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Abstract

We propose a model of correlated multi-firm default with incomplete
information. While public bond investors observe issuers’ assets and de-
faults, we suppose that they are not informed about the threshold asset
level at which a firm is liquidated. Bond investors form instead a prior
on these thresholds. Stochastic dependence between default events is
induced through correlated asset values and correlated default thresh-
olds. The former results from dependence of firms on common macro-
economic factors, while the latter corresponds to direct inter-firm link-
ages. Having addressed this issuer interdependence, the predictions of
our model are consistent with empirically well documented facts, in
particular the clustering of defaults. We characterize joint conditional
default probabilities as assessed by the imperfectly informed secondary
market. The representation of dependence via (conditional) copulas is
emphasized. We propose the default time copula as a consistent default
correlation measure, which overcomes the limitations of existing covari-
ance based measures. A case study is examined, where issuers’ assets
follow geometric Brownian motions and bond investors’ threshold prior
is uniform.
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1 Introduction

In this paper we present a structural model of correlated multi-firm default, in
which the default characteristics of issuers are not completely transparent to
bond investors. The model predictions are consistent with several empirically
documented facts.

A number of studies have investigated historical bond price and default
data. They found, quite plausibly, that credit spreads as well as aggregate
default rates are strongly related to general macro-economic factors such as
the level of default-free interest rates, GDP growth rates, equity index returns
and other business cycle indicators (see, for example, Duffee (1998) and Keenan
(2000)). Another observation from the latest Moody’s report is that there are
default clusters around times of economic downturn. This clustering refers to
infection effects and cascading defaults, where the default of a firm immediately
increases the default likelihood of another firm dramatically. In its extreme
form, a default directly triggers the default of another firm. Such effects can
for instance be induced through mutual capital holdings, financial guarantees,
or parent-subsidiary relationships. In a recession, default rates increase and
so does the likelihood of observing infectious defaults. Recent evidence of the
default clustering phenomenon includes the banking crisis in Japan.

These empirical observations have an important consequence: defaults of
firms are stochastically dependent. We can distinguish two mechanisms lead-
ing to default dependence. First, the financial health of any firm depends on
common factors related to the state of the general economy. Second, firms are
also directly linked and thus the health of a particular firm also depends on
the default status of other firms. A thorough understanding of these mech-
anisms and the resulting default dependence structure, going beyond simple
linear default correlation measurement, is of vital importance for corporate
security valuation, design and analysis of default insurance contracts, default
risk aggregation and management, regulation of financial institutions, and the
counteraction of financial crises. Direct inter-firm linkages deserve special em-
phasis because of their potentially dangerous effects.

The modeling of default risk and the valuation of default-prone securities
on the level of an individual firm is now well understood (see Lando (1997)
for a survey). But only relatively few approaches attempt to incorporate the
interdependence of default events. In the class of intensity based models, where
the stochastic structure of default is modeled through an intensity process,
default correlation can be induced by correlation between intensities through
time [Duffie & Garleanu (2001), Jarrow, Lando & Yu (2000)]. Such an approach
leads to conditionally independent default events and would capture firms’
dependence on common factors. To accommodate the fact that the default of
some firm may directly increase the default likelihood of some closely associated
firm, Jarrow & Yu (2001) assume the intensity of a particular firm to be a
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function also of the default status of other firms. Similar ideas appear in Duffie
& Singleton (1998), Davis & Lo (2001), and Schönbucher & Schubert (2001).
Lando (1998) and Lando (2000) discusses both dependence mechanisms in a
credit ratings-based framework.

In the class of structural models, one takes as given the dynamics of a
firm’s asset value. A default takes place if assets are sufficiently low relative
to liabilities. To model firms’ dependence on common economic factors, one
can assume that assets are correlated through time, cf. Kealhofer (1998), Gup-
ton, Finger & Bhatia (1997), and Zhou (2001). In this paper, we extend this
approach in order to capture also the effects of direct firm linkages.

In our structural model a default is defined as the first time a firm’s assets
fall below some threshold value. In practice, however, it is typically difficult for
bond investors to observe assets and threshold value. Duffie & Lando (2001)
recently examined term structures of credit spreads with imperfect asset in-
formation. Giesecke (2001) analyzes credit spreads in the general imperfect
information case. It turns out that in the realistic incomplete information case
the credit spreads implied by a structural model are empirically more plausi-
ble than with perfect observation. This is due to the fact that with incomplete
observation the default is an unpredictable surprise event. In order to retain
these desirable properties, in this paper we assume that bond investors cannot
observe the threshold asset level at which a firm is liquidated. Bond investors
form instead a prior distribution on firms’ thresholds.

As with complete information, the joint dependence of firms on the state
of the economy can be modeled through correlation between firms’ assets. With
incomplete information, there is an additional source for default correlation:
Bond investors can account for direct linkages between firms by presuming
dependence between the default thresholds of different firms. This dependence
is reflected in investors’ threshold prior distribution. The prior is updated
with the default status information arriving over time. This procedure can be
thought of as an re-assessment of a firm’s financial health in light of the surpris-
ing default of some closely associated firm. Such an immediate re-assessment
leads to jumps in credit spreads of surviving firms upon default events in the
market. This is characteristic for the default clustering phenomenon and cor-
responds to the idea of contagion among events of defaults.

We characterize joint conditional default probabilities for any group of
firms, given the incomplete information of the secondary market revealed over
time. This default distribution is a crucial prerequisite for (multi-name) credit
derivatives valuation and corporate bond portfolio risk measurement and man-
agement. We show that joint default probabilities are critically influenced by
the dependence structures of both running minimum asset process and default
thresholds. This confirms and complements recent results of Frey & McNeil
(2001). For the consistent measurement of default correlation we propose the
copula of the default times. This copula overcomes the limitations of existing
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covariance based measures, since it separates the complete non-linear default
dependence structure from marginal default behavior.

The representation of dependence between random quantities via copulas
and the newly introduced conditional copulas is one of our methodological con-
tributions. In addition, we recast the existing first-passage structural default
models in a common framework by stressing the role of the running minimum
asset process. This process tracks the historic low of the asset value.

The paper is organized as follows. In Section 2 we formulate the model.
The joint conditional default time distribution is characterized in Section 3.
In Section 4 we analyze the default dependence structure. In Section 5, we
exemplify our general results in the special case where assets follow a geometric
Brownian motion. Section 6 concludes. The Appendix contains the proofs.

