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Nonparametric estimation of scalar diffusions
based on low frequency data is ill-posed

Emmanuel Gobet!, Marc Hoffmann? and Markus Reif?

June 25, 2002

! Ecole Polytechnique, %Laboratoire de Probabilités et Modéles aléatoires -
Université Paris 7 and °Institut fir Mathematik, Humboldt- Universitit zu
Berlin.

Abstract

We study the problem of estimating the coefficients of a diffusion
(X¢,t > 0); the estimation is based on discrete data X,a,n =0,1,...,N.
The sampling frequency A™! is constant, and asymptotics are taken as
the number of observations tends to infinity. We prove that the problem of
estimating both the diffusion coefficient — the volatility — and the drift in
a nonparametric setting is ill-posed: The minimax rates of convergence for
Sobolev constraints and squared-error loss coincide with that of a respec-
tively first and second order linear inverse problem. To ensure ergodicity
and limit technical difficulties we restrict ourselves to scalar diffusions
living on a compact interval with reflecting boundary conditions.

An important consequence of this result is that we can character-
ize quantitatively the difference between the estimation of a diffusion in
the low frequency sampling case and inference problems in other related
frameworks: nonparametric estimation of a diffusion based on continu-
ous or high frequency data, but also parametric estimation for fixed A,
in which case v/N-consistent estimators usually exist. Our approach is
based on the spectral analysis of the associated Markov semigroup. A rate-
optimal estimation of the coefficients is obtained via the nonparametric
estimation of an eigenvalue-eigenfunction pair of the transition operator
of the discrete time Markov chain (X,a,n = 0,1,...,N) in a suitable
Sobolev norm, together with an estimation of its invariant density.
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1 Introduction and main results

1.1 Overview

Since Feller’s celebrated classification, stationary scalar diffusions have served as
a representative model for homogeneous Markov processes in continuous time.
Historically, diffusion processes were probably first seen as approximation mod-
els for discrete Markov chains, up to an appropriate rescaling in time and space.
More recently, the development of financial mathematics has argued in favour
of genuinely continuous time models, with simple dynamics governed by a local
mean (drift) b(e) and local variance (diffusion coefficient, or volatility) o(e) on
the state space S = R or S C R with appropriate boundary condition. The
dynamics are usually described by an Ito-type stochastic differential equation
in the interior of S, which in the time-homogeneous case reads like

dXt = b(Xt) dt + O'(Xt) th, t Z 0,

where the driving process (W, t > 0) is standard Brownian motion. The grow-
ing importance of diffusion models progressively raised among the community
of statisticians a vast research program, from both quantitative and theoretical
angles. We outline the main achievements of this program in Section 1.2 and
give some bibliographical references.

In the late 1970s a statistician was able to characterize qualitatively the
properties of a parametric ergodic diffusion model based on the continuous ob-
servation of a sample path

XT:=(X,0<t<T)

of the trajectory, as T — 00, i.e. as the time length of the experiment grows
to infinity, a necessary assumption to assure the growing of information thanks
to the recurrence of the sample path. The 1980s explored various discretization
schemes of the continuous time model: the data X7 could progressively be
replaced by the more realistic observation

XN’AN = (XnANan:()a]-a"' 3N)7

with asymptotics taken as N — oo. The discretization techniques used at
that time required the high frequency sampling assumption Ay — 0 whereas
NAN — oo in order to guarantee the closeness of XA~ and X7, with
T = NApy. Not too long after, a similar nonparametric program was achieved
both for continuous time and high frequency data.

By the early up to mid 1990s, the frontier remained the “fixed A case”, i.e.
the case of low frequency data. This is the topic of the present paper. First, one
must understand the importance and flexibility gained by being able to relax
the assumption that the sampling time A between two data points is “small”:
Indeed, one can hardly deny that in practice, it may well happen that sampling



with arbitrarily small A is simply not feasible. Put differently, the asymptotic
statistical theory is a mathematical construct to assess the quality of an esti-
mator based on discrete observations and it must be decided which asymptotics
are adequate for the data at hand. Second, the statistical nature of the prob-
lem drastically changes when passing from high to low frequency sampling: the
approximation properties of the sample path XVA~ by XNAN are not valid
anymore; the observation (Xg, XA, ... ,Xnya) becomes a genuine Markov chain,
and inference about the underlying coefficients of the diffusion process must be
sought via the identification of the law of the observation XA~ In the time-
homogeneous case the mathematical properties of the random vector XV:Aw~
are embodied in the transition operator

Paf(z) = E[f(Xa) | Xo = «],

defined on appropriate test functions f (The symbol E denotes expecation w.r.t.
the probability space on which is properly defined the diffusion X, see below.)
Under suitable assumptions, the operator Pa is associated with a Feller semi-
group (P;,t > 0) with a densely defined infinitesimal generator L on the space
of continuous functions given by

o*(z)

Lf(@) = Louf(@) = T

f"(@) + b(z) f' ().

The second order term o (e) is the diffusion coefficient, and the first-order term
b(e) the drift coefficient. Postulating the existence of an invariant density u(e) =
lop(e), the operator L is unbounded, but self-adjoint negative on L?(p) :=
{f| [1f1?du < o} and the functional calculus gives the correspondence

Pa = exp(AL) (1.1)

in the operator sense. Therefore, a consistent statistical program can be resumed
to start from the observed Markov chain X V-2, estimate its transition operator
P, and infer about the pair (b(s),0(s)), via the correspondence (1.1), or, in
other words via the spectral properties of the operator Pa. Expressed as a
diagram, we obtain the following line

xN-A ﬂ} Pa ﬂ) L+— (b(.),a(o)) = parameter. (1.2)

data =
The efficiency of a given statistical estimation procedure will be measured by
the proficiency in combining the (E) — or estimation — part and the (I) — or
identification — part of the model.

The works of Hansen and Scheinkman (1995) and later Hansen, Scheinkman
and Touzi (1998) and Chen (1998) paved the way: They formulated a precise
and thorough program, proposing and discussing several methods for identify-
ing scalar diffusions through their spectral properties. In particular, their paper
of 1998 and the references therein provide a deep understanding of the prob-
lem at hand. Simultaneously and independently, the Danish school, impulsed



by the works of Kessler and Sgrensen (1999), systematically studied the para-
metric efficiency of spectral methods in the fixed A setting described above.
By constructing estimating functions based on eigenfunctions of the operator
L, they could construct v/ N-consistent estimators and obtained precise asymp-
totic properties.

However, a quantitative study of nonparametric estimation in the fixed A
context remained out of reach for some time, both for technical and conceptual
reasons. The purpose of the present paper is to fill in this gap, by trying to un-
derstand and explain why the nonparametric case significantly differs from its
parametric analogue, as well as from the high frequency data framework in non-
parametrics. We are going to establish minimax rates of convergence (in short
MRQC, see also Section 1.3.1) over various smoothness classes, characterizing up-
per and lower bounds for estimating b(e) and o(e) based on the obervation of
Xo, XA, ... ,XNA, with asymptotics taken as N — oco. The MRC is an index of
both accuracy of estimation and complexity of the model. We will show that in
the nonparametric case, the complexity of the problem of estimating b(s) and
o(e) is related to a certain ill-posed inverse problem. Although we mainly focus
on the theoretical aspects of the statistical model, the estimators we propose are
based on feasible nonparametric smoothing methods: They can be implemented
in practice, allowing for adaptivity and finite sample optimisation.

1.2 Statistical estimation for diffusions: an outlook

In this section, we give a brief and selective summary of the evolution of the
area over the last two decades. The nonparametric identification of diffusion
processes from continuous data was probably first addressed in the reference
paper of Banon (1978). More precise estimation results can be listed as follows:

1.2.1 Continuous or high frequency data: the parametric case

Estimation of a finite dimensional parameter 8 from X* = (X;,0 < t < T) with
asymptotics as T' — oo when X is a diffusion of the form

dXt = bg(Xt)dt+U(Xt)th (13)

is classical (Brown and Hewitt (1975)). Here (W;, ¢ > 0) is a standard Wiener
process. The diffusion coefficient is perfectly identified from the data by means
of the quadratic variation of X. By assuming the process X to be ergodic (pos-
itively recurrent), a sufficiently regular parametrisation 8 — bg(s) implies the
LAN property (Local Asymptotic Normality, see e.g. Ibragimov and Khas’minskii
(1981)) for the underlying statistical model, therefore ensuring the v/T-consistency
and efficiency of the ML-estimator (see Liptser and Shiryaev (2001)).

In the case of discrete data X,aAy,n = 0,1,..., N with high frequency
sampling A]’vl — o0, but long range observation NAy — oo as N — oo,
various discretization schemes and estimating procedures have been proposed
(Dacunha-Castelle and Florens (1986), Yoshida (1992), Kessler (1997)) until



Gobet (2002) eventually proved the LAN-property for ergodic diffusions of the
form

dXt = b91 (Xt)dt + (o2 (Xt)th (14)

in a general setting, by means of the Malliavin calculus: Under suitable regu-
larity conditions, the finite-dimensional parameter #; in the drift term can be
estimated with optimal rate /N An, whereas the finite-dimensional parameter
0> in the diffusion coefficient is estimated with the optimal rate VN.

