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Abstract

This paper offers a new approach for estimation and forecasting of the volatility
of financial time series. No assumption is made about the parametric form of the
processes, on the contrary we only suppose that the volatility can be approximated
by a constant over some interval. In such a framework the main problem consists in
filtering this interval of time homogeneity, then the estimate of the volatility can be
simply obtained by local averaging. We construct a locally adaptive volatility estimate
(LAVE) which can perform this task and investigate it both from the theoretical
point of view and through Monte Carlo simulations. Finally the LAVE procedure
is applied to a data set of nine exchange rates and a comparison with a standard
GARCH model is also provided. Both models appear to be able of explaining many of
the features of the data, nevertheless the new approach seems to be superior GARCH
method as far as the out of sample results are taken into consideration.

*Financial support by the Deutsche Forschungsgemeinschaft, Graduiertenkolleg fiir Angewandte
Mikroékonomik at Humboldt University, is gratefully acknowledged.
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1 Introduction

The aim of this paper is to offer a new perspective for the estimation and forecasting of
the volatility of financial asset returns such as stocks and exchange rate returns.

A remarkable amount of statistical research is devoted to financial time series, and in
particular to the volatility of asset returns, where the term volatility indicates a measure
of dispersion, usually the variance or the standard deviation. The interest in this topic
is motivated by the needs of the financial industry, which regards the volatility as one of
the main reference numbers for risk management and derivative pricing.

Actually, asset returns time series display very peculiar stylized facts, which are con-
nected with their second moments. Graphically, they look like white noise, where periods
of high and low volatility seems to alternate. Their density has fat tails if compared to
the one of a normal random variable and they show significantly positive and highly per-
sistent autocorrelation of the absolute returns, meaning that large (resp. small) absolute
returns are likely to be followed by large (resp. small) absolute returns. Typical examples
can be seen in Section 6 and further details on this topic can be found in Taylor (1986).
Therefore, a white noise process with time varying variance is usually taken to model
such features. Let S; denote the observed asset process, then the corresponding (log)
returns R; = log(S;/S;—1) follow the heteroscedastic model

Ry = 044

where &; are standard Gaussian independent innovations and o} is a time-varying volatil-
ity coefficient. It is often assumed that o; is measurable w.r.t. the o -field generated
by the preceding returns Rj,...,R; 1. For modeling this volatility process paramet-
ric assumptions is usually used. The main model classes are the ARCH and GARCH
family (Engle 1995), and the stochastic volatility (Harvey, Ruiz & Shephard 1995). A
great amount of papers has followed the first publications on this topic, and the orig-
inal models have been extended in order to provide better explanations. For example
models which take into account asymmetries in volatility have been proposed, such as
EGARCH (Nelson 1995), QGARCH (Sentana 1995) and GJR (Glosten, Jagannathan &
Runkle 1992); furthermore the research on integrated processes has produced integrated
(Engle & Bollerslev 1986) and fractal integrated versions of the GARCH model.

The availability of very large samples of financial data has given the possibility of
constructing models which display quite complicated parameterizations in order to ex-
plain all the observed stylized facts. Obviously those models rely on the assumption that
the parametric structure of the process remains constant through the whole sample. This
is a nontrivial and possibly dangerous assumption in particular as far as forecasting is
concerned (Clements & Hendry 1998). Furthermore checking for parameter instability
becomes quite difficult if the model is nonlinear, and/or the number of parameters is
large. Whereby, those characteristics of the returns which are often explained by the
long memory and (fractal) integrated nature of the volatility process, could also depend
on the parameters being time varying.

In this paper, we propose another approach focusing on a very simple model but with
a possibility for model parameters to depend on time. This means that the model is
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regularly checked and adapted to the data. No assumption is made about the parametric
structure of the volatility process, we only suppose that it can be locally approximated
by a constant, that is, for every time point 7 there exists a past interval [ — m, 7]
where the volatility o; did not vary much. This interval is referred to as interval of
time homogeneity. An algorithm is proposed for data-driven estimation of the interval of
time homogeneity, after which the estimate of the volatility can be simply obtained by
averaging.

Our approach is similar to varying coefficient modeling from Fan & Zhang (1999), see
also Cai, Fan & Li (2000) and Cai, Fan & Yao (2000). Fan, Jiang, Zhang & Zhou (2001)
discussed applications of this method to stock price volatility modeling. The proposed
procedure is based on the assumption that the model parameters smoothly vary with
time and can be locally approximated by a linear function of time. This approach has
drawback of not allowing to incorporate structural breaks in the model.

Change-point modeling with applications to financial time series was considered in
Mikosch & Starica (2000). Kitagawa (1987) applied non-Gaussian random walk modeling
with heavy tails as the prior for the piecewise constant mean for one-step-ahead prediction
of nonstationary time series. However, the mentioned approaches require some essential
amount of prior information about the frequency of change-points and their size.

The LAVE approach proposed in this article does not assume smooth or piecewise
constant structure of the underlying process and does not require any prior information.
The procedure proposed below in Section 3 focuses on adaptive choice of the interval of
homogeneity that allows to proceed in a unified way with smoothly varying coefficient
models and change-point models.

The proposed approach attempts to describe the local dynamic of the volatility pro-
cess and it is particularly appealing for short term forecasting purposes which is an
important building block e.g. in Value-at-Risk and portfolio hedging problems or back-
testing (Héardle & Stahl 1999).

The reminder paper is organized as follows. The next section introduces the adaptive
modeling procedure, then some theoretical properties are discussed in the general situ-
ation and for a change-point model. A simulation study illustrates the performances of
the new methodology with respect to the change-point model. The question of selecting
the smoothing parameters is also addressed and some solutions are proposed. Finally the
procedure is applied to a set of nine exchange rates and it appears to be highly compet-
itive with standard GARCH(1,1), which is used as a benchmark model. Mathematical
proofs are given in the appendix.

