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A simple state space model of house prices

Rainer Schulz and Axel Werwatz

1 Introduction

For most people, purchasing a house is a major decision. Once purchased,
the house will by far be the most important asset in the buyer’s portfolio.
The development of its price will have a major impact on the buyer’s wealth
over the life cycle. It will, for instance, affect her ability to obtain credit from
commercial banks and therefore influence her consumption and savings decisions
and opportunities. The behavior of house prices is therefore of central interest
for (potential) house buyers, sellers, developers of new houses, banks, policy
makers or, in short, the general public.

An important property of houses is that they are different from each other.
Hence, while houses in the same market (i.e., the same city, district or neigh-
borhood) will share some common movements in their price there will at all
times be idiosyncratic differences due to differences in maintenance, design or
furnishing. Thus, the average or median price will depend not only on the gen-
eral tendency of the market, but also on the composition of the sample. To
calculate a price index for real estate, one has to control explicitly for idiosyn-
cratic differences. The hedonic approach is a popular method for estimating the
impact of the characteristics of heterogenous goods on their prices.

The statistical model used in this chapter tries to infer the common com-
ponent in the movement of prices of 1502 single-family homes sold in a district
of Berlin, Germany, between January 1980 and December 1999. It combines
hedonic regression with Kalman filtering. The Kalman filter is the standard
statistical tool for filtering out an unobservable, common component from id-
iosyncratic, noisy observations. We will interpret the common price component
as an index of house prices in the respective district of Berlin. We assume that
the index follows an autoregressive process. Given this assumption, the model
is writable in state space form.

The remainder of this chapter is organized as follows. In the next section
we propose a statistical model of house prices and discuss its interpretation
and estimation. Section 4 introduces the data, while Section 5 describes the
quantlets used to estimate the statistical model. In this section we present also
the estimation results for our data. The final section gives a summary.

2 A Statistical Model of House Prices

2.1 The Price Function

The standard approach for constructing a model of the prices of heterogeneous
assets is hedonic regression (Bailey, Muth and Nourse, 1963; Hill, Knight and
Sirmans, 1997; Shiller, 1993). A hedonic model starts with the assumption that
on the average the observed price is given by some function f (I, X, ¢, 8). Here,
Iy is a common price component that “drives” the prices of all houses, the
vector X, ¢ comprises the characteristics of house n and the vector 3 contains
all coefficients of the functional form.



Most studies assume a log-log functional form and that I; is just the constant
of the regression for every period (Clapp and Giaccotto, 1998; Cho, 1996). In
that case

Pni = It + xl—,tﬂ +ént - 1)

Here, p,,; denotes the log of the transaction price. The vector z,; contains the
transformed characteristics of house n that is sold in period ¢. The idiosyncratic
influences €, ; are white noise with variance o2

Following Schwann (1998), we put some structure on the behavior of the
common price component over time by assuming that the common price com-
ponent follows an autoregressive moving average (ARMA) process. For our data
it turns out that the following AR(2) process

L =1L+ oLy o+ 14 (2)

with Iy = 0 suffices. This autoregressive specification reflects that the market
for owner-occupied houses reacts sluggish to changing conditions and that any
price index will thus exhibit some autocorrelation. This time-series-based way
of modelling the behavior of I; is more parsimonious than the conventional
hedonic regressions (which need to include a seperate dummy variable for each
time period) and makes forecasting straightforward.

2.2 State Space Form

We can rewrite our model (1) and (2) in State Space Form (SSF) (Gourieroux
and Monfort, 1997). In general, the SSF is given as:

o = ¢t + Thoy—1 + € (3a)
Yy = di + Zyoy + €7 (3b)
i ~ (0, Ry) , € ~ (0, Hy) . (3¢)

The notation partially follows Harvey (1989; 1993). The first equation is the
state equation and the second is the measurement equation. The characteristic
structure of state space models relates a series of unobserved values a; to a
set of observations y;. The unobserved values «a; represent the behavior of the
system over time (Durbin and Koopman, 2001).