2 The Model

2.1 Firms, Defaults, and Information

We consider an economy with a financial market. Uncertainty is modeled by
a probability measure P . Investors are assumed to be risk-neutral; on the
financial market they can trade in bonds issued by several firms. The index set
of all firms is denoted I = {1, 2, . . . , n}, where n < ∞. We take as given some
Rn-valued stochastic process V = (V 1, . . . , V n), and we denote by (Ft)t≥0 the
filtration generated by V . The process V i = (V i

t )t≥0 is Markovian, continuous,
and normalized to satisfy V i

0 = 0. V i
t is a sufficient statistic for the expected

discounted future cash flows of firm i as seen from time t. We will therefore
call V i asset process. The running minimum asset process (M i

t )t≥0 is defined
by

M i
t = min{V i

s | 0 ≤ s ≤ t}.

A firm has issued non-callable consol bonds, paying coupons at some con-
stant rate as long as the firm operates. When a firm stops servicing the coupon,
we say it defaults. It then enters financial distress and some form of corpo-
rate reorganization takes place. Consistent with this time-homogeneous capital
structure, bond investors suppose that there is a vector of default thresholds
D = (D1, . . . , Dn), such that firm i defaults as soon as the asset value falls to
the level Di < 0. The random default time is thus given by

τi = min{t > 0 |V i
t ≤ Di} (1)

and we set τ = (τ1, . . . , τn). By convention, V i
t = V i

τi
for t ≥ τi. With the

running minimum asset process M i we obtain immediately

{τi ≤ t} = {M i
t ≤ Di}. (2)
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Bond investors are outside investors and their access to inside firm informa-
tion is limited. While they observe firms’ assets (through the stock market,
for example) and publicly announced default incidents, we suppose that they
cannot directly observe firms’ default thresholds. That is, the filtration (Gt)t≥0

describing the information flow on the public bond market is defined by

Gt = Ft ∨ σ(τ ∧ t), (3)

where a∧ b denotes the minimum of a and b. In lack of threshold information,
investors form a continuous and strictly increasing prior distribution G on D,
which we take as given. Thresholds are assumed to be independent of assets.

2.2 Determinants of Correlated Default

Default correlation – the stochastic dependence between defaults of different
firms – has two distinctive sources in our model. First, all firms’ health de-
pends on common macro-economic factors, such as the stage of some business
cycle, commodity prices, interest rates, or consumer behavior. This results in
an indirect association of firms which we will call macro-correlation. We ac-
commodate this macro-correlation by letting firms’ asset values be correlated.
Asset value dependence is formally described by the running minimum asset
copula CM

t1,...,tn of the vector Mt = (M1
t1
, . . . ,Mn

tn). Assuming that the distribu-
tion function Hi(·, t) of M i

t is continuous on (−∞, 0] for fixed t, we can then
represent the joint distribution of Mt uniquely as

P [M1
t1
≤ x1, . . . ,M

n
tn ≤ xn] = CM

t1,...,tn(H1(x1, t1), . . . , Hn(xn, tn)), (4)

for all fixed ti > 0 and all xi ≤ 0. The copula CM
t1,...,tn represents the complete

dependence structure of the vector Mt.
1 We refer to Nelsen (1999) for an

introduction to copula functions.
Second, due to parent-subsidiary relationships or mutual capital hold-

ings, firms are also directly linked. We will call this association on the micro-
economic firm level micro-correlation. Bond investors account for this by pre-
suming dependence between default thresholds of micro-correlated firms. This

1The distribution of Mt is completely determined by that of the given asset process V .
By virtue of (4), we can construct the running minimum asset copula as follows:

CM
t1,...,tn

(u1, . . . , un) = P
[
M1

t1 ≤ H−1
1 (u1, t1), . . . ,Mn

tn
≤ H−1

n (un, tn)
]
,

where u ∈ [0, 1] and H−1
i (·, t) is the generalized inverse of Hi(·, t). If assets V i follow a

Brownian motion, then both Hi(·, t) and the distribution function of Mt in case n = 2 are
known, cf. Borodin & Salminen (1996) and Rebholz (1994). Here the copula CM

t,s can be
characterized more explicitly. We are not aware of results relating the copula of V to that
of M , which would provide a more direct way to construct CM

t1,...,tn
.
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threshold dependence is formally described by the copula CD of the prior G,
corresponding to the unique representation

G(x1, . . . , xn) = CD(G1(x1), . . . , G
n(xn)), xi ≤ 0, (5)

for marginal threshold distributions Gi, which can be thought of as the idiosyn-
cratic prior component corresponding to firm-specific threshold determinants.
We can think of the copula CD as representing industrial organization-related
threshold determinants which are due to direct issuer linkages. To give an ex-
ample, the default point of a firm being an subsidiary of another company will
not only depend on its own firm-specific characteristics, but also on the type
and extent of the linkage to the parent firm. The extent of the linkage may be
related to the cost allocation between the entities and the dependence of the
subsidiary on the human or capital resource inflow from the parent.

3 Joint Distribution of Defaults

The goal of this section is to characterize the joint distribution of defaults as
assessed by the incompletely informed secondary market, given by

Ft(T1, . . . , Tn) = P [τ1 ≤ T1, . . . , τn ≤ Tn | Gt], (6)

and linking its properties to the stylized facts of historical default data. In
Section 5, where we make specific assumptions on the evolution of assets and
the threshold prior, we turn to a more explicit discussion of the general results
derived in the following.

3.1 General Case with Incomplete Information

Investors start at time t = 0 with the (given) prior threshold distribution G.
With the passage of time, firms go bankrupt and thereby reveal information on
their default threshold. Bond investors use that information to update their
estimates on the thresholds of the remaining firms. In order to study this
Bayesian updating procedure, let us define the process (St)t≥0, taking values
in the power set P(I) of the firm index set I, by

St = {i ∈ I : τi ≤ t}. (7)

Since it collects the indices of all those bonds having defaulted by time t, we
will call the set St the default scenario at t. By (2) and the continuity of the
asset process V i, we get

{St = s} =
⋂
i∈s

{Di = M i
τi
} ∩

⋂
i∈I−s

{Di < M i
t}.
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Given some default scenario s ∈ P(I) appears at time t, that means bond
investors know that Di = M i

τi
for all defaulted firms i ∈ s and that Di < M i

t

for all operating firms i ∈ I − s. With any default scenario appearing at time
t we can hence associate a set B(Mt, ·) ∈ Bn

− such that

{D ∈ B(Mt, s)} = {St = s}.

