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Statistical Process Control
Sven Knoth!

Statistical Process Control (SPC) is the misleading title of the area of statis-
tics which is concerned with the statistical monitoring of sequentially observed
data. Together with the theory of sampling plans, capability analysis and sim-
ilar topics it forms the field of Statistical Quality Control. SPC started in the
1930s with the pioneering work of Shewhart (1931). Then, SPC became very
popular with the introduction of new quality policies in the industries of Japan
and of the USA. Nowadays, SPC methods are considered not only in industrial
statistics. In finance, medicine, environmental statistics, and in other fields of
applications practitioners and statisticians use and investigate SPC methods.

A SPC scheme — in industry mostly called control chart — is a sequential
scheme for detecting the so called change point in the sequence of observed
data. Here, we consider the most simple case. All observations X1, X, ... are
independent, normally distributed with known variance 0. Up to an unknown
time point m—1 the expectation of the X; is equal to pg, starting with the change
point m the expectation is switched to pu; 7# po. While both expectation values
are known, the change point m is unknown. Now, based on the sequentially
observed data the SPC scheme has to detect whether a change occurred.

SPC schemes can be described by a stopping time L — known as run length
— which is adapted to the sequence of sigma algebras F,, = F (X1, Xs,..., X,).
The performance or power of these schemes is usually measured by the Average
Run Length (ARL), the expectation of L. The ARL denotes the average number
of observations until the SPC scheme signals. We distinguish false alarms — the
scheme signals before m, i.e. before the change actually took place — and right
ones. A suitable scheme provides large ARLs for m = oo and small ARLs for
m = 1. In case of 1 < m < oo one has to consider further performance measures.
In the case of the oldest schemes — the Shewhart charts — the typical inference
characteristics like the error probabilities were firstly used.

The chapter is organized as follows. In Section 1 the charts in consider-
ation are introduced and their graphical representation is demonstrated. In
the Section 2 the most popular chart characteristics are described. First, the
characteristics as the ARL and the Average Delay (AD) are defined. These
performance measures are used for the setup of the applied SPC scheme. Then,
the three subsections of Section 2 are concerned with the usage of the SPC rou-
tines for determination of the ARL, the AD, and the probability mass function
(PMF) of the run length. In Section 3 some results of two papers are reproduced
with the corresponding XploRe quantlets.

1 Control Charts

Recall that the data X, Xo, ... follow the change point model

Xt"“N(N17éM0;‘72) s t=m,m+1,...
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The observations are independent and the time point m is unknown. The control
chart (the SPC scheme) corresponds to a stopping time L. Here we consider
three different schemes — the Shewhart chart, EWMA and CUSUM schemes.
There are one- and two-sided versions. The related stopping times in the one-
sided upper versions are:

1. The Shewhart chart introduced by Shewhart (1931)
LShewhart — inf {t eIN:Z, = M > Cl} (2)
o

with the design parameter ¢; called critical value.

2. The EWMA scheme (exponentially weighted moving average) initially pre-
sented by Roberts (1959)

LEWMA _inf {te N : ZtEWMA > o \/)\/(2—)\)} > 3)
Z(])EWMAZZ(]:O,
X; —
ZEWMA _ (1 _ ))ZzBWMA | \ 2 THO g o (4)
o

with the smoothing value A and the critical value ¢o. The smaller A the
faster EWMA detects small pu; — g > 0.

3. The CUSUM scheme (cumulative sum) introduced by Page (1954)

LOVSIM —inf {t € N : Z7VSTM > ¢} (5)
ZSJUSUM =2 =0

X, —
ZCUSUM _ ay {O,ZS_‘{SUM + tTNO - k} ,t=1,2,... (6)

with the reference value k and the critical value c3 (known as decision
interval). For fastest detection of py; — pop CUSUM has to be set up with

k= (pm + po)/(20).

The above notation uses normalized data. Thus, it is not important whether
X, is a single observation or a sample statistic as the empirical mean.

