~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Gilsing, Hagen

Working Paper
On |p-stability of numerical schemes for affine stochastic
delay differential equations stochastic recurrance relations

SFB 373 Discussion Paper, No. 2002,59

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Gilsing, Hagen (2002) : On Ip-stability of numerical schemes for affine stochastic

delay differential equations stochastic recurrance relations, SFB 373 Discussion Paper, No. 2002,59,
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation
of Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10049179

This Version is available at:
https://hdl.handle.net/10419/65315

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10049179%0A
https://hdl.handle.net/10419/65315
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

HUMBOLDT-UNIVERSITAT ZU BERLIN

Quantifikation und Simulation Okonomischer Prozesse

DISCUSSION PAPER

59
2002

On LP?-stability of numerical schemes
for Affine Stochastic Delay Differential Equations:
stochastic recurrence relations

Hagen Gilsing

Sonderforschungsbereich
373
Wirtschaftswissenschaftliche Fakultdt
Spandauer Str.1 10178 Berlin Germany







On [P-stability of numerical schemes

for Affine Stochastic Delay Differential Equations:
stochastic recurrence relations *

Hagen Gilsing
Humboldt Universitidt zu Berlin
Institut fiir Stochastik und Finanzmathematik
Sonderforschungsbereich 373
EMail: gilsing@informatik.hu-berlin.de

Version:  Berlin, 24.07.2002

Abstract

Numerical solutions of SDDE often reflect to only a limited extent the exact solution behaviour.
Hence it is necessary to identify those parameters of SDDE and algorithm for which a numerical
method in use is reliable. For affine SDDE test equations, there exist estimates of the stability regions
of a numerical method. However, these results rely on bounds for covariance terms. In this paper
exact but high dimensional stochastic affine (linear) recurrence relations are derived for some p > 1.
A reduction method presented here allows the representation of the corresponding characteristic
polynomial as a determinant of a matrix of polynomial coefficients and lower dimension. This can
be used to compute non-zero coeflicients of the characteristic polynomial for application to stability
questions concerning SDDE. A number of areas where work is continuing is indicated.

Keywords: recurrence relation, stochastic recurrence relation, SDDE, SFDE, stochastic delay
equations, numerical algorithms, stability, stability regions
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1 Introduction

1.1 Background on deterministic recurrences

Related with the affine recurrence relation

Upt1 = B+ Auv,, n € NN,

Un, € R4, n € NN,

vo = ceRY (1.1)
B € R4,

A € M(R),

are often two questions. The first question is that for the qualitative behaviour of the sequence v =
{vn}new of state values in its time evolution. That is the question, whether v (or some p-th moment
[v[P = { |vn|? }nen, p € [1,00)) is goes or oscillates to +oo (explosion), remains bounded or converges to
some limit. A second question is that of stability with respect to changes in the initial values of v. That
is, consider the series ¥ = {0, }nen with

Opy1 = B+AB,, nel,
in € RY  neN, (1.2)
o = ¢eRd.

*This work was financially supported by Deutsche Forschungsgemeinschaft (SFB 373) and done at the Mathematics de-
partment of the University of Manchester.
Special thanks are dedicated to Prof.C.T.H.Baker from the University of Manchester for fruitful discussions and helpful
comments as well as Katrin Westphal from SFB 373 for the technical support.



Then ¢ is generated by the same affine coefficients B and A, but with a start vector ¢ differing from
¢. Understanding ¢ as perturbed initial vector, it is of interest to ask, how the initial error g = ¢ — &
propagates with the time evolution. Due to the affine nature of v and ¥ the error propagation can be
described by the linear recurrence relation

5n+1 = A(sn; ne ]N7
On = v, — U, € RY, n €N, (1.3)
do = c—-¢é€eR

It is of interest to know the qualitative behaviour of § = {0, }nemw, that is whether § goes to infinity
(explosion), remains bounded or converges to zero. Both questions can be answered.

In case of homogeneity (B = 0) of (1.1) we know that @,, = A"vy = PJ"P 'y, where the column
vectors of P form a set of independent (generalized) eigenvectors of A and J is the corresponding Jordan
block matrix of A. The behaviour of v depends on the eigenvalue structure of A or J, respectively. Denote
by

o(M) = {AeC | |A— | =0} the spectrum of M,

() the geometric multiplicity of A € o(M),

Y(A) the algebraic multiplicity of A € o(M),

(M) = {AeC | Aeo(M),u(N) =~(A)}, the semi-simple eigenvalues of M, (1.4)
oci(M) = {XeC | Xxeo(M),|N\<1},

o2 (M) = {XeC|Aeo(M),]N<LIN=1-Xeo* (M)},

ol (M), = C\oZ (M),

where for some D € IN\ {0} M,I € Mp(R), I is the identity matrix. If 0(4) = o<1 (4), then lim,, ;0 2, =
0. If 0(A) = 0<1(A), then z remains bounded. But if 0(A) Nd<1(A) # 0 then there exist start vectors
¢ € R? for which v explodes. The eigenvalues are roots of the characteristic or stability polynomial
|A— M|

For the non-homogeneous case B # 0 of (1.1), the reformulation of (1.1) to

Un+1 = Aﬁn: n e IN;
Up = (v),)T € R4 x {1}, n € NN,
g = ceRIx {1}, (1.5)

- AB

= @)
allows us to answer the question about the evolution of v. It is easy to verify that @, = A0y or
v, = A" + (X, AY)B and that the behaviour of v depends on the eigenvalue structure of A. As
A is an upper block triangular matrix, the eigenvalues of A are solutions of the characteristic polynomial
|A— M| = (1—\)|A— X, hence o(A) = o(A) U{1}. If 6(A) = 0.1(A), then lim,_,o, v, = (E — A)~!b.
If 0(A) = 021 (A), then v remains bounded. But if o(A) N &% (A) # 0, then there exist start vectors ¢
for which v and hence v explodes. -

It is remarkable that the structure of the eigensystems of A or A, respectively, completely characterizes
the qualitative behaviour of v in its course of evolution under each R%norm | |. This is due to the facts
that the requested properties explosion, boundedness, convergence are topological properties that from
the behaviour of v one can determine the behaviour of [v| = { |vs| }new and that in R? all norms are
equivalent.

The complete characterization of the qualitative behaviour of solutions v of (1.1) allows us also to
characterize thoroughly deterministic affine recurrences with memory

k
Tpy1 = b+ Y. aiTn_i, n € N,
=0
Zn € R, n € (—k + IN), (1.6)
Zn = ¢, €R, n € (—k + INy),

b, a; € R, 1 € INg.



Such recurrences with memory are an appropriate model for a wide range of deterministic phenomena.
As for the affine recurrence relation (1.1) the two questions for the evolution of the state variables
z = {Zp}nen and the error propagation in time are of interest. Concerning the error propagation,
consider time the series & = {%;};en with

k
Tpy1 = b+ Za,-i:n_i, n € NN,
=0
Tn € R, n € (—k + NN) (1.7)
Tn = c€R, n € (—k + INg)

Then the error § = {0 }new, where 8, = &, — z,, n € (—k + IN) is given by a linear recurrence with
memory

k
6n+1 = Eaién_i, n € ]N,
i=0

6 € R, ne(-k+N), (1.8)

On = ¢, —Cp €R, n € (—k + INg).

Both our questions can be answered by reformulating (1.6) and (1.8) to provide appropriate affine and
recurrence relations (1.1), respectively. As before we treat the homogeneous case of (1.6) (linear recurrence
with memory) and the inhomogeneous case of (1.6) (proper affine recurrence with memory) separately.

In the case of homogeneity (b = 0) the reformulation of equation (1.1) to the augmented linear
recurrence relation is

Tny1 = A&, n € NN,
_’n ("Enr":wnfk)—r € Rk+17 n €N
-’0 = (COJ .. '7ck)T € RFH!
ag ay ... AQp—1 Qg
1 0... 0 O (1.9)
A = 0O1... 0 O
0 0... 1 0

The characterization of the solution behaviour can now be performed with the so-called amplification
matrix A. Its spectrum are the roots of the characteristic polynomial |A — AI| = (=1)FFI(A*F+L —
Sk X If 0(A) = o< 1(A), then lim, o 2, = 0. If 0(A) = o< 1(A), then z remains bounded.
But if o(\) NG<1(X) # 0 then there exist start vectors cp, = (co,...,cx) ' for which z explodes.

For the non-homogeneous case (b # 0), the reformulation of equation 1.1 to the augmented affine
recurrence relation is

_.n+1 = Afn; n €N,

-'n = (mn; cee ;xn—kayn)—r € Rk+27 nelN

7o = (cop...,ck,1)T € R¥ x {1} (1.10)
A = (‘3?) where B = (b,0,...,0)T € Rkt

The spectrum of the amplification matrix are the roots of the characteristic polynomial |4 — AI| =
(—DF2(N — D)WL — 8 @ dk i) If 0(A) = 0<1(A), then limyyoozn = (1 — X5 ja;) 1b. If
o(A) = J;’i (A), then z remains bounded. But if o(4) N 5<1(A) # 0, then there exist start vectors

¢=(co,--.,c,1)T for which  explodes.
So in the qualitative behaviour of affine recurrences with memory z in can be completely characterized
by the structure of eigenvalues and eigenspaces of the corresponding amplification matrix.

1.2 Stochastic recurrences

Now let (Q2,F,P) be a probability space. Then a quite natural question arises: what happens, if one
changes the deterministic affine recurrence with memory (1.6) into a stochastic affine recurrence with



memory

k
Xnt1 = Pnt1+ D @int1Xn—i, neN,
i=0
X; € R, i€ (-k+N), (1.11)
X; = c¢€ER, 1€ (—k + ]Nk),
ﬂn;ao,na-"aak,n € (Qaﬂ{)a ne ]Na
with
Vn € N: (Bn, @0y« Qkntt) ud (8, a0, .. .,a1),
where (1.12)

B,a0,...,ar € (2,R) and ,sufficiently integrable ?

Can one answer the two initial questions for the characterization of the evolution of the state variables
and appropriate powers of it and the error propagation ? Of course, as in the deterministic case, one can
immediately derive an equivalent amplified system

X1 = A7, n €N,
X, = (Xn,..o, Xp_p)T € RFH, neN,
Xo = (co,...,ck)" € RFH,
Qo Qi --- Oh—1n Qg Bn

1 0 ... 0 0 O (1.13)
_ 0 1 ... 0 0 O
4, =

0 0o ... 1 0 O

0 0 ... 0 0 1

But the difference with the deterministic case is that (1.13) generates a recurrence with memory

X
as

= {X,}new for each w € Q. As it is usually too difficult to investigate X = {X,}new w-wise or
this is not required, a typical approach is to limit oneself to the investigation of the evolution of

corresponding moments of X by trying to find appropriate affine recurrence relations (1.1) for them.
As expectations are involved in moments, an averaged behaviour of X is considered and a w-wise
consideration is avoided. This creates several difficulties, which we explore now.

1)

Taking expectations, usually one has two options: to investigate moments or absolute moments. This
distinction is more than formal, as the evolution of moments and absolute moments can differ sub-
stantially. Let o =0, Vn € N: a,, = (1,0,...,0), Vz € Ry : P[3, < —2] = P[B, > 2] and E[3,] = 1.
Then Vn € N: X,, = > By, | E[X,,] |= 0 and E[ | X,, |] = 2n. So in general: while moments can
converge, the corresponding absolute moments can explode, but on the other hand, if the absolute
moments converge, the moments converge too (inequality of Jensen).

From the w-wise affine recurrence relation (1.12) and the independence assumption (1.13) one can
derive an affine recurrence relation

E [Xn+1] =E [An |E [Xn] (1.14)

for the expected values { E [ X,, ] }nen. From this one can conclude as in the deterministic case to the
evolutionary behaviour of { | E [X,] | }nen-

On the other hand, as | . | is only subadditive and from (1.12) and (1.13) one can only derive the
componentwise inequalities

The inequality (1.15) no longer describes the exact evolution of {IE[| X,, |] }nen. But these inequalities
allow at least a verification of convergence or boundedness of { E[ | X, |] }nen, if the eigenvalues of
E[| A, |] are appropriate. This gives an estimate for stability regions.



3) Let ¢(> 0), p(> ¢) € IN. Although for any random variable X € ILP(Q2, P) we know that | X |, <| X |p,
the I9- and LP-norm are not equivalent. So from the convergence of X, := {| X,, |4} nen one cannot
make conclusions about the boundedness or unboundedness of X, := {| X, |;}nen and conversely,
from the unboundedness of X, one cannot draw conclusions about the convergence or non-convergence
of X,.

4) Consider (1.11) with ¥ = 1, 8, = 0, n € IN and assume that we are interested in { E[ | X, |?] }nen-
Then one easily derives

E[| Xp1 7] = E[og) E[| X7 |1+ 2E[aoen] E[XnXn1] + E[ei] B[ | X7_; |]. (1.16)

We observe the occurrence of the covariance term E[X,X,_1]. In general E[X,X,,_1] is not a linear
functional of E[| X2 |] and E[| X2_; |]- So in order to create an exact linear recurrence relation from
(1.16) one not only augments (1.16) by E[X2_,], but has also to include this covariance term. This
leads to the system of equations

B s ] = B3] B X2 |]+ 2Bfoaas] E[X, X0 |+ B B[ Xoms P
E[Xui1Xos11] = Blao) B[] X2 |]+ Eloa] B[ Xu X1 ] '
E[| X2, ,|] = B[|X2]]

Although there are cases, where exact affine recurrence relations can be derived, the inclusion of
covariance terms can increase the dimension of the exact recurrence relation considerably.

The observations 1) — 4) can be summarized as follows. The difference between the deterministic
affine recurrence relation (1.1) and its stochastic parallel (1.11) is that (1.11) is a w-wise relation. The
usual way to deal with it is by considering the evolution of moments and absolute moments of X. The
difficulties arising are: ¢) the affine recurrence relation (1.11) does not necessarily carries through the
moment case and requires estimates, 4i) p-th order absolute moments usually have to be investigated
separately, 7i1) exact affine augmented systems can suffer scaling problems (large dimension).

The encouraging side of the the observation 4) is the fact that, for moments (and with this even
for absolute moments) exact affine recurrence relations in the moments can be derived by considering
augmented systems.

An example, where systems (1.11) naturally arise, is the numerical solution of stochastic delay diffe-
rential equations (SDDEs). SDDEs play a large role in describing dynamics and explaining phenomena
in economics, e.g. population dynamics, oscillations and chaotic behaviour in control systems with
time-delay feedback, price fluctuations in presence of time lags. Since many SDDE are too difficult to be
solved analytically, the simulation of solutions of SDDE on computers is important to gain insight into
complex models and for a parametric tuning of models.

Numerical solutions of SDDE are mostly time-discrete approximations of the solutions of the
SDDE considered and depend on the underlying numerical methods and their parameters. From stiff
deterministic ODEs it is already known that numerical solutions not always reflect appropriately the
behaviour of the exact solutions of the ODE. This can also happen with numerical solutions of SDDE.
So a question of vital interest is, for which parameters of the numerical method (this often includes the
step width) the numerical solution of SDDE can be accepted as a ,,valuable” approximation of the exact
solution.