In the following we relate the updated threshold belief to the prior.

Proposition 3.1. Let L denote the joint law of D. On the set {St = s}, the
a posteriori threshold belief is represented by the distribution

P [D ∈ A | Gt] =
L(A ∩B(Mt, s))

L(B(Mt, s))
, A ∈ Bn

−.

As an example, let us consider a time t such that St = ∅; i.e. there has
been no default by t. Then the thresholds of all firms satisfy Di < M i

t or,
put another way, D ∈ B(Mt, ∅) = (−∞, M1

t ) × . . . × (−∞, Mn
t ). Noting that

G(x1, . . . , xn) = L((−∞, x1) × . . . × (−∞, xn)), Proposition 3.1 implies that
the Gt-conditional distribution function Gt of the vector D is given by

Gt(x1, . . . , xn) =
G(x1 ∧M1

t , . . . , xn ∧Mn
t )

G(M1
t , . . . ,Mn

t )
, xi ≤ 0.

We now use the familiar idea of a copula to separate the dependence
structure from the conditional threshold distribution. We thus introduce the
process (CD

t )t≥0, where CD
t : Ω × [0, 1]n × [0,∞) → [0, 1] is the conditional

threshold copula, representing the conditional threshold dependence structure:

Gt(x1, . . . , xn) = CD
t (G1

t (x1), . . . , G
n
t (xn)), xi ≤ 0,

where Gi
t is the marginal conditional threshold distribution. Let us denote by

I i
t(u) = inf{x ≥ 0 : Gi

t(x) ≥ u} the generalized inverse of Gi
t. Since the Gi

t are
continuous for all fixed times t < τi, the copula CD

t can be constructed via

CD
t (u1, . . . , un) = Gt(I

1
t (u1), . . . , I

n
t (un)), (8)

where ui ∈ [0, 1] is Gt-measurable. Let us observe that CD and CD
t are not

equal in general; for an example we refer to Section 5.
The (ordinary) copula couples marginal distributions with the joint dis-

tribution of some random vector. The copula linking the marginal survival
functions with the joint survival function is called survival copula, cf. Nelsen
(1999). Ordinary copula and survival copula express in an equivalent way the
dependence structure of a given random vector. In analogy to (CD

t )t≥0, we
introduce the conditional survival threshold copula process (C̄D

t )t≥0.
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Proposition 3.2. The conditional survival threshold copula can be constructed
from the conditional threshold copula via

C̄D
t (u1, . . . , un) =

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inCD
t (v1i1 , . . . , vnin),

where vj1 = 1− uj and vj2 = 1 and ui ∈ [0, 1] is Gt-measurable.

We are now in a position to characterize the joint conditional default
distribution (6), which describes both the individual default behavior of firms
and the interrelation across the performance of firms. This distribution is the
key for the solution of a variety of problems related to the measurement of
dependent credit risks, including the aggregation of correlated default risks,
and the analysis of derivative instruments having payoffs contingent on the
performance of several reference entities.

Theorem 3.3 (Joint default distribution). The conditional joint default
probability is for Ti > t and maxi τi > t given by

Ft(T1, . . . , Tn) = E
[
C̄D

t (1−G1
t (M

1
T1

), . . . , 1−Gn
t (Mn

Tn
)) | Gt

]
.

Let us consider a time t such that St = ∅. From the Markov property of
V and the independence of D and V , for all xi ≤ M i

t we have

P [M1
T1
≤ x1, . . . ,M

n
Tn
≤ xn | Gt] = P [M1

T1
≤ x1, . . . ,M

n
Tn
≤ xn |D < Mt, Vt]

= P [M1
T1−t ≤ x1 − V 1

t , . . . ,Mn
Tn−t ≤ xn − V n

t ].

Representing this probability with the running minimum asset copula, cf. (4),
Theorem 3.3 implies that

Ft(T1, . . . , Tn) =

∫
A

C̄D
t (1−G1

t (x1), . . . , 1−Gn
t (xn))

dCM
T1−t,...,Tn−t(H1(x1 − V 1

t , T1 − t), . . . , Hn(xn − V n
t , Tn − t)),

where we integrate over A = (−∞, M1
t )×. . .×(−∞, Mn

t ). This expression war-
rants further comment. First, with incomplete threshold observation there are
two sources of default correlation: dependence of asset values (inducing the cop-
ula CM

t1,...,tn) and threshold dependence (inducing the copula C̄D
t ). Second, joint

default probabilities and hence the joint default risk profile of the secondary
bond market critically depend upon the statistical properties of both run-
ning minimum asset copula CM

t1,...,tn and conditional survival threshold copula
C̄D

t . All else being equal, copulas CM
t1,...,tn implying low values in all marginals

simultaneously lead to an increased likelihood of joint defaults, correspond-
ing to an extreme risk. This copula property is called lower tail dependence,
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cf. Nelsen (1999). CM
t1,...,tn is determined by the initially chosen multivariate

model of the asset processes V 1, . . . , V n, going beyond linear asset correlation.
Likewise, copulas C̄D

t implying high threshold values in all marginals simul-
taneously induce higher joint default probabilities. This corresponds to upper
tail dependence. For a given time t, the copula C̄D

t is determined by the chosen
a priori threshold copula CD. In Section 5 we examine the particular effects
the properties of CD have on joint defaults.

Noting the definition of a copula, the default probability of a single firm
is obtained from Theorem 3.3 by setting n = 1. On {τi > t} we have

F i
t (T ) = P [τi ≤ T | Gt] = E[1−Gi

t(M
i
T ) | Gt], t ≤ T. (9)

If Di has a Gt-conditional density gi
t, we can equivalently write

F i
t (T ) =

∫ 0

−∞
P [M i

T ≤ x | Gt]g
i
t(x)dx, t ≤ T. (10)

The mapping t → F i
t (T ) can for fixed T be subject to jumps upon the de-

fault arrival of other firms j 6= i, given a sufficient degree of micro-correlation
between the firms. To give an example, suppose that there are two firms i
and j where each firm holds a substantial amount of the other’s debt. If a
firm defaults, the risk of the remaining firm to experience financial distress is
increased substantially. Letting τj < τi, for a sufficiently large horizon T the
default probability F i

t (T ) is likely to jump upwards at time t = τj. The jump
corresponds to an immediate re-assessment of firm i’s future performance by
bond investors, given the information that the directly associated firm j has
defaulted. Loosely, the stronger the link, the more intense the jump.

