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Summary. Consider estimating the mean of a normal distribution with known vari-
ance, when that mean is known to lie in a bounded interval. In a decision-theoretic
framework we study finite sample properties of a class of nonlinear estimators. These
estimators are based on thresholding techniques which have become very popular in the
context of wavelet estimation. Under squared error loss we show that there exists a unique
minimax regret solution for the problem of selecting the threshold. For comparison, the
behaviour of linear shrinkers is also investigated.

In special cases we illustrate the implications of our results for the problem of estimat-
ing the regression function in a nonparametric situation. This is possible since, as usual,
a coordinatewise application of the scalar results leads immediately to results for multi-
variate (sequence space) problems. Then it is well known that orthogonal transformations
can be employed to turn statements about estimation over coefficient bodies in sequence
space into statements about estimation over classes of smooth functions in noisy data.
The performance of the proposed minimax regret optimal curve etimator is demonstrated

by simulated data examples.
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1 Introduction
Suppose we observe a normally distributed random variable
Yy N(Hv 02) 5 (1)

where o2 > 0 is known. We wish to estimate the mean 6 when prior knowledge

specifies that this mean lies in a bounded interval, say,
0 €[—c,c] for some ¢>0 . (2)

The performance of an estimator 0 of 0 may be measured by a squared-error loss,
L(é, 6) = |é — 0]*, and the associated risk is then the expected loss (mean squared
error)

R(0,0)=EL(6,0) .

In the absence of prior information on #, the usual (e.g. maximum likelihood)
estimator 6 = y would be admissible and minimax, but both properties are lost
under (2).

The problem of estimating a bounded normal mean has been investigated by a
number of authors. For example, Casella & Strawderman (1981) and Bickel (1981)
focused on the minimax approach, whereas Gatsonis et al. (1987) compared the
Bayes estimator corresponding to the uniform prior on [—¢, ¢] with the maximum
likelihood estimator and the estimators proposed by Casella & Strawderman and
Bickel.

In the last decade, wavelet methods have been applied to various curve estima-
tion problems, since they can effectively compress signals with possible irregularities.
One feature of a variety of such methods is that they act coordinatewise. Hence,
many decision-theoretic results in this field can be obtained by studying scalar sta-
tistical problems.

In this paper we apply the minimax regret approach to a class of linear and
nonlinear shrunk estimators. The minimax regret principle as well as the class of
estimators are introduced in the next section. The nonlinear estimators are based
on the soft thresholding technique which has become very popular in the context of
wavelet estimation. We show that there exists a unique minimax regret solution for
the problem of selecting the threshold. This optimal threshold is a monotonically
decreasing function of the parameter bound ¢, and turns out to be independent of
the prior constraint for rather large values of ¢. On the other hand, for very precise
prior constraints it is found that linear shrinkage may outperform the soft thresh-

olding technique in the minimax regret sense. A disadvantage of linear shrinkers is,



however, that their risk function is generally unbounded when 6 varies on the whole
real line. This property is shared by the maximum likelihood estimator.

In Section 3 we illustrate how our results can be applied to the problem of
estimating the regression function in a nonparametric situation. Under specific
prior constraints on the regression function it turns out that the scalar results imply
immediately optimal curve estimates. The considered methods are applied to some
simulated data examples, which suggest to use the minimax regret soft thresholding
rule to avoid serious bias problems in cases of possibly misspecified prior constraints.

All proofs are deferred to the Appendix.

2 Minimax regret shrinkage

2.1 Some shrunk estimators

In the literature, different classes of estimators of # have been considered. Many of

them may be seen as shrinkers. A simple class is given by the set of linear shrinkers
0" = {05 | 0%(y) =Xy , e 0,1]} (3)

But there exists also a variety of nonlinear estimators which shrink y towards 0 in a
data-dependent way. Here we consider only one of the various forms of thresholding

estimators:

0% = {0 | B5(y) = sen(w)(Jyl — oN)s , A€ [0,0]} | (4)

where a; = max(a,0). These estimators are known as soft threshold rules in the
context of wavelet estimation, compare e.g. Donoho & Johnstone (1994). A key
feature of the estimators is that inside a threshold zone [—Ac, Ao] the data is inter-
preted as noise. In nonparametric regression problems, coordinatewise thresholding
of empirical (wavelet) coefficients lead to estimators of the regression function that
possess several optimal and near-optimal properties over a wide class of (smooth)
function spaces. Details and an extensive discussion may be found in Donoho et
al. (1995). This motivates the consideration of the class (4), since the study of
questions about estimation over classes of smooth functions in noisy data can often
be reduced to the study of univariate Gaussian problems.

In what follows, we will need the exact risk of the considered estimators. Let

7 =0/c and 7 = y/o. Then we have

R(0%,0) = apr (A7), R(05,0) = oc?ps(M,7) |



where the normalized risks py, ps are given by

pr(A\ 1) = EM—7P=X+(1-Xr" and (5)

ps(A 1) = E{sgn(#)(|#] =Ny — 1}?
= 1+ M+ (=N =D{eA —7) - (=) —7)}
—(Atr)(A=T) = (A=T)d(A+T) , (6)

see, for example, Donoho & Johnstone (1994) and Droge (1998). Here, ® and ¢
denote the distribution function and the density of the standard normal law, respec-
tively. Clearly, pr,(A, 7) is unbounded unless A = 1, whereas, for fixed threshold A,

ps(A, 7) is monotonically increasing and approaches 1 + A? as 7 — oc.