Remark, that for using one-sided lower schemes one has to apply the upper
schemes to the data multiplied with -1. A slight modification of one-sided
Shewhart and EWMA charts leads to their two-sided versions. One has to
replace in the comparison of chart statistic and threshold the original statistic
Z; and ZEWMA by their absolute value. The two-sided versions of these schemes
are more popular than the one-sided ones. For two-sided CUSUM schemes we
consider a combination of two one-sided schemes, Lucas (1976) or Lucas and
Crosier (1982), and a scheme based on Crosier (1986). Note, that in some recent
papers the same concept of combination of two one-sided schemes is used for
EWMA charts.

Recall, that Shewhart charts are a special case of EWMA schemes (A = 1).
Therefore, we distinguish 5 SPC schemes — ewmal, ewma2, cusuml, cusum?2 (two
one-sided schemes), and cusumC (Crosier’s scheme). For the two-sided EWMA
charts the following quantlets are provided in the XploRe quantlib spc.



SPC quantlets for two-sided EWMA scheme

spcewma? — produces chart figure
spcewma2arl —returns ARL
spcewma2c  —returns critical value co

spcewma2ad - returns AD (steady-state ARL)

spcewma2pmf - returns probability mass and distribution function
of the run-length for single time points

spcewma2pmfm - the same up to a given time point

By replacing ewma2 by one of the remaining four scheme titles the related
characteristics can be computed.

The quantlets spcewmal,...,spccusumC generate the chart figure. Here, we
apply the 5 charts to artificial data. 100 pseudo random values from a normal
distribution are generated. The first 80 values have expectation 0, the next 20
values have expectation 1, i.e. model (1) with po = 0, ug1 = 1, and m = 81.
We start with the two-sided EWMA scheme and set A = 0.1, i.e. the chart is

Two-sided EWMA chart
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Figure 1: Two-sided EWMA chart Q XFGewma2fig.xpl

very sensitive to small changes. The critical value ¢y (see (3)) is computed to
provide an in-control ARL of 300 (see Section 2). Thus, the scheme leads in
average after 300 observations to a false alarm.

In Figure 1 the graph of ZEWMA is plotted against time ¢ = 1,2,...,100.
Further, the design parameter A, the in-control ARL, and the time of alarm (if
there is one) are printed. One can see, that the above EWMA scheme detects
the change point m = 81 at time point 94, i.e. the delay is equal to 14. The
related average values, i.e. ARL and Average Delay (AD), for u; = 1 are 9.33
and 9.13, respectively. Thus, the scheme needs here about 5 observations more
than average.

In the same way the remaining four SPC schemes can be plotted. Remark,
that in case of ewmal one further parameter has to be set. In order to obtain
a suitable figure and an appropriate scheme the EWMA statistic ZEWMA (see



(4)) is reflected at a pre-specified border zreflect < 0 (= po), i.e.
ZFWMA = max{zreflect, ZEWMA} ,t=1,2,...
for an upper EWMA scheme. Otherwise, the statistic is unbounded, which

leads to schemes with poor worst case performance. Further, the methods used

One-sided EWMA chart
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Figure 2: One-sided EWMA chart Q XFGewmalfig.xpl

in Section 2 for computing the chart characteristics use bounded continuation
regions of the chart. If zreflect is small enough, then the ARL and the AD
(which are not worst case criterions) of the reflected scheme are the same as
of the unbounded scheme. Applying the quantlet @ XFGewmalfig.xpl with
zreflect= —4 leads to Figure 2. Thereby, zreflect has the same normal-
ization factor \/A\/(2 — A) like the critical value ¢ (see 2.). The corresponding
normalized border is printed as dotted line (see Figure 2). The chart signals
one observation earlier than the two-sided version in Figure 1. The related ARL
and AD values for gy = 1 are now 7.88 and 7.87, respectively.

In Figure 3 the three different CUSUM charts with & = 0.5 are presented.
They signal at the time points 87, 88, and 88 for cusuml, cusum2, and cusumC,
respectively. For the considered dataset the CUSUM charts are faster because
of their better worst case performance. The observations right before the change
point at m = 81 are smaller than average. Therefore, the EWMA charts need
more time to react to the increased average. The related average values of the
run length, i.e. ARL and AD, are 8.17 and 7.52, 9.52 and 8.82, 9.03 and 8.79
for cusuml, cusum2, and cusumC, respectively.