This question is too complex to be answered in general for all equations, all properties of solutions
and all numerical methods. That is why one often limits consideration to certain test classes of equations,
properties of solutions that are of interest and particular classes of numerical methods. Let us assume
here the following class of real scalar affine SDDEs

dX(t) = (a+ Y aX(t—rd)dt+(b+ Y b;X(t—7)dW(t), te0,00),
i=0 j=0 (1.18)
X(t) = E(t), te [_T7 0]7
where
T = max{T{i,T]" | i € Npa,j € Npn } > 0,
i € [0,00), i€Npa,j € Npyn, (1.19)
ab; € R, i€Nua,j€Npn,



6 € C([_Ta 0]7IR')7
(W(t), Fi,t € [0,00)) real, scalar standard Wiener process.
We study (1.18) within the common stochastic setting of the probability space (2, F,P) and the adapted

right continuous increasing filtration (F;,t € [0, 00)). Furthermore we assume strong numerical methods
leading to numerical schemes

Xnt1 = But Zf%ai,nffnfk,- (1.20)
where
m = #({Tz-d|i€INnd,Tid>0}U{Tjn|j€]Nnn,7'jn>0}),
k; c ]N, 1€ INm, 0= k‘o, k‘jfl < k‘j Vj eN,, \ {0},
Bn,ain € R, i € Ny, (1.21)
Brs Qin independent of {X;}ien,_,, i € Ny,
X ., = {(=27), n € Ng.

An example of a numerical method, which is covered by (1.20), is the Euler-Maruyama explicit method.

One typical criterion of having appropriate numerical method is whether the numerical method ge-
nerates a numerical solution, which has ,approximately“ the same asymptotic behaviour as the exact
solution of the SDDE (1.18). A partial task is to answer this question is to determine for the parameters
given in (1.21), whether (1.20) converges, is bounded or explodes. A particular point of interest is how
the stability behaviour changes if the step width h = £ is changed. A decreasing step width h leads to an
increasing k and a family of numerical schemes (1.20), where the fractions k;/k of index shifts of memory
coefficients and the memory length remain nearly constant (k;/k ~ 7).

An approach to compute exact regions of mean-convergence of the numerical solutions (1.20) can
be found in [2]. In this paper the authors can exploit the special structure of an affine test equation to
characterize the expected growth of solutions and provide stability regions in the parameter space.

A first approach to approximate the region of mean-square-convergence of the numerical solutions
(1.20) can be found in [1]. In this paper the authors use bounds for the occurring covariance terms of
higher order and use Halany-type inequalities to estimate the growth of solutions and to provide stability
regions in the parameter space.

In this paper we derive and investigate exact recurrence relations of moments of recurrence relations
(1.11) as sketched in observation 4). A method is suggested to reduce the dimension of the exact recur-
rences. This can be used to compute the nonzero coefficients of the corresponding stability polynomial.
This generalizes also the approach in [1], as further criteria can then be applied to decide numerically the
question of stability of the underlying recurrence relation.

In section 2 an exact linear recurrence relation is derived for the homogeneous case 8 = 0. In section
3 the dimension of the resulting linear recurrence relation is quantified. Furthermore, properties of a
large submatrix of the underlying amplification matrix of this linear recurrence scheme are shown. These
properties allow one to find a representation of the stability polynomial of the linear recurrence relation
by computing a determinant of a matrix with polynomial coefficients and a dimension that is lower than
that of the amplification matrix. An abstract algorithm is provided to compute this matrix for the ge-
neral case. For some special cases the matrix of reduced dimension can be computed directly. Although
we shall here restrict attention to the homogeneous case § = 0, the inhomogeneous case 8 # 0 can also
be treated. Corresponding exact affine linear recurrence relations can be established and their treatment
can be reduced to the consideration of the homogeneous type case. Elsewhere, we will provide remarks on
how to implement the computation of the determinant of the matrix representation in order to compute
the non-zero coefficients of the stability polynomial corresponding to the exact affine recurrence scheme.
The preceding comments indicate some areas in which the author will present results later.

2 A linear recurrence relation involving p-th order moments

In this section we describe, how, starting from the stochastic linear recurrence relation (1.11) (8 = 0
P-a.s.), one can construct an amplified linear recurrence relation. In the first subsection we consider
examples and introduce definitions. In the second subsection we describe the amplified linear recurrence
relation for the special case m = 1. In the third subsection we describe the amplified linear recurrence



relation for the general case. The special case was introduced first, as it is easier to understand and as
the proof of the main lemma, of this section can be reduced to this case.

2.1 Examples and definitions

Consider the linear recurrence relation

~ m ~
Xn+1 = Z aj,an—kj (21)
Jj=0
with stochastic coefficients v, := (g p, - - -, @m,n), n € IN, which satisfy

Vn € IN : «,, is independent of {Xl}lemn_l
VneN:a, ~a:=(ag,...,0m).

Let p € IN\ {0}. Define I(m,p) := {m € N**' | (m,1mny1) =p} and <7€> = m'pi'frm'
Then
P _ P\ 17 7 7
Ko = > T H aj,an*kj’ (2.2)
w€I(m,p) 7=0
and due to the assumed independence and distributional properties of the stochastic coefficients {an}tnen
the p-th moment of X7, is

m
X2, = % (U)BlayIERy] win o= [, fr= X2
w€l(m,p) 7=0
(2.3)

The formula (2.3) obviously relates the p-th moment E[X 1] to p-th order mixed covariance moments
E[X2"], 7 € I(m,p). Since E[ X" ] cannot in general be represented as a function of {E[ X!}y, ....n,
one could use the Holder inequality to find upper bounds for the mixed covariances ]E[X',‘;" ], # € I(m,p),
and to transform the above equality (2.3) into a inequality. This approach was used in [1] for m = 1,
p = 2 and to the characterization of regions contained in the exact stability region.

Here we do not want to eliminate the p-th order mixed covariance moments. Instead we understand the
p-th order mixed covariance moments E[X3"], = € I(m,p), to be part of a more general linear recurrence
relation in a set of p-th order mixed covariance moments. The foundations for this linear recurrence
relationship are laid by the equations

Xia = IX(S )(q> E[ag™ | B[ X537 ], q € N, (2.4)
wel(m,q

and the expectations of the g-potentials suitably complemented by mixed covariances of order p.

ExaMpPLE 2.1.1
Consider p =3, k = 2 and m = 1. Then the p + 1 identities are well known:

X7?;+1 = ag,an?; + 30[(2),na1,”X721Xn*2 + 3a0,"a%,nX"X;ZL—2 + ag,nX2—2 (25)
X721+1 = a(z),an + 2aO,na1,anXn—2 + a%,nXT%,Q (26)
Xﬂ+1 = aO,an + al,an72 (27)
X0, 1 (2.8)

These identities lead to the following system of linear equations

E[ X3, ] 5, EldELXY) + 3Eladar] ELXZX, o
+ 3E[aoa]] BIX, X7 ] + Blof] E[X5_,],
E[X7 11 Xnt11] ox Elog) B[X7] + 2E[aoon] E[X7 X, 2] + E[af] E[X, X7 _,],
BX7 41 Xnt1-2] 20k Elag] E[X7 X, 1] + 2E[aoon] B[X; X1 X5 o]
6)*xX,_1
+E[of] B[X5 1 X7 5],
B{X X240 4] e ool BLXE]+ Blou] E[X2X, ),
E[Xpt1Xnt1-1Xn41-2] = Elao) E[X3 X ;1] + Efou] B[Xn Xy, 1 X o]



E[Xpn1 X741 o] Elao] B[Xn X7 ] + Blon] B[X7_, Xno],

(2.7)*:X2

a1
E[X7 1 1] (2.8§X§ E[X7],
E[X7 11 Xny1-2] (28X Xt E[X2X,,_1],
BlXnt1-1 X7 41s] T X2, E[Xn X7 4],
E[X3, | ] X E[X3_,].

Let us now introduce the set of triples X(2,3) = { (é1,42,43) | 0 <1 <i3 <i3 <2}. Then on X(2,3) a
complete order relation <3 3 can be introduced by the definition

V (i, 42, 13), (j1, J2, j3) € X(2,3): (i1,42,43) <23 (J1,J2,J3) =
i) <
or (ii) i1 = jl, 19 < j2
or (i) 41 =j1, G2 = j2, i3 < J3.
<2,3 provides a linear ordering and allows the iteration through X(2, 3) from the largest to the smallest ele-

3
ment of X(2, 3). Defining Vn € N, 7 € X(2,3), Y (7) := E[ [[ X;,_r(s) ], and defining Vn € IN, {m; }i=1,....10
i=1

with m; <23 mip1, 4= 1,...,9, Zn(<23) == (Yn(m),...,Ya(m10) )T, we can now derive the linear recur-
rence relation

Zn+1(-<2,3) = A(a, -<2,3)Zn(-<2,3) (2.9)
where
E[od] 0 3E[ada] 0 0 3E[apaZ] 0 0 0 Elo]
Elo?] 0 2E[ap04] 0 0 E[a?] 0 0 0 0
0 E[ad] 0 0 2E[apa ] 0 0 E[e2] 0 0
Flag] O E[e] 0 0 0 O 0 0 0
0 Elao] 0 0 E[o] 0 O 0 0 0
Al =23)=| 0 0 E[ ] 0 0 0 Elm] 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
(2.10)

It can be observed that the components of Z(<33) consist of the 3rd order mixed covariances
El Xn iy Xn—isXn_is |, where 0 < 47 < iy < i3 < 2 and n € IN. Furthermore, although p and k are
quite small, the amplification matrix A(c, <2,3) are high dimensional compared with p, k and are n-
independent due to the distributional assumptions concerning the stochastic coefficients { o, }new of the
numerical scheme considered in this example.

ExaMPLE 2.1.2
Consider p = 2, k = 3, (k1, k2, k3) = (0,1,3), and m = 2. Then the p + 1 identities are well known:

X2, = o}, X2+0a,X2  +0},X2 4 (2.11)
+200,,01 7, XnXn—1 + 200,002 n XnXpn_3 + 201 502 n X1 Xp—3,

Xpy1 = Ozo,an + a1,an,1 + Oéz’anfg, (2.12)

X0, = L (2.13)

These identities lead to the following system of linear equations:



B X2, o Flodl BIXE Bl LX)+ Bl X2
+2E[aga;] BE[X, X, 1] + 2E[agas] E[ X, X, 3] + 2E[aias] B[ X, 1 X, 3],

EXp+1Xnt1-1] (2.12:)*}(" E[ao]) E[X2] + E[ou] B[X, X—1] + Elaz] E[X, X, —3],

E[Xnt1Xnt1-2] a2ex Elao) E[XnXn-1] + Eloa] E[X72_,] + E[ae] B[Xpn-1Xn-s],

E[Xp+1Xnt+1-3] (2.12)?Xn_2 Elao] E[ X Xpn—2] + E[a1] E[X ;-1 Xp—2] + E[az] E[X,—2 X, 3],

ElXnt1-1Xnt1-1] (2.13)% X, X ElXnXnl,

B[Xn1-1Xn 1] (2.13)*§nxn_1 B[XnXn1],

]E[Xn+1—1Xn+1—3] (2.13)*§an_2 ]E[Xan—2],

E[Xpt1—2Xnt1-2] 13t X E[X,_1Xn_1],

E[Xn+1-2Xn41-3] 131 X s E[Xn—1X52],

E[Xns1_3Xns1_3] - E[X,_2X,_a].

(2.13)%Xn—2Xn _2

Let us now introduce the set of pairs X(3,2) = { (i1,42) | 0 <41 < iz <3 }. Then on X(3,2) a complete
order relation <3 o can be introduced by

V (i1,42), (J1,J2) € X(3,2): (i1,82) <32 (j1,J2) = i) @a<n
or (ii) 11 = jl, 19 < j2
<3,2 provides also a linear ordering and allows the iteration through X(3,2) from the largest to the
2
smallest element of X(3,2). Defining Vn € IN,7 € X(3,2) Yy, (7) := E[ [[ X,,_r(; ] and defining Vn €
i=1

]N, {7T,'},':1,“,710 with T <3,2 Tit1, 1= ]., .. .,9, Zn(-<372) = (Yn(ﬂ'l), .. .,Yn(ﬂlo) )T, we can derive the
linear recurrence relation

Znt1(<3,2) = A, <3,2) Zn(<3,2) (2.14)
Elo?] 2E[apa;] 0 2E[apas]  Ela?] 0 2E[ayaz] 0 0 E[a3]

Elao]  Ela] 0 Efas] 0 0 0 0 0 0
0 E[ag] 0 0 Elo4] 0 Elas] 0 0 0
0 0 Efag] 0 0 Ela] 0 0 Ela] 0
1 0 0 0 0 0 0 0 0 0
Al =<32) =1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0

(2.15)

It can be seen that the components of Z (<3 2) consist of the 2nd order mixed covariances E[ X, _;, Xp_i,],
where 0 < i3 < i3 < 3 and n € IN. As in the previous example, although p and k are quite small, the
amplification matrix A(a, <3,2) is in terms of p, k high dimensional. Finally, one easily verifies that,
for Play = 0] = 1, the amplification matrix A(a, <3,2) is the same as the amplification matrix for the
numerical method

Xn+1 = aO,an + a2, Xn_3 )

)

where k =3, p=2, m=1.




The previous examples exhibit the main tools we will use to derive a linear recurrence relation of
a selected set of covariances, including the p-th order moments. In order to extend this example, we
will work with (k, p)-indices and operations on them, with (k, p)-products and (k, p)-covariances. These
concepts will be introduced by the following definitions.

DEFINITION 2.1.3
Let

keN,peN\{0}.

Then
X(k,p) i={z=(x1,...,2p) e N} | 0< 2y <...<uzp }.
An element of X(k,p) is called (k, p)-index.

We also define for later purposes

Xl(kap) = {.’L'EX(k,p) | lSwl }7 lE]Nk,
Xh,lz (kap) = Xh \Xl2l l17l2(2 ll) € ]Nk;
X4 (k,p) = {zeX(k,p) | 21 =2, =14,i€ Ny }.

DEFINITION 2.1.4
Let z be a (k,p)-index. Define the following operations and functions:

+(z) =@+ DAk (p+ 1) AE),
—(z) =1 —-1)VvO0,...,(z, —1) V0),
o o { T r=0,
+(ztr=1) e INg \ {0},

. . T r=0,
: = { S ) re N\ {0},
s(i,j,z) = (Tig1,---,%), wherel <i<j<p,
r(i,5,z) = ({0}, zjq1,...,3p, {k} ), 0<i<j<p,
—r(i,j,z) := ({0}, (zj41 — 1) VO,...,(z, —1) VO, {k}T7Y), 0<i<j<p,

) maz{i=1,...,p | zi=j}+1-min{i=1,...,p | z; =5} FeN,\{0}:2; =14,

@) o= {0 otherwise.

DEFINITION 2.1.5
Let z € X(k,p), y € X(k,q). We define the function:

c(z,y) =z € X(k,p+q) withV1e Npiq \ {0} :n(z, 2) =n(z,2) +n(2,y)

DEFINITION 2.1.6
Let z € X(k, p).

p
Denote by X7, := [] Xnt1-s; the (k,p)-product of X, ;.
j=1
Denote by Y7, :=E[ X[, ] the (k,p)-covariance of X, ;1.

In the following we assume p € IN \ {0} and denote k = maz{k; | i € Ny, }, k = (ko,- .., km) if not
explicitly defined in a different way.

2.2 The recurrence relation for m =1

In this subsection the special case of m = 1 will be considered. It is convenient to use the following
notations.