2.2 Minimax regret principle

The minimax principle tries to protect against the worst possible magnitude of the
risk. Hence it ignores the fact that there is often a lower risk bound which cannot
be improved by any permissible estimator. An obvious way to remedy the situation
is to consider the so-called regret risk of an estimator é,

reg(0,0;0) = R(6,0) — inf R(6,0), (7)

0€e®

where O denotes some class of estimators which is of interest in the problem under
consideration. Although the lower risk bound, inf;_g R(&N, 6), cannot be attained for
all # by any estimator b e (:), the aim is to be as close as possible to this ideal bound.
Consequently, given the underlying mean 6, the regret risk evaluates estimators on
the basis of how they compare with the best possible one within ©. A minimax

regret estimator 6 of 0 is then defined by being minimax with respect to the regret

risk (Berger, 1985, § 5.5.5), that is

0~ € arg inf sup reg(é, 0 (:)) (8)
6eb |9|<c
If necessary, 0% defined by (8) will be called ©-minimax regret estimator since, to
be precise, it is O-minimax (restricted minimax) w.r.t. the regret risk.

Droge (1993) and Droge & Georg (1995) have applied the minimax regret prin-
ciple to the problem of model selection in linear regression when the regressors are
orthogonal. The first paper deals with the case of a known error variance, whereas
the latter covers the case when this variance is unknown. The selection estimators
considered in both papers may be seen as so-called hard threshold rules in the con-

text of wavelet estimation. Model selection based on minimizing Mallows’ (1973) C,



criterion turns out to be nearly optimal in the minimax regret sense. In the prob-
lem of orthogonal series regression estimation, hard and soft thresholding techniques
have been compared by Droge (1998). The use of the minimax regret approach shows
the superiority of soft thresholding over hard thresholding and provides thus an ad-
ditional motivation for dealing just with the class (4) of estimators. All three papers
are concerned with estimating the regression function when no prior information is
available about its shape. The key step in deriving the optimal rules in all three
papers is therefore to solve the related univariate Gaussian problem without prior
constraints on the parameter. In contrast, the next subsection is devoted to the

scalar minimax regret problem under the prior information (2).

2.3 Minimax regret linear and soft threshold estimation
We aim at finding the minimax regret solution within the class
6=06,U64 (9)

of linear and soft threshold estimators. First, we need a lower risk bound. Mini-
mizing the risk in Oy over A € [0, 1] based on full knowledge of # provides the ideal
linear shrunk ‘estimator’,

7_2

1 + 72 ;
see e.g. Donoho & Johnstone (1994). Moreover, Droge (1998) has verified that the

risk of (10) gives, for each 6, a lower bound for the risk of all shrunk estimators in

A

O:

0l =Xy . N =X (7) (10)

inf R(0,0) = \o? = R(0%.,0) . (11)

fed
We remark that (11) remains true if O is replaced by the larger set of estimators
0 ={0| é(y) =&(|7))y, £:1]0,00) — [0,1] nondecreasing and continuous a.e.} .
Consequently, we compare all estimators 0 by their regret risk

reg(0,0;0) = R(6,0) — \o? . (12)

Let us start with deriving the minimax regret solution within the class of linear

estimators Op,. Straightforward optimization (see Appendix) provides the following.

Theorem 1 . The minimax regret linear estimator (MMRLE) is given by

éfL = ALy, where
o

Vot

leading to the maximal regret risk supg <, reg(éfL, 0; (:)) = Mo?.

/\L = /\L(C/O') =1-

5
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Figure 1: Comparison of the MMRLE, éfL, and the MMLFE, éfM For o =1 and
for some values of ¢, the left-hand and right-hand panels depict their risk and regret

risk, respectively, as function of the parameter |0|. In the left-hand panel, the risk
of both the ideal linear shrinker, 0}’2’ and the MLFE, éML, s additionally included.



Figure 1 displays, for some values of the upper bound ¢ of the parameter space,
the behaviour of the MMRLE, éfL, in comparison with the ideal (but impractical)

linear shrinker, éfz, and the minimax linear estimator (MMLE),

c? o?

0% = uy ., I = ule/a) = N (c/o) = =1- : (13)

O-Q_I_CQ O—2_|_c2

For illustrational purposes, the maximum likelihood estimator (MLE),
Orir = Oy, ¢) = yI{ly| < ¢} +sen(y)el{ly| > ¢} (14)

is also included in the figure. We note, however, that this estimator does even not
belong to the class ©, so that (11) provides no lower risk bound for the MLE;, as it
is visible in the case ¢ = 2.

We observe furthermore that Ay = A (¢/0), A\, < Ay and, as shown in the
Appendix, supg <, reg(éfM,Q;é)) = R(éfM,O) = A3;0?, which is, of course, larger
than the maximal regret risk of éfL Clearly, the maximal regret risk of both esti-
mators éfL and éfM increase strictly from 0 to o as ¢ varies from 0 to +o0. For the
presented examples, the minimax regret linear estimator dominates the minimax
linear estimator over a large part of the parameter interval. Only for parameters
near the endpoints of the interval, the minimax linear estimator is superior. It is
easy to verify (see Appendix), that this is the case if and only if

, 20740+ <:2)3/2 — 3% — 20?

TS > ) (15)

c2

Before stating the minimax regret result for soft thresholding, we summarize

some properties of the corresponding normalized regret risk
r(AT) = J_Qreg(éf,e; (:)) = ps(A,7) = A (7) . (16)

Obviously, r(A, 7) is a continuous function of both variables A and 7. Further prop-

erties are stated in the next lemma.

Lemma 1 .
(i) For fixred X, (X, 7) is symmetric about 7 =0, i.e. r(A,—7) =r(X,7), and has
a local mazximum at the point T = 0.
(i) There is a Ao, with Ao 2 0.338, such that, for all X < Xo, r(X, T) is monotoni-
cally decreasing in 7 > 0.
(tii) For all fired A > Xo, there is one and only one positive local maximizer,
T = 7(N), say, of r(\,7) with 72(X) > max(3,A?). 7(A) and r(A,7())) are
continuous and monotonically increasing functions of A > Xg. Moreover,

r(A, 7(X)) approaches 0.2347 and oo as X tends to Ao and oo, respectively.
7



(iv) r(X,0) = ps(A,0) is monotonically decreasing in A with v(0,0) = 1 and
r(A,0) — 0 as A — oco.