2 Modeling volatility via power transformation
Let S; be an observed asset process in discrete time, ¢t = 1,2,... ,7 and R; are the

corresponding returns: R; = log(S;/S;—1). We model this process via the conditional
heteroscedasticity assumption

Ry = o4&, (1)
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where &, t > 1, is a sequence of independent standard Gaussian random variables and
o is the volatility process which is in general a predictable random process, that is, o; ~
Fi—1 with Fy_1 =0(Ry,... ,Ri-1) (o-field generated by the first ¢ — 1 observations).

A time-homogeneous (time-homoscedastic) model means that oy is a constant. The
process S; is then a Geometric Brownian motion observed at discrete time moments.
The assumption of time homogeneity is too restrictive in practical applications and it
does not allow to fit well real data. In this paper we consider an approach based on
the local time-homogeneity which means that for every time moment 7 there exists a
time interval [T —m, 7] where the volatility process o; is nearly constant. Under such
a modeling, the main intention is both to describe the interval of homogeneity and to
estimate the corresponding value o, which can then be used for one-step forecasting etc.

2.1 Data transformation

The model equation (1) links the target volatility process o; with the observations Ry
via the multiplicative errors &;. The classical well developed regression approach relies
on the assumption of additive errors which can be then smoothed out by some kind of
averaging. A natural and widespread method of transforming the equation (1) into a
regression like equation is to apply the log-function to both its sides squared:

log R? = log o} + log &7 (2)
which can be rewritten in the form
log R? = log Ut2 + C 4+ v,

with C = Elog¢?, v? = Varlogé? and ¢ = vt (logff — C), see e.g. Gouriéroux
(1997). This is a usual regression equation with the “response” Y; = log R?, target
regression function f(t) =logo? + C and homogeneous “noise” v(; .

The main problem with this approach is due to the distribution of the errors (;,
which is highly skewed and it gives very high weights to the small values of the errors
& . In particular, this leads to a serious problem with missing data which are typically
modeled equal to previous values providing R; = 0.

Another possibility is based on power transformation, see Carroll & Ruppert (1988)
which also leads to a regression with additive noise and this noise is much closer to a
Gaussian one. Due to (1) the random variable R; is conditionally on F; 1 Gaussian
and it holds

E (R} | Fi—1) = of.
Similarly, for every v > 0,
E (|R|" | Fi-1) = 0] E (|€]" | Fi-1) = Cyo},
E(|R[" ~ Cyo] | Fir)’ = o] E(|€]' - C,)° = 0] D}

where ¢ denotes a standard Gaussian r.v., Cy, = E[{|” and Dg = Var |£|7. Therefore,

the process |Ry|” allows for the representation

|1%t|’y = CryO'g + DryO';YCt ; (3)
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where (; is equal to (|| — Cy) /D, . Note that the problem of estimating o; is in some
sense equivalent to the problem of estimating 6; = C,0] which is the conditional mean
of the transformed process |R;|?. This is already a kind of a heteroscedastic regression
problem with additive errors Do/ (; satisfying

E (Dy0)G | Fi1) = 0,
2
E (DgatWCf | 7-}_1> = Doy’

A natural choice of the parameter v is v = 2 providing the nearly efficient variance
estimation under homogeneity. For v = 2 one has Cy =1 and D“Zr = 2. Note however
that the distribution of the ‘errors’ (; = (|§|” — C,)/D.,, is still heavy tailed and highly
skewed which results in a low sensitivity of the method in a inhomogeneous situation.
The other important cases are y =1 and y = 1/2. A minimization of the skewness Eg;j’
and the fat EC;L — 3 with respect to y leads to the choice 7y =~ 1/2. The corresponding

density pi/2(z) of (i/2 together with the standard normal density ¢(x) is plotted in
Figure 1. Our numerical results are also in favor of the choice v = 1/2, see Section 5 .

normal and powertransformed densities

Figure 1: Density of p;/,(x) (straight line) and the standard normal density (dotted line).

3 Adaptive estimation under local time-homogeneity

Here, we describe one approach to volatility modeling based on the assumption of local
time homogeneity starting from the preliminary heuristic discussion. The assumption of
local time homogeneity means that the function oy is nearly constant within an interval
I = [t —m,7], and the process R; follows the regression-like equation (3) with the
constant trend 0; = C,o] which can be estimated by averaging over this interval I:

0r = Hil Z | Ry (4)

tel

R PV

el

ol = il Z9t + 7] 1N " 6,6, (5)

tel tel tel
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with s, = D,/C,, so that

= 1
E0; = E— Z 0, (6)
k=
82 2 82
ﬁE (Z etg) = ﬁE > 67 (7)
tel tel

3.1 Some properties of the estimate 0;

Due to our assumption of local homogeneity, the process 6; is close to 6, for all t € I.
Define also:

2
s
Ar =sup|6; — 0| and v? = —7220?
tel e

The value of A measures the departure from homogeneity within the interval I and it
can be regarded as a upper bound of the “bias” of the estimate 51. The value of v%,
because of equation (7), will be referred as the “conditional variance” of the estimate
6;. The next theorem provides a probability bound for the estimation error, i.e. the
deviation of 51 from the present value of the volatility 6, in terms of Ay and vy.

Theorem 3.1 Let the volatility coefficient o satisfy the condition
b<o] <bB (8)

with some positive constant b, B. Then there exists a, > 0 such that it holds for every
A>1

P (|51 — 0, > Ar+ )xv[> < 4y/ea;" A(1 + log B)e ™"/ (200),

Remark 3.1 This result can be slightly refined for the special case when the volatility
process o for for ¢ € I is deterministic or (conditionally) independent of the observations
Ry preceding I. Namely, in such a situation, the factor 4./ea; I\(14+1log B) in the bound
can be replaced by 2:

P (|§I -0, >Ar+ )\’U[) < 267)‘2/(2(17).
Similar remark applies to all the results what follow.