DEFINITION 2.2.1
For j.a (> ) € define s a.0) = (

j) ajad™ and c(j,q,a) == E[b(j,q, ) ].
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The next Lemma describes, how (k,p)-covariances of (k,p)-products X7, ,, v € X(k,p), containing
a factor X,41 can be represented as a linear combination of (k,p)-covariances of (k,p)-products XY,
y € X(k,p) as well as how (k, p)-covariances of (k,p)-products without any factor X, 1 can be restated
as (k, p)-covariances of (k, p)-products XY, y € X(k, p). This lemma is essential for the recurrence relation
in the (k,p)-covariances to be found.

LEMMA 2.2.2
Let x € X(k,p). Then:
n(0,z) )
n(0,2) > 0: Yi,= X ¢(§,n(0, ), @) Yy G(0:2):= (@) (2.16)
j=0
n(0,z) =0: Y, =Y, @, (2.17)
Proof: Deferred to section 4. O

If we understand (2.16) and (2.17) as explicit linear recurrence relations, then they relate the (k,p)-
covariances of the left side of the equation to the corresponding sets of (k,p)-covariances of the right
sides of the equations. Hence they provide information of the (k, p)-covariances that is necessary to form
one complete linear recurrence relation. As (k, p)-covariances are uniquely represented by (k, p)-indices, a
recurrence relation based on (2.16) and (2.17) can be derived from any set of (k,p)-indices that contains
{0}? and which is invariant under the (k, p)-index transform

Ti: PX(k,p) — PX(k,p))
X - Ti(X):= :ELG_JX {r(f,n(0,2),—(z)) | j=1,...,n(0,2) } U ng {—(2)}.

0<n(0,z) 0=n(0,z)
(2.18)
This is made rigorous by the following definition:

DEFINITION 2.2.3
Define X (k,p) C X(k,p) by

@) {0} € X(k,p), (2.19)
(4i) VzeX(k,p):0<n0,2) — Vi=1,...,n(0,2):r(,n(0,z),—(z)) € X(k,p), (2.20)
(i) VzeX(k,p):0=n(0,z) — —(z)e€ X(k,p). (2.21)

The next lemma characterizes X (k,p) and shows its uniqueness.

LEMMA 2.2.4
X(k,p) = X(k, p)

Proof: Deferred to section 4. O

The preceding lemma shows that the set of (k, p)-covariances determined by (2.19)-(2.21) is actually iden-
tically to the complete set of (k, p)-covariances. So the recurrence scheme includes all (k, p)-covariances. In
order to describe the corresponding linear recurrence relation formally, it is convenient to iterate through
X(k,p) and to form a corresponding vector of (k,p)-covariances. This is done using the following two
definitions.

DEFINITION 2.2.5
Let z,y € X(k,p). Then we define

T <kpy = (1) m<wn

or (i) FeNp_1\{0}: @it1 <yiy1 and Vj € IN; \ {0} z; = y;;
z<kp Y = (1) T =<kpy

or (i) z=y

REMARK 2.2.6

1) Obviously, <, introduces a complete ordering on X(k,p).

2) <k,p is k-independent. k is introduced as a parameter for notational convenience to indicate the
order relation on X(k,p).
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DEFINITION 2.2.7
Define n(k,p)

#(X(k,p))

Zn(=kp) = (Y2 YT whereVi=1,...,n(k,p) —1: 2; <pp Tiz1, n € N
DEFINITION 2.2.8
The matrix
A(a> '<kap) = (a(a> '<k,P)$7y)w,y€X(k,p) (2'22)
is called (k,p) amplification matrix.
Here is
c(j,n(O,x),a) 0< TL(O,.Z), Y= r(j,n(O,:z:), —(ZL')), JE ]Nn(O,z)
a(a7 <k,p)w,y = 1 0= n(O,:c), y= _(x) (223)

0 else

Having introduced the recurrence vector and amplification matrix, one can now describe the linear rela-
tionship between consecutive recurrence vectors by

Zn+1('<k,p) = A(Oé, '<k,p)Zn('<k,p)- (2.24)

2.3 The recurrence relation for m > 1

In this subsection the more general case of m > 1 will be considered. The following notation will be used.

DEFINITION 2.3.1 m
For g e N\ {0}, 7 € I(m,q), define B(m,q, ) := (g) Hoa;-rj and C(m,q,0) := E[B(m,q,q) ].
J:

LEMMA 2.3.2
Let z € X(k,p). Then:

n(0,z) > 0: YZ, = Y C(mn(0,5),a)Y, e 0m @) (2.25)

wel(m,n(0,z))

n(0,z) =0 : Y2, =Yy @, (2.26)

Proof: Deferred to section 4. O

As in the previous section we can understand (2.25) and (2.26) as explicit linear recurrence relations,
which relate the (k,p)-covariances of the left-hand side of the equation to the corresponding sets of
(k, p)-covariances of the right-hand side of the equations. We can equally express the recurrence relation
formally as set of (k, p)-indices which is invariant under the (k,p)-index transform

Tm: P(X(k,p) — PX(,p))
X —~ Th(X):= ng {e(s(n(0,z),p,—(x)),n) | m € I(m,n(0,z)) } U ng {-(2)}.

0<n(0,z) 0=n(0,z)

(2.27)

DEFINITIO_I}I 2.3.3
Define X (k,p) C X(k,p) by

@) {0} € X(k,p), (2.28)
(i) VazeXkp) :0<n0,3) — VreI(m,n0,z)):c(s(n(0,z),p,—(z)),7) € X(k,p),(2.29)
(iii) Vz e X(k,p) :0=n0,z) — —(z)€ X(k,p). (2.30)

The next lemma characterizes X (l;, p) and shows its uniqueness.

LEMMA 2.3.4
X (k,p) = X(k, p).

12



Proof: Deferred to section 4. O

The preceding lemma confirms that in the case m > 1 also the set of (k, p)-covariances that is determined
by (2.28)-(2.30) is identical to the complete set of (k,p)-covariances. So the recurrence scheme includes
all (k, p)-covariances. Using the definitions 2.2.5 and 2.2.7, from the previous subsection, we can describe
the corresponding linear recurrence relation completely by

Zny1(=kp) = A <k,p) Zn(<kp)- (2.31)

For m > 1 the matrix A(a, <k,p) is defined as follows:

DEFINITION 2.3.5

The matriz
A(a7 '<k,p) = (a(aa '<k,;0)$,y)m,y€x(k,p) (2'32)
is called the (k,p) amplification matrix.
Here:
C(m,n(0,2),a) 0<n(0,2), y=-c(s(n(0,2),p,—(x)),n), ® € I(m,n(0,z)),
a(e, <kploy =94 1 0=n(0,z), y = —(x),
0 otherwise.
(2.33)
REMARK 2.3.6
As for j,q (> j) € IN: (3) = ((J qq_ j))’ the recurrence relations (2.24) for m =1 and (2.31) for m > 1

are consistent. Furthermore, the definition 2.3.5 of the amplification matrix can be extended consistently
to the case m = 1.

2.4 The amplified system and the evolution of p-th moments

The evolution and asymptotic behaviour of the linear recurrence relation (2.31) can be completely des-
cribed by the eigensystem of the amplification matrix. Assume that

A(Ot, '<k,P) = P(a7 '<k7P)J(a> '<kaP)P(a7 '<k,P)_1 (2'34)

is the eigen-decomposition of the (k,p)-amplification matrix. That is, P(«, <x,p) is the matrix of all
eigenvectors and J(a, <x,p) is the Jordan-block matrix of the (k,p)-amplification matrix. Let Z(a, <g,p

)0 = ((1, '<k,p)Z(a7 '<k,p)07 then

Z(a, <kplo = Pla,<pp)J(a, <kp)" Z(a, <k,p)o- (2.35)
A criterion for computing the eigenvalues is to compute them as solutions A of the equation
|A(a,< k,p) — M| =0 (2.36)

where I is the identity matrix. Denote the set of all eigenvalues as the spectrum o(A(a, < k,p)) of
A(a, < k,p). The polynomial |A(a, < k,p) — AI| is a characteristic or stability polynomial for the
recurrence.

We now have to ask what is the relation between the eigenvalues of the (k,p)-amplification matrix
and the time evolution of p-th moments and absolute moments of the sequence generated by (2.1) is. An
answer is given by the following lemma.

LEMMA 2.4.1
(i) Letq(>0),p(>q) €N,neN,xe€I(m,q).
q i
Then | BIXRT ]IS TTE[ Xn—k: P]7
=1

(15) Letp=1orpée€ (24 2IN). Then it holds:
X € o(A(a,< k,p)) with |\| > 1 or 1€ o(A(a, < k,p)) with Jordan block length > 1
— lim B[ X?] = oo
n—oo
VIeo(Ala, < k,p)) with |A| <1 — lim E[XP]=0
n—0o00
V€eo(Ala, < k,p)) with |\| <1 or 1€ o(A(a, < k,p)) with Jordan block length 1
- lim E[X2]=0
n—oo
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(i4i) Letp € (1 + 2IN). Then it holds:
AN eo(Ala,< k,p)) with |A\| > 1 or 1 € o(A(a, < k,p)) with Jordan block length > 1
= lim E[| X, |P] =0
n— oo

Proof: Deferred to section 4. O

REMARK 2.4.2
For p € (2 + 2IN) the p-th order moments and p-th order absolute moments coincide, that is, Vn € IN:
XE = |Xn[P.

The preceding lemma shows that for even p one can characterize the time evolution of the p-th order
absolute moments by investigating the eigenvalues of the amplification matrix, that for p = 1 one can
characterize the time evolution of the 1st moment, and that for odd p one has a criterion for the un-
boundedness of the p-th order absolute moments. Furthermore, for odd p > 1 the evolution of p-th order
moments depends on the eigenvectors (P(a, <x,p)) of A(a, <k.p).

3 Stability polynomials of the amplified system of a linear re-
currence relation

The previous section showed that the course of evolution of p-th order moments of a solution X of a
linear recurrence relation (2.1) is embedded into the linear recurrence relation (2.31) in vectors of (k, p)-
covariances. In the first subsection of this section we show that this amplified linear recurrence relation
describes the evolution of p-th order moments exactly. We see that it is computationally prohibitive
to compute the eigenvalues of the (k,p)-amplification matrix due to its high dimension. In the second
subsection we show some favourable properties of (k,p)-amplification matrices. In the third subsection
we show how to reduce by matrix operations the computation of stability polynomial of the (k,p)-
amplification matrix to the computation of a determinant of a matrix with polynomial coefficients and
a dimension, which is lower than the dimension of the (k,p)-amplification matrix. In subsection 4 this
matrix of reduced dimension is computed for some special cases.

3.1 The linear recurrence relation and its dimension

As the amplification matrix A(a, <x,p) is known, the time evolution of the p-th order moments of the
numerical scheme (1.20) can be determined in principle by computing all eigenvalues of A(a, < ) and
checking the semi-simplicity of eigenvalues on the complex unit circle. However, a direct evaluation of
the spectrum of A(a, <y ) is in most cases computationally inefficient or impossible, as the dimension
of A(a, <) can be quite large even for modest k, p. This is illustrated by the following lemma.

LEMMA 3.1.1 ip_1

O #(Xkp)=¥ ¥ .. SL

i1=0i2=0  ip,=0
k [t1] [tp—1]
(@) #(X(k,p))=[ [ ... [ 1ldt,...dt2dt;.
0 0 0
i J=1,
(ii))  #(X(k,p)) = f(k,p) where f(i,f) = { O i=0,

fG—=1,5)+ f(i,j — 1) otherwise.
(iv) < #(X(k,p)) < S22

Proof: Deferred to section 4. O

The following lemma shows that there is no reordering of X (k, p) such that the corresponding reordering
of the (k,p) amplification matrix is a block-diagonal matrix which would allow one to compute the
stability polynomial |A(a, <) — M| as a product of determinants of submatrices with a lower and
hence computationally more favourable dimension.
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LEMMA 3.1.2
There is no triple of matrices (P, By, Bs) € (O(f(k,p)) N{1,—1,0}/ k:p)xf(k:p) M, My,) where ki, ks €
N¢k,p) \ {0}, k1 + k2 = f(k,p), P permutation matriz, such that

By 0
A =p! P.
(Oé, '<k,P) ( 0 B2>

Proof: Deferred to section 4. O

3.2 Some properties of (k,p) amplification matrices

A closer look at the matrices A(a, <3,2) and A(a, <2,3) in the examples of section 2 suggests, that (k,p)
amplification matrices might have a sparse structure with a large number of rows containing exactly one
1-element. In this subsection we want to make this observation rigorous and investigate some properties
of (k,p)-amplification matrices. At the beginning some technicalities are necessary.

First it proves to be helpful to define some special sequences of (k, p)-indices for indexing purposes.

DEFINITION 3.2.1

I; (k7p) = { z }wEX(k,p), T1=1 s i€ ]Nk:
I-< (kap) = { z }zeX(k,p);
_ k
Fkp) = OIX(kp),
_ k
Ly = OIFk).

So far, the indexing of (k,p)-amplification matrices and recurrence vectors has been done in terms of
(k,p) indices from X(k,p) provided with the complete ordering <y ,. Now we introduce a function F,
which allows to work with an integer indexing of amplification matrices and recurrence vectors, that is
equivalent to the previous one. Whereas the indexing by X (k, p) elements is helpful for proving structural
facts, the integer indexing is in some cases more handy for matrix calculations and the implementation
of algorithms.

DEFINITION 3.2.2

Let ke N, pe IN\ {0}.

Define, for all x € X(k,p): F(k,p,z) :=#{y e X(k,p) | ykp 2} .

REMARK 3.2.3

Let k € N, p € IN\ {0}. Then

(1) VzeX(k,p): F(k,p,x)=1+#{yeX(k,p) | y <kpz}

(2) Vz,yeX(k,p): (i) F(k,p,x) <Flk,py) <=  z=<kpY,
(i)  F(k,p,z) = F(k,p,y) — r=y,
(#i1) F(k,p,z) > F(k,p,y) = Y <kp T.

In the following we need a property of (k,p) indices from (X(k,p), <k,p).

LeMMA 3.2.4
Let

keNN,leNg, peN\{0}
Then

@) @ Xik,p — X((k-1,p is a bijection.

x — ®(z)=(z1—-1,...,2p 1)

(i)  #(Xi(k,p)) = f(k -1, p).
Proof:
Deferred to section 4. O

With the preceding lemma we are in the position to state a recursive algorithm for the computation of
F.
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LEMMA 3.2.5

Let kelN,pe N\ {0}
z € X(k,p)
f the function defined in lemma 3.1.1.
Then 1 k=0,p>1,
p+2-—min{p+1}U{ieN,\{0} | z; =1} k=1,p>1,
Flk,p,x) =<1+ k>1,p=1,

z1—1

F(k—xl,p—l,($2—$1,,.Z'p—l'l))+(1_(50($1)) Ef(k_lap_l) k>1’p>1
=0

Proof:
Deferred to section 4. O

Now we are ready to investigate the structure of A(a, <kp) 1 (k,p), 1< (k,p)-

LEMMA 3.2.6
Let

keNN, pe N\ {0},
z,y € Xy (k,p).
Then
(l) Vz € X1(k‘,p) : A(a, '<k,p)z,z = (5_(@(2),
(i) ==<kpy <= —(T)<kp—(y),
(tii) F(y)=F(@@)+1 = F(-()-F(-(@)=1+maz{ie€Np1 | 3pi=Fk},
(

i) 4,jF#i+1) e Ng\ {0}, = Ao, <k,p)1;(k,p),1; (k,p) — Of(kfi,p),f(k*j,p)'

Proof:
Deferred to section 4. O

COROLLARY 3.2.7
(i) Ao, =k,p) I (k,p),I(k,p) has only rows with ezactly on 1-element.