2 Chart characteristics

Consider the change point model (1). For fixed m denote P, (-) and E,(-)
the corresponding probability measure and expectation, respectively. Hereby,
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Crosier’s two-sided CUSUM chart
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Figure 3: CUSUM charts: one-sided, two-sided, Crosier’s two-sided

m = oo stands for the case of no change, i. e. the so called in-control case. Then
the Average Run Length (ARL) (expectation of the run length L) is defined as

L = EOO(L) y = Mo
g El(L) aﬂ#,u/o -

Thus, the ARL denotes the average number of observations until signal for a
sequence with constant expectation. g = pg or m = oo stands for no change,
i # po and m = 1 mark, that just at the first time point (or earlier) a change
takes place from pg to . Therefore, the ARL evaluates only the special scenario

(7)



of m = 1 of the SPC scheme. Other measures, which take into account that
usually 1 < m < oo, were introduced by Lorden (1971) and Pollak and Siegmund
(1975), Pollak and Siegmund (1975). Here, we use a performance measure which
was firstly proposed by Roberts (1959). The so called (conditional) Average
Delay (AD, also known as steady-state ARL) is defined as

DP’ = n'}l—r>nooDI(1m)’ (8)
D™ = En(L-m+1|L>m),

where p is the value of y in (1), i.e. the expectation after the change. While
L, measures the delay for the case m = 1, D, determines the delay for a
SPC scheme which ran a long time without signal. Usually, the convergence
in (8) is very fast. For quite small m the difference between ’D;(tm) and D, is
very small already. £, and D, are average values for the random variable L.
Unfortunately, L is characterized by a large standard deviation. Therefore, one
might be interested in the whole distribution of L. Again, we restrict on the
special cases m = 1 and m = oo. We consider the probability mass function
P,(L =n) (PMF) and the cumulative distribution function P,(L < n) (CDF).
Based on the CDF, one is able to compute quantiles of the run length L.

For normally distributed random variables it is not possible to derive exact
solutions for the above characteristics. There are a couple of approximation
techniques. Besides very rough approximations based on the Wald approxima-
tion known from sequential analysis, Wiener process approximations and similar
methods, three main methods can be distinguished:

1. Markov chain approach due to Brook and Evans (1972): Replacement of
the continuous statistic Z; by a discrete one

2. Quadrature of integral equations which are derived for the ARL, Vance
(1986) and Crowder (1986) and for some eigenfunctions which lead to the
AD

3. Waldmann (1986) approach: Iterative computation of P(L = n) by using
quadrature and exploiting of monotone bounds for the considered charac-
teristics

Here we use the first approach, which has the advantage, that all considered
characteristics can be presented in a straightforward way. Next, the Markov
chain approach is briefly described. Roughly speaking, the continuous statistic
Z,; is approximated by a discrete Markov chain M;. The transition Z; | =
T — Zy = y is approximated by the transition M; | = iw = M; = jw with
z€fiw—w/2iw+w/2]and y € jw— w/2,jw + w/2]. That is, given an
integer r the continuation region of the scheme [—c, ], [zreflect, ], or [0, c] is
separated into 27 + 1 or 7 + 1 intervals of the kind [i w — w/2,iw + w/2] (one
exception is [0, w/2] as the first subinterval of [0, ¢]). Then, the transition kernel
f of Z; is approximated by the discrete kernel of My, i.e.

fzy)m Pliw = [jw—w/2,jw+ w/2])/w

forall z € iw—w/2,iw+w/2] and y € [jw — w/2,jw + w/2]. Eventually,
we obtain a Markov chain {M;} with 2r 4+ 1 or r + 1 transient states and one
absorbing state. The last one corresponds to the alarm (signal) of the scheme.



