0.033 1.000 0.057 0.998 0.045

SLTS 1P: 4.0 Intercept 0.298 0.117 0.305 0.147 0.300 0.115
SLTS 1P: 4.0 Slope 1.003 0.039 1.000 0.046 0.997 0.039
SLTS 1P: 3.0 Intercept 0.297 0.128 0.305 0.156 0.300 0.112
SLTS 1P: 3.0 Slope 1.003 0.043 1.001 0.048 0.997 0.038
SLTS 2P: 4.0 Intercept 0.296 0.103 0.303 0.130 0.301 0.117
SLTS 2P: 4.0 Slope 1.002 0.034 0.999 0.041 0.997 0.040
SLTS 2P: 3.0 Intercept 0.298 0.119 0.300 0.138 0.301 0.119
SLTS 2P: 3.0 Slope 1.003 0.040 1.000 0.043 0.997 0.039
LTS Intercept 0.295 0.280 0.309 0.251 0.294 0.173
LTS Slope 1.009 0.086 1.003 0.079 0.999 0.058

RDL1 Intercept 0.296 0.136 0.307 0.149 0.299 0.117
RDL1 Slope 1.002 0.049 1.001 0.052 0.998 0.044

Table 5: Simulations for clear data sets of size n = 100, SLTS-AC1 and SLTS-AC2.
Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is used for SLTS

(“1P” means Adaptive choice 1 (SLTS-AC2), “2P” represents Adaptive choice 2 (SLTS-AC2), see

Section 6.2); (b) which confidence interval for residuals was used for the decision rule within

the algorithms Adaptive choice 1 and 2: 〈m0 − D · Vn(λ) · v0,m + C · Vn(λ) · v0〉, where m0 =

medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.

The first set of simulations concentrates again on the behavior of the estimators for a

clean data set (no contamination) and model (34) under different error distributions. The

simulation results are presented in Table 5. The results concerning LS, LTS, SLTS-AC1,

and RDL1 are naturally the same as in Section 7.1, so I pay attention mainly to SLTS-

AC2. First, it is consistent, and additionally, it has a lower variance than the corresponding

SLTS-AC1 in the case of normal and Student distributions (for the exponential distribution,

it is a bit worse). More interestingly, SLTS-AC2 with D = 4 reaches the efficiency of the

least squares for normally distributed errors and overtakes least squares in the other cases.

SLTS-AC2 also performs better then RDL1 in all cases.

For comparison, I performed the same set of simulations for a clean data set (no contam-

ination) and model (35), which additionally includes a dummy variable. The simulation
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Estimator Parameter Coefficient ε ∼ N(0, 1) ε ∼ t3 ε ∼ Exp(1)
nP: D Mean Var Mean Var Mean Var

LS Intercept 0.303 0.136 0.295 0.247 0.302 0.199
LS Slope 1.001 0.031 0.999 0.055 0.999 0.046
LS Dummy -1.502 0.201 -1.505 0.335 -1.499 0.286

SLTS 1P: 4.0 Intercept 0.297 0.158 0.299 0.212 0.305 0.164
SLTS 1P: 4.0 Slope 1.000 0.036 0.999 0.047 0.998 0.037
SLTS 1P: 4.0 Dummy -1.501 0.233 -1.495 0.302 -1.502 0.224
SLTS 1P: 3.0 Intercept 0.296 0.175 0.300 0.226 0.305 0.169
SLTS 1P: 3.0 Slope 1.000 0.040 0.999 0.051 0.998 0.039
SLTS 1P: 3.0 Dummy -1.501 0.259 -1.494 0.320 -1.503 0.233
SLTS 2P: 4.0 Intercept 0.302 0.138 0.303 0.186 0.305 0.174
SLTS 2P: 4.0 Slope 1.001 0.032 0.999 0.041 0.999 0.038
SLTS 2P: 4.0 Dummy -1.503 0.205 -1.507 0.267 -1.504 0.237
SLTS 2P: 3.0 Intercept 0.297 0.163 0.302 0.205 0.304 0.172
SLTS 2P: 3.0 Slope 1.001 0.038 0.998 0.045 0.998 0.039
SLTS 2P: 3.0 Dummy -1.499 0.247 -1.497 0.292 -1.503 0.236
RDL1 Intercept 0.298 0.181 0.304 0.208 0.303 0.170
RDL1 Slope 1.001 0.049 0.999 0.052 0.999 0.044
RDL1 Dummy -1.502 0.265 -1.510 0.293 -1.499 0.234

Table 6: Simulations for clear data sets with one dummy variable, size n = 100, SLTS-AC1
and SLTS-AC2.

Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is used for SLTS

(“1P” means Adaptive choice 1 (SLTS-AC2), “2P” represents Adaptive choice 2 (SLTS-AC2), see

Section 6.2); (b) which confidence interval for residuals was used for the decision rule within

the algorithms Adaptive choice 1 and 2: 〈m0 − D · Vn(λ) · v0,m + C · Vn(λ) · v0〉, where m0 =

medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.

results are presented in Table 6. The behavior of all estimators is equivalent to the re-

sults for the model (34), which does not contain any dummy variables. Most importantly,

SLTS-AC2 performs as well as the least squares or even better (e.g., in the case of the error

term distributed according to the Student distribution). Additionally, it also outperforms

RDL1 in most cases. Interestingly, one can probably notice that SLTS-AC2, which is gen-

erally preferable to SLTS-AC1, has a slightly worse performance than SLTS-AC1 for the

exponentially distributed errors.

Now, let us analyze the results for all the estimators under contamination. The three

cases presented in Table 7 correspond to contamination levels 1%, 10%, and 40%. Again,

I test the one-sided hypothesis that the slope parameter equals its true value. Results
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Estimator Parameter Coefficient Cont. 1% Cont. 10% Cont. 40%
nP: D Mean Var Mean Var Mean Var

LS Intercept 0.294 0.214 0.276 0.530 0.164 0.946
LS Slope 0.849 0.200 0.304c 0.238 0.064c 0.151

SLTS 1P: 4.0 Intercept 0.297 0.192 0.294 0.218 0.294 0.261
SLTS 1P: 4.0 Slope 0.993 0.061 0.957 0.075 0.767 0.253
SLTS 1P: 3.0 Intercept 0.298 0.198 0.300 0.224 0.299 0.238
SLTS 1P: 3.0 Slope 0.995 0.063 0.963 0.074 0.819 0.238
SLTS 2P: 4.0 Intercept 0.298 0.119 0.300 0.123 0.298 0.231
SLTS 2P: 4.0 Slope 0.998 0.046 0.983 0.048 0.842 0.244
SLTS 2P: 3.0 Intercept 0.299 0.136 0.300 0.141 0.294 0.200
SLTS 2P: 3.0 Slope 0.998 0.049 0.983 0.054 0.885 0.205
LTS Intercept 0.296 0.279 0.296 0.272 0.298 0.207
LTS Slope 1.003 0.087 0.996 0.086 0.993 0.076

RDL1 Intercept 0.297 0.134 0.295 0.138 0.298 0.183
RDL1 Slope 0.999 0.047 0.990 0.049 0.906a 0.067

Table 7: Simulations for contaminated data sets of size n = 100, SLTS-AC1 and SLTS-AC2.
Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is used for SLTS

(“1P” means Adaptive choice 1 (SLTS-AC1), “2P” represents Adaptive choice 2 (SLTS-AC2), see
Section 6.2); (b) which confidence interval for residuals was used for the decision rule within
the algorithms Adaptive choice 1 and 2: 〈m0 − D · Vn(λ) · v0,m + C · Vn(λ) · v0〉, where m0 =
medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.

abc For these estimates, the one-sided test of the hypothesis that the parameter is equal to its

true value is rejected at 10% (a), 5% (b), or 1% (c) levels, respectively. The one-sided test is used

since the simulated contamination biases slope estimates towards zero.

concerning LS, LTS, SLTS-AC1, and RDL1 correspond again to those in Section 7.1, so let

us concentrate on SLTS-AC2. First of all, its estimates are less affected by contamination

than the SLTS-AC1 estimates, especially under very high contamination (40%). Moreover,

the adaptive search over two parameters considerably improves the variance of SLTS, es-

pecially for a moderate amount of contamination. Consequently, if the contamination level

is not extremely high, it performs as good as RDL1 or even better.