The 1-elements are A(o, <k,p)e,F(—(2)), T € X1(k,p).

(it) Let x € Xy ,(k,p) and y its successor in X (k,p). Then the columns F(—(z)) and F(—(y)) are
separated by maz{i € N, 1 | zp,_; = k } zero-columns.
(#it1)  The submatrices A(a, <k,p)111(k7p)71,<(k’p), i € Ny_1 are the only nonzero block matrices among

i

A(a7 '<k,;D)If (k,p),If(k,p)’ 1,7, € INy, \ {0}

Finally, the structure of A(a, <k p) I3 (hp) I (kop) is completely described with the next lemma. This re-
quires beforehand the definition of matrix operations and some special matrices.

DEFINITION 3.2.8
()  Let A€ My, m,n € N\ {0}.

Define cato(A) == ( A 0 ) € My (R).
(i5) Let A€ My, BeM,,(R), m,n,p,qg e N\ {0}.

, A 0
Define diag(A) := ( 0 B ) € Myyypntq(R).

(m) Let {mi}ie]N\{O}a {ni}ieIN\{O} CN \ {0},
Ai € ]Mmi,ni (]R): i €N \ {0}
Define diag®(A1,As) :=diag(A1, As),
diagtt (A, Ag, ..., A, Aiy) i= diag(diag'(Ay, As, .. Ar), Ary), 122,
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DEFINITION 3.2.9
(i)  E; (1) := cato(l}), 1>1.
(it)  E (1) == cato(diag'(E; (1),...,E, (1)), 1>1,¢>1.

q+1 q =
LEMMA 3.2.10
Let k € N\ {0,1}, p e N\ {0}.
(@) Al =kp)r<ep) i<, k) = Epoa(l), 1€ Ny \{0}.
(i) Ao, '<k,p)f0<(k,p),1<(k,p) = E; (k).
Proof:
Deferred to section 4. O

3.3 A representation of a stability polynomial as determinant of a matrix
with polynomial coefficients

In this subsection we want to exploit the sparse structure of A(a, <k, p) I3 (k,p), I (k,p)» i Order to show that
the determinant |A(a, <x,p) — Alf(x,p)| of dimension f(k,p) can actually be computed as the determinant
| B(at, <k,p, A)| of dimension f(k,p — 1), where B(a, <kp,A) € My p—1)(Pry1(})) is a matrix, whose
coefficients are polynomials with a maximum order higher than 1.

The basic idea for the reduction is provided with the following well known lemma.

LEMMA 3.3.1
Let

A Ar
A= € M,(C), ne N\ {0,1},
<A21 A22> (©), n e W\ (0,1}
Ass € M;(C) regular, I € N, \ {0,n}.
Then

|A] = A — A12A521A21| | Aga].

Proof:

Deferred to section 4. O
For our purposes we choose

A = A(k,p,\) = Ao, <kp) — Mf(k,p)s

An = Aukp, A = A <kp) 12 (kp) I (kp) — M (kp—1)5

Az = An(k,p) A0, = k) 13 (h,p) T2 (k) (3.1)
An = An(k,p) = A, <kp) 12 (kp) 5 (kop)

A = Ank,pN) = A <kp) 12 k) 5 (k) — Mrh-1,0)-

In the following we investigate the matrix Ao (k, p) Ay, (k,p, A) Az; (k, p). Define first:

DEFINITION 3.3.2
Let XeC\{0}, reIN\{0}.

Then
L(r,\) = (L.(3,9) )z‘,jelNr\{O}’ where 1.(i,7) = —Ad;(4) + d;-1(3),
L(r,A) = (L:(i,5) )i jen.\{o}, where L:(i,5) = —IZ)\l_l_i(Sl(j),
=1
Lr,N) = (I:(i,4) )ijen,\{o}, where L.(i,5) = ZZAT*’&(J')-
=1

With the above notation we have the following result.
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LEMMA 3.3.3
Let A e C\{0}, re N\ {0}

Then L(r,\)"! = L(r,)).

Proof: Deferred to section 4. O
Next it is necessary to define further index sequences.

DEFINITION 3.3.4
Let k € N\ {0}, p € IN\ {0}.

Then define: Vx € Xy (k,p) J=(k,p,x) = {(z1+4,...,7p +1) biew,_.,,
FJ=(k,p,x) {F(z1+4,...,3p +1) — f(k,p—1)) tiem,_., s
n(k,p, z) #(J=(k,p,z) ).

Then we can show the following properties:

LEMMA 3.3.5

Let keIN\{0},peIN\{0}, A€ C\ {0}.

Then

(@) Vo € Xy (k,p): Ak, D, A) s=<(k,p,z), < (kp,z) = Lk +1 =2y, A).

(i) Vo eXy(k,p): A(k,p, /\)J<(k,p’m)j;(k’p)\ﬂ(k,p,m) =0;; withi=k+1—2a,,j=f(k,p—1)—1.
(i55) {J>(k,p,z) | v €Xi2(k,p) } is a partition of X1 (k,p).

(iv)  Asa(k,p,N\)7! ewists.

(v)  VzeXialk,p)(k,p): (Asa(k,p,A)" Y. 0. = L(k+1—1,), where J, = FJ*(k,p, ).

Proof:
Deferred to section 4. O

The last lemma, with its characterization of A, (k,p, ), has been the first step on the way to characterize
explicitly the product Az (k, p, \) ™1 As; (k,p). The second step is based on the following two key observa-
tions about Ay (k, p). First, due to lemma 3.3.5 As; (K, p) consists of unit vectors of Rf*~1:2) and of zero
columns. A second key observation is that the submatrix A(a, <k,p) 12 (k,p), 1% (k,p) Of A22(k,p, A) consists
of the columns of the identity matrix If(;_1,,_1) augmented by f(k,p—1)— f(k—1,p— 1) zero columns.
This means that Axs(k,p, )~ Agy (k, p) consists of the first f(k—1,p— 1) columns of Ass(k,p, A)~! and
additional f(k,p—1)— f(k—1,p— 1) zero columns. The next lemma states this exactly. But before this,
we introduce special matrices and vectors for an appropriate description.

DEFINITION 3.3.6
Let keIN\{0},peN\{0}, AeC\{0}.

Define Jy(k,p) = {Y}zeexiobp)v=—(2)
FJi(k,p) = {4 }acexyo(kp)i=F(hp—(2))s
Ji(k,p) = { Y veexialhp)ivE—(2)s
FJi(k,p) = {i}veexia(kp)itF(kp,—(a)-
Define

B(k,p, )\) = ('Ul, .. -;Uf(k,p—l)) € Mf(k—l,p),f(k,p—l) (C) with
(i) Vi€ FJi(k,p):v;:=0.
(i1) VYie FJi(k,p) Iz € X12: i =F(—(z)) — f(k,p—1). Then
Vi,FJ=<(k,p,z)) *— (f’( n(kapa '73)7)‘))—71 and Vj ¢FJ-< (kap; IL') N R 0.
B(k,p,N) i= (01, -+, V5 (kp-1)) € Mp(k—1,p),7(kip—1) (C) with
(Z) Vi € F_Jl(k,p) tv; = 0.
(i1) Yie FJi(k,p) Iz € X12: i =F(—(z)) — f(k,p—1). Then
Vi FJ= (kp,a)) ‘= (L(n(k,p,z),\))_1 and Vj ¢ FJ=(k,p,x) : v; ; := 0.
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DEFINITION 3.3.7
Let k € N\ {0}, p € IN\ {0}.

Define E(k,p, \) = diag( A", ..., XS Gp=1) ) where
{ n(k,p,x) with S X1,2(k’p) 1= F(.’E) - f(kap - 1) (XS FJl(kap)J
C; =
0

1€ F_Jl (k,p).
LEMMA 3.3.8
Let keIN\{0},peN\{0}, A e C\{0}.
Then
(1) (Ala, =kp) = Mi(k,p)) 12 (k,p), T (k,p) Liz, i=f(k—1,p—1),
(i4)  (Alo, <k,p) — /\If(k,p))1< k) hikp) = Vg, i=f(k—1p-1),j=f(kp-1)—i,
(“7’) A22(k b, ) l(kap) = B~(k D, );
Proof:

Deferred to section 4.

O

Finally, the representation of the determinant |A(a, <k,p) — Alf(k,p)| as a determinant of a matrix with
polynomial coefficients and order lower f(k,p — 1) requires the property stated in the next lemma.

LEMMA 3.3.9
Let k € N\ {0}, pe N\ {0}, A€ C.

Then
|A22(kap7 )‘)| = (_)\)f(k—l,p) = (_l)f(k—l,p) |E(kap7 )‘)|
Proof:
Deferred to section 4.

Now, defining

B(aa '<k,p7)\) = All(kypa )‘)E(k7pa )‘) + A12(kap)B(kapa )‘)

we can conclude

LEmMA 3.3.10
Let k € N\ {0}, pe IN\ {0}.

Then:
Proof:
Deferred to section 4.

REMARK 3.3.11
The elements of B(a, <,p,A) are polynomials of maximum order k + 1.

The dimension of B(a, <kp,A) is f(k,p—1) =

(#)
(i)

| A, <kp) = Mg | = (=172 | Bay, <55, A) |-

O(kP-1).

From the representation lemma an algorithm for computing the matrix B(c, <., A) can be derived:

Procedure B := Generate_reduced _matrix (k, p, 4,))

{

Bz:Of(k,p—l),f(k,p—l);
col:=0;
for z:=(1,...,1) to (L,k,...,k)

{

A::)\n(k,p,w);

col:=col +1 + n(k,x);

B(—a COl)::(All (kapa )‘))_,col * A;
for y in J3(k,p,x)

A:=A/N
coly:=F(y);
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for z in {z€Xo,:(k,p) | € Tn({z})}

row:=F(z);
B(row, col):=B(row, col) + (A12(k, D)) row,cols * A;
b

3.4 The semi-simplicity of eigenvalues of A(«, <x,)

As in the introductory section 1 was indicated, a linear recurrence scheme with the recurrence matrix
A generates bounded sequences, if o(A) = o2, (A). The criterion o(A4) = 0%, (A) includes to check
the semi-simplicity of eigenvalues. As usually for a specific eigenvalue its geometric multiplicity can be
determined without computing eigenvectors, it would be helpful to have a criterion to decide, whether
a particular eigenvalue is semi-implicit or not. A test like this would not avoid the determination of a
particular eigenvalue and its multiplicity, but would at least avoid to compute its eigenspace.

In the following we re-state an algorithm to generate generalized eigenvectors of a matrix and an
eigenvalue which can be used to generate the Jordan block structure and properties of generalized
eigenspaces. This shows the relation between geometric and algebraic multiplicity of an eigenvalue
A € 0(A(a, <k,p)), the length of the Jordan blocks corresponding to A and the rank A(a, <k,p) — Al z(k p)-
With this result we can derive a criterion for checking the semi-simplicity of an eigenvalue A in terms of
the reduced matrix B(a, <k p, A).

The algorithm to generate generalized eigenvectors of a matrix A belonging to a given eigenvalue A
consists of two procedures and is

Procedure x := Solve( A, \,y)
{
If ( 3 a solution z of (A — Al)z =y)
return z;
else
return fail;

}

Procedure (list,dimensions) := Generalized_eigenvectors( A , A)

{
Ya = dim( Ker(A — X)) );
Determinate linearly independent vectors e}, ... ,e}“ solving (A — A\I)z = 0;
foreach ¢ := 1 to vy

{
k,‘i = 0;
while ( fail # ej-)
{
k,’ = kz + ].;
list :== append(list,e} );
€. 11 1= Solve(A\ef );

dimensions := append(dimensions,k;);

}

return list,dimensions;

}

For the next definition and four lemma let n € N\ {0}, A € M,,(R) and X € C.
Some obvious properties of the null-spaces of the operators {(A — AI)"},cn are presented:

LEMMA 3.4.1
Let A € C. Then Vn € IN:
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(i) Ker ((A=AD)") C Ker ((A — X))

(i) Ker (A= X)") = Ker (A= X)"") —Vm e N : Ker (A — X)"t™) = Ker ((A — AI)"tm+1)
Proof:

Deferred to section 4. O

Furthermore we need the following definitions:

DEFINITION 3.4.2
Define:
ny:=min{r € N | Ker (A —X)"") = Ker (A—XI)") }

Let )
{ei tiew, )\ {0} the basis in Ker (A — AI), generated by procedure Generalized_eigenvectors.

Define then:
ki =max{m e N\ {0,1} | 3 z with (A—X)™z =€} }, i € N,y(» \ {0}

The following lemma are used to establish a rank criterion for semi-simplicity of eigenvalues.

LEMMA 3.4.3
Let i€ IN,Y()\) \ {0}, m € INki \ {0}
Then et € Ker (A—A)™)\ Ker (A —AI)™1)

Proof:
Deferred to section 4. O

EMMA 3.4.4
zgl{ el, | me INii \ {0} } 4s a set of linear independent vectors.

Proof: Deferred to section 4. O

LEMMA 3.4.5 A
Ker (A= X)™) = span{.L_Jl{ el | me N \ {0} }}.

Proof: Deferred to section 4. O

COROLLARY 3.4.6
Let Ae M,(R),
A€ a(A).
Then:
A has only Jordan blocks of length 1 if and only if u(X) = ~v(\)

Proof: Deferred to section 4. O
The above result will now be applied to (k, p)-amplification matrices.

DEFINITION 3.4.7
Let ke N, pe IN\ {0}.

Then define: Vo € X1 2(k,p) JZ(k,p,x) = {—(z)}UJ3(k,p,2),
n+(k,p, "E) = n(k,p, :L.) +1,
yi(k,px) = y € JE(k,p ) withVz € JZ(k,p,2)2 Skp Y-

LEMMA 3.4.8

(i) Let Ae C\{0}, a € Ker (Ao, <r,p) = Msk,p))-
For all y € X(k,p) denote with y, the p-th component of y.
ThenVx € Xi5(k,p) Je(x) €R Vy € JF(k,p,x) 1 apq) = —c(z) A= (@)

(i)  dim( Ker (A(a, <k,p) — Mk,p)) ) = dim( Ker (B(a, <k, A)) ).

(iii)  Then A(o, <k,p) — Mf(x,p) has at most Jordan blocks of lengths 1 (is semi-simple) if and only if
u(A) = dim( Ker (B(a, <kp,A)) ) = f(k,p— 1) — rank( B(a, <kp, ) ).

Proof: Deferred to section 4. O
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COROLLARY 3.4.9
Let A € o(A(a, <kp)),
B=Generate_reduced_matriz (k, p, A,\).
Then X\ has at most Jordan blocks of length 1 (is semi-simple) if and only if u(A) = f(k,p—1) —rank(B).