1.2.2 Continuous or high frequency data: the nonparametric case

A similar program was progressively obtained in nonparametrics: If the drift
function b(e) is globally unknown in the model given by (1.3), but belongs to
a Sobolev ball S(s, L) (of smoothness order s > 0 and radius L) over a given
compact interval Z, see Appendix 5.2 for a precise definition, a certain kernel
estimator by (s), achieves the following upper bound in L2(Z) and in a root-
mean-squared sense:

7 1/2 —s/(2s
sup E [||bT - b||§2m] < s/ @st1),
bES(s,L)

This already indicates a formal analogy with the model of nonparametric re-
gression or “signal + white noise” where the same rate holds. (Here and in
the sequel, the symbol < means “up to constants”, possibly depending on the
parameters of the problem, but that are continuous in their arguments.) See
Kutoyants (1997), and more recently Dalalyan (2001) for precise results on non-
parametric estimation from continuous data.

Similar extensions to the discrete case with high frequency data sampling
for the model driven by (1.4) were given in Hoffmann (1999) where the rates
(NAp)~#/(5+1) for the drift function b(e) and N—%/(25+1) for the diffusion coef-
ficient o (e) have been obtained and proved to be optimal. See also the pioneering
paper of Pham (1981).

1.2.3 Spectral methods for parametric estimation

As already mentioned above, as soon as the sampling frequency AR,I =A"lis
not large anymore, the problem of estimating a parameter in the drift or diffusion
coefficient becomes significantly more difficult: the trajectory properties that can
be recovered from the data when Ay is small are lost; in particular, there is
no evident approximating scheme (like, for instance, contrast estimators) that
can efficiently compute or mimic the continuous maximum likelihood estimator,
which therefore becomes untractable.

Kessler and Sgrensen (1999) suggested using eigenvalues Ay and eigenvectors
o (o) of the parametrised infinitesimal generator

Lof(@) = 2% (@) + @) ' (@),



i.e., such that Lops(x) = Agws(x). Indeed, since the pair (Ag, pg) also satisfies

Papg(Xna) = E[pg(X(ni1)a) | Xna] = exp(RgA)pg(Xna),

whenever easy to compute, the knowledge of a pair (Ag, pg) can be translated
into a set of conditional moment conditions to be used in estimating functions.
With their method, Kessler and Sgrensen can construct v/ N-consistent estima-
tors that are nearly efficient. See also the paper of Hansen, Scheinkman and
Touzi (1998) that we already mentioned.

In a sense, in this idea lies the essence of our method. However, the strat-
egy of Kessler and Sgrensen is not easily extendable to nonparametrics: there is
no straightforward way to pass from a finite-dimensional parametrization of the
generator Ly with explicit eigenpairs (Mg, pp) to a full nonparametric space with
satisfactory approximation properties, like Sobolev balls for instance. Besides,
there would be no evident route to treat the variance of such speculative non-
parametric estimators either, because the behaviour of the parametric Fisher
information matrix for a growing number of parameters is too complex to be
easily controlled. We will see in Section 2.2 below how to overpass these objec-
tions by estimating directly an eigenpair nonparametrically.

1.2.4 Prospectives

A quick summary yields the following table for optimal rates of convergence:

Parametric Nonparametric
b | o b | o
Continuous T 2 known T—/(25+1) known
HF data (NAN)_1/2 N—1/2 (NAN)—S/(Qs—i-l) N—s/(2s+1)
|LFdata | N2 [ N-12] un | ov |

This table can be interpreted as follows: the difficulty of the estimation prob-
lem is increasing from top to bottom and from left to right. A double horizontal
line separates the continuous/high frequency (HF) data domain from the low
frequency (LF) data domain. The breach for LF data opened by Kessler and
Sgrensen as well as Hansen, Scheinkman and Touzi shows that +/N-consistent
estimators usually exist in the parametric case. The remaining case are the rates
of convergence for LF data in the nonparametric case uy for the drift b(e) and
v for the diffusion coefficient o(e), which we are aiming for.

Another interesting point is that asymptotic estimation of the drift coeffi-
cient is never easier than estimation of the diffusion coefficient, a property that
will also be kept in the nonparametric LF regime. This is closely connected
with the fact that for the convergence of transition densities of diffusions the
conditions imposed on the convergence of the drift coefficients are weaker than
those for the diffusion coefficients, compare with the monograph by Stroock and
Varadhan (1979).



1.3 Nonparametric estimation based on LF data
1.3.1 Rates of convergence in the minimax theory

By passing from the parametric to the nonparametric setting in the table above,
we observe a remarkable correspondence between the exponent 1/2 and the ex-
ponent s/(2s+1). Indeed, this phenomenon is well understood in regular Gaus-
sian experiments and can be described as follows. Let us consider the classical
“signal 4+ white noise” model: we aim at recovering an unknown signal f(e) from
data Y obeying

. 1 .
V= fe W, (1.5)

where W is white noise and N is a — small — noise levell. If f(es) = fg(e)
is known up to a finite dimensional parameter 6 and if the parametrisation
0 — fg(e) is regular, then the model (1.5) based on the observation of YV is
regular as well — it satisfies the LAN property — and optimal v/N-consistent
estimators exist. If we relax the parametrization by € and allow f to lie in a
Sobolev ball S(s,L) of smoothness s > 0 and radius L > 0, then, one can
show (e.g. Ibragimov and Khas’minskii (1981)) that certain kernel or projection
estimators f(e) = f(s,Y) satisfy

—1/2

; 1/2 —s/(2541)
sup E [||f - f||L2([o,1])] SN , (1.6)
feS(s,L)

The inflation of the risk bound shows a dimension effect governed by the smooth-
ness of the parameter f(e), best understood by looking at projection methods:
the variance-bias decomposition reads

f=f=GF—fa)+Fm— 0,

where f,,, is the best approximation of f in an m-dimensional approximation
space W, having accuracy || fm — f|lz2 < m ™%, while the variance term satisfies

E(lIf — fmlZ2]"/2 S N7V2 dim(Win) = N7V/2m. (1.7)

The balance between the two terms yields m ~ N/(25+1) hence (1.6) (here and
in the sequel, the notation ¢; ~ ¢z means ¢; < ¢ and ¢z < ¢1.) In particular,

we see that the rate v/ N is achievable whenever f(e) is finite-dimensional, i.e.
m is kept constant.

ITn probabilitic terms, we observe

1
Y (dz) = f(z)dz + 7N W(dx), z € [0,1]

where W (dx) is a centred Gaussian measure of intensity the Lebesgue measure dz on the unit
square [0, 1]



Moreover, the upper bound N=5/(25+1) jg gptimal:

e 5/(2s 1/2
lgninfipf sup N (D By [IF = flliagoap] >0, (18)
0 €S(s,

where the infimum in F is taken over all estimators F' = F(s,Y). Putting (1.6)
and (1.8) together, we say that the minimaz rate of convergence (MRC) over
Sobolev bodies S(s,L) is (of order) N—%/(25+1)  Ag already mentioned, it is
noteworthy that N—5/(25+1) ig both an index of accuracy and complexity: two
different statistical models sharing the same MRC do have common geometric
features, see the review article of Nussbaum (1999).

Taking advantage of the parametric results of Kessler and Sgrensen, we might
be tempted at first sight to conjecture the corresponding results in the nonpara-
metric case based on LF data. But this is not the case.

1.4 Main result

The symmetry we observe between the parametric and nonparametric case is
broken for nonparametric estimation based on LF data. Combining Theorem
2.5 and 3.1 below, we see that if b(e) and o(e) are of Sobolev smoothness order
s1 and sz, under some further conditions the MRC are

uy = N72/Z545) for p(s) and vy = N7%2/(25243) for 5().

Although different from the classical case, these risk bounds do have an analogue
in the Gaussian white noise setting if we move a little beyond the simple white
noise heuristics. Instead of (1.5) we consider the statistical model generated by
data Y, with

. 1 ..
Y=Kf+ \/NW, (1.9
and where now K : L2([0,1]) — L?([0,1]) is a compact linear operator, which
has a regularization property of order a > 0 in the following sense: The oper-
ator K maps L? into the Sobolev space H® continuously. For instance, a-fold
integration has regularizing order a. Assuming K~! to exist, we can formally
apply this operator and obtain

e R

K>Y=f+ \/]VK w, (1.10)
which shows that the bias term is the same as for (1.5), but the stochastic
variance term increases due to the bad condition of K~! on finite-dimensional
spaces. The regularization property leads to the growth N~1/2ma+1/2 of this
stochastic error in terms of the dimensionality m of an approximation space,

which should be compared with the m!/?-increase in (1.7).
Classical nonparametric theory (see e.g. Korostelev and Tsybakov (1993))
shows that the minimax rate of convergence over Sobolev balls of smoothness



s > 0 is then of order N—#/(2s+22+1) The inflation in the denominator by 2¢ is
the unavoidable payment for the ill-posedness of the problem. This sheds light on
our present problem: estimating o (e) and b(e) appears now as an ill-posed inverse
problem of order a = 1 and a = 2, respectively. As will become apparent in the
sequel, this can be understood by the ill-posedness involved in the identification
step (I) explained in diagram (1.2). The fact that the estimation rates between
b(e) and o(e) differ will become more transparent in Section 2.2 (see also the
remarks following Theorem 2.5).

1.5 Organisation of the paper

In Section 2, we give a precise mathematical and statistical framework for es-
timating the diffusion coefficient o(s) and the drift b(s) in a scalar diffusion
model with boundary conditions. Section 2.2 gives the precise construction of
nonparametric estimators for b(e), o(e) based on low frequency discrete data
by means of spectral methods. Theorem 2.5 in Section 2.3 provides an upper
bound in L2-loss, uniformly over Sobolev bodies for our procedure. A subse-
quent discussion reviews the advantages and limitations of our assumptions and
methodology. Possible extensions to related aspects of nonparametric estima-
tion, like adaptation to unknown smoothness, are discussed. A detailed proof of
the upper bound is given in Section 2.4.