Bond prices implied by our model exhibit an analogous jump pattern.
Consider a defaultable zero bond2 with maturity date T and a recovery pay-
ment of 1 − δi at T . We let δi ∈ [0, 1] be independent and Gτi

-measurable,
with expected value δ̄i. Let d(t, T ) denote the time-t price of a default-free
zero bond maturing at T . Assuming that defaults are independent of riskless
interest rates, the defaultable zero bond has at time t < τi a price of

pi(t, T ) = d(t, T )− d(t, T ) δ̄i F
i
t (T ), t ≤ T (11)

which is the value of a riskless zero bond less the expected default loss. The
bond price of firm i can jump upon default incidences of micro-correlated firms,
which is consistent with the clustering of defaults and corresponds to the idea
of contagion among events of defaults.

2In our model, the capital structure of the firms is based on consol bonds having no fixed
maturity and paying out a constant coupon to the bond investors. We can strip the consol
coupon into a continuum of zero coupon bonds with recovery being pro-rata based on the
default-free market value that the strips contribute to the consol. As for the valuation of the
consol bond, it is therefore enough to consider the valuation of the zero bonds.
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This effect is a consequence of two properties of our model. The first is
that firms can be micro-correlated; macro-correlation does not play any role
here. The second is that defaults are surprise events.3 Upon a default in the
market, bond investors revise their a posteriori threshold belief Gt immediately
according to the degree of micro-correlation between the defaulted firm and
the operating firms, cf. Proposition 3.1. This updating leads then to a revision
of default probabilities via (9).

3.2 Comparison: Perfect Information Case

For comparison, let us briefly consider the situation when bond investors are
perfectly informed and each Di is a known constant. Then, letting t such that
St = ∅, from Theorem 3.3 and the Markov property of V we obtain

Ft(T1, . . . , Tn) = P [M1
T1−t ≤ D1 − V 1

t , . . . ,Mn
Tn−t ≤ Dn − V n

t ]

= CM
T1−t,...,Tn−t(H1(D1 − V 1

t , T1 − t), . . . , Hn(Dn − V n
t , Tn − t)).

With complete information, default dependence is induced by asset correla-
tion only. Defaults are no surprise events any more and jumps in bond prices
upon defaults of linked firms cannot appear. The approach of Zhou (2001),
who models assets as correlated Brownian motions, shares these properties.
For Brownian asset dynamics, the bivariate joint default probability Ft(T1, T2)
can be explicitly calculated using the results of Rebholz (1994) on the joint
distribution of (M1

T1
, M2

T2
). The above characterization offers in fact a general

multivariate conditional representation of Zhou’s (2001) formula in terms of
the running minimum asset copula and marginal running minimum asset dis-
tribution. If we pass to the incomplete information situation, direct inter-firm
linkages come into play, clustering effects can appear, and conditional default
probabilities are provided by Theorem 3.3.

With complete information and for given Hi(Di, t), joint default prob-
abilities depend on the statistical properties of the running minimum asset
copula only. This is consistent with a result derived by Frey & McNeil (2001)
for general latent variable models based on complete information. For given
marginal default probabilities, they showed that the copula of the latent vari-
ables completely determines the joint default probability of several issuers. In
a simulation study, Frey & McNeil (2001) demonstrate that the distribution
of the total number of defaults is highly sensitive to the tail dependence prop-
erties of the latent variable copula. The latent variables can in our setup be
interpreted as the assets’ running minima.

3That is, each τi is a totally inaccessible or unpredictable (Gt)-stopping time. That means
that investors observe a default only in the moment where it occurs. For a detailed discussion
of this property and its implications, see Giesecke (2001).
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4 Characterizing Default Correlation

The goal of this section is to clarify the structure of the association between
firm defaults. There is a broad consensus in the existing literature to measure
the pairwise default correlation between two firms i and j over some time
period [0, t] via the linear correlation coefficient

ρ(N i
t , N

j
t ) = Cov[N i

t , N j
t ](Var[N i

t ] Var[N j
t ])−

1
2 , (12)

cf., for example, Zhou (2001), Hull & White (2000), Kealhofer (1998), and
Lucas (1995). Nk

t = 1{t≥τk} is the default indicator for some default time τk,
which is not necessarily defined as in (1). Li (2000) considers the linear survival
time correlation ρ(τi− t, τj− t). In our model, E[N i

t N j
t ] and E[Nk

t ] are directly
available from Theorem 3.3 and ρ can be easily computed.

Measuring default correlation via ρ(N i
t , N

j
t ) has however severe limita-

tions. The problems arise from the fact that covariance is the natural mea-
sure of dependence only for joint elliptically distributed random variables
[Embrechts, McNeil & Straumann (2001)]. The vector (N i

t , N
j
t ) has Bernoulli

marginals with success probability E[Nk
t ]; it is not joint elliptically distributed.

Covariance is not the natural dependence measure anymore: it cannot be ex-
pressed as a function of the corresponding copula only. At least three problems
with the interpretation of ρ can then arise. First, besides the fact that ρ mea-
sures linear dependence only, ρ = 0 does not imply independence between
the defaults of the two firms. Second, small correlations ρ cannot be inter-
preted as implying weak dependence. Third, given the marginals E[Nk

t ], we
have −1 < ρ < 1. In view of this, the conclusions drawn in Zhou (2001) and
Lucas (1995) based on ρ should be taken with care.

4.1 Default Copula

What is then a proper default dependence measure? A natural choice is the cop-
ula of the default indicator vector (N1

t , . . . , Nn
t ). Although not scalar-valued,

this copula represents the complete default (event) dependence structure. But
we face another problem here: since the marginal distributions of (N1

t , . . . , Nn
t )

are discrete, its copula is not unique anymore.4 To circumvent this problem,
we propose the copula Cτ of the (continuous) default time vector τ as a mea-
sure of default correlation. The default time copula Cτ represents the complete
default (time) dependence structure.