The result of this theorem bounds the loss of the estimate 51 via value Ay and
the conditional standard deviation vy. Under homogeneity A;r = 0 and the error of
estimation is of order vy . Unfortunately, v; depends in its turn on the target process 6, .
One would be interested in another bound which does not involve the unknown function
0; . Namely, basing on (7) and assuming Aj; small, one may replace the conditional
standard deviation vy by its estimate

or = 5,071 72
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Theorem 3.2 Let Ry,...,R,; obey (1) and let (8) hold true. Then it holds for the
estimate 0; of 0 for every D >0 and N> 1:

P (|07 = 0| > X, Arfvr < D) < 4V/eX(1 +log B)e /)
where N solves

A+D=N/(1+ Ns,|I|71/?),

3.2 Adaptive choice of the interval of homogeneity

Given observations Rj,..., R, following the time-inhomogeneous model (1), we aim to
estimate the current value of the parameter 6, using the estimate 0; with a properly
selected time interval I of the form [r —m, 7] to minimize the corresponding estimation
error. Below we discuss one approach which goes back to the idea of pointwise adaptive
estimation, see Lepski (1990), Lepski & Spokoiny (1997) and Spokoiny (1998). The idea
of the method can be explained as follows. Suppose I is an interval-candidate, that is,
we expect time-homogeneity in I and hence, in every sub-interval of 7. This particularly
implies that the value A; is small and similarly for all Ay, J C I, and that the mean
values of the 6; over I and over J nearly coincide. Our adaptive procedure roughly
means the choice of the largest possible interval I such that the hypothesis that the
value 6, is a constant within I is not rejected. For testing this hypothesis, we consider
the family of sub-intervals of I of the form J = [r —m/, 7] with m' < m and for every
such sub-interval J compare two different estimates: one is based on the observations
from J, and the other one is calculated from the complement I\ J = [t —m,7 — m/[.
Theorems 3.1 and 3.2 can be used to bound the difference 6. 7 — 51\ 7 under homogeneity
within 7. Indeed, the conditional variance of 01\ J— 0. 7 is ’UI\ J+'u 4 and can be estimated
by 2 Ui\ + 2 % - Thus, with a high probability, it holds that

|§I\J — 6, < )‘\/ UAQI\J + 3

provided that A is sufﬁ(nently large Therefore, if there exists a testing interval J C [
such that the quantity |01\ J— ] 7| is significantly positive then we reject the hypothesis
of homogeneity for the interval 7. Finally, our adaptive estimate corresponds to the
largest interval I such that the hypothesis of homogeneity is not rejected for I itself
and all smaller considered intervals.

Now we present a formal description. Suppose a family Z of interval-candidates I
is fixed. Each of them is of the form I = [t — m,7], m € N, so that the set Z is
ordered due to m . With every such interval we associate the estimate 6; of 0, and the
corresponding estimate v; of the conditional standard deviations vy .

Next, for every interval I from Z, we suppose to be given a set J(I) of testing
sub-intervals J (one example of these sets Z and J(I) is given in Section 6). For
every J € J(I), we construct the corresponding estimate 6, (resp. 51\ ;) from the
observations Y; = |Ry|” for ¢t € J (resp. for t € I\ J) according to (4) and compute

EJ (reSp. ;l‘]/[\(]).
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Now, with a constant X, define the adaptive choice of the interval of homogeneity by
the following iterative procedure:

Initialization Select the smallest interval in 7.

Iteration Select the next interval I in 7 and calculate the corresponding estimate 51
and the estimated conditional standard deviation v7.

Testing homogeneity Reject I, if there exists one J € J(I) such that

‘aj\J—5J| >)\”€)?\J+U~2J. (9)

Loop If I is not rejected, then continue with the iteration step by choosing a larger
interval. Otherwise, set I = ”the latest non rejected 17.

The locally adaptive volatility estimate (LAVE) /9\7 of 6, is defined by applying this
selected interval I:

5, — 0.
The next Section discusses the theoretical properties of the LAVE algorithm in a general

framework, while Section 6 gives a concrete example for the choice of the sets Z, J(I)
and the parameter \. This choice is then applied on simulated and real data.

4 Theoretic properties

In this section we collect some results describing the quality of the proposed adaptive
procedure.

4.1 Accuracy of the adaptive estimate

Let I be the interval selected by our adaptive procedure. We aim to show that our
adaptive choice is up to some constant factor in the losses as good as the “ideal” choice
II that may utilize the knowledge of the volatility process ;. This “ideal” choice can be
defined by balancing the accuracy of approximating the underlying process 6; (which is
controlled by A7) and the stochastic error controlled by the stochastic standard deviation
vr. By definition vy = s,y[I|71 (3,c; 67) Y2 5o that vy typically decreases when |I|
increases. For simplicity of notation, we shall suppose further that v; <wjy for J CI.

We do not give a formal definition of an “ideal” choice of the interval I since the there
is no one universally optimal choice even if the process 6; is known. Instead we consider
a family of all “good” intervals I such that the variability of the process 6; inside
II is not too large compared to the conditional stochastic deviation vy. This, due to
Theorem 3.1, allows us to bound with a high probability the losses of the “ideal” estimate
01 by (D+A)vy provided that Ay/vy < D and A is sufficiently large. Similar property
should be fulfilled for all smaller intervals I C II. Hence, it is natural to quantify the
quality of the interval I by

dp = sup Ajp/vr.
IeT:ICH
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The next assertion claims that the risk of the adaptive estimate is not larger in order
than vy for all I such that Jp is sufficiently small.