Remark 11 Due to space consideration, it is not possible to present all the available

numerical results. Therefore, I have chosen two main levels of contamination—10% and

40% levels. Whenever I speak about “moderate” amount of contamination, I mean lower

levels of contamination. Simulations show that under the moderate level of contamination

it is possible to understand contamination levels up to 30% in the sense that SLTS behaves

in a similar way as for 10% contamination. Other cases (contamination levels higher than
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30%) are referred to as high or extreme contamination. This threshold can be increased,

indeed, because the robustness of SLTS can be further improved by using a smaller D (and

thus smaller confidence intervals) for decision rules: until now, D ≥ 3, which corresponds

to at least 99.9% confidence intervals under normally distributed errors, but we can use

also D = 2.5, which corresponds to the 99% confidence interval.

Estimator Parameter Coefficient Cont. 1% Cont. 10% Cont. 40%
nP: D Mean Var Mean Var Mean Var

LS Intercept 0.288 0.291 0.272 0.770 0.229 1.356
LS Slope 0.844 0.208 0.298c 0.243 0.066c 0.153
LS Dummy -1.498 0.417 -1.357 1.107 -1.005 1.966

SLTS 1P: 4.0 Intercept 0.301 0.275 0.295 0.305 0.308 0.367
SLTS 1P: 4.0 Slope 0.990 0.060 0.953 0.075 0.805 0.238
SLTS 1P: 4.0 Dummy -1.510 0.386 -1.506 0.439 -1.495 0.476
SLTS 1P: 3.0 Intercept 0.301 0.284 0.298 0.312 0.311 0.403
SLTS 1P: 3.0 Slope 0.991 0.062 0.959 0.075 0.752 0.262
SLTS 1P: 3.0 Dummy -1.507 0.402 -1.507 0.448 -1.481 0.521
SLTS 2P: 4.0 Intercept 0.293 0.186 0.298 0.183 0.308 0.277
SLTS 2P: 4.0 Slope 0.996 0.041 0.979 0.049 0.886 0.187
SLTS 2P: 4.0 Dummy -1.507 0.258 -1.490 0.268 -1.497 0.386
SLTS 2P: 3.0 Intercept 0.292 0.223 0.299 0.222 0.316 0.340
SLTS 2P: 3.0 Slope 0.995 0.049 0.979 0.054 0.827 0.251
SLTS 2P: 3.0 Dummy -1.501 0.322 -1.493 0.329 -1.500 0.445
RDL1 Intercept 0.296 0.197 0.295 0.201 0.307 0.262
RDL1 Slope 0.998 0.047 0.988 0.051 0.906a 0.067
RDL1 Dummy -1.503 0.274 -1.494 0.290 -1.483 0.369

Table 8: Simulations for contaminated data sets with one dummy variable, size n = 100,
SLTS-AC1 and SLTS-AC2.

Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is used for SLTS
(“1P” means Adaptive choice 1 (SLTS-AC1), “2P” represents Adaptive choice 2 (SLTS-AC2), see
Section 6.2); (b) which confidence interval for residuals was used for the decision rule within
the algorithms Adaptive choice 1 and 2: 〈m0 − D · Vn(λ) · v0,m + C · Vn(λ) · v0〉, where m0 =
medi ri(b0), v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.

abc For these estimates, the one-sided test of the hypothesis that the parameter is equal to its

true value is rejected at 10% (a), 5% (b), or 1% (c) levels, respectively. The one-sided test is used

since the simulated contamination biases slope estimates towards zero.

Finally, I analyze the behavior of all the estimators under contamination and in the presence

of a dummy variable at the same time. The results for three contamination levels 1%, 10%,
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and 40%, which are presented in Table 8, are quantitatively equivalent to the simulation

results with continuous variables only. It is worth noticing that the least squares estimate

of the dummy-variable coefficient is, similarly to the slope coefficient, also biased towards

zero under higher contamination and its variance grows rapidly with the contamination

level.

The simulation results discussed in this section clearly indicate that the SLTS-AC2

estimator is superior to SLTS-AC1 both from the robustness and variance points of view.

In almost all cases, it performed as good as or better than all other estimators including

RDL1. The only exception is estimation with highly contaminated data, because then

SLTS exhibits a higher variance and it is not so stable as the original LTS estimator.