The upper bound of Theorem 2.5 is proved to be optimal in Section 3. The
investigation of lower bounds for Markov chains has some history, see Birgé
(1983). Although the route we follow is classical, the technique we employ is
new, and uses genuine Hilbert space method in order to handle an appropriate
statistical distance in our model, induced by the operator Pa.

Complementary remarks and comments are given in Section 4. An appendix
— Section 5 — contains important auxiliary technical results about the spectral
properties of scalar diffusions, together with the essential ingredients of approx-
imation theory (e.g., multiresolution analysis, inverse and direct estimates) that
we use throughout the paper.

2 Estimation of drift and diffusion coefficient

2.1 A diffusion model with boundary reflections

We shall restrict ourselves to reflecting diffusions on a one-dimensional interval,
because their theory is highly developed so that e.g. no further technical ergod-
icity conditions have to be postulated. Choosing for convenience the interval
[0, 1], we suppose

2.1. Assumption. The function b : [0,1] — R is measurable and bounded,
the function o : [0,1] = (0,00) is continuous and positive and the function
v:[0,1] = R satisfies v(0) =1, v(1) = —1.



We consider the stochastic differential equation

{u;:mxgﬁ+ammdwg+mxgﬂuxx;mzmmemg] 1)

X, €[0,1] Vt>0.

The process (W, t > 0) is a standard Brownian motion and (Li(X),t > 0)
is a nonanticipative continuous nondecreasing process that increases only when
X € {0,1}. By Lions and Sznitman (1984), there exists a weak solution of this
stochastic differential equation. The boundedness of b(s) and the ellipticity of
o(e) even ensure that this solution is strong and unique (e.g. Cepa (1995)). Note
that the process L(X) is part of the solution and is given by a difference of local
times of X at the boundary points of [0, 1].

Due to the compactness of [0, 1] and the reflecting boundary conditions, the
Markov process X has a so-called spectral gap, which implies a geometrical de-
cay of the covariances Cov(X,, Xintn) — 0 for m € N, n — 00, see also Lemma
5.1 and Lemma 5.2 in the appendix. In particular, a unique invariant measure p
exists and the one-dimensional distributions of X,, converge exponentially fast
to p as m — oo so that the assumption of stationarity can be made without loss
of generality for asymptotic results.

We denote by P, ; the law of the associated stationary diffusion on the canon-
ical space 2 = C(R4, [0, 1]) of continuous functions over the positive axis with
values in [0, 1], equipped with the topology of uniform convergence and endowed
with its Borel o-field F. We denote by E, ; the corresponding expectation op-
erator. Given N > 1 and A > 0, we observe the canonical process (X;,¢ > 0) at
equidistant times nA for n =0,1,...,N. Let Fn denotes the o-field generated
by Xpa,n=0,...,N.

2.2. Definition. An estimator of the pair (o(e),b(s)) is an Fy-measurable
function with values in L*([0,1]) x L?([0,1]).

In order to assess the L2-risk in a minimax framework, we introduce the
nonparametric set ©,, which consists of pairs of functions of regularity s and
s — 1, respectively.

2.3. Definition. For s > 1 and given constants C' > ¢ > 0, we consider the

class O(s,C,¢) defined by
{(0:0) € H*(0.1)) x B ((0,1) | - < C. [bllo-s < C, inf (@) > <},

where H® denotes the Sobolev space of order s (see Appendiz 5.2).

We shall be inexact and write @, for (s, C, ¢). Note that all (c(e),b(s)) € O,
satisfy Assumption 2.1.

2.2 Construction of the estimators

We shall construct our estimator of the diffusion coefficient o(s) and of the drift
coefficient b(e) by applying spectral methods, thereby passing from the transition

10



operator Pa, which is approximately known to us, to the infinitesimal generator
L, which more explicitly encodes the functions o(e) and b(s). In the sequel, we
shall often be using the specific form of the invariant density

(z) = 2000 @) exp / " 2b(y) o y) dy) (2.2)

and the function S(e) = 1/s'(s), derived from the scale function s(e),
S(@) = 2ot @) = Coexn( | 24)o~w) dy) (2.3)
0

with the normalizing constant Cy > 0, depending on o(s) and b(s), cf. Section
VIL.3 in Revuz, Yor (1999). The action of the generator in divergence form is
given by

Lf(@) = Loy f(z) = 30*(@) " (@) + b(2) f'(2) = 715 (S@) (@), (24)

where the domain of this unbounded operator on L?(p) is given by the subspace
of the Sobolev space H? with Neumann boundary conditions

dom(L) = {f € H*([0,1])| f'(0) = f'(1) = 0}

The generator L is a selfadjoint elliptic operator on L?(u) with compact resol-
vent so that it has nonpositive point spectrum only. If v; denotes the largest
negative eigenvalue of L with eigenfunction u;, then due to the reflecting bound-
ary of [0,1] Neumann boundary conditions u{(0) = u{ (1) = 0 hold and we find

Luy = p~ ' (Su)' = iy => S(z)ui(z) = m /Ow w1 (y)u(y) dy- (2.5)

From (2.3) we can thus derive an explicit expression for the diffusion coefficient:

2u [ d
2(z) = 24 folul(y)ﬂ(y) y (2.6)
uy () ()
The corresponding expression for the drift coefficient is
o) — g LA @RE) — @) [ )pw)dy. .

u (2)?p()

Hence, if we knew the invariant measure p, the eigenvalue v4 and the eigenfunc-
tion w1 (including its first two derivatives), we could exactly determine the drift
and diffusion coefficient. Of course, these identities are valid for any eigenfunc-
tion ug with eigenvalue vy, but for the sake of concreteness and better numerical
stability we shall only use the largest non-degenerate eigenvalue v;. Moreover,
it is known that only the eigenfunction u; does not have a vanishing deriva-
tive in the interior of the interval (cf. Proposition 5.5) so that by this choice
indeterminacy at interior points is avoided. The main point is now that from

11



discrete time observations (X,A) we can estimate the invariant measure p and
the transition operator Pa. Using semigroup theory (Theorem IV.3.7 in Engel
and Nagel (2000)), we know that u; is also an eigenfunction of Pa with eigen-
value \; = e®”1. Thus, our procedure is to determine estimates fi of p and Pa
of Pa, to calculate the corresponding eigenpair (A;,%;) and to use (2.6) and
(2.7) to build a plug-in estimator of o(e) and b(e).

We are now describing the estimation procedure for the diffusion coefficient
o(e) in detail, while the construction for b(e) follows the same lines. As we shall
later need to calculate spectral information we shall be using projection methods
for nonparametric smoothing, which have the advantage of approximating the
abstract operators by finite-dimensional matrix estimators. More specifically,
we make use of wavelets on the interval [0,1]. In order to be self-contained, we
recall the essential ingredients we need in Appendix 5.2 (see also the monograph
of Cohen (2000)).

2.4. Definition. Let (v)) with multindices A = (j, k) be a compactly supported
orthonormal wavelet basis of L*([0,1]). Each f € L*([0,1]) has the unique ex-
pansion

EDIIRINTE
A

The corresponding approzimation spaces (Vj) are defined as L?-closed linear
span of the wavelets up to level J > —1

Vy:=span{yn|[A| < J},  where [(j, k)| :=j.
The L?-orthogonal projection onto Vj is called 7z, the L?(u)-orthogonal projec-
tion onto Vy is called 7';.
The canonical projection estimate of y based on (X,A)o<n<n is given by
=) s (2.8)
A<

for some J € N and with the empirical wavelet coefficients

N
iy = %H T; Pa(Xna). (2.9)

By the ergodicity of X (see Section 2.1) it follows that i is a consistent estimate
of {(u,1),) for N = co. In order to estimate the action of the transition operator
on the wavelet basis (PA)xx := (Patx, ¥ ), we introduce the symmetrized
matrix estimator P A:

N

% Z (w*(X(n—l)A)@bz\’ (Xna) + ¥n (X(n—1)A)1/1A(XnA))-

Ba)ay i=
n=1

(2.10)
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Note that in this case, P, p-almost surely and in L?(P, ):

Pa)ay = Eop[a(Xo)voa (Xa)] = (¥x, Pathar)y for N = co.

We thus merely obtain an approximation of the transition operator with respect
to the unknown scalar product (e,s), in L?(u). We therefore introduce a third
statistic, which approximates the |V;| x |Vy|-dimensional Gram matrix G with
entries G)\,,\l = <¢A;¢A’)u; given by:

Gy = %(%%(Xo)sz (Xo) + 1A (Xna)¥n (Xna)+
N-—1
+ D oa(Xna)n (XnA)> . (2.11)
n=1

The particular treatment of the boundary terms will be explained later. Note
that the matrix G is indeed a consistent estimator of G. If we put ¥ =
(nA(Xn))|a<s,n<N With kg = Ky = % and Kk, = 1 otherwise, we have
G=N 13257 where 7 denotes the transpose of £. Our construction can
thus be regarded as a least-squares type estimator, like in a usual regression
setting, see the argument developed in (2.14) below.