The unobservable state vector a; has the dimension K > 1, T; is a square
matrix with dimension K x K, the vector of the observable variables y; has the
dimension IV; x 1. Here, N; denotes the number of observations y; ,, in period
t < T. If the number of observations varies through periods, we denote

N & . max Ng .
The matrix Z; contains constant parameters and other exogenous observable
variables. Finally, the vectors ¢; and d; contain some constants. The system
matrices ¢, Ty, Ry, dy, Z¢, and H; may contain unknown parameters that have
to be estimated from the data.
In our model—that is (1) and (2)—, the common price component I; and
the quality coefficients 8 are unobservable. However, whereas these coefficients



are constant through time, the price component evolves according to (2). The
parameters ¢, ¢2, and o2 of this process are unknown.

The observed log prices are the entries in y; of the measurement equation
and the characteristics are entries in Z;. In our data base we observe three
characteristics per object. Furthermore, we include the constant 8y. We can
put (1) and (2) into SSF by setting

It ¢1 1 0 0 0 0 143
dali_q ¢ 0 0 0 0 O 0
_| Bo |0 01000 ,_|O
ay = Bl 7Tt_ 0 001 00 y ¢ = 0 (48‘)
B 0 00 010 0
B3 0 00001 0
pl,t ]. 0 .’L'It El’t—
ye=| - |, Ze={1 1 L |Let= (4b)
Pt 1 0 zp,, EN, 1]

For our model, both ¢; and d; are zero vectors. The transition matrices T; are
non time-varying. The variance matrices of the state equation R; are identical
for all ¢ and equal to a 6 x 6 matrix, where the first element is 02 and all other
elements are zeros. H; is a N; x Ny diagonal matrix with a? on the diagonal.
The variance o2 is also an unknown parameter.

The first two elements of the state equation just resemble the process of
the common price component given in (2). However, we should mention that
there are other ways to put an AR(2) process into a SSF (see Harvey, 1993, p.
84). The remaining elements of the state equation are the implicit prices 8 of
the hedonic price equation (1). Multiplying the state vector a; with row n of
the matrix Z; gives I; + 2/, 8. This is just the functional relation (1) for the
log price without noise. The noise terms of (1) are collected in the SSF in the
vector €*. We assume that ¢]* and & are uncorrelated. This is required for
identification (Schwann, 1998, p. 274).

3 Estimation with Kalman Filter Techniques

3.1 Kalman Filtering given all parameters

Given the above SSF and all unknown parameters ¢ = (¢1,¢a,02,02), we
can use Kalman filter techniques to estimate the unknown coefficients 8 and
the process of I;. The Kalman filter technique is an algorithm for estimating
the unobservable state vectors by calculating its expectation conditional on

information up to s < 7. In the ongoing, we use the following general notation:
def
ayjs = Eloy|Fy] (5a)
denotes the filtered state vector and
def
Pyjs = El(ar — ays) (e — ags) | F (5b)

denotes the covariance matrix of the estimation error and F; is a shorthand for
the information available at time s.



Generally, the estimators delivered by Kalman filtering techniques have min-
imum mean-squared error among all linear estimators (Shumway and Stof-
fer, 2000, Chapter 4.2). If the initial state vector, the noise €™ and &° are
multivariate Gaussian, then the Kalman filter delivers the optimal estimator
among all estimators, linear and nonlinear (Hamilton, 1994, Chapter 13).

The Kalman filter techniques can handle missing observations in the mea-
surement equation (3b). For periods with less than N observations, one has to
adjust the measurement equations. One can do this by just deleting all elements
of the measurement matrices dy, Z;, H; for which the corresponding entry in
y; is a missing value. The quantlets in XploRe use this procedure. Another
way to take missing values into account is proposed by Shumway and Stoffer
(1982; 2000): replace all missing values with zeros and adjust the other mea-
surement matrices accordingly. We show in Appendix 6.1 that both methods
deliver the same results. For periods with no observations the Kalman filter
techniques recursively calculate an estimate given recent information (Durbin
and Koopman, 2001).

3.2 Filtering and state smoothing

The Kalman filter is an algorithm for sequently updating our knowledge of the
system given a new observation y;. It calculates one step predictions conditional
on s = t. Using our general expressions, we have

ay = E[at|ft]
and
Pt = E[(Olt — at)(at - at)T|.7-'t] .