Theorem 4.1 Let (8) hold true. Let an interval I be such that for some D > 0, it
holds with a positive probability dy < D . Then

P (I is rejected, oy < D) < Z Z 12v/ex s (1 + log B)e*()\J*D)2/(2a7) (10)
1€T(I) JeT(I)

where A; = A(1 — s, AN, ?) with Nj = min{|J|,|T\ J|}.
Moreover, if Ny > 2s,A for all J € J(I) and all 1 € I, then it holds for the
adaptive estimate 6 = 07 on the random set A = {I is not rejected, oy < D} :

07 — 0] < 22Uy
and
107 — 0, < (D + 3\ + 2Xs,(D + /\)|][|*1/2) v

Remark 4.1 It is easy to see that the sum in the right hand-side of the bound (10) can
be made arbitrary small by a proper choice of the constant A and the sets J(I). Hence,
the result of the theorem claims that with a dominating probability a “good” interval I
will not be rejected and the adaptive estimate 9 is up to a constant factor as good as
any of “good” estimates Or .

Remark 4.2 As mentioned in Remark 3.1 the probability bound in the right hand-side
of (10) can refined for the special case when the process 6; is constant within I by
replacing the factor 12y/eAs(1 4 log B)e= (A =D)*/(20y) with 6e=*7/(20+)

5 Change-point model

A change-point model is described by a sequence 71 < Ts < ... of stopping times with
respect to the filtration F; and by values o01,09,... where each o}, is Fr, -measurable.
By definition oy = oy for Ty < t < Ty4+1 and o is constant for ¢ < 77 . This is an
important special case of the model (1). For this special case, the above procedure has
a very natural interpretation: when estimating at the point 7 we search for a largest
interval of the form [r — m,7] does not containing a change-point. This is doing via
testing for a change-point within the interval-candidate I = [r — m,7|. Note that
the classical maximum-likelihood test for no change-point in the regression case with
Gaussian N(0,02) -errors is also based on comparison of the mean values of observations
Y; over the sub-intervals I = [t — m,7 — m/] and every sub-interval J = [t —m/, 7]
for different m', so that the proposed procedure has strong appeal in this situation.
However, there is an essential difference between testing of a change-point and a testing
homogeneity appearing as a building block of our adaptive procedure. Usually a test for
a change-point is constructed in a way to provide the prescribed probability of a “false
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alarm”, that is, rejecting the “no change-point” hypothesis under homogeneity. Our
adaptive procedure involves a lot of such tests for every candidate I, which leads to a
multiple testing problem. As a consequence, each particular test should be performed at
a very high level, i.e., it should be rather conservative providing a joint error probability
at a reasonable level.

5.1 Probability of a “false alarm”

For the change-point model, a “false alarm” would mean that the interval-candidate I
is rejected although the hypothesis of homogeneity is still fulfilled. The arguments used
in the proof of Theorem 4.1 lead to the following upper bound for the probability of a
“false alarm”:

Theorem 5.1 If I = [t — m,7] is an interval of homogeneity, that is 6, = 6, for all
tel, then

AZ
P (I is rejected) < E Z 6 exp <_2a7(1 T )\37|J|—1/2)2> :

TeZ(M) JeJ(I)

This result is a special case of Theorem 4.1 with A; = 0 when taking into account
Remark 4.2.

Theorem 4.1 implies that for every fixed value M there exists a fixed A providing
a prescribed upper bound « for the probability of a “false alarm” for a homogeneous
interval I of length M . Namely, the choice

A > (1+€)y/2aylog

nes
leads for a proper small positive constant ¢ > 0 to the inequality

)\2
6 - < a.
Z Z P ( 2“7(1 + /\37|J‘_1/2)2) =

I€T(I) JeJ(I)

Here M /mg is approximately the number of intervals in J(I) (see Section 6.1). This
bound is however, very rough and it is only of theoretical importance since we estimate
the probability of the sum of dependent events by the sum of single probabilities. The
value of \ providing a prescribed probability of a “false alarm” can be found by Monte-
Carlo simulation for the homogeneous model with the constant volatility as described in
Section 6.

5.2 Sensitivity to change-points and the mean delay

The quality (sensitivity) of a change-point procedure is usually measured by the mean
delay between the occurrence of the change-points and its detection.

To study this property of the proposed method, we consider the case of estimation at
a point 7 immediately after a change-point T¢,. It is convenient to suppose that T,
belongs to the end points of an interval which is tested for homogeneity. In this case the
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‘ideal’ choice I is clearly [Tcp,7]. Theorem 4.1 claims that the quality of estimation at
T is essentially the same as if we knew the latest change-point T¢, a priori. In fact, one
can state a slightly stronger assertion: every interval I which is essentially larger than
II' will be rejected with a high probability provided that the magnitude of the change is
large enough.

Denote m' = |I|, that is, m' =17 —T¢p. Let also I = [Tep —m, 7] = [T —m/ —m, 7]
for some m , so that |[I| = m+m', and let 6 (resp. 6') denote the value of parameter 6,
before (resp. after) change-point T,. The magnitude of the change-point is measured
by the relative change b= 2|6’ —6|/0.

It is worth mentioning that the values 6; and especially 6, can be random and
depending on the past observations. For instance, §; may depend on Y; for all ¢ < Tg,,.

The interval I will be certainly rejected if |5I\ I— §ﬂ| is sufficiently large compared
to the corresponding critical value.

Theorem 5.2 Let E(Y; | Fi—1) = 0 before the change-point at T, and E(Y; | Fi—1) =
0" after it, and let b = |0' —6|/0. Let I = [1 —m' —m,7] with m' = 1 —T,,. If

0:= Asy/y/min{m,m'} <1 and

S 20+ V20(1 + o)

b> o

; (11)
then P (I is not rejected) < 4e**/(207)

The result of Theorem 5.2 delivers some additional information about the sensitivity
of the proposed procedure to change-points. One possible question is about the minimal
delay m’ between the change-point T, and the first moment 7 when the procedure
starts to indicate this change-point by selecting an interval of type I = [Tip,7]. Due
to Theorem 5.2, the change will be ‘detected’ with a high probability if the value o =
Asy/v/m! fulfills (11). With fixed b > 0, condition (11) leads to o < bCy for some fixed
constant Cjy. The latter condition can be rewritten in the form m' > b*2)\25,2Y / Cg . We
see that this lower bound for the required delay m’ is proportional to b~2 where b is the
change-point magnitude. It is also proportional to the threshold A squared. In its turn,
for the prescribed probability a of rejecting a homogeneous interval of length M , the
threshold A can be bounded by C,/log m%oa . In particular, if we fix the length M and

«, then m' = O(b~2). If we keep fixed the values b and M but aim to provide a very
small probability of a “false alarm” by letting a go to zero, then m' = O(loga™1). All
these issues are in agreement with the theory of change-point detection, see, e.g. Pollak
(1985) and Brodskij & Darkhovskij (1993).