We combine the last two estimators in order to determine estimates for the
eigenvalue \; and the eigenfunction u; of Pa. First, as will be made precise
in Proposition 2.12, the operators Pa and 7/ Pa are close for large values of
J. Note that all eigenvectors of ©;Pa lie in Vj, the range of 7%/ Pa. Since the
constant functions are eigenfunctions of both, PA and W‘JLPA, the second largest
eigenvalues \; and \{, respectively, satisfy the variational characterisation (see
Section 4.5 in Davies (1996)):

)\1 = sup <PAf7f>H7 )‘IJ = sup <PAf7f)I-b'
1£1l =1 Fevy, |Ifll.=1
(f1)p=0 (f,1)p=0

This shows immediately A{ 1 A1, i.e. the true eigenvalue is approximated by
A{, but always underestimated. The eigenvalue \{ and its eigenfunction uj are

characterized by
(Paui, ¥a)y = M i, ¥n) YN ST (2.12)

We pass to vector-matrix notation and use from now on bold letters to define for
a function v € V; the corresponding coefficient column vector v = ((v,¥))|r|<-
Observe carefully the different scalar products in L?([0, 1]) used; here it is with
respect to the Lebesgue measure. Thus, we can rewrite (2.12) as

Piul = A/ Guj. (2.13)

As vIGv = (v,v), > 0 holds for v € V; \ {0}, the matrix G is invertible
and (\{,u{) is an eigenpair of the matrix G™1PX. Observe that this matrix is
selfadjoint with respect to the scalar product induced by G:

(GTIPLAv,W)g := (GT'PAiv)TGw = vIP{w = (v, G 'Piw)g.
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Similarly, vIGv = N-1(27v)TETv > 0 holds and the matrix G can be
shown to be even strictly positive definite with high probability (see Lemma
2.19). In this case, we obtain the corresponding symmetry property

(G_lﬁAv,w)G = (Pav)Tw = (v,é_lﬁAw)G

The Cauchy-Schwarz-inequality and the inequality between geometric and arith-
metic mean yield the estimate

N
A 1a 1
(G_IPAV,V)G =N Z V(X (n—1)a)v(Xna)

n=1
1 N—1 1/2 N 1/2
<+ ( v(Xna) ) (Zv(XnA) )
n=0 n=1

1 N-1

ﬁ (% + U(XNA)2 + Z ’U(XnA)2>
n=1

=(v,V)a

We infer that all eigenvalues of G_lf’A are real and not larger than one. The
eigenvalue one is even attained by the eigenvector corresponding to the constant
function 1. Hence, the second largest eigenvalue A1 of G™1P, is well defined
and not larger than one. For this purpose we had chosen to downweight the
boundary terms of G. Then the eigenvalue A1 of G~1P, and its corresponding
eigenvector i; yield reasonable estimates of A{ and .

The estimator matrix G=1P, is built as in the least squares approach for
projection methods in classical regression. In order to estimate Paty,(z) =
Esp[tr, (Xa) | Xo = z], the least squares method consists of minimizing

N G
> ‘%o(Xn) -y a‘isz(anl)‘z —> min! (2.14)
n=1

[AI<T

over all real coefficients (a3), leading to the normal equations

Z(Zam X 1)) tor (X 1) wa X )a (X)) YN[ < T
n=1

n=1 |\|<J

Up to the special treatment of the boundary terms, we thus obtain the vec-
tor (af) as the column with index Ao in G~'PA. Thus, our method estimates
the coefficients for all basis functions ,, |Ao| < J, simultaneously. See also
the model selection approach in nonlinear regression (Baraud (2000) and Ba-
raud, Comte and Viennet (2001)) which is natural in this context, and the final
remarks in Section 4.

Plugging the estimator /i and the just defined estimators \; and 4, into (2.6)
and (2.7), we obtain our estimators of g2(s) and b(e).
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Finally, our estimator of (o(e),b(s)) is defined by:

Py = 27 log(glllgxf)oi?;)(y)ﬂ(y) dy (215)
bz) = A1 log()\l)ﬁl(ﬂf)ﬁi(ﬂf)ﬂ(w) — i1 (2) Jo a1()ia(y) dy (2.16)

a4 () fi(x)

To avoid indeterminacy, the denominator of the estimators is forced to remain
above a certain minimal level, which depends on the subinterval [a,b] C [0, 1]
forwhich the loss function is taken, see Theorem 2.5 and (2.21).

2.3 Asymptotic upper bound

We can now state the main theorem, giving an asymptotic upper bound for the
risk of our estimators as N — oo uniformly over the class ©, introduced in
Definition 2.3. In order to avoid problems due to the vanishing denominator in
(2.15), (2.16) at the boundary, we restrict to a proper subinterval of [0, 1].

2.5. Theorem. Foralls >1,C>c¢>0and 0<a < b< 1 we have

— /2
lim sup N*/ (2543 gup Ea,b[||02—02||2L2([a,b])] <o

N—oo (0,0)€Os
and
) 1/2
lim sup N~ D/(2s4+3)  gyp Eop [”b - b“%zz([a,b])] < 00
N—oo (0,b)€EO,

2.6. Remark. Comparing with Theorem 3.1 below, upper and lower bounds
agree, therefore our estimators are rate-optimal in a minimazx sense.

2.7. Remark. If we set s; = s and sy = s1 — 1, we obtain the rates announced
in Section 1.4, namely N—51/25143) for o(s) and N—2/(2+5) for b(s). More
precisely, one can make the link with the diagram and with ill-posed problems
by saying that estimation of p(s) is well-posed (N—%/(2+1)) but for S(s) we
need an estimate of the derivative uj(e) yielding a degree one of ill-posedness
(N—/(5+3)) Observe that the regularity conditions 0 € H® and b € H* !
are translated into p € H®, S € H*. The transformation of (u,S) to o%(e) =
25(s)/pu(e) is stable (L?-continuous for S(s) > so > 0), whereas in b(e) =
S'(e)/11(s) another ill-posed operation (differentiation) occurs with degree 1. A
brief stepwise explanation reads as follows:

Step 1: The natural parametrisation (u, Pa) is well-posed (for Pa in the
strong operator convergence sense). Step 2: The calculation of the spectral pair
(A1, u1) is well-posed. Step 3: The differentiation of uy that determines S has an
ill-posedness of degree 1. Step 4: The calculation of o* from (u, S) is well-posed.
Step 5: The calculation of b from (u,S) has an ill-posedness of degree 1.
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2.4 Proof of the upper bound
2.4.1 Convergence of [

In order to be self-contained, we first recall the proof for the classical risk bound
in estimating the invariant measure:

2.8. Proposition. With the choice 27 ~ N/ (25%1) the following uniform risk
estimate holds for i based on N observations:

sup  E,pllfp — pl|22]H? < N78/@sHD),
(0,b)€O;

Proof. The explicit formula (2.2) for p shows that ||u||g- is uniformly bounded

over ©,. This implies that the bias term satisfies
= mypllee S 277 ulle ~ N72/@oFD,

uniformly over ©;. Since fi) is an unbiased estimator of (u,1,), we can apply

the variance estimates of Lemma 5.2 to obtain

Eoulla—mspliz] = ) Vargulin] S 27N
A<

which — in combination with the uniformity of the constants involved — gives
the announced upper bound. O

2.4.2 Spectral approximation

We shall rely on the spectral approximation results given in the book of Chatelin
(1983), compare also Kato (1995). Since for 6(s) we have to estimate not only
the eigenvalue u;, but also its derivative u|, we will be working in the L2-
Sobolev space H'. The general idea is that the error in the eigenvalue and in the
eigenfunction can be controlled by the error of the operator on the eigenspace,
once the overall error measured in the operator norm is small. Denoting by
R(T,z) = (T—21d)~! the resolvent map of the operator T, by o(T') its spectrum
and by B(x,r) the closed ball of radius r around z, the precise statement is given
in the following proposition and its corollary:

2.9. Proposition. Suppose a linear operator T on o Hilbert space has a simple
eigenvalue X such that o(T) N B(\, p) = {\} holds for some p > 0. Let T, be a
second linear operator with ||T.—T|| < &, where R := (sup,epa,p |1 R(T, 2)|N~t.
Then the operator T, has a simple eigenvalue Ac in B(\, p) and there are eigen-
vectors u and ue with Tu = Au, Tou. = Acue satisfying

llus —ull < VBR™Y|(Te = T)ul. (2.17)

Proof. We use the resolvent identity and the Cauchy integral representation
of the spectral projection P. on the eigenspace of T contained in B(}, p), see
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Lemma 6.4 in Chatelin (1983). By the usual Neumann series argument we find
formally for an eigenvector u corresponding to A

- Poul| = = 7{ RIe2) 0 (1 — Ty
27| Joo A=
1 _
< g-2mp sup IR(T:, 2)llp Tz = T)ull
7r z€B(A,p)
R(T,z
< sup LLACAL) LS 1C iy O

:eB(Ap) 1~ [IR(T, )| Tz — T
= (R~ ||T: =TI~ I(T= = T)ull.

Hence, for ||T. — T'|| < £ this calculation is a posteriori justified and simplifies
further:

llu — Poull < 2R7H(Te — T)ull.

Applying ||(T: — T)u|| < %Hu” once again, we see that the projection P. cannot
be zero. Consequently there must be a part of the spectrum of T; in B(}, p). By
the argument in the proof of Theorem 5.22 in Chatelin (1983) this part consists
of a simple eigenvalue .