(v) For fized 7 > 0, there is one and only one stationary point, A = \(7), say,
of r(X,7) which is a minimizer and which is a conlinuous and monotonically

decreasing function of T with A\(7) — 0 as 7 — o0 and A\(7) — 00 as 7 — 0.

The last statement is shown in the Appendix, whereas the remaining results may
be found in Droge (1998).

Without the prior knowledge (2), the minimax regret optimal threshold is ap-
proximately Ag(oo) = 0.545, see Droge (1998). With this value we obtain
Too = T(Ag(00)) & 2.73 (cf. part (iii) of Lemma 1) and r(7.,As(oc)) & 0.387.
Employing the above lemma, we establish in the Appendix the following result on

the existence of a unique minimax regret soft threshold estimator under (2).

Theorem 2 .

(i) Within the class (4) of soft threshold estimators there is a minimaz regret solu-
lion éfs with respect to the regret function (12), where, for given ¢ and o, Ag =
As(c/a) is the unique minimizer of the mazimal regret risk, sup g <. reg(éf, 0; (:)),
over the threshold X.

(it) It holds As(c/o) = As(o0) if ¢/o > Too, and As(c/o) — oo as ¢/o — 0.
Moreover, as ¢/o varies from 0 to T, the optimal threshold As(c/o) is strictly
decreasing, whereas the resulting mazximal regret risk of HA*\gS is strictly increas-

mng.

Using the properties of Theorem 2 and Lemma 1, it is easy to calculate nu-
merically the optimal thresholds and the corresponding maximal regret risks for all
“signal to mnoise ratios” ¢/o < 7T.. Figure 2 shows the results. For example, we
obtain Ag(1) &~ 0.85,A5(0.3) &~ 3.77 and As(0.1) ~ 8, which has to be compared
with Ag ~ 0.545 for all ¢/o > 2.73 .

The right-hand panel of Figure 2 provides also a comparison of the (normal-
ized) maximal regret risk of the optimal soft threshold estimator éfs with those
of the minimax linear estimator and the minimax regret linear estimator, show-
ing that the latter dominates even the optimal nonlinear estimator éfs in cases
of rather small values of the signal to noise ratio ¢/o. More precisely, one finds
SUP|g<c reg(éfL,H; (:)) < SUpjg<. reg(éj\gs,&; (:)), that is that linear shrinkage outper-
forms nonlinear shrinkage by soft thresholding in terms of the maximal regret risk,
if ¢ < ¢*o with ¢* &~ 2.42. This is not surprising since the lower risk bound (11) is
in general not attainable by the ideal soft threshold ‘estimator’, ég’ where A = \(7)
is defined as minimizer of R(éf, 6) over A based on full knowledge of §. This fact is

8
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Figure 2: The left-hand panel displays the minimaz regret optimal soft threshold Ag
in dependence of the “signal to noise ratio” ¢/a. The right-hand panel shows the
normalized mazimal regrel risk, o=2 SUP|g|<c reg(é, 0 (:)), of the optimal soft threshold
estimator é*\gs in comparison with those of the MMRLE éfL and the MMLE é%w

visible in Figure 3. For the maximal risk difference between both ideal estimators
we find sup, 7(A(7),7) &~ 0.24, and this maximum is attained at 7 ~ 1.4. Since
minimax regret soft thresholding is inferior to minimax regret linear shrinking un-
less ¢ > ¢*o, Figure 3 gives a risk comparison of both estimators only for the case
c=30.

Due to the above discussion, reg(é, 0; (:)) is different from reg(é, 0; (:)5) Hence,
éfs is not exactly a minimax regret solution within the class ©s. But in Theorem 2
we have selected the threshold on the basis of the regret function (12), because this
allows a direct comparison with the linear shrinkage approach. The consequences

may be summarized as follows.

Corollary 1 . For given ¢ and o, the unique minimax regret estimator (MMRE)

within the class © of linear and soft threshold estimators is given by

. . 63 if ¢>c'o

0 =0"(y.clo)=4
HfL if e<co .
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estimator, 0

2.4 Discussion

The estimators introduced in this section have been derived under the prior con-
straint (2) that the parameter 6 lies in a bounded interval. Nevertheless, their risk
could be considered as function of # varying on the whole real line. Then it turns
out that all linear estimators, except for the naive one 0o = y, have an unbounded
risk due to their biases. This property is shared by the MLE. On the other hand, the
risk of the soft threshold (nonlinear) estimators is always bounded, which is a very
desirable property when misspecifications of the prior information on the parameter
cannot be excluded. This may happen, for example, in applications of the sequence
space model of the next section, where the hyperrectangle constraint requires the
specification of bounds for many coefficients. Consequently, curve estimates based
on soft thresholding of coefficients according to Theorem 2 may even be preferable
to those which use the optimal result of Corollary 1.

The realizations of the MLE lie completely in the parameter space [—¢, ], since
it is just the projection of the naive estimator onto this interval. In contrast, all
estimators of the class © may have realizations on the whole real line. Therefore,

a natural idea consists in projecting these estimators onto the parameter space.

10



The resulting estimators improve the original ones with respect to the risk over the
interval [—¢, ¢|]. However, outside this interval their bias effects become more serious
and even the projections of the soft threshold estimators are unbounded in risk.
Having in mind our earlier comments, this is the reason for not investigating this

type of seemingly improved versions of our estimators.

3 Application to nonparametric regression

3.1 Model and methods

In this section we illustrate the implications of our results for the problem of estimat-
ing the regression function in a nonparametric regression situation. This is possible
since, as usual, a coordinatewise application of the scalar results leads immediately
to results for multivariate (sequence space) problems. Then orthogonal transforma-
tions can be employed to turn statements about estimation over coefficient bodies in

sequence space into statements about estimation over classes of smooth functions.