Here we use the standard simplified notation a; and P; for a;; and Py;. As a
by-product of the filter, the recursions calculate also

ayjp—1 = Elag| Fi—1]

and
Pt\t—l = E[(Oét - at\t—l)(at - Clt|t—1)—r|7:t—1] .

We give the filter recursions in detail in Subsection 5.3.

The Kalman smoother is an algorithm to predict the state vector a; given
the whole information up to 7. Thus we have with our general notation s =T
and

ayr = Eloy|Fr]

the corresponding covariance matrix
Pyr =E[(o¢ — agyr) (e — ayr) " | Fr] -

We see that the filter makes one step predictions given the information up to
t € {1,...,T} whereas the smoother is backward looking. We give the smoother
recursions in detail in Subsection 5.5.



3.3 Maximum likelihood estimation of the parameters

Given the system matrices ¢;, T, Ry, dy, Z¢, and Hy, Kalman filtering techniques
are the right tool to estimate the elements of the state vector. However, in our
model some of these system matrices contain unknown parameters ¥. These
parameters have to be estimated by maximum likelihood.

Given a multivariate Gaussian error distribution, the value of the log like-
lihood function I(¢)) for a general SSF is up to an additive constant equal to:

1 & 1 &
—5 Zln'Ft| — §ZU;Ft71’Ut . (9)
=1 =1
Here,
def
v = Yy —dy — ZyQyjp—q (10)

are the innovations of the filtering procedure and ay;_; is the conditional ex-
pectation of a; given information up to t — 1. As we have already mentioned,
these expressions are a by-product of the filter recursions. The matrix F; is
the covariance matrix of the innovations at time ¢ and also a by-product of the
Kalman filter. The above log likelihood is known as the prediction error decom-
position form (Harvey, 1989). Periods with no observations do not contribute
to the log likelihood function.

Starting with some initial value, one can use numerical maximization meth-
ods to obtain an estimate of the parameter vector 1. Under certain regularity
conditions, the maximum likelihood estimator 1 is consistent and asymptoti-
cally normal. One can use the information matrix to calculate standard errors
of ¢ (Hamilton, 1994).

3.4 Diagnostic checking

After fitting a SSF, one should check the appropriateness of the results by
looking at the standardized residuals

vt = B2, (11)

If all parameters of the SSF were known, v{* would follow a multivariate stan-
dardized normal distribution (Harvey, 1989, see also (9)). We know that F; is
a symmetric matrix and that it should be positive definite (recall that it is just
the covariance matrix of the innovations v;). So

FY2 = ooy (12)

where the diagonal matrix A; contains all eigenvalues of F; and Cj is the ma-
trix of corresponding normalized eigenvectors (Greene, 2000, p.43). The stan-
dardized residuals should be distributed normally with constant variance, and
should show no serial correlation. It is a signal for a misspecified model when
the residuals do not possess these properties. To check the properties, one can
use standard test procedures. For example, a Q-Q plot indicates if the quantiles
of the residuals deviate from the corresponding theoretical quantiles of a normal
distribution. This plot can be used to detect non-normality. The Jarque-Bera
test for normality can also be used for testing non-normality of the residuals
(Bera and Jarque, 1982). This test is implemented in XploRe as jarber.



In the empirical part, we combine Kalman filter techniques and maximum
likelihood to estimate the unknown parameters and coefficients of the SSF for
the house prices in a district of Berlin.

4 The Data

The data set is provided by the Gutachterausschufl fir Grundstickswerte in
Berlin, an expert commission for Berlin’s real estate market. The commission
collects information on all real estate transactions in Berlin in a data base called
Automatisierte Kaufpreissammlung.

Here, we use data for 1502 sales of detached single-family houses in a district
of Berlin for the years 1980 to 1999, stored in MD*BASE. Besides the price,
we observe the size of the lot, the floor space, and the age of the house. The
data set XFGhouseprice contains the log price observations for all 80 quarters.
There are at most N = 43 observations in any quarter. The following lines of
XploRe code

Y = read("XFGhouseprice.dat")
Y[1:20,41:44]

can be used to take a look at the entries of XFGhouseprice. Every column
gives the observations for one quarter. Thus, in columns 41 to 44 we find the
observations for all quarters of 1990. If less than 43 transactions are observed
in a quarter the remaining entries are filled with the missing value code NaN.
Only in the first quarter of the year 1983 we observe 43 transactions.