7.3 Misspecification of categorical variables

To this point, RDL1 has performed very well, even compared to SLTS (but remember, we

have chosen a quite favorable type of contamination for RDL1). On the other hand, RDL1

is designed for a simple additive model (it is difficult to generalize it if cross-effects are to

be included), and moreover, it only takes care of continuous variables. This does not effect

its breakdown point (categorical variables are always bounded and cannot therefore bring

the estimator out of any bounds), but, as we demonstrate in this section, makes RDL1

vulnerable to misspecification in categorical variables.

The misspecification sensitivity is again exemplified using a Monte Carlo simulation. I

consider the model yi = 1− xi + 4di + εi, where i = 1, . . . , n, εi ∼ N(0, 1), and di ∈ {0, 1}.
Further, assume that 20% percent of the observations have a misspecified binary variable di

(it can correspond, for example, to wrong entries about the sex of individuals in a sample).

In other words, di contains a wrong value for 20 percent of the sample. The results obtained

for sample size n = 200 and 1000 simulations are summarized in Table 7.3. To indicate

which estimates are significantly biased, I tested the two-side hypothesis that the intercept

and slope parameters equal their true values. Apparently, both LS and RDL1 estimates are

inconsistent. Notice that the slope coefficient is estimated correctly, but the intercept and

the effect of the dummy variable are wrong. On the contrary, the SLTS estimate provides

consistent results, which are not affected by the misspecification of the dummy variable.
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Estimator Parameter Coefficient ε ∼ N(0, 1)
nP: D Mean Var

LS Intercept 2.162c 0.041
LS Slope -1.001 0.037
LS Dummy 2.836c 0.081

SLTS 2P: 3.0 Intercept 1.026 0.060
SLTS 2P: 3.0 Slope -1.000 0.017
SLTS 2P: 3.0 Dummy 3.978 0.106
RDL1 Intercept 1.268c 0.070
RDL1 Slope -1.000 0.023
RDL1 Dummy 3.733b 0.116

Table 9: Simulations with one misspecified dummy variable for data sets of size n = 100
and SLTS-AC2.

Entries in column “Parameter” indicate: (a) which adaptive-choice algorithm is used for SLTS
(“1P” means Adaptive choice 1 (SLTS-AC1), “2P” represents Adaptive choice 2 (SLTS-AC2), see
Section 6.2); (b) which confidence interval for residuals was used for the decision rule within the
algorithm Adaptive choice 2: 〈m0 − D · Vn(λ) · v0,m + C · Vn(λ) · v0〉, where m0 = medi ri(b0),
v0 = MADi ri(b0), and b0 is the initial (most robust) estimate.

abc For these estimates, the two-sided test of the hypothesis that the parameter is equal to its

true value is rejected at 10% (a), 5% (b), or 1% (c) levels, respectively.

8 Conclusion

In this paper, I introduced the smoothed least trimmed squares estimator and derived its

asymptotic properties. Thus, I extended applicability of the LTS procedure to general

regression models that involve categorical explanatory variables. The resulting estimator

is currently the only robust estimator with a high breakdown point that can be applied in

general regression models with categorical variables. Equally important is the improvement

in the variance of estimates compared to the LTS estimator and also to the RDL1 estimator,

which represented until now the only solid robust estimator for linear regression models

involving binary covariables. The only exception concerning the variance improvement is

highly contaminated data (40% contamination and more), because especially LTS performs

better than SLTS for such data. This inefficiency of SLTS can probably be reduced by a

better choice of smoothing, but one does not currently exist. I constructed a procedure

that adaptively chooses weighting schemes for SLTS and thus controls the balance between

the robustness and the efficiency of the estimator. The adaptive procedure actually starts

from an estimate close to LTS (most robust) and decides how far it can go towards the
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least squares (improvement in variance) without endangering the robustness of SLTS.

On the other hand, I studied behavior of the adaptive choice of a smoothing scheme only

for one possible class of generating functions, which is quite suitable, but it does have to be

the optimal one. Hence, finding an optimal smoothing class with respect to the asymptotic

variance of SLTS would be a very valuable improvement of SLTS and it is one of the main

issues for further research. Another unresolved issue closely related to the adaptive choice

of smoothing is the construction of a distribution-free decision rule. Last, but not least, an

extension of the presented results allowing for dependency among observations, and thus

for lagged dependent variables, is one of priorities of further research.
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