Suppose we observe responses yi, .. ., Y,, at nonrandom (distinct) design points
X1,...,2T,, which follow the model
yi:f(xi)‘l‘fi (Z: 1,...,72), (17)

where the ¢; are independent and identically distributed as N(0,0?). For simplicity,
we assume that o2 is known. The goal is to use the data, y, to estimate the unknown
real-valued regression function f. The performance of an estimator f() of the
regression function may be assessed by a normalized squared-error loss at the design
points, _

LU D) = g 3 () = e}, (18)

or by the corresponding normalized risk, R(f, f) = EL(f, ).

Here we focus on orthogonal series regression, which is a widely used technique
for nonparametric regression and closely related to other methods such as smoothing
splines and kernel estimation. Let {1;}"_; be a sequence of given basis functions

which are orthonormal with respect to the counting measure on the design points

X1y..., Ty, that is n
o i(wi)e(wi) = i,
i=1
where §;; denotes the Kronecker symbol. Then, for: =1,...,n,

Fas) = ilemm, (19)

11



where 0; = >°7_, f(zr)¥j(zx). In the traditional orthogonal series estimation ap-
proach, f is estimated by truncating (19) in an appropriate way and estimating the

coefficients involved by their empirical versions or, equivalently, by least squares:

b; = Zn:ykl/}j(xk) (j=1,...,n).
k=1

In contrast, the approach of this paper is to apply the methods of Section 2 co-
ordinatewise to the estimated coefficients. This leads to the consideration of the

following classes of nonlinear shrinkers and diagonal linear shrinkers, repectively:

gn(éz)(|é2| - U/\i)-ﬁbi(x)v/\ = ()‘17 3 '7)‘n)7)‘i € [0,00]} )

Il
Pjs

S = (i | i)

=1

Azéz¢z($)7 A= (/\17- : -7/\n)7 A € [071]} :

Il
NE

L= {1 i)

=1

-
Il

Let S* =SUL, 1, = 0;/c and 7; = éi/a. Within the class &* we seek then for

minimax regret optimal estimators with respect to the regret risk
Reg(f, [;8%) = R(f, [) - inf R(J.J) -
Droge (1998) has shown that
jﬂf R(-f7 f) = %Z—:{L)‘*(TZ) = R( Az%feal? ) 7
fes*
where fL = S A*(r:)0;¢; is the ideal linear shrunk estimator, compare (10).

Consequently, we get for the soft threshold estimators
A . 1
Reg(ffafﬁg ): gzr()\“ﬂ) s

where r(A, 7) is defined by (16). An analogous result holds for the diagonal linear
shrinkers fl{j replacing in (16) ps by pr.

In contrast to Droge (1998), however, we assume here to have some prior in-
formation on the smoothness of f € F, which leads typically to constraints on the
Fourier coefficients §;. In particular we assume that in the corresponding sequence

space model

A

02»:02-—|-ei, GZ'NN(O,O'Q) (izl,...,n)

the vector of coefficients § = (0y,...,0,)T lies in an n-dimensional hyperrectangle,
that is,
feFe0cO:={0 : [0, <c¢;i, i=1,....n}. (20)

Of particular interest are hyperrectangles with
c;,=c1 ¢ 1=1

R (21)

12



For more information about smoothness constraints of this type we refer to Donoho

et al. (1990) and the references quoted therein. Under (20), we have

. 1
itelgReg(ff,f;S*)z—Z sup (X, 7)

N7 il <cifo

as well as an analogous relation for diagonal linear shrinkage. Consequently, the
minimax regret problem can be reduced to the scalar problems solved in the previous

section.

Corollary 2 . Suppose (20). Then, for given o, the unique minimaz regret estima-

tors of f within the classes L, S and 8 are given by
fulz) = fL(x) with Ay = (Ap(er/o),..., Mp(eafa))
fi(x) with As = (As(c1/0),.. ., As(ea/0)) ,and

) = S 0:i(x) with 07 = 0°(0;,¢:/0)
=1

S~
W
P
8
S—
Il

respectively, where the scalar functions Ap(-), As(:) and é*(,) are defined as in
Theorems 1, 2 and Corollary 1.

In the following, fL, fs and f* will be called minimax regret linear estimator
(MMRLE), minimax regret soft threshold estimator (MMRSE) and minimax re-
gret estimator (MMRE), respectively, of the regression function f. The maximum

likelihood estimator (MLE) of f under (20) is easily seen to be

A

fML = Z@AZML;Z;Z(:E) with éZML = éML(0i7ci) )
=1

where éML(-, -) is defined in (14). Similarly, a coordinatewise application of (13)
provides the minimax linear estimator (MMLE) of f within (3):

Fanr = EéZMM%/%(Q?) with éfwM = éfM(ci/cr)(éi) ’
=1
compare (13) and (3) for the definition of the scalar estimator.

3.2 Some simulated data examples

The considered methods were applied to several simulated data examples. We sim-
ulated, according to (17), three sets of n = 101 observations at uniformly spaced
design points z; = (1 — 1)/n, for i = 1,...,n. The true regression function f and

standard deviation o were chosen as follows:

13



() fi(z) =4sin(37z)+ 2cos(bmx) 4+ 2cos(167mz), 0 = 1
(II) fl, c=04
(TIT) fo(z) = sin(272?)3, 0 = 0.1

Table 1 summarizes some features of these examples.

Table 1: Some characteristics of Fxamples (1)-(111).

Example | £l llylz  sd(f)/o | infres. R(J,f) infres RS, S)
() [11.953 13.103  3.363 0.192 0.222
() | 11.953 12.406  8.408 0.375 0.448
() | 0.199  0.230  4.362 0.163 0.181

The trigonometric functions,

n—1/2 Zf ]: 1
Vi(z) =9 (2/n)?cos(2mkz) if j=2k>2 iseven
(2/n)?sin(2nkz) if j=2k+1>3 isodd,

served as basis, which fulfills the required orthonormality condition under the above
design.