Denote by @ = (gi;) the matrix of transition probabilities of the Markov
chain {M;} on the transient states, 1 a vector of ones, and L = (L;) the ARL
vector. L; stands for the ARL of a SPC scheme which starts in point 7w
(corresponds to zg). In the case of a one-sided CUSUM scheme with zop = 0 3
[0, w/2] the value Ly approximates the original ARL. By using L we generalize
the original schemes to schemes with possibly different starting values z9. Now,

the following linear equation system is valid, Brook and Evans (1972):

I-QL=1, 9)

where I denotes the identity matrix. By solving this equation system we get
the ARL vector L and an approximation of the ARL of the considered SPC
scheme. Remark that the larger r the better is the approximation. In the
days of Brook and Evans (1972) the maximal matrix dimension r + 1 (they
considered cusum1) was 15 because of the restrictions of the available computing
facilities. Nowadays, one can use dimensions larger than some hundreds. By
looking at different r one can find a suitable value. The quantlet @ XFGrarl.xpl
demonstrates this effect for the Brook and Evans (1972) example. 9 different
values of r from 5 to 500 are used to approximate the in-control ARL of a
one-sided CUSUM chart with k£ = 0.5 and ¢z = 3 (variance 02 = 1). We get

T ) 10 20 30 40 50 100 200 500

Lo]113.47 116.63 117.36 117.49 117.54 117.56 117.59 117.59 117.60

Q xFGrarl .xpl

The true value is 117.59570 (obtainable via a very large r or by using the
quadrature methods with a suitable large number of abscissas). The computa-
tion of the average delay (AD) requires more extensive calculations. For details
see, €. g., Knoth (1998) on CUSUM for Erlang distributed data. Here we apply
the Markov chain approach again, Crosier (1986). Given one of the considered
schemes and normally distributed data, the matrix ) is primitive, i.e. there
exists a power of () which is positive. Then @ has one single eigenvalue which
is larger in magnitude than the remaining eigenvalues. Denote this eigenvalue
by o. The corresponding left eigenvector ¢ is strictly positive, i.e.

YQ =190y, >0. (10)

It can be shown, Knoth (1998), that the conditional density f(-|L > m) of both
the continuous statistic Z; and the Markov chain M; tends for m — oo to the
normalized left eigenfunction and eigenvector, respectively, which correspond to

the dominant eigenvalue g. Therefore, the approximation of D = lim E,,(L —
m—0o0

m + 1|L > m) can be constructed by

D = @"L)/(41).

Note, that the left eigenvector 1 is computed for the in-control mean pg, while

the ARL vector L is computed for a specific out-of-control mean or g again.
If we replace in the above quantlet (@ XFGrarl.xpl) the phrase arl by

ad, then we obtain the following output which demonstrates the effect of the



parameter r again.

r 5 10 20 30 40 50 100 200 500

Do | 110.87 114.00 114.72 114.85 114.90 114.92 114.94 114.95 114.95

Q xFGrad. xpl

Fortunately, for smaller values of r than in the ARL case we get good ac-
curacy already. Note, that in case of cusum2 the value r has to be smaller
(less than 30) than for the other charts, since it is based on the computation of
the dominant eigenvalue of a very large matrix. The approximation in case of
combination of two one-sided schemes needs a twodimensional approximating
Markov chain. For the ARL only exists a more suitable approach. As, e.g., Lu-
cas and Crosier (1982) shown it is possible to use the following relation between
the ARLs of the one- and the two-sided schemes. Here, the two-sided scheme is
a combination of two symmetric one-sided schemes which both start at zo = 0.
Therefore, we get a very simple formula for the ARL £ of the two-sided scheme
and the ARLs Lypper and Lioyer of the upper and lower one-sided CUSUM
scheme

L= Eupper . ‘Clower ) (11)
‘Cupper + ‘Clower

Eventually, we consider the distribution function of the run length L itself.
By using the Markov chain approach and denoting with p? the approximated
probability of (L > n) for a SPC scheme started in i w, such that p™ = (p}'), we
obtain

En — Bn—l Q — QO Qn . (12)
The vector p° is initialized with p} = 1 for the starting point 29 € [i w—w/2,i w+
w/2] and p‘; = 0 otherwise. For large n we can replace the above equation by

P ~gio". (13)
The constant g; is defined as

9= i/(¢"Y),

where ¢ denotes the right eigenvector of @, i.e. Q ¢ = 9 ¢. Based on (12) and
(13) the probability mass and the cumulative distribution function of the run
length L can be approximated. (12) is used up to a certain n. If the difference
between (12) and (13) is smaller than 10~°, then exclusively (13) is exploited.
Remark, that the same is valid as for the AD. For the two-sided CUSUM scheme
(cusum2) the parameter r has to be small (< 30).