The corresponding data set XFGhousequality contains the observed charac-
teristics of all houses sold. They are ordered in the following way: each column
contains all observations for a given quarter. Remember that for every house
we observe log size of the lot, log size of the floor space and age. The first three
rows of a column refer to the first house in ¢, the next three to the second house
and so on.

Let us look at the characteristics of the first two observations in 1990:1. Just
type the following lines in the XploRe input window

X = read("XFGhousequality.dat")
X[1:6,41]°

After compiling, you get the output
[1,] 6.1048 4.7707 53 6.5596 5.1475 13

The size of the lot for the second house is about 706 square meters (just take
the antilog). The size of the floor space is 172 square meters and the age is 13
years.

The following table shows summary statistics of our Berlin house price data.

" Summary statistics for the Berlin house price data

Sample for 80 quarters with 1502 observations

" Observations per period



" Minimum = 4 Average = 18.77 Maximum = 43

" Transaction prices (in thousand DM)

" Minimum = 100.00 Average = 508.46 "
" Maximum = 1750.01 Std. Dev. =

|
=
©
~
©
N

" Size of the lot (in square meters)

" Minimum = 168.00 Average = 626.18 "
Maximum = 2940.00 Std. Dev. = 241.64 "

" Size of the floor space (in square meters) "

" Minimum = 46.00 Average = 144.76 "
635.00 Std. Dev. = 48.72 "

" Maximum

" Age of the building (in years) "

1]
o

Minimum
" Maximum

Average = 28.59 "
Std. Dev. = 21.58 "

Il
-
©
w

cIXFGsssml.xpl

Not surprisingly for detached houses there are large differences in the size
of the lot. Some houses were new in the period of the sale while one was 193
years old. That is a good example for the potential bias of the average price
per quarter as a price index. If we do not control explicitly for depreciation we
might obtain a low price level simply because the houses sold in a quarter were
old.

Nevertheless, the average price per quarter can give an indication of the
price level. Figure 1 shows the average price per quarter along with confidence
intervals at the 90% level. Instead of the average price, we could also calculate
an average adjusted price, where the most important characteristic is used for
the adjustment. Such adjustment is attained by dividing the price of every
house by—for example—the respective size of the lot. However, even in that
case we would control only for one of the observed characteristics. In our model
we will control for all of the observed characteristics.

5 Estimating and filtering in XploRe

5.1 Overview

The procedure for Kalman filtering in XploRe is as follows: first, one has to set
up the system matrices using gkalarray. The quantlet adjusts the measurement
matrices for missing observations.

After the set up of the system matrices, we calculate the Kalman filter
with gkalfilter. This quantlet also calculates the value of the log likelihood
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Figure 1: Average price per quarter, units are Deutsche Mark (1 DM ~ 0.511
EUROQ). Confidence intervals are calculated for the 90% level.
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function given in equation (9). That value will be used to estimate the unknown
parameters of the system matrices with numerical maximization (Hamilton,
1994, Chapter 5). The first and second derivatives of the log likelihood function
will also be calculated numerically. To estimate the unknown state vectors—
given the estimated parameters—we use the Kalman smoother gkalsmoother.
For diagnostic checking, we use the standardized residuals (11). The quantlet
gkalresiduals calculates these residuals.

5.2 Setting the system matrices

gkalarrayOut = gkalarray(Y,M,IM,XM)
sets the system matrices for a time varying SSF

The Kalman filter quantlets need as arguments arrays consisting of the system
matrices. The quantlet gkalarray sets these arrays in a user-friendly way. The
routine is especially convenient if one works with time varying system matrices.
In our SSF (4), only the system matrix Z; is time varying. As one can see
immediately from the general SSF (3), possibly every system matrix can be
time varying.

The quantlet uses a three step procedure to set up the system matrices.



1. To define a system matrix all constant entries must be set to their respec-
tive values and all time varying entries must be set to an arbitrary number
(for example to 0).