Proof: Deferred to section 4. O

3.5 Some special cases
3.5.1 The case p=2, k=m

A quite common case from a practical point of view is the case p = 2.
For any k € IN\ {0} assume now m = k and that we are given the coefficients a = (ag,...,ar). We
extend a to a countable infinite vector

a:=(...,0_2,0_1,00,...,0%,Qt1,...) Where a_; := =1, ; :==0,i € Z\ ({1} UNg). (3.2)

For this case we easily can derive that
2 2 2
vr € Xq(k,2) : (w) =1, VreX(k,2)\Xqk,2): (ﬁ) =2, VreX(k,1): (w) =1. (3.3)

We can also explicitly compute the functions related to integer indexing.

LeMMA 3.5.1

Let ke IN\{0}. Then

() flh2) = (R

(i) Vo= (x1,72) € X(k,2): F(k,2,2) =14z — 3 + DEE=Z) — 1 4 5, | ;Chtlom)
VieNy: L) = F(k,2,(i,i) = 1+ 320 0,6y .= F(k,2, (6, k) = 1 + k + {CHLD

(t4)  Vz = (21,22) € Xy1(k,2) with z2 # k,y = (21,22 +1) € Xy(k,2) : F(k,2,—(y)) = F(k,2,—(z)) + 1.
Ve = (z1,k) € Xq(k,2) withz1 #k,y=(x1 + 1,21 +1) € X1(k,2) : F(k,2,—(y)) = F(k,2,—(x)) + 2.

Proof: Deferred to section 4. O
Furthermore the submatrix A(a, <k,2)1'0<(k,2),1<(k,2) of A(a, <g,2) can be characterized as

LEMMA 3.5.2

Let Vi € Ny: 11 (i) := F(k,2, (i,4)), l2(i) := F(k,2, (i, k)), 1(1) == l2(4) + 1 = 11(3), 1(¢) := Ny 5y \ Ny, (5)—1
Then

(i) Vi € INg \{k‘} 1 (A(a, _<k,2))Ii+1’I1' = cato(I_;).

(1) Vie N \{0},5€ Nt \{0,i+1}: A(q, '<k,2)I,-,I,- = Ol(z'),l(j)-

(i9i) A, <k,2)1,1 = cato( diag( cato(I}),...,cato(I1)) ).

Proof: Deferred to section 4. O
The reduced matrix can then be computed by using the following properties

LEMMA 3.5.3
(1)  A2(k,2) = (e1,...,exr,0) with {e;}icw,\{0} unit vectors and 0 zero vector in R:

(i)  Asa(k,2,\) 1A (k,2) = (v1,...,vk,0) where for all i € Ny, \ {0}, j € Ny_;

k(k+1)

0 otherwise.

Proof: Deferred to section 4. O

With this the reduced matrix can explicitly computed.
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LEMMA 3.5.4

B(a, <k2,A) = (b(e, <k,2;)\)i,j)i,jeﬂ\l%k(k+1)\{0} with b(a, <g2,N)i; =

(&

> Blaj ] A
I=—1
k—(i-1)

=< > E| 201004 (j—1) ] Ne—1=(-1)

=0
]E[ Qs ] )\k—(i—2)

Proof: Deferred to section 4.

EXAMPLE 3.5.5

\ Elai_a—¢-1) ] Ae—(i-2) 4 B[ ag o)1 (i-1) ] \k=(i=2)=(j-1)

For p =2, k =m = 4 lemma 3.5.4 states that B(a, <4,2,A) =

4 3 2 1 0
l_lelE[a%] At IZ%)EPOQQH_I] A3t l;)]E[?alOélJ,_z] PR l;JE[2alal+3] ALt l;)]E[QOLqu_H] p
E[ao] )\4 ]E[Oéfl] )\4
+E[Oé1] A3 E[OéQ] A2 E[Oé3] Al ]E[a4] A0
_ ]E[al] /\3 E[Oéo] )\3 E[a,l] )\3
o +E[Oé2] A2 +E[O[3] Al ]E[a4] A0 0
]E[OLQ] )\2 E[Oél] )\2 E[Oéo] /\2 ]E[Oz_l] )\2
+E[()é3] Al +E[Oé4] A0 0
]E[Ot3] }\1 E[O[Q] ])\10 ]E[Oél] /\1 ]E[Oé()] )\1 E[Oé_l] )\1
+E[o4] A

Considering the rows 2, 3, 4 and 5 in the previous example one can notice that

— E[a_;] contributes with the summand E[a_;]A\*~(~2) to the matrix elements B(a, <4,2,A);j, 1 = 2, . .-

— E[ao] contributes with the summand E[ag]A\* =2 to the matrix elements B(a, <4,2,A)jj-1,5 =2, .-

— E[o;] contributes with the summand E[a;]\F=(/=2)~% to the matrix elements B(a, <4,2,\)j,j—2—i,
j=24i,...,5i=1,2,3;
— E[a;] contributes with the summand E[a;]AF~% to the matrix elements B(a, <4,2,A);3+i—js
§=2,..,240,i=1,2,3;

— E[a4] contributes with the summand E[as]A\F~* to the matrix elements B(a, <42, A)j k+1—;-

This observation suggests to characterize B(a, < p, A) by the regularity in terms of A-potentials or factors
{ E[es] }ien, - For this we fix, what is understood by ,contribute to an matrix element®.

DEFINITION 3.5.6

Let ke IN\{0},p=2,
i, € Ngyq \ INy,
l € INg.

If B(a,<p2)i; = Elog ] X
or  B(o,<2)ij = Elag_i—(j_1)] A + Elag_iy(j-1)] A=G-1)
or  B(a,<k2)i; = Elag1-a-1)] N + Elay—] A
then we say that A\ contributes to B(a, <y2)i; (with summand Elag_;] X', Elay_;—j_1)] A' or

Elag ] N, respectively).

If B(a, <k,2)i,j = ]E[al] Akt
or  B(a,<2)i; = Ela] M0 4 Blag ] AE172671
or B(a,<k2)i; = Eloy_o(—1)] AF71H2071 4 Elqy] AFHG-D

then we say that E[ey] contributes to B(a, <y2)i; (with summand E[a;] ¥~ E[a;] N~1=0-1) or
Eloy] Ne—+0=1) | respectively).
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Now we can characterize B(a, <x,2) by powers of A and presence of E[a,], | € {—1} U, with

LEMMA 3.5.7
Let k € N\ {0},p = 2. Then
() Vi€ \N, Ve {0} |
A=(=2) contributes to B(a, <k,p, N)i,j with summand Elag_s) ;1)) AF~(072).
(%) Vi € Ny41 \]Nl, Vj € ]Nk+1_(z-_2) \ {0}
A=(=2)=G=1) contributes to B(a, <k,p, A)i,j with summand Ela;_s)y4j_1)] \F~E-2 =01,
(%Z) Vi e {—1} UNg—1, Vi € Ngy1 \]N(H—l)vl-'
E[ey] contributes to B(a, <k,p, N)i,i—1-1 with summand E[az] \F—=2),
(VU) Vi e ]Nk, Vi € ]N(H—2)/\(k+1) \Nl
E[ay] contributes to B(a, <kp, N)iir3—i with summand Ea;] \¥L.
(v)  Letl € INy.
Then Vi € Npq1 \ Ni: E[oy] contributes to at most one B(a, < p, N)i j, j € Ngy1 \ No.

Proof: Deferred to section 4. O

3.5.2 The case p=2, k>m and discretized SDDE
Consider the linear SDDE

dX () = (a0 X () + a1 X (t — 1) + as X (¢t — 2)) dt + X (£)dW (¢) (3.4)

under the conditions described in section 1. Consider as a numerical method the Euler-Maruyama-Scheme

Xpp1 = Xp+achX,+ahX(n—K)+ahX(n—-2K)+ X, Vheni1 (3.5)
= (1+aoh+ Vhens1) Xp + arh X(n — K) + ayh X (n — 2K) '
where K = 1/h and step width h is chosen such that 1/h € IN. Define now k(h) := 2/h,

a(h) = (a0(h)7"'7ak(h‘)) with aO(h) = 1+ agh + \/EE, €~ N(07 1)7 Qk(h)/2 = alha Qp(h) = a2h7
a; = 0, i € Wiy \ {0,k(h)/2,k(h)}. In order to investigate now the influence of the step with h
on the asymptotic behaviour of the numerical scheme, one can to consider a family of coefficients
a(h), whose dimension increases for h | 0 and which have three non-zero elements at positions
ko(h) =0, k1 (h) = 1/h and ka(h) = 2/h. A characteristic property of the non-zero elements of the fami-

ly a(h) is that ’2"(—(,:”)) = cp, 121(—(,1’3) = ¢; and k,f(—(:)) = ¢y with h-independent constants co = 0, ¢; = %, cy = 1.

Consider the affine SDDE
dX(#)=(b+acX(#) + a1 X(t—1)+aX(t—2))dt + X (t)dW(t) (3.6)

under the conditions described in section 1. As a numerical method choose as before the Euler-Maruyama-
Scheme

Xpi1 = Xn4bh+aohX, +aihX(n— K)+ ashX(n —2K) + X (n)vVhenyq

(3.7)
= bh+ (1+aoh+ Vheni1)Xn +ar1hX(n — K) + axhX (n — 2K)

where K = 1/h and step width h is chosen such that 1/h € IN. Now the as indicated in section 1, it
is of interest to investigate the error propagation of the initial error. But this question is related to the
homogeneous scheme

b1 = (14 aoh+Vheni1) 6+ a1hdpn_g + ash 6, ok (3.8)
Define again k(h) := 2/h, a(h) = (ao(h),...,ar(h)) with ag(h) = 1 + aoh + vhe, € ~ N(0,1),
Qg(ny/2 = a1h, agp) = azh, a; = 0,4 € Ny \{0,k(h)/2, k(h)}. In order to investigate now the influence

of the step with h on the error propagation of the initial error &g, one has to consider a family of
coefficients a(h), whose dimension increases for h | 0 and which have three non-zero elements at positions
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ko(h) =0, k1(h) = 1/h and k2(h) = 2/h. A characteristic property of the non-zero elements of the fami-

ly a(h) is, that k,f((:)) = cg, kkl((hh)) = ¢; and k,f((h};) = ¢9 with h-independent constants ¢g = 0, ¢; = %, ca = 1.

The two previous examples motivate the investigation of the case p = 2 and k£ > m. For technical
reasons we deal with this case by restating it in terms of the previous case. Define K := {k; | j € N, }
and ® € ({-1}UN,,,{-1}UK) with: &(-1) = —1, VIl € N,,, ®(I) = k;. Consider instead of 2.1

k ~
Xpp1 = @ Xn (3.9)

with stochastic coefficients &y, := (Go,n, - - -, @m,n), » € IN, which satisfy

Vn € N : &, is independent of {Xl}lelN,._l

VneN:a, ~a:=(ag,...,0n).
P an; leK, ~ o k€eEK,
vn €I :an = { 0 otherwise, N { 0  otherwise.

REMARK 3.5.8

By definition 2.2.8 of (k,p)-amplification matrices one observes A(a, <k 2) = A(@, <k,2). Then lemma
3.5.3 provides an exact characterization of B(a, <2, A) as from A(a, <k,2) = A(@, <k,2) follows also
B(a, <k2,A) = B(&, <k,2,A)-

However, due to the possibility of a larger or large number of zero coefficients in @, the characterization
of B(a, <k,2,\) by means of the non-zero coeflicients is useful.

LEMMA 3.5.9
Let ke IN\{0}.
Then

(7') B(Oé, '<k727)‘)1,]' = ZE[O‘% ]}‘k_kl: j=1
=0
(i) Ble, =k2,A)1,; = > Bl aj0g-1(k 41y ] AFF=07D, =2, k41
1EN ki +(—1)EK
(i4) VI€{-1}UNpy, Vi € Ngp1 \ No@y1)ve:
E[ oy ] contributes to B(o, <k,p, A)i,i—1—k, with summand E[ ay | Ne—(i=2)
(iv) Vi e N,,, Vi€ IN(kl+2)/\(k+1) \]Nl.'
E[ oy ] contributes to B(a, <k p, N)ik,+3—i with summand B[ a; ] A\F—5.

Proof: Deferred to section 4. O

3.5.3 The case p>2, k>m=1

In contrast to the two special cases considered before, the number m of memory coeflicients and not the
power p is limited. This case has been the starting point for proving the main lemma of section 2.2. The
advantage of this case is that for an (k,p)-index z = (0%, z5¢) with ¢ € IN, \ {0} and z+¢ € X;(k,p—q)
Ty maps {z} on { (0°,z,k%) | i,j € N,,i+ j = p— q }. The elements of T,,({z}) have a properties that
allow us to characterize the corresponding matrix entries in A(a, <) and hence B(a, < p, A) easily.

LEMMA 3.5.10
Let ke IN\ {0}, pe N\ Ny,

T € X(),l (k,p).
Then V] € ]Nn(O,z)fl: ’I“(j,TL(O,ZU), —(SL')) ¢ Jl(kap)'

Proof: Deferred to section 4. O
Now we are ready to characterize B(a, <k p, A).

25



LEMMA 3.5.11
Let ke IN\ {0}, pe N\ Ny,
z,y € Xo,1(k,p).
Then B(a, <k,p,A) = Bi(a, k,p,A) — Ba(k,p, A), where
Bi(a,k,p,A\) =
( c(n(0,2),n(0,z),a) \e+1=2» 4§, (2 — (k + 1 —,)) ¢(0,p, ) y=r(n(0,z),n(0,z),—(z)) and
z =r(0,n(0,z), —(x)),

c(j,n(O,a:),a) Y= 'I“(j,’I’L(O,IE), —(.73)) and
= JE an(O,:c)—l \{0}:
c(0,p, a) Yy =2z — 2z # Z where

z =r(n(0,2),n(0,z), —(x)),
z =r(0,n(0,z), —(x)),

[ 0 otherwise,

By (k,p, \) = diag’ P~ (A Aree-1) where Vo € X1 (k,p) : dpz) =k +1—xp,

Proof: Deferred to section 4.

4 Appendix
4.1 Proofs of section 2

Proof of lemma 2.2.2:
0 < n(0,z): Xz, = ngjr(f,z)XZSfbl(o,z),p,m)

7(0,z) . i vn(0,z)—j v s(n(0,z),p,z)
=S Bn0,2),0) XXX
j=

n(0,z) ] .
— S B, n(0,z), a)X%XSEOI;E)*JX;(S("(Ovm)apaﬂc))
j=0

n(0,z .
= 55010, 2), @) X3 X X (00 2 @)
j=0

n(0,z) .
= X BGin(0,2),a) X7 O,
7=0

n(0,z) .
Vi = X (G, (0, z), @)Yy GO =)
J:

0 =n(0,2): Yy, = E[

P
=

Xn+17:1:j ]
1

p
E[ [ Xn—(a;-1) -
Jj=1

— Yn*(z)
Proof of lemma 2.2.4:
1) X(k,p) C X(k,p) holds by definition.
2) Define for p e IN\ {0}, 1 € N,_1, r € N},

{z7"eX(k,p) | zp=k} =0,
M(l,p)~" -
{z77eX(k,p) | 21=...=2y=0,zp =k} [>0.
— X(k,p =0,
() r) L
{zeX(k,p) |z1=...=2,=0} [I>0.
—1 J—
Then ”L_JOM(l, p) = M(l,p).
Proof:

Let Z = (Z1,...,%p) € M(l,p). Then z = 37*=2) € M(I,p)~° and z = z=*=2) € M(l,p)~*-2).
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— —1
It follows M (I, p) C pL_JOM(l, p)".