6 LAVE in practice

The aim of this Section is to give some hints concerning the choice of the testing intervals
and the smoothing parameter A, and to illustrate the performance of the LAVE procedure
on simulated and real data. We consider the simplest homogeneous model and we study
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the stability of the procedure in such a situation. Then, a change-point model is analyzed
and the sensitivity with respect to the jump magnitude is measured. Finally, LAVE is
applied to a set of exchange rate data.

6.1 Choice of the sets 7 and J({)

The presented algorithm involves the sets of interval candidates Z and of testing intervals
J(I). The simplest proposal is based on the use of regular time grid ti, to,..., with
grid step mg € N, that is, tx = mok, kK =1,2,.... For a given time point 7, the set Z
of interval candidates is defined in the following way:

T={Iy=[tk,7] : tx <T—mg, k=1,2...}

Next, for every interval Iy, we define the set J(Iy) of testing subintervals Jy C I
such that Jy = [tg, 7] for all ¢4 > t;, belonging to the grld The homogeneity within I
is then tested by comparing the pairs of estimates ] 7 and Hl'k\ g for all J € J(Iy).

In this construction, the sets Z, J(I) are completely determined by the grid step
mg . The value of mg should be selected possibly small, because it represents the minimal
delay before the LAVE algorithm can detect a change point. Nevertheless, mg should be
sufficiently large to provide stability of the estimates v; and vp, ;. For the simulation and
the analysis of real data we use my = 10, which represents a good compromise. However,
small changes in this value, i.e. 5 < mgy < 20 do not appear to have great influence on
the estimation results.

6.2 Choice of )\ and 7

The selection of 4 and in particularly of A is more critical. Theorem 5.1 suggests that,
in the context of a change-point model, a reasonable approach for selecting A is by
providing a prescribed level « for rejecting a homogeneous interval I of a given length
M . This would clearly imply at most the same level a for rejecting a homogeneous
interval of a smaller length. However, the value of A which can be derived with the help
of Theorem 5.1 is rather conservative. A more accurate choice can be made by Monte
Carlo simulation. We examine the procedure described in Section 3.2 with the sets of
intervals Z and J(I) on the regular grid with the fixed step mo = 10. A constant (and
therefore also time homogeneous) model assumes that the parameter 6; does not vary in
time, i.e. 8y = 0. It can easily be seen that the value 6 has no influence on the procedure
under time homogeneity. One can therefore suppose that # = 1 and the original model
(1) is transformed into the regression model Y; = 1 + s,(; with the constant trend and
homogeneous variance s,. This model is completely described and therefore, one can
determine by simulation the value of A for which an interval of time homogeneity of
length M is not rejected with a frequency of 95%.

The values of A are computed for M = 40 and 80 and for the power transformations
v = 0.5, 1.0 and 2.0. The results are shown in Table 1. Note that, the values of A
calibrated for M = 80 are necessarily larger and therefore more conservative, than the
values of A calibrated for M = 40.
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Table 1: The value of )\, which for a given power transformation v provide the rejection of an
interval of time homogeneity of length M with a frequency of 5%.

SMOOTHING PARAMETERS
v=0.5 v=1.0 v=2.0
M=80 M=40 | M=80 M=40 | M=80 M=40
A=274 X=240 | A=258 A=224 | A=218 A=1.86

6.3 Simulation results for the change-point model

We now evaluate the performance of the LAVE algorithm on simulated data. Two
change-point time series of length T' = 240 are considered. The simulated data display
two jumps of the same magnitude in opposite directions, i.e.: oy = o for t € [1,80] and
t € [161,240] and o, = o' for ¢ € [81,160]. Where o0 = 1 and ¢’ = 3 and 5 respectively.
For each model 500 realizations are generated, the estimation is performed at each time
point t € [to,240], where ¢; is set equal to 20.

We compute the estimation error for each combination of v and A with the following
criterion:

240 500 s 2

>3 (2) (12)

=20 w=1 ot
where the index w indicates the realizations of the change-point model. We remark that,
in equation (12) the quadratic error is divided by the true volatility so that the criterion
does not depend on the scale of g;. The results shown in Table 2 are favorable to the
choice of the smaller value of 7, confirming that the loss of efficiency caused by v < 2
is offset by the greater normality of the errors. Figure 2 and Figure 3 show the results

Table 2: Estimation errors for all the combinations of parameters v and .

ESTIMATION ERROR
v=10.5 v=1.0 v=2.0
A=274 | A=240 | A=258 | A=224 | A=218 | A=1.86

PARAMETERS

SMALL JUMP 19241.9 17175.3 19121.2 16522.5 24887.2 17490.9
LARGE JUMP 46616.2 43282.5 51363.9 46706.4 68730.7 55706.3

of the estimation for the power transformation v = 0.5 and the value of A calibrated for
an interval of time homogeneity of length M = 40 and M = 80 respectively. The plots
of the top line display the true process (straight line), the empirical median among all
estimates (thick dotted line) and the empirical quartile among all estimates (thin dotted
line). The plots of the bottom line similarly display the length of the interval of time
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homogeneity, which is minimal (resp. maximal) just after (resp. just before) a change
point and the median and the quartiles among all estimates.

true and estimated volatility

true and estimated volatility

T T T T T T T T T T
40 80 120 160 200 240 40 80 120 160 200 240
X X

true and estimated interval of homogeneity _true and estimated interval of homogeneity

100
1

80

.
8

60
.
50

40

40

20
T
20

40 80 120 160 200 240

Figure 2: Estimation results for the change-point model. The upper plots shows the values of
the standard deviation, while the lower plots shows the values of the interval of homogeneity at
each time point. True values (solid line), median of all estimates (thick dotted line), upper and
lower quartile (thin dotted line). The value of A for v = 0.5 and M = 40 has been used.