2. One must define an index matrix for every system matrix. An entry is set
to 0 when its corresponding element in the system matrix is constant and
to some positive integer when it is not constant.

3. In addition, for every time varying system matrix, one also has to specify
a data matrix that contains the time varying entries.

gkalarray uses the following notation: Y denotes the matrix of all observations
[y1,---,yT], M denotes the system matrix, IM denotes the corresponding index
matrix and XM the data matrix.

If all entries of a system matrix are constant over time, then the parameters
have already been put directly into the system matrix. In this case, one should
set the index and the data matrix to 0.

For every time varying system matrix, only constant parameters—if there
are any—have already been specified with the system matrix. The time-varying
coeflicients have to be specified in the index and the data matrix.

In our example, only the matrices Z; are time varying. We have

[1 01 0 00
A EEEE

| 10 00

[0 0 0 1 2 3

000 4 ) 6
1z &

0 0 0 BN+1) (3N+2) (3N+3)
xz ¥ XFGhousequality

The system matrix Z; has the dimension (N x 6). The non-zero entries in the
index matrix IZ prescribe the rows of XFGhousequality, which contain the time
varying elements.

The output of the quantlet is an array that stacks the system matrices one
after the other. For example, the first two rows of the system matrix Z4; are

[1,] 1 0 1 6.1048 4.7707 53

[2,] 1 0 1 6.5596 5.1475 13
Q XFGsssm3.xpl

It is easy to check that the entries in the last three columns are just the char-
acteristics of the first two houses that were sold in 1990:1 (see p. 6).

5.3 Kalman filter and maximized log likelihood

{gkalfilOut,loglike} = gkalfilter(Y,mu,Sig,ca,Ta,Ra,
da,Za,Ha,1l)
Kalman filters a time-varying SSF




We assume that the initial state vector at ¢ = 0 has mean p and covariance
matrix ¥. Recall, that R; and H; denote the covariance matrix of the state noise
and—respectively—of the measurement noise. The general filter recursions are
as follows:

Start at ¢ = 1: use the initial guess for y and ¥ to calculate

atp = a+Tip
P = TZTY + Ry
B = 21P1|OZ1T+H1
and
a1 = ayo+ PyoZ! F{ ' (y1 — Z1ayo — dy)
P = Pyo—PyoZ F{'Z Py

Step at t < T': using a;—1 and P,_; from the previous step, calculate

agg 1 = o+ Trap
Py = TP1T +Ry
F = tht|t—1ZtT + H;
and
ar = ay-1 + Pypor Z{ F Ny — Zyage—y — dy)
P, = Pyy1— P12 F; ' ZyPyyy

The implementation for our model is as follows: The arguments of gkalfilter
are the data matrix Y, the starting values mu (u), Sig (X) and the array for ev-
ery system matrix (see section 5.2). The output is a T+ 1 dimensional array of
[a; P;] matrices. If one chooses | = 1 the value of the log likelihood function
(9) is calculated.

Once again, the T + 1 matrices are stacked “behind each other”, with the
t = 0 matrix at the front and the ¢ = T matrix at the end of the array. The
first entry is [u X

How can we provide initial values for the filtering procedure? If the state
matrices are non time-varying and the transition matrix T satisfies some sta-
bility condition, we should set the initial values to the unconditional mean and
variance of the state vector. X is given implicitly by

vec(X) = (I =T ®T) 'vec(R) .

Here, vec denotes the vec-operator that places the columns of a matrix below
each other and ® denotes the Kronecker product. Our model is time-invariant.
But does our transition matrix fulfill the stability condition? The necessary and
sufficient condition for stability is that the characteristic roots of the transition
matrix T should have modulus less than one (Harvey, 1989, p. 114). It is easy
to check that the characteristic roots \; of our transition matrix (4a) are given

as
$1 £ /9% + 4¢o
)\172 = f .