4Tajar, Denuit & Lambert (2001) suggest a copula-type representation of bivariate ran-
dom vectors with Bernoulli marginals. The representation is unique and carries all the in-
formation about the dependence structure.
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Theorem 4.1. Let J i denote the generalized inverse of F i
0. The copula Cτ of

the default times is for all ui ∈ [0, 1] given by

Cτ (u1, . . . , un) = E
[
C̄D(1−G1(M1

J1(u1)), . . . , 1−Gn(Mn
Jn(un)))

]
As a joint distribution, Cτ satisfies a version of the Fréchet-bounds in-

equality W−(u) ≤ Cτ ≤ W+(u) for all u ∈ [0, 1]n, cf. Nelsen (1999). If
Cτ = W−, then the defaults are perfectly negatively correlated (we speak
of countermonotone defaults). If Cτ = W+, then the defaults are perfectly
positively related (and we speak of comonotone defaults). If Cτ = Π, where
Π(u1, . . . , un) = u1 · · ·un, then the defaults are independent. This suggests a
partial order on the set of (default) copulas, which can allow a comparison
of default time vectors. Since a copula is a multivariate distribution function
with standard uniform marginals, a pairwise copula is easily constructed by
Cτ (1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1).

The copula Cτ captures the complete (non-linear) dependence across de-
faults. Cτ measures any correlation between the random variables τ1, . . . , τn,
whether induced by macro or micro-correlation. The default dependence struc-
ture is therefore a function of both asset and threshold dependence structure,
represented by CM and CD. This is best seen when we rewrite Theorem 4.1:

Cτ (u1, . . . , un) =

∫
Rn
−

C̄D(1−G1(x1), . . . , 1−Gn(xn))

dCM
J1(u1),...,Jn(un)

(
H1(x1, J

1(u1)), . . . , Hn(xn, J
n(un))

)
.

From this it is also seen that, in line with intuition, the defaults are independent
if and only if assets and thresholds are independent. Indeed, if CD = Π, then
C̄D

0 = Π by virtue of Proposition 3.2. Using the fact that CM
t1,...,tn = Π for all

ti ≥ 0, we have

Cτ (u1, . . . , un) =

∫
Rn
−

Πn
i=1(1−Gi(xi)) dH1(x1, J

1(u1)) · · · dHn(xn, J
n(un))

= Πn
i=1E[1−Gi(M i

Ji(ui)
)]

= Πn
i=1ui.

From our discussion in Subsection 3.2, in a structural default model with
observable thresholds the complete range of default dependence (from coun-
termonotonicity through comonotonicity) can be induced by a suitable choice
of the assets’ running minima copula CM . If thresholds are nonobservable and
independent (CD = Π), it is easy to check that the range of achievable de-
fault time correlation is in fact limited: the τi are conditionally independent
given the asset value paths. Under incomplete information, the full range of
default dependence can only be achieved by admitting correlation between the

12



thresholds. In Section 5, we show that even in the absence of asset correlation
the complete range of default dependence can be induced through a suitable
choice of the threshold copula CD.

In various applications such as derivatives valuation it is often required to
simulate correlated default times. On the basis of Theorem 4.1, it is possible
to simulate a random vector (τ1, . . . , τn) having a joint distribution given by
Theorem 3.3 directly from the copula Cτ , see Embrechts et al. (2001) for details
on algorithms. This provides a theoretically consistent simulation approach,
compared to an approach based on marginal default probabilities F i and a
linear default correlation matrix.

4.2 Rank Default Correlation

A scalar-valued measure of dependence can perhaps provide more intuition
about the degree of default correlation. In order to capture the complete de-
pendence, we require such a measure to be defined on copula level. Rank
correlation fulfills this requirement as we shall see. It measures the degree
of monotonic dependence, whereas linear correlation measures the degree of
linear dependence only. We can for example define Spearman’s rank default
correlation by

ρS(τi, τj) = ρ(F i
0(τi), F

j
0 (τj)), (13)

where ρ is the ordinary linear correlation and F k
0 is the default probability

of firm k. Since (F i
0(τi), F

i
0(τi)) has joint distribution Cτ (we have F k

0 (τk) ∼
U(0, 1)), ρS is the linear correlation of the copula Cτ . Kendall’s rank correla-
tion (cf. Section 5) can be used in an equivalent way to express the monotonic
association among the default times. By using the definition of linear correla-
tion, we obtain

ρS(τi, τj) = 12

∫ 1

0

∫ 1

0

(Cτ (u, v)− uv) du dv, (14)

showing that Spearman’s rank correlation depends on the copula only. Also,
ρS is seen to be a scaled version of the signed volume enclosed by the copula
Cτ and the product copula Π(u, v) = uv. Thus ρS is a measure of the average
distance between the actual distribution of (τi, τj) and their distribution given
independence. Besides being invariant under (strictly) increasing transforma-
tions, ρS has the following useful properties, which are easily verified using
(14): ρS ∈ [−1, 1], ρS = 1 iff Cτ = W+, ρS = −1 iff Cτ = W−, and ρS = 0 if
Cτ = Π.
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5 A Specific Two-Firm Model

The results in the previous sections have been established without specific as-
sumptions on the law of the underlying asset processes and the prior threshold
beliefs of the bond investors. In order to exemplify our findings, in this section
we will examine a two-firm model based on geometric Brownian motion. In
contrast to the existing approaches, the Brownian motions are chosen to be
independent; default correlation is induced by default threshold dependence.

5.1 Assets, Information, and Prior

We consider a bond market where bonds of two firms, labeled 1 and 2, are
traded. Let us suppose that the firms are positively related. For example,
each firm could hold a substantial part of the other one’s debt. Following the
tradition in structural default modeling, we assume that the total market value
Zi of firm i follows a geometric Brownian motion:

dZ i
t = Zi

t(midt + σidW i
t ), (15)

where mi ∈ R and σi > 0 are constant drift and volatility parameters, respec-
tively. (W 1, W 2) is a two-dimensional standard Brownian motion. This implies
that the firm values itself are not correlated. This is plausible if the firms are
from quite different industries, so that their earnings/cash flows and hence firm
values are not directly related. Macro-correlation is hence not considered; we
will focus on direct linkages between firm defaults.