The results are satisfactory. The volatility is estimated precisely and the change
points are quickly detected. As expected, the behavior of the method within homogeneous
regions is very stable. The delay in detecting a change point becomes smaller as the jump
size grows. Taking a smaller A also results in a smaller delay and improves on the quality
of estimation after the change points. The results for other power transformations look
very similar and therefore are not displayed.

6.4 Estimation of exchange rate volatility

We apply the LAVE procedure to a set of nine exchange rates, which are available from
the web page of the US Federal Reserve. The data sets represents daily exchange rates of
the US Dollar (USD) against the following currencies: Australian Dollar (AUD), British
Pound (BPD) Canadian Dollar (CAD), Danish Krone (DKR), Japanese Yen (JPY),
Norwegian Krone (NKR), New Zeeland Dollar (NZD), Swiss Franc (SFR) and Swedish
Krone (SKR). The period under consideration goes from January the 1st 1990 to April
the 7th 2000.
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Figure 3: Estimation results for the jump model. The value of A for v = 0.5 and M = 80 has
been used.

All the time series show qualitatively almost the same pattern, therefore we provide
the graphical example only for the two representative exchange rates JPY/USD and
BPD/USD (Figure 4). The empirical mean of the returns is close to zero, while the
empirical kurtosis is larger than 3. Furthermore, variance clustering and persistence of
the autocorrelation of the square returns is also visible. The estimated standard deviation
is nicely in accordance with the development of the volatility and in particular sharp
changes in the volatility tend to be quickly recognized. Note also that the variability
of the estimated interval of time homogeneity appears to grow as the estimated interval
becomes larger. This is a feature of the algorithm because the number of tests grows
with the accepted interval, so that a rejection becomes more probable. Nevertheless,
this variability does not affect strongly the estimated volatility coefficient. Figure 5
shows the significantly persistent autocorrelation of the absolute returns, together with
the autocorrelation of the absolute returns divided by the estimated standard deviation.
The autocorrelation of the standardized absolute returns is not significant any more and
this fact support the choice of a locally homogeneous model in order to explain the data.
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Table 3: Summary statistics.

currency n mean-10°  variance-10° skewness kurtosis
AUD 2583 -10.41 3.191 -0.187 8.854
BPD 2583 -0.679 3.530 -0.279 5.792
CAD 2583 8.819 0.895 0.042 5.499
DKR 2583 6.097 4.201 -0.037 4.967
JPY 2583 -12.70 5.486 -0.585 7.366
NKR 2583 9.493 4.251 0.313 8.630
NZD 2583 -6.581 3.604 -0.356 49.17
SFR 2583 1.480 5.402 -0.186 4.526
SKR 2583 12.66 4.615 0.372 9.660

A benchmark model

As a matter of comparison we also consider a model which is commonly used to estimate
and forecast volatility processes: the GARCH(1,1) model proposed by Bollerslev (1995):

2 2 2
Ut - w+aRt,1 +/80-t*1'

Among all parametric volatility models it represents the most common specification:
“The GARCH(1,1) is the leading generic model for almost all asset classes of returns.
. it is quite robust and does most of the work in almost all cases.” (Engle 1995).

We do not require the parameters to be constant through the whole sample, but
similarly to Franses & Dijk (1996) we consider a rolling estimate. We thus fit the model
to a sample of 350 observations, generate the forecast, delete the first observation from
the sample and add the next one. Such a procedure reduce the harmful effect of possible
parameter shifts on the forecasting performances of the model, even if at the same time
it may increase the estimation variability.

The volatility is a hidden process which can be observed only together with a mul-
tiplicative error, therefore the evaluation of the forecasting performance of an algorithm
is not straightforward. Due to the model (1), it holds E (R? , | F;) = o7, . Therefore,
given a forecast 41, the empirical mean value of |R7,, — 3?_1_” ;| can be used to
measure the quality of this forecast. The forecast ability of the LAVE and the GARCH
estimates are therefore evaluated with the following criterion:

P
‘ with p=0.5.

T
T 2o B ot

t=to
The value of p = 0.5 is chosen instead of the more common p = 2 because we are
interested in a robust criterion, which is not too sensitive to the presence of outliers. The
relative performance of the LAVE and of the GARCH estimate is displayed in Table 4.
The performance of the LAVE approach is clearly better, furthermore, the table gives
a clear hint for the choice of the power transformation. Indeed v = 0.5 provides the
smallest forecasting errors, while v = 2.0 leads to the largest forecasting errors, which

are sometimes larger than the one of the GARCH model.
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Figure 4: Exchange rate returns, estimated standard deviation and estimated interval of time
homogeneity. The value of A for v = 0.5 and M = 80 has been used.

7 Conclusions and outlook

The local adaptive volatility estimate (LAVE) is described and analyzed in this paper.
It provides a nonparametric way for estimating and short term forecasting the volatility
of financial returns.

It is assumed that a local constant approximation of the volatility process holds over
some unknown interval. The issue of filtering this interval of time homogeneity out of
the return time series is considered, and a nonparametric approach is presented. The
estimate of the volatility process is then found by averaging over the interval of time
homogeneity.