We remark that any available information on f would naturally have an impact
on choosing an appropriate basis. For example, the trigonometric basis may be
used when the regression curve is known to be smooth and periodic, since then
most of the information about it is contained in the lower frequency terms; that
is the coeflicients §; for large j will be negligible compared with those for small j.
Generally, a desirable property of a basis is for most of the signal to be concentrated
in few coefficients. But the issue of choosing an appropriate basis is beyond the
scope of this paper.

The parameter constraints in (20) were chosen according to (21). We considered
five different values of «, including even the case @ = 0 where the same bound is
used for all coefficients 6;. Due to Parseval’s identity we started with a bound, C

say, for
n

712 =" 3 fw)?

and calculated the values ¢; for the parameter contraints by 3, ¢? = nC.

. =
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Under a variety of parameter constraints, we calculated the normalized risk
of all estimators introduced in Subsection 3.1. The results for Examples (I)-(III)
are presented in Tables 2-4, where the minimum-risk-values have been underlined.
Additionally, the minimal values for the estimators, f say, derived by the minimax
regret approach have been marked by a star. Both values differ only in Example
(I1T), where the best performance is given by some MMLE.

The normalized risks in the tables should be compared with the lower risk bounds
for linear shinking and soft thresholding, which are given in the last two columns
of Table 1. For instance, even if we knew the true coefficients in Example (I), the
normalized risk of any soft threshold estimator would be at least 0.222, while the
MMRSE calculated under C' = 50 and o = 1.5 yields the risk 0.268.

Notice that the naive estimator, fo(m) =37, é[g/)z(l’), coincides with the MLE,
MMLE and MMRLE in case of no prior constraints (C' = oo), and has risk one.
Obviously, the MLE provides unacceptable risks in all considered cases. As dis-
cussed in Subsection 2.4, this is a consequence of the serious bias effects which may
result when the empirical coefficients are projected onto some possibly misspecified
intervals.

Many papers on wavelet based estimation such as Donoho et al. (1995) advo-
cate the universal threshold parameter A, = /2Jogn for all coefficients. However,
as pointed out by Droge (1998), shrinkage with large thresholds may incur large
biases, especially when some Fourier coefficients are large. This is the case in our
Examples (I)-(IIT), where the normalized risk of the associated soft threshold esti-
mator amounts to 1.057, 1.945 and 1.27, respectively, and exceeds even the risk for
the naive estimator.

In some cases we observe that the prior constraint has no influence on the optimal
soft thresholding method. This fact is in accordance with our Theorem 2, and
happens, of course, if C' = oo as well as for all values of C' when a = 0, with the
only exception of C' =5 in Example (I). Even in one case of unequal bounds for the
coefficients, i.e. for o = 0.5, this occurs for all values of C' in Example (1) and for
some values of C' in the other examples.

Generally, the optimal soft threshold estimator, MMRSE, is less sensitive to
variation of the assumptions than are the linear estimators, MMLE, MMRLE and
partly MMRE. This may be explained by their unbounded risk property, compare
again the discussion in Subsection 2.4. In particular the specification of o would
cause some problems in applications, so that it seems preferable to use always the
minimax regret soft thresholding method. Note that a rule of thumb like taking the
MMRSE with C' = ||y||2 and a = 1 would provide reasonable results in all three
examples. Because of E||y||2 = || f||2 + &2, the choice of C' could slightly be changed,
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Table 2: Normalized risk of some estimators for Fxample (I).

Prior constraint C' for Hf”i

Esimator

50

20

12

10

MLE

0.0
0.5
1.0
1.5
2.0

1.000
1.000
1.000
1.000
1.000

4.403
1.367
1.738
2.831
4.609

6.620
2.740
2.611
4.336
6.276

7.691
3.896
3.620
5.406
7.158

8.035
4.313
4.017
5.779
7.447

9.138
5.779
5.525
7.081
8.406

MMLE

0.0
0.5
1.0
1.5
2.0

1.000
1.000
1.000
1.000
1.000

0.966
0.906
0.429
0.689
2.129

0.934
0.797
0.351
1.237
2.595

0.923
0.708
0.379
1.581
2.908

0.925
0.673
0.408
1.704
3.031

1.026
0.548
0.636
2.185
3.572

MMRLE

0.0
0.5
1.0
1.5
2.0

1.000
1.000
1.000
1.000
1.000

0.974
0.698
0.453
1.324
2.727

1.180
0.645
0.645
1.973
3.348

1.442
0.660
0.865
2.368
3.762

1.575
0.679
0.967
2.516
3.922

2.342
0.860
1.472
3.127
4.589

MMRSE

0.0
0.5
1.0
1.5
2.0

0.533
0.533
0.533
0.533
0.533

0.533
0.533
0.382
0.268*
0.507

0.533
0.529
0.310
0.295
0.867

0.533
0.514
0.286
0.330
1.065

0.533
0.504
0.280
0.348
1.089

0.528
0.452
0.270
0.453
2.502

MMRE

0.0
0.5
1.0
1.5
2.0

0.533
0.533
0.533
0.533
0.533

0.533
0.533
0.313
1.220
2.540

0.533
0.513
0.587
1.838
3.050

0.533
0.460
0.739
2.148
3.706

0.533
0.437
0.809
2.251
3.853

2.342
0.343
1.144
2.753
4.438
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Table 3: Normalized risk of some estimators for Example (I).