(15) has unique solution Zi
t = Zi

0 eBi
t , where Zi

0 > 0 is the initial value of
firm i and Bi is a Brownian motion with drift µi = mi − 1

2
σ2

i , i.e.,

Bi
t = µit + σiW

i
t . (16)

The incomplete information available to the secondary market is modeled by
the filtration (Gt)t≥0, which is generated by the firm value processes and the
default indicator processes. In lack of complete information, investors form a
prior on the default thresholds. The prior is separated into an idiosyncratic
component and an interrelation component. We assume that the idiosyncratic
prior is uniform. This corresponds to uninformed investors not having any spe-
cific knowledge on the barriers. Reflected by the same idiosyncratic prior for
either firm, the secondary market believes that both firms have similar indi-
vidual default characteristics. Since the firms’ market value follows a strictly
positive geometric Brownian motion process, the prior has support (0, Zi

0).
Denoting the barrier by D̂i, the idiosyncratic prior is then represented by the
distribution function Ĝi(x) = P [D̂i ≤ x] = x/Zi

0. We set D̂ = (D̂1, D̂2).
We assume that bondholders’ interrelation threshold prior is modeled by

the Clayton copula family

CD̂(u, v; θ) = (u−θ + v−θ − 1)−
1
θ , (u, v) ∈ [0, 1]2, θ > 0. (17)
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The Clayton family belongs to the class of Archimedean copulas. For a com-
plete account we refer to Lindskog (2000), who also shows that this family
exhibits lower tail dependence. The parameter θ controls the degree of depen-
dence between the random variables D̂1 and D̂2. We choose θ > 0, imply-
ing that CD̂ displays positive dependence. Specifically, limθ→∞ CD̂(u, v; θ) =

W+(u, v), reflecting perfect positive dependence, and limθ→0 CD̂(u, v; θ) =
Π(u, v), corresponding to independence.

In order to assess the degree of dependence associated with CD̂(u, v; θ)
for a particular θ, we can consider Kendall’s rank correlation ρK , which mea-
sures the degree of monotonic dependence (see, for example, Nelsen (1999)).

ρK(D̂) ∈ [−1, 1] and the copula CD̂ are related via

ρK(D̂) = 4

∫ 1

0

∫ 1

0

CD̂(u, v; θ)dCD̂(u, v; θ)− 1 =
θ

θ + 2
, (18)

showing that ρK is determined by the copula only. ρK is thus invariant under
strictly increasing transformations of the random variables.

From now on we set V i
t = Bi

t for t ≥ 0 and i = 1, 2. That is, our ’asset
process’ V i in the sense of Section 2 is the log-firm value Bi. Notice that the
running minimum asset copula satisfies CM

t1,t2
= Π for all pairs (t1, t2), due to

the assets being independent. We thus introduce the threshold transformation
Di = ln D̂i − ln Zi

0. Since V i
0 = 0, the prior has now support (−∞, 0).

Proposition 5.1. The threshold prior on D = (D1, D2) is represented by the
unique joint distribution function

G(x, y; θ) = (e−θx + e−θy − 1)−1/θ, (x, y) ∈ R2
−.

5.2 Belief Updating

Without loss of generality we set τ1 < τ2, i.e., Firm 1 defaults before Firm
2. Taking into account Proposition 5.1, the conditional joint law of D follows
from Proposition 3.1 by straightforward calculations:

Corollary 5.2. Under the current assumptions, the a posteriori belief of the
bond investors is represented by the conditional distribution

Gt(x, y; θ) =
1

Kt(θ)
(e−θ(x∧M1

t ) + e−θ(y∧M2
t ) − 1)−1/θ on {St = ∅},

where Kt(θ) = G(M1
t , M2

t ; θ) and, for x ∈ [d1 = M1
τ1

, 0],

Gt(x, y; θ) =

(
e−θd1 + e−θ(y∧M2

t ) − 1

e−θd1 + e−θM2
t − 1

)−(1/θ+1)

on {St = {1}}.
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Let us consider the conditional copula CD
t associated with the conditional

distribution Gt, cf. (8). Using the inverse functions I i
t of the marginals Gi

t

derived in Corollary 5.2, for t < τ1 we can verify that

CD
t (u, v; θ) = Gt(I

1
t (u), I2

t (v); θ) = CD(u, v; θ), (19)

so that the threshold copula is invariant under conditioning on {St = ∅}. We
emphasize that this is not always the case in our setting. To give an example,
suppose that the thresholds are comonotone, CD(u, v; θ) = u ∧ v. Then on
{St = {1}}, the copula CD

t must satisfy

Gt(x, y; θ →∞) = 1{x≥d1,y≥d1} = CD
t (1{x≥d1}, 1{y≥d1}; θ →∞),

implying that CD
t (u, v; θ →∞) = uv for all t ≥ 0.

5.3 Default Distribution

We now turn to the joint default distribution when both firms still operate.
We will need the density hi(·, t) of the running minimum M i

t of the Brownian
motion V i

t with drift µi and volatility σi (cf. Borodin & Salminen (1996)):

hi(x, t) =
1

σi

√
t
φ

(
−x + µit

σi

√
t

)
+ exp

(
2µix

σ2
i

)[
2µi

σ2
i

Φ

(
x + µit

σi

√
t

)
+

1

σi

√
t
φ

(
x + µit

σi

√
t

)]
, (20)

where Φ (resp. φ) is the standard normal distribution (resp. density) function.

Corollary 5.3. Under the current assumptions, the conditional joint distri-
bution of the default times is for t < Ti on the set {St = ∅} given by

Ft(T1, T2; θ) =
1

Kt(θ)

∫ M2
t

−∞

∫ M1
t

−∞
(G(x, y)−G(x, M2

t )−G(M1
t , y) + 1)

× h1(x− V 1
t , T1 − t) h2(y − V 2

t , T2 − t) dx dy.

Figure 1 graphs the term structure of joint unconditional default probabil-
ities F0(T, T ; θ). The parameter for computations are as follows: µ1 = µ2 = 6%
(the riskless rate), σ1 = 20%, σ2 = 30%, M1

t = −0.2, and M2
t = −0.1.