A theoretical analysis of the properties of the LAVE algorithm is provided and the
problem of selecting the smoothing parameters is analyzed through Monte Carlo sim-
ulation. The estimation results on change-point models show that the method has a
reasonable performance in practice. An empirical application to exchange rate returns
and a comparison with a GARCH(1,1) also provides a good evidence that the new method
is competitive and can even outperform the standard parametric models especially for
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JPY/USD absolut returns JPY/USD absolut returns standardized by LAVE
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v

Figure 5: ACF of the absolute values of the exchange rate returns and ACF of the absolute
values of the exchange rate returns standardized by LAVE

Table 4: Forecast performance of LAVE relative to GARCH.

v=0.5 v=1.0 v=20
CURRENCY
M=8 M=40 | M=80 M=40 | M =80 M=40

AUD 0.942 0.945 0.963 0.962 0.991 0.982
BPD 0.961 0.960 0.979 0.970 1.006 1.000
CAD 0.974 0.979 0.989 0.992 1.010 0.997
DKR 0.978 0.980 0.985 0.987 1.010 1.004
JPY 0.951 0.949 0.971 0.966 1.006 0.997
NKR 0.961 0.957 0.972 0.965 0.998 0.984
NZD 0.878 0.879 0.904 0.902 0.952 0.947
SFR 0.985 0.984 0.992 0.990 1.004 1.000
SKR 0.965 0.961 0.973 0.968 0.982 0.977

forecasting with a short horizon.

An important feature of the proposed method is that it allows for a straightforward
extension on the multivariate volatility estimation, see Hérdle, Herwartz & Spokoiny
(2001) for a detailed discussion.

Obviously, if the underlying conditional distribution is not normal, the estimated
volatility can give only a partial information about the riskiness of the asset. Recent
developments in the risk analysis tends to focus on the estimation of the quantiles of the
distribution. In this direction the LAVE procedure can be used as a convenient tool for
pre-whitening the returns and obtain a sample of “almost” identical and independently
distributed returns, which do not display any more variance clustering. So that the usual
techniques of quantile estimation could be applied in a static framework. We regard such
a development as a topic for future research.



MERCURIO, D. AND SPOKOINY, V. 19

8 Proofs

In this section we collect the proofs of the results stated above. We begin by considering
some useful properties of the power transformation introduced in Section 2.1.
Some properties of the power transformation
Let g,(u) be the moment generating function of (, = D;l (1¢" = C,):
gy(u) = Ee"or.

It is easy to see that this function is finite for v < 2 and all 4 and for v =2 and u < 1.
For v =1/2 the function 2u~2log g, (u) is plotted in Figure 6.

10,05

1

Y*0.1

99

Figure 6: The log-Laplace transform of (; /, divided by the log-Laplace transform of a standard
normal r.v.

Lemma 8.1 For every v <1 there erists a constant a, > 0 such that

2
log Ee"Sr < % (13)

Proof. It is easy to check that the function g,(u) with v <1 is positive and smooth
(infinitely many times differentiable). Moreover, the function h.(u) = logg,(u) is also
smooth and satisfies h,(0) = h(0) =0, h(0) = EC2 = 1. This yields that u=?h,(u) =
u~?log gy(u) is bounded on every finite interval of the positive semi-axis [0,00). It
therefore remains to show that

lim v 2log Ee*"" < oo.
uU—00

Since ¢,(u) = D;'(|¢]" — C,), it suffices to bound u"2Ee*€"/Py Tt holds for every
t>0

Eeu|£|7D’71 _ Eeu|§|7D’711(|§| < t) +Eeu‘§hD;11(‘§| S t)
< DT g vkl Dy
< Dy gt Dy

vy -1 242y—21)—2
eut D, _|_2eu t D, .
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Next, with ¢ = u!/(27) and v < 1, it holds for u — oo

—1
u 2loge’Pv = uil/QD;1 — 0,
u2log eVt DY = uw= =0/ D22 0.
For v =1, the last expression remains bounded and the assertion follows. [ |

For v =1/2, condition (13) meets with a, = 1.005.
The next technical statement is a direct consequence of Lemma 8.1.

Lemma 8.2 Let ¢; be a predictable process w.r.t. the filtration F = (F), i.e. every ¢
is a function of previous observations Ry,... Ry 1: ¢ = ¢t(R1,... ,R¢—1). Then the
process

t t

a 2

& = exp (Z CsCs - E’Y ZCS>
s=1 s=1

is a supermartingale, that is,

E(& | Fi1) < &1 (14)

The next result has been stated in Lipster & Spokoiny (1999) for Gaussian martin-
gales, however, the proof is based only on the property (14) and allows for a straightfor-
ward extension to the sums of the form M; = 22:1 csCs -

Theorem 8.1 Let M; = ZS 1 ¢sCs with predictable coefficients c, . Let then T be fized
or a stopping time. For every b>0, B>1 and A>1

P (\MT| > MW/ (Mr, b< /(M) < bB) < 4/er (1 +log B) e /(207)

where

T
M)T = Z C%.
t=1

Remark 8.1 Ifthe coefficients ¢; are deterministic or independent of M then Lemma 8.1
and the Tschebysheff inequality yield

(|MT| > A\/—) < 2¢ V/(20),

Proof of Theorem 3.1
Define

0r = T ZHt & = sy|I7! ZetCt-

tel tel

Then 6; = 07 + &7 . By the definition of A;

> (6 —6,)

tel

67 — 6| = 1] <A (15)
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Next, by (5)
0r — 0, =01 — 0, + &1

and the use of (15) yields

> 0

tel

P<|5I—0T\>A1+>«u1) gP(

> A (g 9,?) 1/2) :

In addition, if the volatility coefficient o, satisfies b < o? < bB with some positive

constant b, B, then the conditional variance v} = s2|I|72 Y., 67 fulfills
VIt <of <VIT'B
with b = bs2. Now the assertion follows from (8) and Theorem 8.1.
Proof of Theorem 3.2
It suffices to show that the inequalities Aj/vy < D and
|11 = 101 — 81| < Xy (16)

imply |6; — 6, < Moy where X’ solves the equation D+ A = /(1 + Ns,|T|71/2). This
would yield the desirable result by Theorem 8.1, cf. the proof of Theorem 3.1.