Prior constraint C' for Hf”i

Esimator | « 00 50 20 12 10 5
MLE 0.0 | 1.000 22.558 36.477 43.223 45.416 52.713
0.5 | 1.000 3.402 12.263 19.876 22.697 32.921
1.0 [ 1.000 8.140 14.680 21.395 23.988 33.748
1.5 [ 1.000 17.007 26.674 33.433 35.791 43.992
2.0 | 1.000 28.568 39.038 44.569 46.384 52.414
MMLE 0.0 | 1.000 0.994 0.989 0.987 0.987 1.011
0.5 1.000 0.984 0.961 0.937 0.926 0.869
1.0 [ 1.000 0.767  0.624 0.566  0.556  0.616
1.5 | 1.000 0.669 1.468  2.478  2.966  5.387
2.0 | 1.000 6.699 10.103 11.744 12.300 14.439
MMRLE | 0.0 | 1.000 1.129 1.423 1.767 1.941  2.995
0.5 1.000 0.906 0.925 0.977 1.009 1.242
1.0 [ 1.000 0.739 0.955 1.257 1.412 2.3278
1.5 [ 1.000 2.334 4.489 6.239 6.949  9.946
2.0 | 1.000 10.318 13.532 15.315 15.977 18.727
MMRSE | 0.0 | 0.670 0.670  0.670  0.670  0.670  0.670
0.5 0.670 0.670 0.670 0.670 0.670  0.670
1.0 [ 0.670 0.656  0.618  0.587  0.576  0.546
1.5 1 0.670 0.547 0.580 0.612 0.626  0.698
2.0 0.670 0.763 0.932 1.074 1.136  1.458
MMRE | 0.0 | 0.670 0.670 0.670 0.670  0.670  0.670
0.5 0.670 0.670 0.670 0.670 0.670  0.670
1.0 [ 0.670 0.600  0.521  0.489 0.483* 0.488
1.5 1 0.670 0.542 4.079  5.587  6.165  8.607
2.0 1 0.670 9.618 12.922 14.434 14.927 17.419
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Table 4: Normalized risk of some estimators for Fxample (I11).

Prior constraint C' for Hf”i

Esimator | « 00 2 1 0.5 0.2 0.1
MLE 0.0 | 1.000 4.863 7.491 9.882 12.781 14.629
0.5 | 1.000 0.996 1.549 3.208 6.557  9.040
1.0 | 1.000 1.115 2.045 3.210 6.068 8.624
1.5 ] 1.000 2.903 4.302 5.960 9.045 11.274
2.0 | 1.000 6.057 7.277 9.215 11.910 13.639
MMLE 0.0 | 1.000 0.9906 0.982 0.969 0.952  0.991
0.5 | 1.000 0.974 0.950 0.905 0.795 0.667
1.0 | 1.000 0.677 0.539 0.410 0.288  0.264
1.5 ] 1.000 0.220 0.219 0.284 0.545 0.933
2.0 1 1.000 0.535 0.829 1.224 2.012 3.031
MMRLE | 0.0 | 1.000 0.963 1.008 1.131 1.561  2.301
0.5 1.000 0.819 0.766 0.712 0.681  0.754
1.0 | 1.000 0.451 0.389 0.381 0.518  0.808
1.5 1 1.000 0.355 0.521 0.822 1.517  2.347
2.0 | 1.000 1.180 1.715 2.445 3.838  5.257
MMRSE | 0.0 | 0.530 0.530  0.530 0.530 0.530  0.530
0.5 10.530 0.530 0.530 0.530 0.526  0.500
1.0 | 0.530 0.491 0.442 0.370 0.290 0.255
1.5 1 0.530 0.248 0.236* 0.239 0.286  0.380
2.0 | 0.530 0.314 0.416 0.568 0.839  1.168
MMRE |0.0|0.530 0.530 0.530 0.530 0.530  0.530
0.5 10.530 0.530 0.530 0.530 0.513  0.441
1.0 1 0.530 0.436 0.371 0.311 0.269 0.361
1.5 10.530 0.251 0.337 0.584 0.908 1.321
2.0 1 0.530 0.913 1.176 1.560 3.756  5.081
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but the choice of o remains hard.

Figure 4 illustrates the behaviour of the best minimax regret estimators f in
the three examples. The approximation of the true regression function by fisin
general quite satisfactory. The left-hand panel depicts possible misspecifications of
the prior constraints. The horizontal (dashed) line shows, however, that serious
misspecifications of the bounds for the coefficients occur mainly above the value

Too * 0 and have thus no influence on the optimal thresholds.
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Figure 4: From top to bottom: I[llustration of examples (I)-(IIl). The right-hand
panel shows the data (dots) together with the true regression function f (solid curve)
and its best minimax regrel esltimate f(dashed curve). The left-hand panel displays
the true coefficients |0;] (dots), the bounds ¢; (solid line) used for f, and the value
Teo * 0 (dashed line), above which the optimal thresholds do not depend on the ¢;.
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Appendix

Proof of Theorem 1. On account of (5), (10) and (12), we obtain

7_2

T'L()\,T) = g‘Qreg(éf,G; é)) = \? + (1 - )\)27'2 - 1+ 72 3

which is, for fixed A, obviously symmetric about 7 = 0, i.e., r(A, —7) = ri(A, 7).
Hence, it is sufficient to restrict the considerations to 7 > 0.

For A =0 or A =1, r1,(A,7) has a unique stationary point at 7 = 0, which is a
maximumif A = 1 and a minimumif A = 0. For fixed A € (0, 1), rz(A, 7) has a unique
(local) maximumat 7 = 0 and a unique positive minimum at 7 = 7,,;, = \/g (with
(A, Tmin) = 0) . This leads to the maximal normalized regret risk

SUI/) rp(A,7) = max{r(X,0),r.(A, c/o)} (A1)
r<elo
which has to be minimized over A € [0, 1].

Clearly, rr,(A,0) = A? is monotonically increasing in A, whereas straightforward

algebra provides that rp(A, ¢/o) is monotonically decreasing if and only if

2

c
A< =A
0?42 M
compare (13). Furthermore, one verifies that
1
rp(A,0) <rp(Ae/o) ifandonly if A <1 — ——— = Ag
1+ (¢/o)?