2.1 Average Run Length and Critical Values

The spc quantlib provides the quantlets spcewmalarl,...,spccusumCarl for com-
puting the ARL of the corresponding SPC scheme. All routines need the actual
value of p as a scalar or as a vector of several u, two scheme parameters, and the
integer r (see the beginning of the section). The XploRe example @ XFGarl.xpl
demonstrates all .. .arl routines for k¥ = 0.5, A = 0.1, zreflect= —4, r = 50,
¢ = 3, in-control and out-of-control means o = 0 and p; = 1, respectively. The
next table summarizes the ARL results



chart ewmal ewma?2 cusuml cusum?2 cusumC
Lo 1694.0 838.30 117.56 58.780 76.748
L1 11.386 11.386 6.4044 6.4036 6.4716

Q XFGarl.xpl

Remember that the ARL of the two-sided CUSUM (cusum2) scheme is based on
the one-sided one, i.e. 58.78 = 117.56/2 and 6.4036 = (6.4044-49716)/(6.4044+
49716) with 49716 = £_;.

For the setup of the SPC scheme it is usual to give the design parameter A and
k for EWMA and CUSUM, respectively, and a value £ for the in-control ARL.
Then, the critical value ¢ (c2 or c3) is the solution of the equation L,,(c) =
& Here, the regula falsi is used with an accuracy of |£,,(c) — & < 0.001.
The quantlet @ XFGc.xpl demonstrates the computation of the critical values
for SPC schemes with in-control ARLs of & = 300, reference value k = 0.5
(CUSUM), smoothing parameter A = 0.1 (EWMA), zreflect= —4, and the
Markov chain parameter r = 50.

chart ewmal ewma2 cusuml cusum?2 cusumC
c 2.3081 2.6203 3.8929 4.5695 4.288

Q XFGc.xpl

The parameter r = 50 guarantees fast computation and suitable accuracy.
Depending on the power of the computer one can try values of r up to 1000 or
larger (see @XFGrarl.xpl in the beginning of the section).

2.2 Average Delay

The usage of the routines for computing the Average Delay (AD) is similar
to the ARL routines. Replace only the code arl by ad. Be aware that the
computing time is larger than in case of the ARL, because of the computation
of the dominant eigenvalue. It would be better to choose smaller r, especially in
the case of the two-sided CUSUM. Unfortunately, there is no relation between
the one- and two-sided schemes as for the ARL in (11). Therefore, the library
computes the AD for the two-sided CUSUM based on a twodimensional Markov
chain with dimension (r + 1)2 x (r + 1)2. Thus with values of r larger than 30,
the computing time becomes quite large. Here the results follow for the above
quantlet @ XFGrarl.xpl with ad instead of arl and r = 30 for spccusum2ad:

chart ewmal ewma2 cusuml cusum?2 cusumC
Do 1685.8 829.83 114.92 56.047 74.495
D, 11.204 11.168 5.8533 5.8346 6.2858

Q xFGad.xpl



2.3 Probability Mass and Cumulative Distribution Func-
tion

The computation of the probability mass function (PMF) and of the cumulative
distribution function (CDF) is implemented in two different types of routines.
The first one with the syntax spcchartpmf returns the values of the PMF P(L =
n) and CDF P(L < n) at given single points of n, where chart has to be replaced
by ewmal, ..., cusumC. The second one written as spcchartpmfm computes the
whole vectors of the PMF and of the CDF up to a given point n, i.e. (P(L =
1), P(L=2),...,P(L =n)) and the similar one of the CDF.

Note, that the same is valid as for the Average Delay (AD). In case of the
two-sided CUSUM scheme the computations are based on a twodimensional
Markov chain. A value of parameter r less than 30 would be computing time
friendly.