It remains to find eigenvectors that are close, too. Observe that for arbitrary
Hilbert space elements g, h with ||g|| = ||h|| =1 and {g,h) >0

llg = hlI> =2 —2(g,h) <2(1+ (g, h))(1 — (g, h)) = 2|lg — (g, W)R||*

holds, i.e. the distance of the vectors can be estimated by the distance between
one vector and its orthogonal projection on the other vector. We substitute for
g and h the normalized eigenvectors 4 and u. with {u,u:) > 0, note that oblique
projections only enlarge the right hand side and thus infer (2.17). O

2.10. Corollary. Under the conditions of Proposition 2.9 the eigenvalues A and
Ae are also close; more precisely, there is a constant C = C(R,||T||) such that

A = Al < CII(T. = Tull.
Proof. The inverse triangle inequality yields

[Ae = Al = [[|Teue || = [|Tull]
S ||Ts(us - u) + (TE - T)U”
<(ITN + 1= = TIDllue — wl|l + [[(T: — T)ull
< (T + $)VER ™ + 1) (T2 - T)ull,

where the last line follows from Proposition 2.9. O
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2.4.3 Bias estimates

In a first estimation step, we bound the deterministic error due to the finite
dimensional projection 7% Px of Pa. We start with a lemma stating that 7/
and 7y have similar approximation properties.

2.11. Lemma. Let m : [0,1] — [mg,m1] be a measurable function with m; >
mg > 0. Denote by 7 the L?(m)-orthogonal projection onto the multiresolution
space Vy. Then there is a constant C = C(mg,m1) such that

I@d=a) fllen < CI@ =7l Y f € HY(O,1]).

Proof. The norm equivalence my||g||r2 < ||9]lm < ma1l|g||L2 implies

1757 lz2s L2 < mamg 177 |22 (m) > 22(m) = mamg

On the other hand, the Bernstein inequality in V; and the Jackson inequality
for Id —m; in H' and L? (see Appendix 5.2) yield for f € H*

(I =) fll e = 1(Id =) (Id =) f || e
<A =7 ) fll + [l (Td =7 7) f ]2
SN =mg) fllen + 27 ||y (Id —77) f| 2
S N(Ad =7 ) fllar + 175l L2 22ll(Ad =70) fll a0,

where the constants only depend on the multiresolution analysis. (]

By the preceding lemma and some results on the transition densities, we
obtain the first precise approximation result.

2.12. Proposition. We have uniformly over O,
||7T§PA — Pallgrsm S 2778,

Proof. We denote by pa the transition density. Being the kernel of the operator
Pa, it satisfies

Paf(z) == o F(@)pa(z,y)dy

for any bounded Borel function f. Since pa € H*+1:%(]0,1] x [0, 1]) holds with
uniform norm bound on ©, by Lemma 5.7, it follows that Pa : H' — H*t! is
continuous, also with a uniform norm bound over @,. Thus, by Lemma 2.11 we
find

I(Pa =75 Pa) fllzr S WA =yl goer a1 £l -

The Jackson inequality in H® (see Appendix 5.2) yields the asserted result. [
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2.13. Corollary. Let A{ be the largest eigenvalue smaller than one of 7 with
eigenfunction ui. Then uniformly over O, the following estimate holds:

I = Ml + fluf —urflm 277

Proof. We are going to apply Proposition 2.9 on the space H'! and its Corollary
2.10. In view of the preceding Proposition 2.12, it remains to establish the
existence of uniformly strictly positive values for p and R over ©4. The uniform
separation of A\; from the rest of the spectrum is the content of Proposition 5.5
in Appendix 5.1.

For the choice of p in Proposition 5.5 we search a uniform bound R. If
we regard Pa on L?(p), then Pa is selfadjoint and satisfies ||R(Pa,z2)| =
dist (2, a(PA))_l, see Proposition 2.32 in Chatelin (1983).

By Lemma 5.3 and the commuting between Pa and L we conclude

1R(Pa, ) fllmr ~ |(1d =L)"/* R(Pa, 2)f |,
< |R(Pa, )10 =L)" 2 ],
~ dist (2,0 (Pa)) M| fll -

Hence, ||R(Pa, 2)||lgi— s < p~! holds uniformly over z € B(), p) and (0,b) €
0O,. O

2.14. Remark. The approximation error for the eigenvalues is much smaller.
The Kato-Temple inequality (Theorem 6.21 in Chatelin (1983)) on L?(u) estab-
lishes the so-called super-convergence |\{ — \1| < 2727% which is superoptimal
for our purposes.

2.4.4 Variance estimates

We have achieved the classical bias estimate in nonparametric estimation theory.
In order to bound the stochastic error on the finite-dimensional space Vy, we
return to vector-matrix notation and look for a bound on the error involved in
the estimators G and Pa. The Euclidean norm is denoted by ||s||;2.

2.15. Lemma. For any vector v € RV

Eosl[l(G - G)v||Z] S |IVI[EN127,

independently of v and uniformly over ©,.

19



Proof. We obtain by (5.1) in Lemma 5.2

Eos[[l(G — G)v||i]
N-1
= Z Esp [(% (%@)\(Xo)’l}(Xo) + %w)\(XNA)U(XNA) + Z @bA(XnA)’U(XnA))
AT n=1
2
—Ea,b[¢A(X0)U(X0)]> ]
S D N B[ (Xo)v(X0))?]
AI<J
SN 3| llellelleo
PR
SN2 v,
as asserted. O

2.16. Lemma. For any vector v
Eopll(Pa —Pa)vii] S VRN 27
holds, independently of v and uniformly over Oj.

Proof. We obtain by (5.2) in Lemma 5.2

Eou[ll(Pa — Pa)olliz]

A<

S D N Eopl(a(Xo)v(X1))?]

A<

< NS el ol llpallo
[AI<T

S N2 v,
as asserted. O
2.17. Definition. We introduce the random set
R=Ryn:={IG-G| <3G}

2.18. Remark. Since G is invertible, so is G on R with |G| < 2||G™!|| by
the usual Neumann series argument.

2.19. Lemma. We find uniformly over O
P,s(Q\R) S N~12%.
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Proof. By the classical Hilbert-Schmidt norm inequality,

IG = GliE,e < Y (G = Gexllf
Al<T

holds with the unit vectors (ey) in RY”. Then Lemma 2.15 gives the uniform
moment estimate

Eors[IG ~ Gllfo,e] S N 7127

Since the spaces L?([0,1]) and L?(u) are isomorphic with uniform isomorphism
constants, ||[G~!|| ~ 1 holds uniformly over ©, and the assertion follows from
Chebyshev’s inequality. O

2.20. Proposition. For any € > 0 we have uniformly over ©:
Prs(RNO{||G1PA — GIPA| > e}) SN 122772,
Proof. First, we separate the different error terms:
G 'PA -G 'PA =G 1 (PAr —Par)+ (G =G HPA
=G H(Par-Pa)+(G-G)G'P,).
On the set R we obtain by Remark 2.18
|G Pa — G 'Pall < IGH(IPa — Pall + IG — GIIG I[Pl

<2|GH(IIPa = Pall+1IG = GIIIG[lI[Pal)
SIPa —Pall+(IG-G.

By Lemmas 2.15 and 2.16 and the Hilbert-Schmidt norm estimate (cf. the proof
of Lemma 2.19) we obtain the uniform norm bound over O,

Eopl[|G 1P — G P4 |%15] S N 122
It remains to apply Chebyshev’s inequality. O

Having established the weak consistency of the estimators in matrix norm,
we now bound the error on the eigenspace.

2.21. Proposition. Let uj be the vector associated to the normalized eigen-
function ui of ™ Pa with eigenvalue \{. Then uniformly over O, the following
risk bound holds

Eoul[[(G1Pa — G 'PL)uf|21%] S N 127

Proof. By the same separation of the error terms on R as in the preceding proof
and by Lemmas 2.15 and 2.16 we find

Eqof|(G™'Pa - GT'PA)u! B 1x]
<8|G P (E[I(Ps - PO 2] +E[I(G - &)\ uf[2])
< N2

The uniformity over 0, follows from the respective statement in the lemmas. [
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2.22. Corollary. Let 5\1 be the second largest eigenvalue of the matriz G 1P,
with eigenvector ty. If G is not invertible or if ||tiy|);2 > 2supg, ||u1l|z2 holds,
putdyy := 0, \; := 0. If N~1227 — 0 holds, then uniformly over ©, the following
bounds hold for N,J — oo:

Eo.p [(I5\1 — NP+ iy - u1J||l22)1R] SN2, (2.18)
Ea,b |:||1.A141 - U1J||2H1:| 5 N7123J. (2]_9)

Proof. For the proof of (2.18) we apply Proposition 2.9 using R'” with the
Euclidean [?>-norm as Hilbert space and Corollary 2.10. Then Proposition 2.21
in connection with Proposition 2.20 (using ¢ < R/2 and N~122/ — 0) yields
the correct asymptotic rate on the event R. For the uniform choice of p and R
for G"1P¥ in Proposition 2.9 just use the corresponding result for Pa and the
convergence |75 P — Pa|| — 0.

The precaution taken for undefined or too large 11 is necessary for the event
'\ R. Since the estimators A; and iy are now kept artificially bounded, the
rate P, ,(Q2\ R) < N~122/ established in Lemma 2.19 suffices to bound the risk
on '\ R. Hence, the second estimate (2.19) is a consequence of (2.18) and the
Bernstein inequality [|d; — u{||gr < 2|4y — uf||L2 (see Appendix 5.2). O

2.23. Remark. The main result of this section, namely (2.19), can be extended
to p-th moments for all p € (1,00):

Eo sl — uf[[5:]"/7 S N71/228972, (2.20)

Indeed, tracing back the steps, it suffices to obtain bounds on the moments of
order p in Lemmas 2.15 and 2.16, which on their part rely on the mixing state-
ment in Lemma 5.2. By arguments based on the Riesz convexity theorem this
last lemma generalises to the corresponding bounds for pth moments of centred
random variables Hy and H, as derived in Section VII.J of Rosenblatt (1971).
It was only for the sake of clarity that we restricted to the case p = 2 here.