10



For example, if ¢; and ¢ are both positive, then ¢; + ¢o < 1 guarantees real
characteristic roots that are smaller than one (Baumol, 1959, p. 221). However,
when the AR(2) process of the common price component I; has a unit root, the
stability conditions are not fulfilled. If we inspect Figure 1, a unit root seems
quite plausible. Thus we can not use this method to derive the initial values.
If we have some preliminary estimates of u, along with preliminary measures
of uncertainty—that is a estimate of ¥—we can use these preliminary estimates
as initial values. A standard way to derive such preliminary estimates is to
use OLS. If we have no information at all, we must take diffuse priors about
the initial conditions. A method adopted by Koopman, Shephard and Doornik
(1999) is setting u = 0 and ¥ = kI where & is an large number. The large
variances on the diagonal of X reflect our uncertainty about the true p.

coefficient t-statistic p-value

log lot size 0.2675 15.10 0.0000

log floor space 0.4671 23.94 0.0000

age -0.0061 -20.84 0.0000
Regression diagnostics

R? 0.9997 Number of observations 1502

R 0.9997 F-statistic 64021.67

62 0.4688 Prob(F-statistic) 0.0000

Table 1: Results for hedonic regression

We will use the second approach for providing some preliminary estimates
as initial values. Given the hedonic equation (1), we use OLS to estimate I,
B, and o2, by regressing log prices on lot size, floor space, age and quarterly
time dummies. The estimated coefficients of lot size, floor space and age are
reported in Table 1. They are highly significant and reasonable in sign and
magnitude. Whereas lot size and floor space increase the price on average, age
has the opposite effect. According to (1), the common price component I; is
a time-varying constant term and is therefore estimated by the coefficients of
the quarterly time dummies, denoted by {I;}32,. As suggested by (2), these
estimates are regressed on their lagged values to obtain estimates of the unknown
parameters ¢p, ¢2, and o2. Table 2 presents the results for an AR(2) for the
I; series. The residuals of this regression behave like white noise. We should
remark that . .

dr+¢am1

and thus the process of the common price component seems to have a unit root.

Given our initial values we maximize the log likelihood (9) numerically with

respect to the elements of 1* (¢1, P2, log(02),log(c?)). Note that 1* differs

from 1) by using the logarithm of the variances o2 and ¢2. This transformation is
known to improve the numerical stability of the maximization algorithm, which
employs nmBFGS of XploRe’s nummath library. Standard errors are computed
from inverting the Hessian matrix provided by nmhessian. The output of the
maximum likelihood estimation procedure is summarized in Table 3, where we

11



coefficient t-statistic  p-value

constant 0.5056 1.3350  0.1859

I 0.4643 4.4548  0.0000

Is 0.4823 4.6813  0.0000
Regression diagnostics

R? 0.8780 Number of observations 78

R 0.8747 F-statistic 269.81

52 0.0063 Prob(F-statistic) 0.0000

Table 2: Time series regression for the quarterly dummies

2

v

report the estimates of 02 and o2 obtained by retransforming the estimates of

log(02) and log(o?)).

estimate std error ¢-value p-value

1 = ¢y 0.783 0.501 1.56 0.12
Py = ¢y 0.223 0504  0.44 0.66
Py = 62 0.0016 0.012 1.36 0.17
Py = 62 0.048 0.002  26.7 0

average log likelihood 0.9965

Table 3: Maximum likelihood estimates of the elements of ¢ @ XFGsssm4.xpl
Note that the maximum likelihood estimates of the AR coefficients ¢; and

¢o approximately sum to 1, again pointing towards a unit root process for the
common price component.

5.4 Diagnostic checking with standardized residuals

{V,Vs} = gkalresiduals(Y,Ta,Ra,da,Za,Ha,gkalfilOut)
calculates innovations and standardized residuals

The quantlet gkalresiduals checks internally for the positive definiteness of
F;. An error message will be displayed when F; is not positive definite. In such
a case, the standardized residuals are not calculated.

The output of the quantlet are two N x T matrices V and Vs. V contains the
innovations (10) and Vs contains the standardized residuals (11).

The Q-Q plot of the standardized residuals in Figure 2 shows deviations
from normality at both tails of the distribution.

This is evidence, that the true error distribution might be a unimodal dis-
tribution with heavier tails than the normal, such as the ¢-distribution. In this
case the projections calculated by the Kalman filter no longer provide the con-
ditional expectations of the state vector but rather its best linear prediction.