Lemma 8.3 Let (Ar/vr)s,|I|”'/? < 1. Under (16)

o1 > vr (/1= (Ar/or)22|11-1 = s, A7) > wp (1= s, |117V2(Ar for + ).
Proof. By definition of o7 in view of (16)
1 = 8,011 7Y% > s, (Br — o) 1|72,
Since Or is the arithmetic mean of 6; over I,

D (6017 <N (0, - 0,)° < AFI.
tel tel
Next
sy?[Ilvf = 1|71 Y 67 =07 + 11|71 (6, — 0r)* < 67 + A7,
tel tel

so that

01 > 5, 111201 = (Brsyor 117172)2.
Hence, it holds under (16)

12 o (1= (s ) = sl )
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and the assertion follows. |

The bound (16) and the definition of A; imply
07 — 0| < |67 — 6, + |07 — 07| < Ar+ dvp < (D + Aoy
By Lemma 8.3 o > vy (1 — s,D|I|7Y/2 — s,A|I|7/2) . Thus,

~ D+ ~
-0, <
o= T e

= Noy
as required.

Proof of Theorem 4.1

Let I be a “good” interval in the sense that with a high probability, Ay/v; < D for
some nonnegative constant D and every J € J(II). First we show that I will not be
rejected with a high probability provided that X is sufficiently large.

We proceed similarly to the proof of Theorems 3.1 and 3.2. The procedure involves
the estimates 0, §I\J and the differences §J—5I\J forall I € Z(II) and all J € J(I).
The expansion ] 7 =07+ ¢y implies

= gl\J = (05— 0pns) + (67— Eng) -
It holds under the condition é; < D

|é] _éI\Jl < Ar<Dvr< D«/’U‘Q]-I-U%\J.
Define the events

Ar = | {1 -l <Oy = D)y/v] + 0}, and

Jeg(I)
AH = U A[
I€T:ICH
where Nj = min{|J|,|I \ J|} and Ay = A(1 — 37)\]\/';1/2).
Define A} = AgN{dr < D}. On this set

>1-— 37)\NJ71/2

10 — 0n\s] - 10 — 6p s+ €5 — €l
U§+U%\J< D—l—AJ—D

UAQJ + 6%\] C1- SWAN‘;I/Q

= A

< (D+X;—-D)

It is easy to see that the conditional variance of {; —&p\ s is equal to v?] +v%\ ;- Arguing
similarly to Lemma 8.3 and Theorem 3.1 we bound with A\;p = A; — D

P(4)< Y P (M > AJ,D) +P (‘&\ﬂ > ,\J,D> rp| bl ALD
Jeg(I) v vng VAR
\J

< S 12v/ers(1 + log B)e /()
JeJ(I)
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and the first assertion of the theorem follows.

Now we show that on the set A% the estimate 0 = gf fulfills |§— §n| < 2\vy.

Due to the above, on A} the interval I will not be rejected and hence, 7] > |I|.
Let I be an arbitrary interval from Z which is not rejected by the procedure. By
construction, the I is one of the testing intervals for 7. Denote J = I\ I. Note that
|1|(8; — O1) = |J|(67 — Or), so that the event ‘I is not rejected’ implies |0 — Oy| <

)\,/UJ—HJH and

NI o~ o
|0[—0y|< ||I|| @?]-I—QAJQHSL(UJ%—U][).

The use of oy = s,0;|J|~"/ and |07 — 0| < X (Vy + oy) yields
‘5‘,|J|1/2 - m,|zr|1/2‘ < sy (5 + p)

implying

|T|Y2 + Xs,y

Ll IR i T+ <—|J|1/2+|H|1/2~
|J|1/2 )\37 I, J >

vy < v .
’ T2 = xs,

Therefore,

A| (17172 + |2|'72)
(1] + 1)) (17172 = Asy)

|§I - 5H| < vg

It is straightforward to check that the function f(z) = 2?(z + 1)/[(z? + 1)(z — ¢)] with
any ¢ > 0 satisfies f(z) < 2 for all £ > 2c. This implies with z = [J|'/2/|I|'/? and
¢ = \s,/|I|*/? that
07 — 0r| < 220y

under the condition that |J|'/2 > 2)\s,, .

Let Ay < Dvy. Similarly to Lemma 8.3 vy < vp (1 + s,(D + >\)|E\*1/2) and by
Theorem 3.1 |05 — 6;| < (D + A)vg. This yields

81— 8| < 22wr (14 5,(D +X)|1|7'7%)

and

07 — 6,

IN

2\or (1 +5,(D + A)uzrl/?) +(D+ Mg

- (D + 33X+ 2Xs, (D + A)u[|—1/2) v

as required.
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Proof of Theorem 5.2

To simplify the exposition, we suppose that § = 1. (This does not restrict generality
since one can always normalize each ‘observation’ Y; by 6.) We also suppose that 6’ > 1
and b=6"—1. (The case when #' < 6 can be considered similarly.) Finally we assume
that m' = m (One can easily see that this case is the most difficult one.) We again apply
the decomposition

0,=1+¢, Or=0+&
see the proof of Theorem 3.1. Hence,
Or — 0, =b+Er— ¢

It is straightforward to see that v5 = s2/m and v} = s26'/m. By Lemma 8.1 (see also
Remark 8.1)

a2
P (|&7] > Mg) + P (|| > dor) < 4e >
and it suffices to check that the inequalities |{;7]| < Avy, [€r| < Avr and (11) imply

0 — 6r| > /03 + 0%

Since 6 — 1 = b and since vy = s,|J|7Y 29, and similarly for U7, it holds under the
conditions 7| < Avy, |&r| < Avr:

~ o~ Aso (0" +1
0 —0n| > b—%:b(l—@—%a
~ Sy ~1
= 1 <A 1
vy m( +£J)_ Q( +Q)a
T = —L(1+&) <A lo(l+o)

vm

with o= m_1/2)\37. Therefore

107 — 1] — A\J/P2 + 2 > b(1 — ) — 20 — V20(1 + 0) > 0

in view of (11) and the assertion follows.
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