2.4.5 Proof of the upper bound for o(e)
Proof (Theorem 2.5). By Corollary 2.22 and our choice of J, 27 ~ N1/(2s+3)

sup_ Eo (A =M+ flin —uf [} ] S N71287 ~ N2/
(0,b)EBO,

holds. Using this estimate and the estimate for fi in Proposition 2.8, the risk of

—

the plug-in estimator ¢2(e) in (2.15) is bounded as asserted in the theorem. We
only have to ensure that the stochastic error does not increase by the plug-in and
that the denominator is uniformly bounded away from zero. Using the Cauchy-
Schwarz inequality and Remark 2.23 on the higher moments of our estimators,
we encounter no problem in the first case. The second issue is dealt with by
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using the lower bound ¢, > 0 in Proposition 5.5 so that an improvement of
the estimate for the denominator by using

ﬁ’l\lll = max(ﬂﬂl,ca,b) (221)

instead of ity guarantees the uniform lower bound away from zero. O

2.4.6 Upper bound for b(s)

Since b(e) = S’(s)/p(e) holds, it suffices to discuss how to estimate S’(s), which
amounts to estimating the eigenfunction u; in H?-norm, compare with (2.7).
Substituting H? for H' in Proposition 2.12 and its proof, we obtain the bound

|74 Pa = Pallgo—m> S 27770,
because ||Id —7 || gs+1_ g2 is of this order. As in Corollary 2.13 this is also the
rate for the bias estimate. The only fine point is the uniform norm equivalence
| £llg2 ~ ||Id =L) f||, for f € D, which follows by the methodology of perturba-
tion and similarity arguments given in Section VI.4b of Engel and Nagel (2000).
We omit further details.

The variance estimate is exactly the same. From (2.18) we infer by Bern-
stein’s inequality for H? and the estimate of P, ;(2\ R)

Eop [llan = uill3.] S N~1257.

Therefore balancing the bias and variance part of the risk by the choice 27 ~
N1/(2543) _ a5 before — yields the asserted rate of convergence N—(s—1)/(2s43)

3 Lower bounds

We prove an asymptotic lower bound for the estimation error of (o(e),b(s)). We
keep up with the framework of Section 2. Let En denote the set of all estimators
according to Definition 2.2.

3.1. Theorem. The following asymptotic lower bound holds for all 0 < a <
b<1lands>1:

— 1/2
liminf N*/5+3) inf  sup E, 4|02 — 2|2 >0, (3.1)
f e Seby (on)e0, [ LQ([a,b])]
. 1/2
im i (s—1)/(2543) — b2
l}wgof N 8 ngzv (U’Sbl)lges Eop [”b b”L?([a,b])] > 0. (3:2)

Proof. The proof will be accomplished in several steps. Firstly, the usual Bayes
prior technique is applied for the reduction to a problem of bounding certain
likelihood ratios, see e.g. Korostelev and Tsybakov (1993). Then Proposition 5.4
is used so that only the L2-distance between the transition probabilities remains
to be estimated, which is finally done in the last step using Hilbert-Schmidt norm
estimates and the explicit form of the inverse of the generator.
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1. The idea is to perturb the drift and diffusion coefficients of the reflected
Brownian motion in such a way that the invariant measure remains un-
changed. Let us assume that 9 is a compactly supported wavelet in H?
with one vanishing moment. Without loss of generality we suppose C' >
1 > ¢ > 0such that (1,0) € O, holds. We put 1,3, = 2//24)(2/«— k) and de-
note by K; C Z a maximal set of indices k such that supp(¢;x) C [a, b] and
supp(¥;x) N supp(zpjkr) @ holds for all k, k' € K;, k # k'. Furthermore,
we set y ~ 279(s+3) such that for all £ = £(j) € {—1,+1}5

(VIS (5.)) € O, with S.(2) := 5.(5,0) = (247 3 cti(@)
kekK;

holds. We consider the corresponding diffusions with generator

Ls, f(z) := (Scf')'(z) := Se(2) f"(z) + Si(2) f'(x), fe€D.
Hence, the invariant measure is the Lebesgue measure on [0, 1], in partic-
ular Lg, is selfadjoint on L2([0,1]) for all €.

The usual Assouad cube techniques, e.g. see Korostelev and Tsybakov
(1993), give for any estimator 6(s) and for N € N, p > 0, the lower
bounds:

K|
2 _ | 2 ,—p
b Eog[10% = Plaan] 2 0G0, (39
E b—b > M(5 —f 4
sup  Eqp ||| ||L2([a D)) B e "po, (3.4)
(o,b)€O
where the following definitions are used:
|K;| := cardinality of K; ~ 27,
8oz <1282 — 2S¢ 12 for all e,¢’ with ||le —€'||p =2, (3.5)
I < ||ISL — S|z for all g,&’ with |le —&'||p =2, (3.6)

]P)E = Pmsl
po <P, (dp Fy > P) for all £, with |je — &|| = 2. (3.7)

In (3.5) we may choose asymptotically d,2 ~ v since for z € supp(;)
with e = —E;c

Ser (93) - Ss(x) = :|:2’71/ij(:£)55/ (x)ss (5’3)

and S., S.s — 1 holds uniformly so that the L?-norm in (3.5) is indeed of

order . In (3.6) we find equivalently &, ~ 2i. Due to v ~ 273(s+2)  the

proof of the theorem is accomplished once we have shown that in (3.7)

a strictly positive pg can be chosen for fixed p > 0 and the asymptotics
. 1

27 ~ N7s+3,
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2. If we denote the transition probability densities P.(Xa € dy|Xo = z)
by pe(z,y)dy and the transition density of reflected Brownian motion by
PBM, then we infer from Proposition 5.4

lim sup  ||pe —pBMlec =0
IO ce{-1,41}5

due to ||S: — %||c1 ~ ¥2%9/2 — 0 for s > 1. We are now going to use the
estimate —log(1+z) < 22 —z, which is valid for all z > —1. For j so large

that ||1— ’;L'Hoo < 1 holds, the Kullback-Leibler distance can be bounded
from above (note that the invariant measure is Lebesgue measure):

E. [— log('fi]}];i' |]~"N)]
N
= - D og ()
=-N / / log 'Zi'év ’;’)’ pe(2,y) dy dz

<N/ / = e ( arl;g)(x 1) = (per(@,y) = pe(2,y)) dy dz

_N/ / (P ( pgng)(w ) dy dz

< Nllpz Hloollper = pellZ2qo,ay2)-

The square root of the Kullback-Leibler distance bounds the total vari-
ation distance in order, see e.g. Deuschel and Stroock (1989), page 76,
which by the Chebyshev inequality and the above estimate gives

PE(dP’|fN>e p)—l P(‘”"'m 1§e_p—1)
lm -1 a-en

=1-(1-e ") (P = Pe)|zyllrv
>1—CON"?|lpos — pelli2oap),

>1-E.|

where C' > 0 is some constant independent of v, N, € and j. Summarizing,
we need the estimate

lim sup N'/2||p,/ — Pellpz(o2) < C™' for 27 ~ N1/(25+3)

N,j—o0
Proposition 5.4 yields the rate ¥2%//2 for the supremum norm of the differ-

ence of the transition densities . However, this is far from optimal, because
then the lower bound decays faster than N—1/2.
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3. By using genuine Hilbert space methods we shall establish a rate of order
42739/2 for the L*-distance of the transition densities. Observe first that
llper — pellz2(j0,1)2) is exactly the Hilbert-Schmidt norm distance

!
IPA — PXllas

between the transition operators derived from Ls_, and Lg, acting on the
Hilbert space L%(]0, 1]). If we introduce

ve={f e r(0,1) |/f—0 }and vt o= {f € 12(0.1))| f constant},

then the transition operators coincide on V+ and leave the space V in-
variant so that ||P£ — Z”HS = ||(P2 — PZ)'V”HS

We take advantage of the key result that for Lipschitz functions f with
Lipschitz constant A on the union of the spectra of two selfadjoint bounded
operators 77 and T» the continuous functional calculus satisfies

1£(T1) = f(T2)llms < AlITy = Tl ms, (3.8)

see Kittaneh (1985). We proceed by bounding the Hilbert-Schmidt norm
of the difference of the inverses of the generators and by then transferring
this bound to the transition operators via (3.8). By the functional calculus
for operators on V, the function f(z) = exp (A(27')) sends (Le|y)™" to
PX |v. Moreover, f is uniformly Lipschitz continuous on (—oo,0) due to
A :=sup, | f'(2)] = 4Ate? < 0o. Thus, we arrive at

I = Pellzz(o,2) = (PR — PR)Ivllas < All(Lerlv) ™" = (Lelv) s

The inverse of the generator L. on V has for g € V the explicit form

(L) o) = [ 1 ( / ST ) — 1) ) sy (9

Hence, using |SE_,1 — SZY = 2y for some k € K; and denoting by ¥
the primitive of ¥ with compact support, we obtain

I(Lerlv)™H = (Lelv) s
2

//(/ 2795k (0) (v = 1,11 (v)) dv) dz dy
= 4922~ J//( 27y — k)y /yllI’QJv— dot

+¥(2(zxVy) - k)) dx dy
S 2R (2|7 ~ P27
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Consequently, ||per —pe||2» ~ 279(25+3) holds with an arbitrarily small con-
stant if v29(572) is chosen sufficiently small. Hence, po in (3.7) is strictly
positive for this choice and the asymptotics N279(25%3) _5 1 which re-
mained to be proved.