With the quantlet @ XFGpmfl.xpl the 5 different schemes (r = 50, for
cusum2 r = 25) are compared according their in-control PMF and CDF (u =
uo = 0) at the positions n in {1, 10,20, 30, 50, 100, 200,300}. Remark, that the
in-control ARL of all schemes is chosen as 300.

chart ewmal ewma2 cusuml cusum?2 cusumC
P(L=1) 6-10-8 2.1079 6-10—6 4-107 2-10-6
P(L =10) 0.00318 0.00272  0.00321  0.00307 0.00320
P(L = 20) 0.00332  0.00324 0.00321  0.00325 0.00322
P(L = 30) 0.00315  0.00316  0.00310  0.00314 0.00311
P(L = 50) 0.00292  0.00296  0.00290  0.00294 0.00290
P(L =100) 0.00246  0.00249  0.00245  0.00248 0.00245
P(L = 200) 0.00175  0.00177  0.00175  0.00176 0.00175
P(L = 300) 0.00125 0.00126  0.00124  0.00125 0.00125
P(L=1) 6-10-8 2.1079 6-10-6 4-107 2-10-6
P(L <10) 0.01663  0.01233  0.02012  0.01675 0.01958
P(L <20) 0.05005  0.04372  0.05254  0.04916 0.05202
P( )

L<30 0.08228  0.07576  0.08407  0.08109  0.08358
P(L < 50) 0.14269  0.13683  0.14402  0.14179  0.14360
P(L <100) | 0.27642 0.27242  0.27728  0.27658  0.27700
P(L <200) | 0.48452 0.48306  0.48480  0.48597  0.48470
P(L <300) | 0.63277 0.63272  0.63272  0.63476  0.63273

Q XFGpmfl.xpl

A more appropriate, graphical representation provides the quantlet '@ XFGpmf2.xpl.
Figure 4 shows the corresponding graphs.

3 Comparison with existing methods

3.1 Two-sided EWMA and Lucas/Saccucci

Here, we compare the ARL and AD computations of Lucas and Saccucci (1990)
with XploRe results. In their paper they use as in-control ARL & = 500. Then

10
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Figure 4: CDF for two-sidled EWMA and Crosier’s CUSUM for 4 = 0 (in
control) and g = 1 (out of control)
Q XFGpmf2.xpl

for, e.g., A = 0.5 and A = 0.1 the critical values are 3.071 and 2.814, respec-
tively. By using XploRe the related values are 3.0712 and 2.8144, respectively.
It is known, that the smaller A the worse the accuracy of the Markov chain
approach. Therefore, r is set greater for A = 0.1 (r = 200) than for A = 0.5
(r = 50). Table 1 shows some results of Lucas and Saccucci (1990) on ARLs and
ADs. Their results are based on the Markov chain approach as well. However,
they used some smaller matrix dimension and fitted a regression model on r
(see Subsection 3.2). The corresponding XploRe results by using the quantlet
Q XFGlucsac.xpl coincide with the values of Lucas and Saccucci (1990).

Q XFGlucsac.xpl

11



p | 0 025 05 075 1 15 2 3 4 5
A=05

L, [ 500 255 88.8 359 175 6.53 3.63 193 134 107

D, | 499 254 884 357 173 644 358 191 136 1.10

A=0.1

L, [500 106 313 159 103 6.09 436 287 219 1094

D, | 492 104 306 155 101 599 431 285 220 183

Table 1: ARL and AD values from Table 3 of Lucas and Saccucci (1990)

3.2 Two-sided CUSUM and Crosier

Crosier (1986) derived a new two-sided CUSUM scheme and compared it with
the established combination of two one-sided schemes. Recall Table 3 of Crosier
(1986), where the ARLs of the new and the old scheme were presented. The
reference value k is equal to 0.5. First, we compare the critical values. By

p | 0 025 05 075 1 15 2 25 3 4 5
old scheme, h =4
L£,]168 742 266 133 838 474 334 262 219 1.71 131
new scheme, h = 3.73
L£,]168 70.7 251 125 7.92 449 3.17 249 209 1.60 1.22
old scheme, h =5
£, 465 139 380 170 104 5.75 4.01 3.11 257 2.01 1.69

new scheme, h = 4.713
L, 465 132 359 16.2 9.87 547 3.82 297 246 1.94 1.59

Table 2: ARLs from Table 3 of Crosier (1986)

using XploRe (@ XFGcrosc.xpl) with 7 = 100 one gets ¢ = 4.0021 (4), 3.7304
(3.73), 4.9997 (5), 4.7133 (4.713), respectively — the original values of Crosier
are written in parentheses. By comparing the results of Table 2 with the results
obtainable by the quantlet @ XFGcrosarl.xpl (r = 100) it turns out, that again
the ARL values coincide with one exception only, namely £ 5 = 4.75 for the
old scheme with h = 4.