In Section 3 the effect of tail dependent threshold copulas CD on joint
default probabilities has been discussed. We now quantify this effect by exam-
ining the shape of the distribution of the number of defaults. Specifically, we
consider the variance Var[NT ] of the random variable NT = 1{τ1≤T}+1{τ2≤T} for
two different threshold copulas. The first is the Clayton copula which exhibits
lower tail dependence. The second is the Gumbel copula

CGu(u, v; θ) = exp
(
−[(− ln u)θ + (− ln v)θ]

1
θ

)
, θ ≥ 1,
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Figure 1: The term structure of joint unconditional default
probabilities, varying θ.

for (u, v) ∈ [0, 1]2, which exhibits upper tail dependence for θ > 1. We have
limθ→∞ CGu(u, v; θ) = W+(u, v) and CGu(u, v; 1) = Π(u, v). Kendall’s rank
correlation is given by ρK = 1 − 1/θ, cf. Lindskog (2000). We now compare
the loss variance VarGu[NT ] that is obtained with the Gumbel copula (i.e. we

set CD̂(u, v; θ) = CGu(u, v; θ)) with the variance VarCl[NT ] obtained with the

Clayton copula in the original setup where CD̂(u, v; θ) is given by (17). For a
horizon of T = 12 months, Figure 2 pictures the ratio VarGu[NT ]/VarCl[NT ] as
a function of the rank threshold correlation ρK . For any given positive degree
of monotonic threshold dependence, VarGu[NT ] exceeds VarCl[NT ] by a factor
of at most 2.3. Hence upper tail dependence of thresholds induces an extreme
loss risk, as the default number distribution gets fat tails (benchmark is the
lower tail dependence case (Clayton copula)). That is, the shape of the default
number distribution differs significantly depending on the presumed threshold
dependence structure CD̂, going beyond monotonic threshold dependence as
measured by ρK . On the other hand, this also shows that for given (for example
estimated) ρK there remains a considerable amount of model risk in choosing

the ’right’ copula CD̂. This finding parallels that of Frey & McNeil (2001), who
study the effect of the asset copula on joint defaults: they find that the choice
of the appropriate asset copula leaves the model risk.

From Corollary 5.3 we obtain directly the conditional default probability
F i

t (T ; θ) of firm i for the horizon T > t. The term structure of Firm 2’s default
probabilities F 2

t (T ; θ) on the set {St = {1}} is plotted in Figure 3. We observe
that the stipulated degree of dependence has a significant effect on the default
probability level. This level increases with longer horizons.

For V 2
t = −0.05, Figure 4 displays F 2

t (T ; θ) as a function of θ for various
time horizons T when both firms still operate. Somewhat surprising at a first
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Figure 2: Default number variance ratio for Gumbel and Clay-
ton threshold copulas as a function of rank threshold correla-
tion.

glance, F 2
t (T ; θ) decreases in the degree of association θ (one can easily check

that Gi
t is increasing in θ, cf. Corollary 5.2). This effect rests on the fact that

investors observe the default status of all firms. The intuition here is that, given
a positive degree of monotonic association between the firms, the information
that Firm 1 has ’survived’ up to time t signals a ’good health’ of Firm 2.
The stronger the association, the more convincing is the fact that Firm 1 still
operates, the higher bond investors rate Firm 2 and the lower F 2

t (T ; θ).
Figure 5 shows F 2

t (T ; θ) on {St = {1}} as a function of θ for various time
horizons T . We see that if Firm 1 has already defaulted, the default probability
of Firm 2 is increasing in θ (again from Corollary 5.2, Gi

t is decreasing in θ).
Here the intuition is as follows: under positive association between the firms, a
default of Firm 1 lets investors conceive a bad state of Firm 2. The stronger the
dependence, the lower is Firm 2’s rating, and the higher its default probability
for a given horizon. The effect of a given change of θ on F 2

t (T ; θ) is for all
horizons higher if Firm 1 has defaulted, compared to the case where it still
operates.

In Section 3, we have shown that default probabilities in our model can
exhibit a distinguishing jump behavior: the default probability of a firm can
for a fixed horizon exhibit jumps upon the default of correlated bonds. For
a time horizon of T = 12 months, Figure 6 displays this effect for Firm 2.
It shows F 2

t (T ; θ) for a fixed t when both firms still operate and when Firm
1 has defaulted. The difference between the curves for a given θ is the jump
that would F 2

t (T ; θ) experience if t = τ1. We observe that the jump size is
increasing in the degree of association θ between the two firms. Clearly, if
there is no relation between the firms, the default status of Firm 1 does not
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Figure 3: Term structure of conditional default probabilities
for Firm 2, varying θ (Firm 1 has defaulted).

affect F 2
t (T ; θ). Note that the jump effect is critically dependent on the time

horizon T . Fairly intuitive, with T → 0 the jump effect vanishes and the jumps
size is increasing in T .

The default correlation between the two firms can be measured by the
copula Cτ of (τ1, τ2), or Spearman’s rank default time correlation ρS(τ1, τ2; θ),
defined in (13). Figure 7 plots ρS as a function of the threshold association
parameter θ. We see that any desired degree of default correlation can be
induced by a suitable choice of the Clayton-copula parameter θ. Even with
independent assets, the range of achievable correlation degrees is not restricted.
It can be scaled from independence through comonotonicity.

5.4 Estimating the Threshold Copula

Let us briefly discuss two parametric methods to estimate the copula CD.
Yet another procedure is suggested by Jouanin, Rapuch, Riboulet & Roncalli
(2001), who use Moody’s Diversity Score. The first method is based on the close
relation between rank correlation ρK(D) and copula CD, and requires historical
default threshold data. Using well-known methods (see, e.g., Gibbons (1988)),
the empirical rank correlation ρK can be estimated. Then the parameter θ of
the copula family CD(·; θ) can be fitted based on (18).

The second procedure is based on historical bond price data, which is
perhaps more readily available than default data. Let us consider firm i’s zero
bond prices pΠ

i if the interdependence prior is CD = Π, i.e. in the case where
investors perceive the default thresholds of the firms to be independent. Corol-
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Figure 4: Conditional default probability Firm 2, varying hori-
zon T (both firms operate).

lary 5.2 yields

Gi
t(x; θ → 0) =

Gi(x; θ → 0)

Gi(M i
t ; θ → 0)

= ex−M i
t , x ≤ M i

t .

Since, from Corollary 5.3, default probabilities are given by

F i
t (T ; θ) = 1−

∫ M i
t

−∞
Gi

t(x; θ)hi(x− V i
t , T − t)dx, (21)

we can now compute pΠ
i (t, T ) using (11). Assuming market efficiency and

that corporate bond prices carry only a default risk premium, we can recover
the implied secondary market’s perception of the micro-dependence structure
across firms by using pΠ

i as a benchmark. For fixed (t, T, δ̄i), the difference
∆i(t, T ) = pi(t, T )− pΠ

i (t, T ) between the actually observed bond price of firm
i on the secondary market and pΠ

i reflects the micro-correlation between the
firms as assessed by the incompletely informed bond investors. If both firms
still operate, then F i

t (T ) is decreasing in θ (cf. Figure 4) and the bond price
pi(t, T ) is increasing in θ. It follows that ∆i(t, T ) ≥ 0. Thus, if ∆i(t, T ) = 0
Firm i is completely independent of Firm j. This provides a test for micro-
independence. If ∆i(t, T ) > 0, the parameter θ is positive and implicitly given
by

∆i(t, T )

δ̄id(t, T )
=

∫ M i
t

−∞

[
ex−M i

t − (e−θx + e−θMj
t − 1)−1/θ

Kt(θ)

]
hi(x− V i

t , T − t)dx,

where we have used (21) and Corollary 5.2. This suggests a method to calibrate
the threshold copula CD from market data.
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Figure 5: Conditional default probability Firm 2, varying hori-
zon T (Firm 1 has defaulted).