O

4 Conclusion

In this short section, we address some questions that naturally arise from our
study.

Kernel methods. The invariant density and the transition density could also
be estimated using kernel methods, but the numerical calculation of the eigen-
pair (A1, 41) would then involve an additional discretisation step. Presumably,
the risk can be kept to the same asymptotic order as for our projection approach.

Estimation at the boundary. Our plug-in estimator could only be defined
on a proper subinterval of (0,1). Estimation of (e) and b(e) at the boundary
points leads to a risk increase, because the function S(e) satisfies

ety _ v1ur(0)u(0)
C O

by L’Hospital’s rule applied to (2.5). Thus, the degree of ill-posedness for es-
timating ¢(0) and b(0) is two and three, respectively, when using our plug-in
estimators. On the other hand, a point-wise lower bound result — following the
same lines as the L2-lower bound proof — shows that this deterioration cannot
be avoided.

Scalar diffusions over the real line. Can we extend our approach to scalar
diffusions over the real line? In the case where Gaussian-type tail-estimates for
the invariant density p(e) and polynomial growth bounds for the eigenfunction
u (o) exist, we should get the same results in L2(u)-loss, where p(e) is of course
parameter-dependent. However, all the spectral approximation results shall be
reconsidered with extra-care, in particular because of the possible absence of
discrete spectrum for the generator L = L, ;. Some suitable results have been
obtained by Chen and Wang (1997) and in the references given there.

Adaptation w.r.t. to unknown smoothness. Admittedly, the knowledge
of the smoothness s that is needed for the construction of our estimators is
unrealistic if practical purposes are considered. An adaptive estimation of the
eigenpair (uy(e), A1) and p(e) that yield adaptive estimators for (a(s), b(s)) could
be obtained by the following modifications:

First, the adaptive estimation of p(e) in a classical mixing framework is fairly
well known (see for instance Viennet (1997) by model selection, or Tribouley
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and Viennet (1998) by wavelet thresholding). Second, taking advantage of the
multiresolution structure provided by wavelets, the adaptive estimation of Pa
could be obtained by introducing an appropriate thresholding in the estimated
matrices on a large approximation space. As already mentioned, a model selec-
tion approach is natural as well. Presumably, the methods developed in Baraud
(2000) or Baraud, Comte and Viennet (2001) would provide us with an adap-

tive estimator Pa of Pa. All further steps needed to derive 53(0) and b(e) are
analytic and do not involve any further estimation so that these estimators will
be adaptive, too.

Estimating b(s) when o(e) is known and vice versa. It is noteworthy that
sin the continuous time or high frequency observation case, the parameter b(e)
does not influence the asymptotic behaviour of the estimator of o(e) and vice
versa. The estimation problems are separated. In particular, the knowledge of
the other parameter does not yield better minimax rates of convergence. In our
low frequency regime we had to suppose tight regularity connections between
o(e) and b(e) in the upper as well as the lower bound proof. This stems from
the fact that for the underlying Markov chain Xy, XA, ..., Xnya the parameters
i(e) and S(e) are more natural and the regularity of these functions depends
on both, the regularity of b(e) and of o(e).

What happens in the low frequency regime if we know one of the parameters?
If o is known, we only need an estimate fi of the invariant density, since

(02 () ()’
2u(z) 7

Estimation of € H®,s > 1,in H'-norm can be achieved with rate N—(s—1)/(2s+1)
due to the degree one of ill-posedness involved. By the identity just given, this
rate is thus also valid for estimating b(e) in L?-norm, assuming o to be known.

For known drift coefficient b(e) the estimation of o(e) is a little bit more
complex. We know

b(z) = z €[0,1].

o v o le b)) dy+C
@ =2

, x€]0,1],

where C'is a suitable constant. If we knew C' = 02(0), we would obtain the clas-
sical rate N—5/(25+1) provided p € H*. In order to estimate the one-dimensional
parameter C inference based on the transiti/o\n operator Pa has to be drawn.
Using a preliminary nonparametric estimate o2¢ depending on the parameter C
and then fitting a parametric model for C in the spirit of Kessler and Sgrensen,
we are likely to find the same rate for unknown C'.

In any case, note that the model assumption of knowing one parameter
exactly is highly artificial so that proper proofs of minimax rates do not seem
to be worthwhile.
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5 Appendix

5.1 Scalar diffusions

We shall need several technical results, mainly to describe the dependence of
certain quantities on the underlying diffusion parameters. The following result
is in close analogy with Section IV.5 in Bass (1998).

5.1. Lemma. The second largest eigenvalue vy of the infinitesimal generator
Loy can be bounded away from zero:

< - .
1/1 zér[})fq S(x) =: —s0¢

This eigenvalue is simple and the corresponding eigenfunction fi is monotone.
Proof. The variational characterisation of »; (Davies (1996), Section 4.5) and

partial integration yield:

1
vn= sup (Lf,f),=— inf / S(;L')f'(m)2 de.
1fllp=1 Ifll.=1 Jo
(£,1)p=0 {f,1),,=0

Given the derivative f’, the function f € ® with (f,1), = 0 is uniquely deter-
mined. Setting M (z) := u([0, z]), this function f satisfies

o= [ (10 [ 1w s oo s

For two functions f,g in the L?(u)-orthogonal space of the constants we there-
fore find

(o9 = / (10 + [ rwra) (s0+ [ 96)ds) uioya

= £(0)9(0) + f()/ ()1 = M(2)) dz + g(0 /f Y1 — M(y)) dy

/ / 'y M(y A 2)) dy dz

- / / (y Az) = M(y)M(2)) f'(y)g'(z) dy dz

/ /my, )9'(2) dy d=.

The kernel m(y, z) is positive on (0,1)? and bounded by 1 whence we obtain by
regarding u = f’

Lg
fo z)u(z)? dr sollul|?»

—v; = inf

> S0-
w5 [ m(y, 2)uly)u(z)dydz ~ llullz T ’
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If the derivative of the eigenfunction f; changed sign, we could write fi =
uT —u~ with two nonnegative functions u™,u~ that are nontrivial. However,
this would entail that the antiderivative fo of f§ := u™+u™ satisfies (L fo, fo), =
(Lf1, f1)u, while || fo|, would be strictly greater than || f1||, due to the positivity
of m(u,v). This is in contradiction with the variational characterisation of vy
so that f{ > 0 or f] < 0 has to hold on the whole interval [0, 1]. In particular,
all eigenfunctions corresponding to v; are monotone which shows that for any
two eigenfunctions f; and g; the integrand in

1 1
(Frogi) = / / m(y, 2) f1(4)gl(2) dy d

does not change sign and the whole integral does not vanish. We infer that
the eigenspace of vy cannot contain two orthogonal functions and is thus one-
dimensional. O

5.2. Lemma. For Hy, Hy € L?([0,1]) we have the following two uniform vari-
ance estimates over O,:

N
Varg [ 37 Hi(X,8)] € N7 Bl (X0)’), (5.1)

N
Var,.p [% 3 H, (X(n,l)A)Hz(XnA)] < N7VE, 4[Hy (Xo)2Ha (X1)?].  (5.2)
n=1
Proof. Due to the uniform spectral gap so over O, (Proposition 5.1), the tran-
sition operator Pa satisfies ||Pafll, < 7||fll, with v := e71%l4 < 1 for all f
with (f,1), = 0.
We obtain by regarding the centred random variable f1 := H1 — E, p[Hi]

Var, [Z H1(XnA)] Y Eoplfi(Xma)fi(Xna)]

n=1 m,n=1
N

3 (AP A

m,n=1

N

< > AL

m,n=1

S NEq 5[Hi(X0)?],

which after dividing by N? is the first estimate.
The second estimate follows along the same lines. Merely observe that for
m > n by the projection property of conditional expectations

Eo s [H1(X(n—1)a)H2 (Xna) Hi (X (m—1)a) H2(Xma)] =
(Hyo(PaHs), PX'" "' (Hyo(PaH>))),

A

holds where « is the usual multiplication operator. O
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5.3. Lemma. Uniformly over O, the following norm equivalence holds true:
£l ~ 1M =L) 3£, for all f € H',

Proof. The invariant measure g and the function S are uniformly bounded away
from zero and infinity so that we obtain with uniform constants for f € ©

£l = (s )+ 1)
~ e+ <Sf' )
={£:Hu =SS F)
=(1d=L)f, f)u

= [|(xd —L) £

By an approximation argument this equivalence extends to all f € H' =
dom(L'/?). O

The next proposition is well known for parabolic equations on the real axis
(Theorem 15 in Friedman (1964)), but seems to require a proof for equations
with Neumann boundary conditions.

5.4. Proposition. Suppose ((0,,(s),bn(e)) € O, n >0, and

lim ||op — 00llec =0,  lim ||by, — bol|co = 0.
n—oo n—0o0

denote the corresponding transition densities by (pgn)) Then these transition
probabilities converge uniformly

: (n) — (0) o. 0 =
Jim [Ip;" (e, 0) —p; " (o 0)|| = 0.