Because of A, < Ay, the unique minimum of (A1) is therefore attained at A = Ay,

and the corresponding value of the maximal normalized regret risk is
r.(Ar,0) = ri(Ar,c/o) = A%, (A2)

which completes the proof. O

Maximal regret risk of minimax linear estimator. If A = XAy, then we
have T, = ¢/o, see proof of Theorem 1. Consequently, rz,(Az, 7) is monotonically
decreasing in |7| < ¢/o, leading to the desired result:

sup reg(0%,,,0;0) = o s (A, 7) = o’rp (A, 0) = R(6Y,,,0) = Aj,0”

Proof of (15). The risk formula (5) gives R(éfM,H) < B(@Afuﬂ) iff

)\]2\4‘|‘(1_/\M)27-2 < /\%+(1—)\L)27‘2 iff
)\]2\/1—)\% < TZ()\M—)\L)(Q—)\M—)\L) iff
2 A+ Az
> .
2— Ay — Ap

T
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The result follows by inserting the expressions for Ay and Az (cp. (13) and Theo-

rem 1) on the right had side of the last line. O
Proof of Lemma 1, item (v).

(a) Some properties of the noncentral x*-distribution. We start with some useful

facts on the noncentral y*-distribution. Let Fi(-; ) and fi(-; ) denote the distri-

bution function and the probability density function, respectively, of a noncentral

x?-distributed random variable with k degrees of freedom and noncentrality param-

eter o.Then we have, for > 0, (see e.g. (A1), (A2) and (A8) of Droge, 1993)

2 L (Lot a) S () )
fteie) = o (~557) S SRS

(A3)

Differentiating this w.r.t. = provides

0 1

52 /(@) = g lfka(w50) = iz 0)] (A4)

Note that relation (A4) holds for any integer k if we define the functions fy in (A3)
formally also for negative integers k (so that fi is not necessarily a density), since
the I'-function fulfills I'(z 4+ 1) = 2I'(z) for all real numbers z # 0, —1, —2

By arguments similar to those leading to (A4) we get (see also (A10) and (A11)
of Droge, 1993)

PRI

%Fk(l’; a) = %[ka(l’; a) = Fi(z;a)] (A5)
= —fry2(7; Q) (A6)

and P 1
oo fi(wi0) = 3lfra(wsa) = filwia)] . (AT)

(b) Uniqueness of local minimizer of r(A, 7). To find the stationary points of
(16) for fixed 7 > 0, we differentiate the normalized regret risk w.r.t. A. Using

#'(y) = —yo(y), this yields

0 0
ar(/\, T) = aps(z\, T)

= “2\PA—7)—=P(=A—7)—=1]=2[¢(A—=7)+ d(A+ 7)] (A8)
= 2\[1 - (A% 7%) = 2N 7)) (A9)

where the last equality follows by
DA —7)—O(=A—7)=Fi(A\%7%) and ¢(X — 1)+ d(N+7) =22 fi(N\F;72) .

In view of (A9), setting z := A? and a := 7%, we have to verify that, for fixed

a > 0, there is a unique (positive) root of
h(z,a) =1— Fi(z;a) — 2fi(z;0) , (A10)
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which corresponds to a minimum of r(X, 7). To accomplish this, we first observe

that, on account of (A4) and (A3),

0 0 0 s aNi
a—mh(a:,oz) = —fi(z;a) — 2@_a;f1($;a) =—foi(z;a)= sa(:zi)jz:% <§) a;(a) ,
(A11)
where

J
1 /a\"3/? otz (%)
Sal) = 5 <§) exp <— 5 ) and a;(a) = —m )
—rei7m = 77 > O
and a;(a) < 0forall j > 1, so that the sequence {a;(a)}?2, has one and only one sign

Clearly, s,(z) > 0 for all z > 0 and o > 0. Moreover, ag(a) =

change. Thus, Lemma B2 of Droge (1993) implies the existence of a unique positive
root, rg = xo(a), say, of (A11), that is, of a unique stationary point of h(z, o), which
must provide a maximum due to part (ii) of that lemma. Furthermore, h(z, ) tends
to —oc and 0 as x approaches 0 and oo, respectively. This and the strict unimodality
of h(z, o) establish the existence of a unique positive root, = Z(a) < ¢, of h(z, a).
Consequently, A\ = A(7) := /z(72) is the unique stationary point of r(),7), which
turns out to be a minimum since h(z, a) is increasing at = and, hence,
0? <y 0
WT(A,T)L\:; = 4/\28—$h(a},72)|g;:5\2 >0,
compare (A9).
(¢) Behaviour of A(7). First recall that
0
a—xh(x,aﬂx:f(a) >0 s
since z(a) < zo(e) and h(-, ) is monotonically increasing on the interval (0, zq(c)).

Moreover, from (A6) and (A7) we deduce, for all z > 0,
2 h(r,0) = fi(r,0) > 0
55 @) = fi(e,a :

Consequently, the formula for the derivative of an implicit function yields

#(a) = — [@h(;o; @) / 3hgz; @)

so that A(7) = 1/Z(72) is a monotonically decreasing function of 7.

<0, (A12)
=z ()

This monotonicity result has the immediate consequence that z(«) converges as
a — oo, since T(«) > 0. It remains therefore to prove that the corresponding limit
is 0. Given any ag > 0, we have, for all @ > ap, #(a) < Z(ag) =: o. Thus, for all
a > o,

Fi(z(a),a) < Fi(Zo, )
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which converges to 0 as & — oo since then, for any fixed ¢, Fi(c,a) — 0. Because
of h(z(er), @) = 0, this implies

as o — 00 ,

DO | =

fi(z(a),a) —

compare (A10). Observing lim,, fi(z,a) = 0 for any fixed z > 0, we conclude
limy—yoo Z() = 0 and hence 5\(7) — 0as 7 — oo.