Q XFGcrosarl.xpl

Further, we want to compare the results for the Average Delay (AD), which
is called Steady-State ARL in Crosier (1986). In Table 5 of Crosier we find the
related results. A slight modification of the above quantlet @ XFGcrosarl.xpl
allows to compute the ADs. Remember, that the computation of the AD for
the two-sided CUSUM scheme is based on a twodimensional Markov chain.
Therefore the parameter r is set to 25 for the scheme called old scheme by
Crosier. The results are summarized in Table 4.

While the ARL values in the paper and computed by XploRe coincide, those
for the AD differ slightly. The most prominent deviation (459 vs. 455) one
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p| 0 025 05 075 1 15 2 25 3 4 5
old scheme, h =4
Ly | 163 71.6 25.2 123 7.68 4.31 3.03 238 2.00 1.55 1.22
new scheme, h = 3.73
Ly | 164 69.0 243 121 7.69 4.39 3.12 246 2.07 1.60 1.29
old scheme, h =5
£, 459 136 364 160 9.62 528 3.68 2.86 238 1.86 1.53

new scheme, h = 4.713
£u|460 130 35.1 15.8 9.62 5.36 3.77 295 245 191 1.57

Table 3: ADs (steady-state ARLs) from Table 5 of Crosier (1986)

p ] 0 025 05 07 1 15 2 25 3 4 5
old scheme, h = 4
L, | 163 71.6 252 124 7.72 4.383 3.05 2.39 2.01 1.55 1.22
new scheme, h = 3.73
L, | 165 69.1 24.4 12.2 7.70 4.40 3.12 247 2.07 160 1.29
old scheme, h =5
L, | 455 136 36.4 16.0 9.65 530 3.69 2.87 238 1.86 1.54

new scheme, h = 4.713
L£,]460 130 35.1 15.8 9.63 5.37 3.77 295 245 191 157

Table 4: ADs (steady-state ARLs) computed by XploRe, different values to
Table 3 are printed as italics Q XFGerosad. xpl

observes for the old scheme with A = 5. One further in-control ARL difference
one notices for the new scheme with A = 3.73. All other differences are small.
There are different sources for the deviations:

1. Crosier computed D®?) = 0_732TL) / (Q32Tl) and not the actual limit D
(see 8, 10, and 12).

2. Crosier used ARL(r) = ARLo+B/r*+C/r* and fitted this model for r =
8,9,10,12,15. Then, ARL, is used as final approximation. In order to
get the above D(2) one needs the whole vector L, such that this approach
might be more sensitive to approximation errors than in the single ARL
case.

4 Real data example — monitoring CAPM

There are different ways of applying SPC to financial data. Here, we use a
twosided EWMA chart for monitoring the Deutsche Bank (DBK) share. More
precisely, a capital asset pricing model (CAPM) is fitted for DBK and the DAX
which is used as proxy of the efficient market portfolio. That is, denoting with
Toax,t and rpex ¢ the log returns of the DAX and the DBK, respectively, one
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assumes that the following regression model is valid:
Tpek,t = Q& + ﬂrDAX,t + &¢ (14)

Usually, the parameters of the model are estimated by the ordinary least squares
method. The parameter 3 is a very popular measure in applied finance, Elton
and Gruber (1991). In order to construct a real portfolio, the § coefficient
is frequently taken into account. Research has therefore concentrated on the
appropriate estimation of constant and time changing 8. In the context of SPC
it is therefore useful to construct monitoring rules which signal changes in .
Contrary to standard SPC application in industry there is no obvious state of
the process which one can call ”in-control”, i.e. there is no target process.
Therefore, pre-run time series of both quotes (DBK, DAX) are exploited for
building the in-control state. The daily quotes and log returns, respectively,
from january, 6th, 1995 to march, 18th, 1997 (about 450 observations) are used
for fitting (14):