Proof. From the definitions (2.2) and (2.3) of invariant density p(e) and function
S(e) we infer the convergences ||pn — polloo — 0 and ||S, — Sol|cr — 0 with
obvious notation. By Theorem VI.4.6 in Engel and Nagel (2000), the semigroups
considered on C([0,1]) are all analytic. Thus, the difference of the generators
L™ — L is L) _bounded, since for large n and f € ran(L(®):

IEPEO)f = flloo
—[z (o [ st [ e asan) o]

0
T

= | @ (S.@)55 @) | ) dz) = fta)

o

= [k @) ($u(@)85 @) @) + (8,55 V@) [ pa@f () - 1(2)

o

Sgt—un St S! So—Sn St
< (|t 2] ) il
=: &n|[ fllco>
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which implies ||(L(™ — L) g|| < ,||L@g|| = 0 (put g = (L)1 f). The proof
of Kato (1995), Theorem IX.2.4, then shows the existence of a constant M > 0
such that

mﬂm—o*nsc CeC, Jarg(Q)| < m neN. (5.3)

M
(1-e,(1+M))’

The Neumann series and (5.3) give for test functions f

(L™ =) = (L9 =) M flloo < D) NELO = O HIFIED =) flla
k=1
_ &l =97
S 1-eall(LO = )|

nM -
< e IEY =07 e

IE® =) flloo

By Lemma 5.3 and duality of (H', H 1) we find

IEO =)™ flloo < NED = )7 fllan
~ 11 = LYWL = O £
= 1L = YL@ = )7 2wy 22w 11 = L) 721,
S CHIA -
This implies by the integral representation of analytic semigroups (Eq. IX.1.50

in Kato (1995)) and the dominated convergence theorem the norm convergence
of the semigroup operators as ¢,, tends to zero:

lim [|P; = P flloe S enllfllm-s =0,

n— 00

uniformly for ¢ on compact intervals. Consequently, approximating the Dirac
measure 6, € H~' at y € [0,1] by H~'-bounded test functions, we infer that
the kernels converge uniformly:

Jim_esssup,, ,|pi (2, y) — " (z,9)| = 0.

O

However, this proposition is not optimal in the sense that even the convergence
in weaker functional or distributional norms of the drift and diffusion coefficients
suffice to obtain the convergence of the semigroups. Of course, this kind of result
is not surprising. In the case of the domain R¢, Bass (1998) in Chapter VI
investigates the weak convergence of the diffusion laws for pointwise convergence
of the drift and diffusion coefficients.
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5.5. Proposition. For the class O, there is a constant p > 0 such that for all
parameters (a(o),b(o)) the eigenvalue Ay = A1(o,b) of Pa is uniformly sepa-
rated:

)\1+2p51, /\1—2p2)\2.

Furthermore, for all 0 < a < b < 1 there is a uniform constant c,p > 0 such
that the associated first eigenfunction uy = uy(o,b) satisfies for all (o,b) € O

in |u) ()] > cap-
a:ren[a,b]| 1(2)] > ab

Proof. Proceeding indirectly, assume that there is a sequence (o, by,) € O5 such
that the corresponding eigenvalues satisfy A\ — 1 (or A{™ =A™ - 0, respec-
tively). By the compactness of the Sobolev embedding of H? into C° we can pass
to a uniformly converging subsequence. Hence, Proposition 5.4 yields that the
corresponding transition densities converge uniformly, which implies that the
transition operators PXL) converge in operator norm on L?([0,1]). By Proposi-
tion 5.6 and Theorem 5.20 in Chatelin (1983), this entails the convergence of
their eigenvalues with preservation of the multiplicities. Since the limiting op-
erator is again associated with an elliptic reflected diffusion, the fact that the
eigenvalue \; = e®"1 is always simple (Lemma 5.1) gives the desired contradic-
tion.

By the same indirect arguments, we construct transition operators PXL) on
the space C([0,1]) and infer that the eigenfunctions u§”’ (Theorem 5.10 in
Chatelin (1983)), the invariant measures u(® (see (2.2)) and the inverses of

the functions S(™ (see (2.3) converge in supremum norm. Therefore (ugn))’ =

™M (8™M)=1 [ 4™ (™ also converges in supremum norm. Due to U} |ja,5] # 0

(Lemma 5.1) this implies that (u§"))' cannot converge to zero on [a, b]. O

5.6. Lemma. The L2(u)-normalized eigenfunction uy of L corresponding to
the (k + 1)st largest eigenvalue vy, satisfies

lukllmes1 < Cls, 50, 1S s llells—1) x| T,
where C' is a continuous function of its arguments.

Proof. We know that p~'(Su},)" = vguy, and u}(0) = 0 holds, which implies
ul(z) = VkS*I(a:)/ wg(u) u(u) du.
0

suppose uy € H™! with 7 € [0, s]. Then the function ugu is in H™ (=1 due
to uy, € C” (Sobolev embeddings). Hence, the antiderivative is in H("+1)As Ag
S—! € H* holds, the right hand side is an element of H*"("+1) We conclude
that the regularity r of uy is by one larger which implies that uy, is in H*+1,
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In quantitative terms we obtain for r € [1,s], where we use the seminorm

Fla o= 1 FO 2
gl < Ikl C(r) (|sl|r [ [ )
0 0 r

< wel CONS ™l (lurllpr () + ursl—1)
< wel CINS™ s (1 + luglr—1llllco + lluglloo llpllr—1
< el CE)IST s (X + 2llunlle—1lllls—1)-

15 Moo

‘ o0

By applying this estimate ||ug||r+1 < |wel||S7H|s(1 + |Jukllr—1]/pl|s—1) succes-
sively for r = 1,2,...,|s| and finally for r = s — 1, the estimate follows from
the normalisation ||ug|lo = 1. O

5.7. Proposition. For (o,b) € O, the corresponding transition probability den-
Sity pA = PA,o,p Satisfies

sup [|pallme+1xme < 0o
G',b e@s

Proof. The spectral decomposition of Pa : L?(u) — L?(u) yields the kernel
representation

pa@,y) = p) Y e*Pu(@)ur(y), =,y € [0,1].
k=0

Due to the uniform ellipticity and uniform boundedness of Pa we know that vy €
[-C1 k2, —C2k?] with uniform constant Cy,Cy > 0 on ©,. From the preceding
Lemma 5.6 and the Sobolev embedding H*+! C C* we infer

0
_ 2
Ipallzesiscms < e A% ugllora lrurlls
k=0

oo
2
<D C(s,50, 15 lss llalls—1)?e™ 2% (Cok>) |l
k=0

which gives the desired uniform estimate. O

5.2 Wavelets, Sobolev spaces and approximation results

For the whole topic we refer to the monograph by Cohen (2000). Let us introduce
the scale of Sobolev spaces H*(Z), s > 0, Z C R an interval, which combine the
advantages of a differentiability description and of a Hilbert space structure for
function classes. For s = m € Ny set

H™TI):={f € L*(T)| f® € L*(T) for all i = 0,... ,m},
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where f(¥) denotes the i-th derivative of f in a weak (distributional) sense. These
spaces are Hilbert spaces with respect to the following norm and scalar product

1A% =D IF DNz (fr@)m o= D (D, 9D po
=0 =0

The abstract complex interpolation method yields Sobolev spaces H®(Z) of all
real orders s > 0. We start with the definition of an orthonormal wavelet basis
in L2(R).

5.8. Definition. For j € Z and k € Z introduce the multi-index X\ = (j, k)
and put |A| := |(j, k)| :== j. A wavelet basis (A)x is an orthonormal basis of
functions in L*(R), derived from one function ¢ € L%(R) by translations and
dilations

Ya(x) := Py (x) = 277220z — k).

The existence of wavelet bases besides the Haar wavelet and related spline
wavelets is a nontrivial fact, in particular compactly supported wavelets of ar-
bitrary high regularity exist, the so-called Daubechies wavelets. Orthonormal
wavelet bases on a bounded interval Z are constructed similarly. The basis
functions are obtained by restricting the Daubechies wavelets to this interval.
Wavelet functions 1, whose support crosses the boundary of 7 are suitably cor-
rected in order to keep the orthogonality and approximation properties. These
corrected functions are still denoted by ) even if they are not directly derived
from 1. A consequence of this construction is that only multi-indices A = (4, k)
with |k| < 27 are used and that the approximation spaces

Vj :=span{{r | |A| < j}

are finite-dimensional, whence we can start off with a space V_1, which always
contains the indicator function 17. Then any function f € L?(Z) has the wavelet
decomposition

F=Y"Foa= D0 D (v,
A ji>—1 k

where the second sum is taken over all k£ with supp(¥jz) N Z # @. Note that
summation over |A| < jo will always mean summation over (j, k) for all j < jo
and all corresponding values of k.

Wavelets exactly describe functions in the L2-Sobolev spaces H* for any real
s > 0. Denote by m; the L*-orthogonal projection onto V;.

5.9. Definition. A wavelet basis (1)) will be called s-regular on the interval T
if the following two conditions are satisfied:

1. The function f is an element of H*(Z) if and only if
e ) 1/2
(s fle + D222 YU win) ) < o,
7=0 k

and this expression constitutes a norm equivalent to the H®-norm.
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2. Forallk=0,...,|s| the vanishing moment property is fulfilled

/oo 2k (x) dr = 0.

—0o0

From Cohen (2000) we know (only mind the slightly different notion of s-
regularity there):

5.10. Theorem. s-regular wavelet bases exist for any s > 0. Moreover, they
may be chosen to have compact support.

The multiresolution spaces V,, spanned by s-regular wavelets satisfy the Jack-
son and Bernstein inequalities, also called direct and inverse estimates:

10d —ms) fllee S 277N fllas, 0<t <5,
0<t<

VoyeVy: sl <2779 |vs]|ae, (5.5)

The proof of these inequalities is immediate from the property of s-regularity,
which by interpolation implies t-regularity for all 0 <t < s.
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