As Vr € Ny : M(L,p)~" C (,p), it follows ig;M(l,p)*T C 7, p). O
3) { {0}, {k}*~7) | j € N, } € X(,p).
Proof:
As by (2.19) {0}? € X(k,p), it follows by (2.20):
Vj € N, \ {0} : (4, p, —(2)) = ({0}, {k}*~7) € X(k,p). O

HLetle N, 1 \{0}.
Then: "U M (j,p) € X(k,p) = M(L—1,p) C X(k,p).
Proof:
For any z € I),gllﬂ(j,p) 0 < n(0, ), and it holds by (2.20):
\V/] = l; <oy P 1: {T(l - 17”(071")5 —(.’L’)) | z € M(]ap) } - X(kap)
As by 3) { ({0}, {k}*77) } € X(k,p) and
{r( = 1,n(0,2),—(2)) |z € M(j,p)} = {r(l = 1,j,—(2)) | x € M(j,p)}
= {({0}!—17?11 - Yp—is {k}j+1_l) | 0 S )1 S - -Yp—j S k— ]‘}
it holds
X(69) 2 (O}, (1710 § U0 0 = 1,m0,2), ~@) | 2 € TG, )

={ {0} L RO UL}y ypa-) [0Sy < ypa e S R - 13

5)Let I € N,_ \ {0}.
—-1__ -1 __
Then: U M(j,p) € X(k,p) = U M(1-1,p) C X(k,p).
J= J=t=

Proof:
-1

Due to 4) it holds ’fulM(j,p) C X(k,p) = M(l—1,p) C X(k,p).
]:

Due to (2.20) and 2) it holds M (I — 1,p) C X(k,p)) = M(l — 1,p) C X(k,p).
-1
This implies _leJ M(—1,p) C X(k,p). O
J=t—=

6) X(k,p) C X(k,p).
Proof:
Due to 3) { ({0}, {k}?=9) | j € N, } C X(k,p) implying M(p —1,p) C X(k,p).
Due to (2.20) and 2) then follows M (p —1,p) C X(k,p).
This can be taken as initial step for a complete induction to show:

-1 -1 __
by 5) forany l=p—1]1 pUlM(j,p) C X(j,p) = .leJ M3 p)-
j= j=i-
—1_ -
This implies I?UOM(j,p) C X(k,p). The result follows from X(k, p) 2:) M(0,p). O
j=
Proof of lemma, 2.3.2:
0<n(0,2): Xz, = Xpooxin0n.r)
(n(OJ'Z-)) azX;LTX:SC"l(va)ip7$)

(2.4) wel(m,n(0,z)) w

= > B(m,n(0,z),a) Xngl(n(O’m)’p’_(w))
w€l(m,n(0,z))

— ) B(r,n(0,7),a) X;n(s("(07w)7p,—(w))77r)_
w€I(m,n(0,z))

Yia = ¥ C(mn(0,2),a) i tOD @0,
we€l(m,n(0,z))
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p
0=n(0,z): Yo = E[ [ Xnt1-o,]
j=1

p
E[ H Xn—(mj—l) ]
Jj=1
= v,@,

O
Proof of lemma 2.4.1:

Let f € C(R,R) be a convex function. Then it is known that ¥n € IN\ {0}, Ve = (c1,...,c,) € R} with
Yric =1V, .. ty) € R™ f(X, citi) < >iy ¢if(t;). Choosing f(t) = e’ and t; = In(] a; |),

i € IN\ {0}, this implies . .
Hlai <> il ai |- (4.1)

Let f; € LP(Q, R, P)\ {0}, i € N\ {0}, (p1y...,pn) € R? with 37, p; = p. Then Vuw € : set ¢; = pi/p,
a; = ( fi(w)/ | fi |, )P- Applying (4.1), taking the expectations and some minor modifications lead then

to
E[[[I £ 1<]] I £

If any f; were zero, (4.2) would hold trlv;;l]ly But thls ‘enables us to conclude

P (4.2)

(i)

|E[HX”">]|<E[H|X <HE[|XM 1] <HE|X P (43)
i=1
O
Proof of lemma, 2.3.4:
Observe that X(k,p) = X(k,p) C X(k,p) C X(k,p). O
4.2 Proofs of section 3
Proof of lemma 3.1.1:
(i) By definition of X(k, p).
(ii)  The integral form of (i).
k+1 4 ip—1 ip—1 k+1 ip—1
(i) Per induction using >~ > ... > 1= E E EDDEE D DI P &
11=0i2=0 ip=0 11=0i5=0 ip=0 10=0 ip=0
tt1 tp—1
(iv) use(ii), [ [ ... [ ldtp...dt2dty = ’;—1; and geometrical interpretation for the approximation.
00 0
O

Proof of lemma 3.1.2:

Assume, there existed a triple (P, By, By) € (O(f(k,p))N{1, —1,0}/k:P)xf(k:p) M, My,) where ky, ko €
N¢kp) \ {0}, k1 + k2 = f(k,p), P permutation matrix, such that

B, 0
A =p1 P.
(a7 '<kﬁp) ( 0 B2>

As P is a permutation matrix describing a reordering of rows and columns, assume without loss of
generality P = I, -

Consider now the graph G = (V, E), whose nodes are formed by the (k,p)-covariances of X(k,p)
(V =X(k,p)), and whose edges are formed by entries of the amplification matrix A(a, <), that is for
T,y € X(kap) €= (xay) €EE & a(a, <k,p)z,y # 0.

Lemma 2.3.2 implies that for any =,y € X(k, p) there exists a path from z to y in G. On the other hand,
the block diagonalization implies that G consists of at least two non-connected subgraphs. But this is a
contradiction. d

Proof of lemma 3.2.4

(i) Let z,y € Xy(k,p) with ¢(z) = ¢(y). Then Vi € N, \ {0} : z; — I = y; — L.
But then Vi € N, \ {0} : z; = y;, * = y. So ¢ is an injection.
Let y € X(k — I, p). Then define z € X(k,p) by: Vi € N, \ {0} : z; = y; + .
Then obviously z € X;(k,p) and ¢(z) =
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(i)  #(Xu(k,p)) = #(o(Xu(k,p)) ) = #(X(k —1,p)) = f(k—1,p).

Proof of lemma, 3.2.5
If k=0, X(0,p) = {07} and F(0P) = 1.
Ifk=1,X(1,p) = { (074,19 | i € N, }. Then F(0?) =1 = p+ 2 — min{p + 1} U 0. Furthermore for
JENN\{0}: F((0P9,19))=j+1=p+2—-(p—j+1)=p+2—min{p+1}U{ieN|z;=1}.
If p=1, X(k,p) = IN. But then for j € Ny: F((j)) =7+ 1.
Let k>1,p>1.
Let ; = 0. Then F(k,p,z) = 1+#{y e X(k,p) | y <kpz} =1+#{yeXk,p-1) | y <sp
(x2,...,2p) } = F(k,p—1,(22,...,2p))-
Let 1 > 0. Then i
(WeXtp) |v<nz} = (U'Xiua(khp)U{yeXo,(kp) | y<ipa)

("0, {0} x Xalk,p = 1)) U{y € Xo, (k1) |y =ep 7}

is a partition into disjoint sets. As
and lemma 3.2.4
#{yexﬂh(k)p) ‘ y'<k,11$} = #{yEle(k,p—l) | Y <k,p—1 (mZ_wla--':le_xl)}

= F(k—ih,p—l,(ib'g—561,---,513,;—.731)),

1) follows. O
(i)

Proof of lemma 3.2.6
(@) Vz € X1 (k,p): z does not contain any 0, 0 = n(0,z). Hence T,,({z}) = {—(z)}, and by definition
(2.23) (i) follows.
(i7) Let z,y € X1(k,p). Then 1 <z1 <... <2, 1 <y1 < ... < gy
Let = y. Then Vi € N, \ {0}: z; = y;, hence Vi € N, \ {0}: 2z; — 1 =y; — 1 and —(z) = —(y).
Let —(z) = —(y). Then Vi € N, \ {0}: ; — 1 = y; — 1, hence Vi € N, \ {0}: z; = y; and = = y.
(ii) Letp=1.
Let z € X(k,p) with 0 =n(k,z).
Then y = (21 +1), —(2) = (1 — 1), =(y) =
If z € Xy (k,1), then Ay € X(k,1): F(y) =
Let pe IN\ {0,1}.
Let z € X(k,p) with 0 = n(k,z). Then y = (z1...,2p_1,2, + 1), —(z) = (z1 — 1,...,2, — 1),
—() = (1 —1,..., 051 — 1,2), F(=(y)) — F(—(2)) = 1. _
Let + € N, \ {0,p} z = (z1,-.-,2p—i,k"). Then y = (z1,...,2p—i + 1,(zp—;i + 1)7),
—@)=(21 =1y, 2p_i — L,(k=1)%), =(y) = (1 = 1,...,Tp—i, (Tp—;)*). Hence
{zeX(k,p) | 2 =kp =) }\{2€X(k,p) | 2 <kp —(2) }
= {zeX(k,p) | 2=(x1—1,...,2p—; — 1,2),2 € Xy_1(k,9) }.
F(=(y)) — F(—(2)) = #Xg_1(k,i) = #X(1,4) = 1+
If x € Xy (k,p), then Ay € X(k,p) : F(y) = F(z) + 1.

(iv) Let i € Ny \ {0}. Then Vz € X; i41(k,p): x € I;*(k,p) and —(z) € I;2,(k,p) by definition (3.2.1).
But then (iv) follows from ().

O
Proof of corollary 3.2.7
(i) Follows from lemma (3.2.6).(4).
(i) Follows from lemma (3.2.6). (7).
(i3t) Follows from lemma (3.2.6).(iv).
O

Proof of lemma 3.2.10
(1) The case p =2 is proven in lemma 3.5.2.
(2) Fori€ Ny—1 \{0}: Xii1(k,p+1) ={(i,z) | z € Xi(k,p) }.
(3) Vi€ N1 define ¢i: Xjipi(k,p+1) —  Xi(k,p)
(i, ) — .
Obviously, ¢; is a bijection.
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(7)

Let i € Nx 1\ {0}, Z = (i,2) € Xy i1 (k,p+1), 7= (i —1,9) € X;1i(k,p+1).
Then j = = () «— y = —(2).

1€ Ny ¢ \ {0}

From (4) follows A(a <k,p+1)1<(k 1), I3 (kp+1) = A(a <k p)Uk_zIf(k’p) Ub_i_ IR (ko)
For p =2, (i) and (47) are proved in lemma 3.5.2.

Assume, ( ), (i1) hold for p = n.

From (5) we deduce that for i € i1 \ {0} A(Q, <k,p+1) 12 (k,pt1),12, (kopt1) = Em (0)-
Let y = kP*1. Then: Vz € I5*(k,p) : A(a, <k,p)ay = 0.

But then, applying corollary 3.2.7.(ii7), it follows

Ale, <lc,p+1)Io<(k,p+1),1<(k,p+1)

= Cato(diagk(A(a, _<k7p)ll<(k,p+1),10<(k,p)7 s Alay <k,p)1,j_1(k,p),1,j(k,p)))
= cato(diag"(Ey (k),..., E; (1))
= E; 1 (k).

But then (i), (#3) follow per complete induction from () and (7).

Proof of lemma, 3.3.1
Define the M,,(R)-matrices:

P =

0 I I 0 I AlAs Ay — A AstAs 0
7Ql= -1 7QT: 22 7B: 22 .
I 0 A12A22 I 0 I 0 A22

Then Q;PAPQ, = B. As |P| = |Qi] = |Q-| = 1, the conclusion follows from |A| = |B].

O
Proof of lemma 3.3.3
The case n = 1 is trivial. Assume therefore n > 1.
Consider the linear system Lz =y in R™:
(i) —Az; = Y1,
(i) wi—1—Azy =y ie€N\{0,1}.
J . . i ) 3 .
Then z; = A1y, and - N 10y, = A 1oigy — SNy + SN iy = ;.
=1 (1) =2 1=2 .

Proof of lemma 3.3.5

(4)

Let z € X;.

Due to corollary 3.2.7.(1), 3.2.7.(ii) the diagonal elements of A(a, <) are 0, hence the diagonal
elements of A(a, <k ) — )\I)J<(k,p,m) J<(k,p,z) ar€ — .

Let J=(k,p,z) = {y; | i = 1,...,n(k,p,2) }. Wlog. let yi-1 <kp ¥i, ¢ = 1,...n(k,p,z)s
hence y;—1 = —(yi), ¢ = 1,...,n(k,p,x). From corollary 3.2.7.(i) we know that Vi =
2,...,n(k,p,2): A(o, <k,p)yi1,0: = 1. So all elements of the first lower subdiagonal of ( A(a, <,p
) = AL ) 7<(k,p,2),J< (k,p,z) ar€ 1.

From corollary 3.2.7.(i) we know that then the other elements of A(a, <kp) — M) < (k,p,z),J<(k.p,2)
are zero.

By definition of J=(k,p,x) we know that Vi = 2,...,n(k,p,x): yi—1 = —(y;). Hence the last compo-
nent of Y, p.2) is k. Otherwise +(yn(k,p,2)) € X(k,p), hence yp (k. p.2) < +WUn(k,p,z)) € I (k,p,2), a
contradiction. But this implies k = z, + n(k,p,z) — 1, n(k,p,z) =k +1—z).

Due to (), n(k,p, z) = k+1—zp. By definition, #(J~(k,p, z)) = n(k, p, z) = k+1—z,. Furthermore
Due to corollary 3.2.7.(ii), Vz € J3(k,p,z),y € I5'(k,p) \ J3(k,p,z): A(k,p,N)z,y = 0.

This shows (i4).

(i41) Obviously E% J=(k,p,z) C Xy1(k,p).