Finally, A(7) = oo as 7 — 0 follows from part (iv) of Lemma 1 by a continuity
argument.

(d) More precise asymptotics for A\(t). Analogously to (A12), a formula for
A'(7) can be derived by setting (A8) equal to 0. This leads to
)T

N(r) = 1 A7)7 tanh(A(7)7)

(A13)

where, because of A ‘(1) < 0, the denominator must be positive, which is equivalent
to 0 < A(7)7 < k with £ & 1.2. Continuity arguments together with the results
proved above under (c) imply now that A’(7) appoaches 0 and —oo as 7 tends to oo
and 0, respectively. In view of (A13), A(7)7 must therefore converge to 0 and « as T

tends to co and 0, respectively. Taking §(7) = A(7)7/x, A(T) can be represented as

where ¢ : (0,00) — (0, 1) is a continuous function converging to 0 and 1, respectively,
as 7 — oo and 7 — 0. O

Proof of Theorem 2. (i). Using (16), the maximal regret risk of a soft
threshold estimator éf may be rewritten as

sup reg(éf,&; (:)) =% sup (A7) .
|| <e |r|<c/o

Without the prior knowledge (2), the minimax regret optimal threshold, Ag(oco),
say, is given as unique solution of r(X,0) = r(X, 7(}X)), where 7(A) is defined in part
(iii) of Lemma 1, compare Theorem 3 and its proof in Droge (1998). The associated

estimator éfs(oo) provides thus the (unconstraint) normalized minimax regret risk
ir{f supr(A, 7) = r(As(00),0) = r(As(c0), 7o) » (A14)

where 7., = T(Ag(0)).

Under the constraint (2), the minimax regret risk (A14) can only be reduced by
choosing a threshold larger than Ag(o0), since 7 = 0 belongs always to the parameter
space and r(A, 0) is monotonically decreasing in A, see Lemma 1, (iv). Consequently,

we have for all ¢

As(efo) > As(o0) . (A15)
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On the other hand, part (v) of the same lemma provides that, for fixed 7 > 0, r(A, 7)
is monotonically increasing in A if and only if A > A(7). Numerical approximations,
employing properties established in Lemma 1, lead now to Ag(oo) &2 0.545, T, &2 2.73
and ;\(foo) ~~ 0.0316. Because of Ag(o0) > ;\(foo), an increasing value of A would
therefore increase the (normalized) minimax regret risk (A14) as long as 7..o belongs

to the parameter space. This implies
As(c/o) = Ag(o0) &= 0.545 if c¢fo > T R 2.73 . (A16)

Consider now the case ¢/o < To,. In view of (A15), we can confine our consid-
erations to the case A > Ag(o0). Statements (i)—(iii) of Lemma 1, in particular the
monotonicity of 7(X), lead then to

sup r(A,7) = max{r(A,0),r(X c/o)} forall A > Ag(c0) .

I7I<c/o
Again, in view of items (iv) and (v) of Lemma 1, r(X,0) is monotonically decreasing
in A, whereas r(\,c/o) is first decreasing in A < A(¢/o) and then increasing in
A > Ae/o). Because of the strict monotonicity in Lemma 1 (compare the above

proof), the existence of a unique minimax regret rule follows. More precisely, we

have As(c/o) = /o) if
r(Me/a),e/a) > r(A(c/a),0) . (A17)
If (A17) is not fulfilled, then there is a unique threshold As(c/o) > A(c/a) with

r(As(c/o),c/o) =r(rs(c/o),0) ,

which provides the optimal solution. The maximal regret risk of the corresponding
estimator éfs (i.e., the minimax regret risk within ) is o2r(As(¢/0), /o), which
coincides with a*r(As(c/a),0) unless (A17) holds.

(7). Because of (A16) it suffices to consider the case ¢/o < 7. For such values

of ¢, we know from the above proof of item (i) that (A15),
As(efo) > Aefo) | (A18)
and

inf sup r(A, 1) =r(As(c/o),c/o) > r(As(c/o),0) , (A19)

A lrlge/o
where equality holds if As(c/a) > A(c/o). Moreover, item (iii) of Lemma 1 and its
proof in Droge (1998) yield 7(As(¢/o)) > 7o and, hence,

r(As(c/o),c/o) > r(As(c/o),7) forall 1€ (0,¢/0) , (A20)
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since there is only one stationary point of r(A,7) on the interval (0,7()X)) which
must provide a minimum.

From inequality (A18) we obtain the first asymptotic result, As(¢/o) — oo as
c/o — 0, since A(7) = oo as 7 — 0 due to item (v) of Lemma 1.

Let ¢ < ¢; < Tooo and, for i = 1,2, \; = As(c;/0) as well as \; = A(e;/a). Then
it remains to show that (a) Ay > Ay and (b) r(A1,e1/0) < (A2, c2/0).

Ad (a). Tf My = Xg, then (A18) and the strict monotonicity of A in Lemma 1,
(v) give immediately the result: A; > A1 > Ay = Ay, On the other hand, Ay # A,
implies Ay > Ay and thus r()g, c/0) = r(Ag,0), compare (A19). From this the result
follows, since A; > A; by (A18) and the assumption A; € [\, Ay] would provide a
contradiction to (A19):

r(A,afo) <r(Ag,e1/o) < r(Ae,eaf/o) = r(A,0) < r(Aq,0)

recall that (A, ¢; /o) increases in A > A; as well as (A20) and Lemma 1, (iv).

Ad (b). Suppose first that A\; = A;. Then the the minimizing property of A; and
(A20) provide r(A,c1/0) < r(Xg,e1/a) < r(Ag,ez/0). Finally, for A; > A; we have
equality in (A19) so that we conclude from (a), the strict monotonicity in part (iv)

of Lemma 1 and again (A19)
(A1, /o) =r(A,0) < r(A2,0) < r(Ag,caf0)
completing the proof. O
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