AN O V A ss df MSS F-test P-value
Regression 0.025 1 0.025 445.686 0.0000
Residuals 0.025 448 0.000

Total Variation 0.050 449 0.000

Multiple R = 0.70619

R"2 = 0.49871

Adjusted R"2 = 0.49759

Standard Error = 0.00746

PARAMETERS Beta SE StandB t-test P-value
b[ 0,]= -0.0003 0.0004 -0.0000 -0.789 0.4307
bl 1,]= 0.8838 0.0419 0.7062 21.111 0.0000

With b[1,] = 8 = 0.8838 a typical value has been obtained. The R? =
0.49871 is not very large. However, the simple linear regression is considered
in the sequel. The (empirical) residuals of the above model are correlated (see
Figure 5). The SPC application should therefore be performed with the (stan-
dardized) residuals of an AR(1) fit to the regression residuals. For an application
of the XploRe quantlet armacls (quantlib times) the regression residuals were

standardized. By using the conditional least squares method an estimate of
6 = 0.20103 for the AR(1) model

€ = 0E_1 + M (15)

has been obtained. Eventually, by plugging in the estimates of a, 8 and p,
and standardizing with the sample standard deviation of the pre-run residuals
series (see (15)) one gets a series of uncorrelated data with expectation 0 and
variance 1, i.e. our in-control state. If the fitted model (CAPM with AR(1)
noise) remains valid after the pre-run, the related standardized residuals behave
like in the in-control state. Now, the application of SPC, more precisely of a
twosided EWMA chart, allows to monitor the series in order to get signals, if
the original model was changed. Changes in « or § in (14) or in g in (15) or
in the residual variance of both models lead to shifts or scale changes in the
empirical residuals series. Hence, the probability of an alarm signaled by the
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Figure 5: Partial autocorrelation function of CAPM regression residuals

EWMA chart increases (with one exception only — decreased variances). In
this way a possible user of SPC in finance is able to monitor an estimated and
presumed CAPM.

In our example we use the parameter A = 0.2 and an in-control ARL of
500, such that the critical value is equal to ¢ = 2.9623 (the Markov chain
parameter r was set to 100). Remark, that the computation of ¢ is based on
the normality assumption, which is seldom fulfilled for financial data. In our
example the hypothesis of normality is rejected as well with a very small p value
(Jarque-Bera test with quantlet jarber). The estimates of skewness 0.136805
and kurtosis 6.64844 contradict normality too. The fat tails of the distribution
are a typical pattern of financial data. Usually, the fat tails lead to a higher false
alarm rate. However, it would be much more complicated to fit an appropriate
distribution to the residuals and use these results for the ”correct” critical value.

The Figures 6 and 7 present the EWMA graphs of the pre-run and the
monitoring period (from march, 19th, 1997 to april, 16th, 1999). In the pre-run
period the EWMA chart signals 4 times. The first 3 alarms seem to be outliers,
while the last points on a longer change. Nevertheless, the chart performs
quite typical for the pre-run period. The first signal in the monitoring period
was obtained at the 64th observation (i.e. 06/24/97). Then, we observe more
frequently signals than in the pre-run period, the changes are more persistent
and so one has to assume, that the pre-run model is no longer valid. A new
CAPM has therefore to be fitted and, if necessary, the considered portfolio has
to be reweighted. Naturally, a new pre-run can be used for the new monitoring

period. Q XFGcapmarl .xpl
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Twosided EWMA chart

76 lambda = 0.20, in-control ARL = 499

Zt

Figure 6: Twosided EWMA chart of the standardized CAPM-AR(1) residuals
for the pre-run period (06/01/95 - 03/18/97)

Twosided EWMA chart

64 lambda = 0.20, in-control ARL = 499

Figure 7: Twosided EWMA chart of the standardized CAPM-AR(1) residuals
for the monitoring period (03/19/97 - 04/16/99)
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