Let y € Xy(k,p). Then consider z = {z; | i =1,...,y1,i <y1 = 2zi+1 = +(2;) }. By construction of
2, 21 € X1,2(k7p) and Yy € J_<(k7p7 zl)' SO Xl(kap) C E% J_<(k7p7 .’L’)
T 1,2

30



Assume, Jz1, 22 € Xy 2(k,p), y € J(k,p,z1) N J=(k,p,z2). But then by definition of J=(k,p,z1),
J=(k,p,z2), V§ € J=(k,p,x1) with § <kp y: § € J=(k,p,z1) N J=(k,p,z2). But then z; €
J=(k,p,z2). As by construction J=(k,p,z2) N X1 2(k,p) = {22}, as 1 € X;2(k,p), it follows
21 = 2, hence J>(k,p,x1) = J=(k,p, z2).
(iv) Define a f(k —1,p) x f(k —1,p) matrix A(a, <gp,A) such that Vo € X; 2(k,p):
1) A, <kps N s< (kpa),d < (kpa) = L((E, D, ), N), (4.4)
2) A, <kps A) J=(k,p,a), 17 (kp)\ I = (k,p,z) = Oi ,J: i =n(k,p,x), j = f(k—1,p—n(k,p, ).
By (i), (i4) and lemma 3.3.3 then (A(a, <kp) — AI)A(a, <k p, A) = A(a, <j,p, A), where
1) 4(047 <k,lh)‘)J< (k,p,z),J < (k,p,z) = ( (k b,z ) ) ( (k b,z )7 ) = In(k,p,z)>
2) A(a7 '<k7p’/\)J<(k,p,av) IS (k,p)\J < (k,p,x) — =0i5, 1= (k b,z )a J= f(k -1,p— Tl(k‘,p, .CL')
But due to (i47) then A(a, <pp, A) = If(k_1,p), hence A(a, <k, ) = (A(, <,p) — M)~
(v) See (iv).
O
Proof of lemma 3.3.8
(4) Vo e Xq9(k,p) : —(z) € Ji(k,p). Yy € Ji(k,p)3z € Xy 5(k,p) : y = —(z). Hence Ji(k,p) = { —(z) |
T e X1,2(k7p) }
As Vaz,y € Xia(k,p): 2 <pp ¥y «— —(2) <pp —), z =y «— —(z) = —(y), it follows: if
X1,2(k,p) = { s Yiz1,... f(k—1,p—1) With 21 <pp ... Tpk—1,p-1), then Ji(k,p) = { @i }iz1,.. fh—1,p-1)
with y; = —(z),i=1,..., f(k—1,p—1).
Due to 3.2.7.(i), the statement follows.
(i5) I3 (k,p) = Ji(k,p) U J1(k,p). Furthermore, by definition of Ji (k,p), #(J1(k,p)) = #{I(k,p)).
But then the statement follows due to corollary 3.2.7.(:) and (4).
(¢4¢) Due to (¢) and corollary 3.2.7.(ii1),

(Ao, =k,p) — /\If(k,p))lo(k,p),Jl (kp) = (If(k—l.p—l) ) Of(k—l,p—l),f(k,p—l)—f(k—l,p—l))T=
(A, =k,p) = M) Io k) Ta (k) = Of(k=1,p),F(ksp—1)—F(h—1,p—1)-
But then
(A2_21 (kapa )‘)AQI (kvp))I,J = A2_21 (kvp’ )‘)17-]7 I= ]Nf(kfl,p) \ {0}7 J=FJ] (kap)v
(Ayst (kyp, ) Aoy (K, p)) 1.0 = 01,7, I=Nsp 1, \{0},J =FJIi(k,p).

As by definition for each z € Xja(k,p) J=(k,p,z) N Xi2(k,p) = {z} and due to (i),

Vj € FJi(k,p)3z; € Xy 2(k,p) : j = F(k,p, —(z;)). Hence by 4.4.(iv)

Agy (B, s N) = (kpras).s = Lk, p,25), X) 1 and Agy (B, D, A) 1y (kap)\I< (kapszs )i = OF (h=1.p)—n(hipras) -
(iv) Let Ji(k,p) ={ zj }j:l,...,f(kfl,pfl)a whereVi=1,...,f(k—1,p—1)—1: Tj <ip Tjt+1-

By definition of E(k,p,A), E(k,p,A) s (k) si(kp) = diag(AnEper)  An(kpese-1,-1)) and

E(k, 05 ) 7, (), 1 (kyp) = L (kip—1)= F(k=1,p-1)-

By (i) and definition 3.3.2 then Vj =1,..., f(k—1,p—1):

A5y (kypy X) 3= (k py) g AT EP) = L(n(k, p, x5), A) 1 A" EP23) = —L(n(k,p, z;), A)_1 A" FPi)

O

Proof of lemma 3.3.9
Due to corollary 3.2.7.(4i7), A2a(k,p, ) is a lower triangular matrix with diagonal elements —\. Hence
|Aaa (K, p, A)| = (=) =1p),
By definition E(k,p, A) is a diagonal matrix. Hence |E(k,p, )| = pPoticiing

As YL Ve = D aeXy a(kp) ME D) = #(mEXU(k p)J*(k,p, T)) = #X4 (k,p) = f(k —1,p) it follows

|E(k,p,\)| = A¥(#=12)_ But then the claim is obvious.
O
Proof of lemma 3.3.10

Let A € C\ {0}
Due to lemma 3.3.5.(iv) and lemma 3.3.1 it follows
[A(e, <k,p) = My py| = [A11(k,p,A) = A12(k, p)Azz(k,p, \) " Aa1 (K, p)| [Az2(k,p, Al
= |Aui(k,p,A) = Awa(k, p) Az (k, p, A) " An1 (k,p)| (=1)7* 1P |E(k, p, V)|
= (=1)/==1P) | Ay (k, p, N E(k,p, A) — A1a(k,p) Aza(k, p, \) ™" Ay (, p) E(K, p, M|
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( ]-)f(k_l’p) |A11(kap) )‘)E(kip) )‘) _A (k )B(k )‘) (k pa)‘)|

= (=175 Ay (k, p, NE (K, p, N) + Ar2(k, p) B(k, p, M)
= (=1)/¢=12) |B(k, p, V)|

|A(a <k.p) — M| and |B(a, <j,p,A) are polynomials. Hence they are complex analytic functions on C

and are equal on C \ {0}. Hence they are equal on C.

(|
Proof of lemma (3.4.1)
Let 7 € Ker ((A— AI)"). Then (A — )"z = (A — AI)(A — )"z = 0.
Let z € Ker ((A — X[)"*™*+1). Then (A — X)™z € Ker ((A — XI)"*1). It follows (A — AI)"x
Ker (A= AI™). But then 0 = (A — AI)"(A — M)z = (A — AI)"T™g.
a
Proof of lemma (3.4.3):
Fix an arbitrary i € N,y \ {0}).
For [ =1 this lemma holds trivially due to the choice of the initial values.
Assume now that for [ = m: e}, € (A — /\I) A 3z with (A — Xz =€l .
Then (A — )™ *lef, = (A~ ,\I) =0, e, € Ker (A— A1)
Assume that e}, ,; € Ker ((A - X)™ )
Then 0= (A — AI)™el, ., = (A— )™ le ﬁn, i € Ker((A—X)m 1),
This contradicts the assumptions about e?,
g
Proof of lemma 3.4.4:
ko
(1) Let VI € IN,,, \ {0} define E; = 91{ er | 7€ Ny \ {0} }
(2) By selection of { €] }ien,,,\{o} the vectors of E; are linear independent.
(3) Assume for I = m < n all vectors of E; are independent.
(4) Let d=#(Epi1)
Epy1={wi | i€ Na\{0}}
dK = #(Em+1 N Ker ((A - )‘I)m+1))7
w.lo.g. Kmi1 ={wi € Eny1 | i € Ny \ {0} } C Ker (A= XI)™t))\ Ker ((A — AXI)™)).
Assume, there exists a = (ay, - - .,aq) € R?\ {0} such that Egzl a;w; = 0.
(5) = Vi€ Ng, \{0}: w; =u; ®v; with u; € Ker (A—X)™%)) 6 Ker ((A— X)™)) and
v; € Ker (A —AI)™)).
(6) As 0% au; € Ker ((A—A)™)) © Ker (A —M)™)) and Vi € Ny, \ {0} : u; # 0,
S aivi+ Y qa aiwi € Ker (A= AD)™)),
it follows Zf;‘ a;u; = 0.
(7) 0 g @AD" Y aiui + (A = AD)™ I ag; 5 Y ai(A = AD)™w; = Y0, aje;.
(8) (2)(7) a1 =...=aqg, =0.
9) (4) (8) = Z‘Ll a;w; = Z;i:dKH a;w; € Ker ((A—X)™)).
(10) E} Adpt+1 = =aq=0.
(11) (sﬁo) the vectors in E,, 1 are linear independent.
(12) The lemma follows from the complete induction over .
(|

Proof of lemma 3.4.5:

(1) By the choice of €., i € N,y \{0}, 7 € N \ {0}: span{igl{ei | 7 € N \{0}}} C Ker((A—AI)™).
(2) Ker (4~ AD)') = span{ O {ei}}.

(3) Assume for I = m: span{ U {ez | 7€ Npagi \ {0} } } = Ker ((A—AI™).

(4)

4) Let y € Ker ((A — /\I)'”‘H) 6 Ker (A= XD™).
Lemﬁ&éi.l VT‘ € ]Nm \ {0} 'y ¢ KGT ((A - AI)T)

= dzeKer((A-A)m)o Ker (A-X)™ 1) :y=(A—-A)z.
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(5)As O el | r € Npaig \{0}} € Ker ((4-2D" ), G (e} c Ker((4—anm).
(=4)> x = Zaz
= y—(A )\I)ZaZ Ea,(A A)et, espan{ U {ez | 7€ Npyange\ {0} } }

i=
(6)So for Il =m+1: Ker ((A— AI)™*) = span{ 'U1{ er | m€Nppiap\ {0} }}
1=
The lemma follows from complete induction.
O
Proof of corollary 3.4.6:
From lemma 3.4.3, 3.4.4 and 3.4.5 follows that in a basis of Ker (A — A\I) exactly one eigenvector
corresponds to each Jordan block. From its definitions follows that v(A) = dim(Ker (A — AI)) and
u(A) = dim(Ker ((A— AI)™)). But then lemma 3.4.1 implies: u(A) = v(\) if and only if ny =1, so that
the result follows.
O

Proof of lemma, 3.4.8:
(i)  For each z € X 2(k,p) consider A(a, <k,p) 1= (k,p,z),I(k,p)-

Then Vy € J= (k,p, ZL’): A(a, —<k,p)y,1(k,p)a =0& AF(—(y)) — )\ap(y) =0& AF(—(y) = )\aF(y).

Let Ymaz € J=(k, p,z) such that Vy € J=(k,p,2)y <k.p Ymaz-

Defining ¢(z) = ap(y,,..), (i) follows from the definition of J=(k,p, z).
(ii)  Define Vx € X1 5(k,p) ym(x) € X(k,p) as element of J3*(k,p,z) with Vz € J3(k,p, )z < ym(z).

Define ¢: C7kr-1) —  f(kp)

a= (@, -, apkp-1)) — a=(a1,-.,05kp)"

where Vi € ]'Nf(k’p) \ {0}:
Nag, Iz € Xi(k,p) o = Flym(2)), Iy € JZ(k,p,7) 11 =F(y), j = Yp — ym(2)yp,
a; otherwise.
Then obviously ¢ is an injection.
From (3.3.5) it is known that A2 (k,p, A) L.
Let a € Ker (A(a,<gp) — AI). Then a = (a1,...,a5p) "> @ = (a1,---,05pp-1)) , & =
(@f(kp-1)+1-- - Of(k,p) | and

a; =

0 = An(k,p)a+ Axn(k,pA)a
= a = —As(k,p, )14 (k,p)a,
0 = Au(k,pA)a+ Awx(k,p)a
= 0 = (Auk,p,A) — Ai2(k,p)As2(k,p,\) 1 As1(k,p))a = B(a, <kp,A) G
Hence Ker (A(a, <) — M) C ¢( Ker (B(a, <kp,A)) ).
Let & € Ker (B(a,<kp,N), a = ¢@ = (a1,...,a54,p) = (a',a’), where a =
(@f(kp-1)+15 - - Of(hp) |-

By definition of ¢ and (i) it follows 0 = As (k,p)a + Asa(k, p, N)a. @ = —Asa(k, p, \) "L Aoy (k, p)a.

As a € Ker (B(a, <k,p)), it follows 0 = B(a, <kp, A) @ = A11(k,p,N)a + A12(k,p) @

But then ( A(a, <g,p) — AL) #(@) = 0. Hence ¢( Ker (B(a, <kp, ) ) C Ker (Ao, <g,p —AI)).

Hence Ker (A(a, <k,p) — M) = ¢( Ker (B(a, <k,p,A\)) ), and as ¢ is an injection, (43) follows.
(iii) Follows from corollary 3.4.6, (iii).

Proof of corollary 3.4.9
Follows from lemma 3.4.8 and the definition of procedure Generate _reduced_matrix.

Proof of lemma 3.5.1
(i)  Due to lemma 3.1.1. (m) 3.1.1.(7)

f(k’ 2) = Zn =0 Zzz 0 Zzl o(ll ) = k(k+1) + (k + 1) 7(k+1)(k+2)
(i) Due to lemma 3.2.5
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F(k,2,(z1,72)) = F(k—=1,1,(za—21)) + (1= do(z1)) X7 flk—1i,1)
= 14m—z+ (1 =) X725 1+ k—4)
1422 — 21 + (1 — o () 22kE3=1)
— 1 +.'L'2 + .751(2/9-;1—&11).
But then for i € Ny: 14 (i) = F(k,2, (i,i) ) = 1 4 + {EEI=0 — g iZk480)
(i) = F(k,2, (i, k) ) = 1+ k + 25120,
(#i7) Let (x1,x2) € X(k,p) with x2 # k. Then (1,22 + 1) € X(k, p). Furthermore

F(k,p,—($1,$2+1)) = F(kapa(ml_laxZ))
= 1429+ (w171)(2k—|2-17(w171))
1+F(k,p,($1—1,1’2—1)) = 1+F(k,p,—($1,$2)).
Let (z1,k) € X(k,p) with x; # k. Then (z1 + 1,25 + 1) € X(k, p). Furthermore
F(k,p,—($1+1,$1+1)) = F(kapa (Il'l,.'L'l))
= 1+ a:1(2k-|2—37z1) = 14 z2_1 + (z171)(2k-;17(m171)) + 2(k71)2+47z1
= 2+F(k,p,($1—1,k—1)) = 2+F(kapa_($1ak))'
(]
Proof of lemma 3.5.2
(i)  Follows from corollary 3.2.7.(i) and lemma 3.5.1.(34).
(i)  Follows from corollary 3.2.7.(ii7) and lemma 3.5.1.(i3).
(127) ~ Follows from (4), (i) and A(a, <k,p) 12 (k,p), 12 (k,p) = O (h—1,p),1)-
g

Proof of lemma 3.5.3

(i)  From lemma 3.5.1 it follows Jy (k,2) = { (1,d) | i=1,...,k—1}, Ji(k,2) = {(1,k) }.
But then the statement follows from lemma 3.3.8.(7), 3.3.8.(i1).

(i) Consider z € Ji(k,p). Then z = (1,i), i € Ni_q \ {0}. But then J=(k,p,z) = { (1 + j,i +j) |
jJENy_;}.Lety = (1+4,i+j) € J¥k,p,2), (j € Ng—;). From lemma 3.5.2 we deduce that
Fly) = 1+i+j— (14 j) + LHCE=(h)) _ j 22 jjQhi2=g) _ gy g 44 J@RHZ) A
F(y) = #({ 2 €X(k,p) | 2 <up v }) o o
#({z € Xa(k,p) | 2 <ipy}) = Fly) = F(O,R). =k + 1+i+ =D — (p 1) = i 4 1CEL1=0),
The statement follows now from lemma 3.3.8.(7i7).

O
Proof of lemma 3.5.4
(1) Vo = (171) € Jl(kap)7 i = 17" 'Jk -1 J_<(k,p,$) = { (1 +.77Z+) | .7 € lNkfi }
Hence n(k,p,z) =k +1—1.
(2) Let z = (177’) € Jl(k7p)7 1€ N4 \{0} Then Vy = (1 +JJZ+]) € J(k,p,l') (.7 € INk*i):
. C G2kl j(2k+1—j .
F(y) — F((,k) = k+ 1+i+ ) (1 4 4 S0y =,
(3) Due to (1), E(k,2,)) = diag(\¥, ..., \°).
k k=1 k&
(4) Tt holds E[be_H] = Z:(]E[af]E[thi] + 'Eo . Z 1E[2aia]‘]E[Xn_an_j].
7= 1=0j=1+
(5) With (3), (4) it follows
M L Ea2] AP =1,

A — Al E(k,p, A =
( ( (a, '<k,p) f(k,p) ) ( D, ) )1,] { ]E[2a0al] \k+1-1 j=2,...,k+1

Let z = (1,7) € Ji(k,p). Then j € Ny \ {0} and J=(k,p,z) ={ (1 +1,j+1) | L€ Ny_; }.
(E[]; ..., E[a}]) i=1,
(]E[2a1aj],...,E[2ak+1_jak] ) J = 2,...,]{}.