6 Conclusion

A thorough understanding of correlated multi-firm default mechanisms is of
vital importance for corporate security valuation, design of default insuring
contracts, risk measurement and management in financial institutions, and
regulation of financial institutions. In this paper we proposed a structural
model of correlated default, where bond investors are not informed about the
asset threshold level at which the firm is liquidated. Default dependence was
induced through asset value correlation and threshold level correlation. The
latter corresponds to direct inter-firm linkages, which can lead to the often ob-
served clustering of defaults. The predictions of our model are consistent with
this clustering and other empirical regularities. Throughout, dependence has
been represented by copula functions, providing new insights into the struc-
ture of firms’ joint default behavior. For the consistent measurement of default
correlation, we suggested the default time copula.
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Figure 6: Conditional default probabilities of Firm 2 when both
firms operate and when Firm 1 has defaulted.

A Proofs

Proof of Proposition 3.1. Since Mt ∈ Ft ⊂ Gt, from the structure of the
σ-field σ(τ ∧ t) 5 and from Bayes’ Theorem, on the set {St = s} we have

P [D ∈ A | Gt] = P [D ∈ A |σ(τ ∧ t) ∨ Ft]

= P [D ∈ A |D ∈ B(Mt, s), Ft]

=
P [D ∈ A ∩B(Mt, s) | Ft]

P [D ∈ B(Mt, s) | Ft]
.

This implies our assertion because D is independent of Ft.

Proof of Proposition 3.2. Fixing some t ≥ 0, we have for ui = 1−Gi
t(xi) ∈

[0, 1] and any xi ≤ 0 the equalities

C̄D
t (1−G1

t (x1), . . . , 1−Gn
t (xn))

= P [D1 > x1, . . . , Dn > xn | Gt]

=
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inP [D1 ≤ v1i1 , . . . , Dn ≤ vnin | Gt]

=
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inCD
t (G1

t (v1i1), . . . , G
n
t (vnin)),

5The σ-field σ(τ ∧ t) ⊆ Gt is generated by the events {τi ≤ u} = {M i
u ≤ Di} for u ≤ t

and i ∈ St as well as the atoms {τi > t} = {M i
t > Di} for i ∈ I − St.
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Figure 7: Spearman’s rank default time correlation as a func-
tion of θ.

where vj1 = xj and vj2 = 0. The second equality can be verified using standard
arguments. The third equality is a consequence of the key copula representation
of joint distributions. Since Gi

t(0) = 1 the claim follows.

Proof of Theorem 3.3. By (2), using the law of iterated expectations we
can write

Ft(T1, . . . , Tn) = P [D1 ≥ M1
T1

, . . . , Dn ≥ Mn
Tn
| Gt]

= E
[
P [D1 ≥ M1

T1
, . . . , Dn ≥ Mn

Tn
| Gt ∨ FT ] | Gt

]
,

where we set T ≥ maxi Ti. Since D is independent of (Ft)t≥0 and M i
Ti
∈ FT ,

our assertion now follows from the fact that the conditional survival threshold
copula C̄D

t satisfies

P [D1 > x1, . . . , Dn > xn | Gt] = C̄D
t (P [D1 > x1 | Gt], . . . , P [Dn > xn | Gt])

= C̄D
t (1−G1

t (x1), . . . , 1−Gn
t (xn))

for any xi ≤ 0.

Proof of Theorem 4.1. Noting that F i
0(T ) is continuous in T , the copula

representation of the multivariate distribution function F0(T1, . . . , Tn) implies
that

Cτ (u1, . . . , un) = F0(J
1(u1), . . . , J

n(un))

The claim now follows directly from Theorem 3.3.
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Proof of Proposition 5.1. For fixed Zi > 0, Di is a strictly increasing
transformation of D̂i. By the invariance property of copulas (cf. Nelsen (1999)),
the copula CD of the transformed threshold vector D remains unchanged:

CD(u, v; θ) = CD̂(u, v; θ).

It follows directly from the transformation Di = ln D̂i− ln Zi
0 that the idiosyn-

cratic prior with respect to Di is represented by the marginal distribution
function

Gi(x) = P [Di ≤ x] = Ĝi(Zi
0 ex) = ex, x ≤ 0,

with density function gi(x) = ex. Since the Gi are continuous, G is now
uniquely determined by CD and the Gi.

Proof of Corollary 5.3. The basis for the derivation in the Brownian
case is Theorem 3.3 for n = 2, which implies

Ft(T1, T2; θ) =

∫ M2
t

−∞

∫ M1
t

−∞
C̄D

t (1−G1
t (x), 1−G2

t (y)) dP [M1
T1
≤ x, M2

T2
≤ y | Gt].

Using the fact that V 1 and V 2 are independent, and hence P [M i
Ti
∈ dx | Gt] =

P [M i
Ti
∈ dx |V i

t ] = hi(x−V i
t , Ti− t)dx, the default distribution can be written

as

Ft(T1, T2; θ) =

∫ M2
t

−∞

∫ M1
t

−∞
C̄D

t (1−G1
t (x), 1−G2

t (y))

× h1(x− V 1
t , T1 − t) h2(y − V 2

t , T2 − t) dx dy.

The conditional survival threshold copula C̄D
t is given by (8). In the bivariate

case it simplifies to

C̄D
t (u, v; θ) = CD

t (1− u, 1− v; θ) + u + v − 1.

From (19), CD
t = CD and by using (17) we have that

C̄D
t (u, v; θ) = ((1− u)−θ + (1− v)−θ − 1)−1/θ + u + v − 1, ∀t ≥ 0. (22)

Substituting the marginals Gi
t, after simplification we get

C̄D
t (1−G1

t (x), 1−G2
t (y)) = Gt(x, y)−G1

t (x)−G2
t (y) + 1

and the result follows from Corollary 5.2.
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