Due to lemma 3.5.3.(i), (3) it follows that

(—Ar2(k,p)Asz (k, pA) = Aoy (k, p) E(k,p, A) )11

But then ( A12(k,p, %) )1,<(k,p) =
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_ZE[aQ])\—l (1— I)Ak ZE[ ])\k 1 _ ZE[ :|)\k—l7

( Alz(k p) Az (k,pA)~ 11421(’? P) E(k,p, ) )1,k+1 =0
and Vj € N, \ {0,1}
(—A12(k,p)Asa (k, pA) tAs1 (k,p) E(k,p, A) )1,
k(1)

k . . k
= Y ERa1—joy] A DN = S B 20p_(j_qyy] AP = Z E2papy (] A0,
I=j i=j

But then
((Alo, =kp) = Mp(r,p) ) (k D, A) — Ara(k, p)A22(k pA) tAs1(k,p) E(k,p, A) )11

=AML 4 Elad] AF + Z]E[a A= = Z Ela?]\F,

((Aa, <pp) — AIf(k ») (k P, A) — Ara(k, p) Az (k, pA) =" Asy (k, p) E(k, p, \) )1k
—(k+1-1)
= Bf200as] = Z E201ay (41 -1y] NIRRT,

((Ala, <k p) /\If(k p)) E(k,p,\) — A12(k,p) Az (k, pA)~ 11421(’9 p) E(k,p, ) )1,
k—(j—1) k—(j—1)
= E[2000,] 171 + E E[2cq004 (-] MU0 = 3 ERagagy g XED.
= =0

(6) Let i = 2. Then B[X, 11X, (i 2)] = Eo Elo,|B[X, X,—j]-
J:

(7) Let i = 2. Due to (6) A;,2(k,p)2,_ = 0. But then follows with (3) that Vj =1,...,k+ 1:

(A, <kp) = Myrp) E(k,p, ) = Ara(k, p) Asa(k, pX) Az (k, p) E(k,p, ) )2,

= (Ala, =kp) = Msrp) E(k,p,A) )25 = Bl 1 JA17 + 85 (5) Elag JA*
But for j =1:  Elaj 1]\ + 6(j) Bl 1 ]N ! = Elag]\* = Ela; oA+,
for j = 2: Blay 1]\ + 6,()Ela 1 ]A*H! = Elog]A* " + Bl ]\*
= BN + Bl o)y N 0D7070,
and for j € Ng4q \ INy:
Efaj—1]X 179 4 6,(j) Ela—1 ]AFH = Ela 4 ]A* =0~
= E[a(i_z)_(j_l)]/\kf(FZ) + E[a(i_2)+(j_1]/\kf(i72)7(j—1)‘

i—3
(8) LetiE]Nk\]Nz.Then E[Xn_HX —(i—2)]= ZE[CM]'] [Xn JXn—(z 2)]—}— E E[Oé]]IE‘/l:)(n_(z 2)Xn J]

jmie2
(9) Let i e N, \INo, j=1,...,k+ 1. From ( 8) follows
Elao] \F—(—2)  j =4 —1,
((A(e, =kp) = Myprp) ) E(k,p,A) )iy = E[a AR=G=2) G = )
otherwise.
(10) Let i € Ny, \ No, y = (1,1 4+ 49) € Ji(k,p), o € Nj—_g1.
Define M (k,i) = {1,...,min{i —3,k— (z )}} My(k,i) = {min{i—2,k+1— (i —2)},...,i—3},
Ms(k,i) = {min{i — 2,k +1— (i — 2)},.. (1—2)}
Let ig =0, yo = (i — 2,7 — 2).
Then Vy; = (1,1) € Xy (k,p),l € N \ {0}: A, <k,p)y,u: 5 dyo (W) E[a; 2]

Let io € My(k,i). yo = ((i — 2) —d0,i —2), y1 = (i — 2, (i — 2) + 40 ). Then

Yy = (I,1+i0) € X1 (k,p),1 € N—io \ {0}: A, <k,p)y,m (§) Oyo (Y Elai—a)—io] + 6y, (W) Ela(i—2) 44, ]-
Let io € Ma(k,4). yo = ( (i — 2) —ig,i — 2 ). Then

Yy = (I, 1 +io) € X1 (k,p),1 € Ni—ip \ {0}: A, <k,p)yu = Oyo (W) Elagi2)—i,]-

(®)
Let ip € Mg(k,l) Y1 = (l— 2,(l - 2) + i ) Then

Yy = (lal + 7:0) € Xl(kap)al € ]Nk*io \{0}: A(a7 '<k,P)y,yl (i) 5?/1 (yl)E[a(i—2)+io]'

In all cases yo,y1 € J=(k,p,y) obviously.
By lemma 3.5.3.(i), (3) it follows that
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( _A12 (kap)AZZ (kapa A)711421 (kip)E(k7p7 )‘) )i,1+i0

Ela_2] A~0=2)\k io =0,

Elo;2)—i,) A~ 70N 4 Bla; gy, 40] AE2INE—00 45 € M,y (k,4),
T\ Elag_gy_i) A (-2 —io) \k—io io € My(k,i),

Elo(;2)tio) A2 Ak~ io € Ms(k,i).

Define My (k,i) = {2,...,min{i—2,k+1—(i—2)}}, Ma(k,i) = {min{i—1,k+2—(i—2)},...,i—2},
Ms(k,i) = {min{i —1,k+2— (i —2)},...,k+1— (i —2)}.

Soforj=1,...,k

( _A12(k7p)A22 (kapa )‘)_1A21 (k7p)E(k7p7 A) )z,]

]E[ai,g] )\k—(i—z) ] _ 1,
Eloi—2)—i—1)] ¥ + Blogi_ay4 1)) A¥=ED=0-D 5 € Ny (k, 1),
T ) Blagoz-gon] M2 j € Ma(k,i),
Eloi—2)4(j—1)] AF~E-D-G-D j € M3(k,i).

and due to lemma 3.5.3.(),
(—Ai2(k,p)Asa(k,p, N) "t Ao1 (k, p) E(k,p, A) )ikt1 = 0.

(11) Let i € Ny, \ INo.
Define Mi (ki) = {2,...,min{i,k+1— (i — 2)}}, Ma(k,i) = {min{i+ 1,k+2—(i—2)},...,i— 2},
Ms(k,i) = {min{i+ 1,k+2— (i —2)},...,k+1— (i —2)}.
Asi>i—1>i—2, hencei—1,i ¢ M(k,i), for j =i—1: Elao] AF ("2 = Elag_o)__1)] A2,
for j = i: Ela_1] A¥=(=2) = Eloy_2)—(j—1)] A¥~=2) it follows from (9), (10): for j =1,...,k
(A, <k,p, A) E(k,p,\) — A12(k, p) Azz (k,p, \) ' Aa1 (k, ) E(k,p, A) )i,j

Ela; 2] Ak~ (i72) j=1,
_ Elo(i—2)-(j- 1)])‘1c (=2) + Eloi—2)4(j— 1)])\k —G-1) jGMl(k,i),
"] Elag-g)-g-n] A2 j € Mk, i),
Efo(5-2)4(j—1)] AF~ (D701 j € Ms(k,i).

(12) Let 4 € INy, \ IN,.
If My(k,i) # 0, then Vj € Ma(k,é) : (i —=2)+ (j —1)>i—2+k+2—(i—-2)-1=k+1.
If Ms(k,i) # 0, then Vj €M2(k ):(—-2)-(-1D)<i—-2-(i+1-1)=-2.
Furthermore, Ms(k,i) N Ms(k,i) = 0. But then (11) can be reformulated as
( All(aa '<k:,pa )‘) E(kapa )‘) - A12 (kap)A22 (kapa )‘)_1A21 (kap)E(kapa )‘) )i,j
_ E[ai_z] Ak_(i_z) .7 = 17
| Blegoa)- o] ¥ 4 Elagyop] WTEHTUTD =2 kL
The lemma follows from (5), (7) and (12).

Proof of lemma 3.5.7

(1)  (4) and (4¢) follow immediately from definition 3.5.6 and lemma 3.4.8.

(2) Letle{—1}UNy.
Let i € Npypi \ Ny, j = 1.
E[oy] contributes to B(a, <k,p, A)s,; iff | =i — 2.
But then i = | 4+ 2 and B(a, <k,p, N2, = E[ag] A*L.

(3) Letle{—1}UNN,.
Let i € Ngp1 \INy, 5 =2,.,k+ 1.
E[oy] contributes to B(a, <k,p, A)s,j iff either [ = (1 —2) — (j —1) or I = (i —2) + (j — 1).
Ifl=(i—2)—(j — 1), then j =i — 1 — I and E[e,] contributes with E[a;] ¥~ (2) to
B(a,<k2)ii—1—1 and holds for 1 <i—1—-1<k+1,0or (I+2)Vv2<i<k+1 due to the above
choice of i, respectively.

Ifl=(i—2)+(j—1), then j =1+ 1— (i — 2) and E[oy] contributes with E[a;] \*~ to
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B(a, <k,2)i1+1—(i—2) and holds for 1 <1+1- (i —2) <k+1,0r2<i < (I +2) A (k+1) due to
the above choice of i, respectively.

(4) (2) and (3) show (#i7) and (iv).

(5) Let i € ]Nk+1 \]N1
If j = 1, only E[a;_2] contributes to B(a, <k,2, A)i1.
If j € Npyq1 \ Ny, then only E[ay_2 — (j — 1)] and E[ai—a + (j — 1)] contribute to B(a, <k,2, A)i,j-
Due to the choice of j, Ela;—a — (§ — 1)] # E[ai—2 + (5 — 1)].
It holds: (i—2)—(j—1) > i—2, (i—2)+(—1) > (i—2), (i—2)— (i —=1)+ (i —2)+(j—1) = 2(i—2)
is j-independent.
But this implies that le,jz (75 _71) € ]Nk+1 \]Nl: E[ai_g — (]1 — 1)] 75 E[Oéi_g + (]2 — 1)] and
Ela; > — (j2 — 1)] # E[a;—2 + (j1 — 1)]-
This shows (v).

Proof of lemma 3.5.9
(1) By remark 3.5.8, B(&, <k,p, A) = B(a, <g,p, A)

k m
(2) By (1), lemma 3.5.4 B(a, <kp,\)1,1 = . E[aZ]A\ =t = Y E[af]A\F—*. This proves (i).
=0 =0

(3) Let j € Niy; \ Ny. By (1), lemma 3.5.4
k(1) |
B(a,<kp, N1,y = 3 El@gd,g_n A0
=0
m .
= Y Elagéy, -y A0

= 2 Elaioe—1 (k-1
IEN,: ki+(j—1)EK

)])\k—kz—(j—l)‘

This proves (i1).
(4)  (4t), (iv) follow from (1), lemma 3.5.7.(i) and 3.5.7.(i7), applied to B(&, <kp,A) and taking into

account the zero coefficients of & (see the definition of &).

O
Proof of lemma 3.5.10
For j € INy(0,0)—1 define y(j) = 7(j,n(0,x), —(x)). Then y(j), = k. The equation k = y — 1 can’t be
solved in Ny. So y(j) & J1(k,p).
O

Proof of lemma 3.5.11
(1) Choose Bl(aa kapa )‘) = ( A(Oé, '<1€,IJ)IO< (k.p),I5 (k.p) E(k,p, /\) - A12A22(k;pa )‘)71A21(k;p) E(kapa )‘) )7

B2(k7p7 A) = )‘E(kap7 )‘)

Then B(o, <k,p,A) = Bi(a, k,p,\) — Ba(k, p, ).
(2) By definition of E(k,p,)\) follows Ba(k,p,A) = diag(A\“**!, ... Xertr-0H1) " where for i =

#(J_<(k,p,+(1’)) T € Jl(kap)7 k_'—l_(xp—i_l) T € Jl(kap)7
1;"'7f(kap_1)cz': . = .
0 otherwise. 0 otherwise.
E+1-— € Ji(k,p),
But then fori =1,..., f(k,p—1) d; = ¢iy1 = A 1(_ P)
0 otherwise.

(3) Let z,y € Xg,1(k,p). Then by definition of A(a, <p)):

V] € H\In(O,z) A(Oé, '<k,p)z,r(j,n(0,z),—(z)) = C(j, n(O,ZL'), —(.’L'))
(4) VJ € ]Nn(O,z) \ {0} : T(j,n(O,a:), —(.’IJ)) € XO,I(k::p)'
(5) VJ € ]Nn(O,w)fl : y(J)p = k: where y(J) = r(j,n(O,m), —(.’L‘)) € XO,I(k7p)'
(6) (5) and lemma 3.5.10 imply Vj € Ny(g,4)—1 \ {0} : 7(4,7(0, z), —(2)) & J1(k,p).

Then by definition of A15(k,p), A22(k,p, A), A21(k,p):

(A12(k,p)Aza(k, p, \) " Ag1 (k,p) E(k,p, ) )o,y = 0.

From the definition of E(k,p, A) it follows: cp(r(jn(0,2),—(2))) = 0-

With (3) this implies By (aa k,p, ’\)m,r(j,n(O,w),—(:c)) = c(j,n(O,x), —(Z’))
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(7) From the definition of E(k,p, A) it follows: ¢p(r(n(0,2),n(0,2),~(2))) = k + 1 — Zp.
Hence ( A(aa '<k,p)10< (k,p), I3 (k,p),E(k7p7 )‘) )w,r(n(O,w),n(O,w),—(a))) = C(n(oa '7;)7 n(07 'Z')a _(w)))‘k—’_lizp .
If r(n(0,2),n(0,z), —(z)) + (k — (zp — 1) V0) = r(0,n(0,z), —(x)), then
r(0,n(0,z), —(x)) € J=(k,p, +(2)),
( Agp (kap)A22 (kvpa )‘)_IAZI (kvp) E(kapa )‘) )w,r(n(O,z),n(O,z),f(z)) = C(O, ’I’L(O, .73), —(Z‘))
But then B (Ot, kapa )‘)w,r(n(O,w),n(O,w),—(av)) = C(n(oa .CE), n(07 "L')a _(w)))\k—l—l—:cp
+5r(0,n(0,w),—(w))(T(n(oam)an(oa "1")7 —(.’13)) + (k - (wp - 1) \ O)C(O,TL(O, "1")7 _(':U))
(8) Denote z = r(0,n(0,z), —(z)).
From the definition of r follows that z & Xg 1 (k, p).
Define Z = z — 2z; (componentwise subtraction of scalar z;). Then Z € Xg;(k,p and Z, < k. This
implies that Vj € Ny 0,0)—1 \ {0}: 2 # (4,70, z), —(z)).
Furthermore, z € J*(k,p,+(2)). The case 2 = r(n(0,z),n(0,z),—(z)) is already covered by (7). If
Z #r(n(0,z),n(0,z), —(z)), then A(®, <k,p)z,z = 0. But then B;(a, k,p, N,z = ¢(0,n(0,z), —(z)).
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