12



Q-Q Plot of the standardized residuals

Figure 2: Deviations of the dotted line from the straight line are evidence for a
nonnormal error distribution
Q xFGsssms .xpl

Moreover the estimates of ¢ calculated from the likelihood (9) can be interpreted
as pseudo-likelihood estimates.

5.5 Calculating the Kalman smoother

gkalsmoothOut = gkalsmoother(Y,Ta,Ra,gkalfilOut)
provides Kalman smoothing of a time-varying SSF

The Kalman filter is a convenient tool for calculating the conditional expec-
tations and covariances of our SSF (4). We have used the innovations of this
filtering technique and its covariance matrix for calculating the log likelihood.
However, for estimating the unknown state vectors, we should use in every step
the whole sample information up to period 7T'. For this task, we use the Kalman
smoother.

The quantlet gkalsmoother needs as argument the output of gkalfilter.
The output of the smoother is an array with [ayr P r] matrices. This array
of dimension T" + 1 starts with the ¢ = 0 matrix and ends with the matrix for
t = T'. For the smoother recursions, one needs a;, P and P;;_; fort =1...T.
Then the calculation procedure is as follows:
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Start at t =T

arir = ar
Prr = Pr
Step at t < T
Pt* = PtTtT‘rlPtq—ll‘t
ayr = ap+ P (a1 — Tir1a)
Pyr = P+ P/ (Pyyr — Pt+1|t)Pt*T

The next program calculates the smoothed state vectors for our SSF form,
given the estimated parameters ¢. The smoothed series of the common price
component is given in Figure 3. The confidence intervals are calculated using
the variance of the first element of the state vector.

Price of a ‘standard house’ from 1980 to 2000

0.80 T

0.60 T

0.40 T

020 T

0.00 7

1980:1 1985:1 1990:1 1995:1 1999:4

Figure 3: Smoothed common price component. Confidence intervals are calcu-
lated for the 90% level.
Q XFGsssm6.xpl

Comparison with the average prices given in Figure 1 reveals that the com-
mon price component is less volatile than the simple average. Furthermore, a
table for the estimated hedonic coefficients—that is S—is generated, Table 4.

Recall that these coefficients are just the last three entries in the state vector
ay. According to our state space model, the variances for these state variables
are zero. Thus, it is not surprising that the Kalman smoother produces constant
estimates through time for these coefficients. In the Appendix 6.2 we give a
formal proof of this intuitive result.

14



[1 ’] " "
[2,] " Estimated hedonic coefficients
[3 ,] " "
[4,] " Variable coeff. t-Stat. p-value "
[5 ,] o e e e e e e e e e e o o o o o T T T T T T T T o o 7 "
[6,] " log lot size 0.2664 21.59 0.0000 "
[7,] " log floor area 0.4690 34.33 0.0000 "
[8,] " age -0.0061 -29.43 0.0000 "
[9 ’] " "

Table 4: Estimated hedonic coefficients . @ XFGsssm6.xpl

The estimated coefficient of log lot size implies that, as expected, the size
of the lot has an positive influence on the price. The estimated relative price
increase for an one percent increase in the lot size is about 0.27%. The estimated
effect of an increase in the floor space is even larger. Here, a one percent increase
in the floor space lets the price soar by about 0.48%. Finally, note that the price
of a houses is estimated to decrease with age.

6 Appendix

6.1 Procedure equivalence

We show that our treatment of missing values delivers the same results as the
procedure proposed by Shumway and Stoffer (1982; 2000). For this task, let us
assume that the (IV x 1) vector of observations ¢

ytT:[?/l,t - Yst - Ysto ... yN,t]

has missing values. Here, observations 2 and 4 are missing. Thus, we have only
N; < N observations. For Kalman filtering in XploRe, all missing values in y;
and the corresponding rows and columns in the measurement matrices d;, Z,
and Hy, are deleted. Thus, the adjusted vector of observations is

yt,1=[y1,t Yt Ysgt .- yN,t]

where the subscript 1 indicates that this is the vector of observations used in the
XploRe routines. The procedure of Shumway and Stoffer instead rearranges the
vectors in such a way that the first N; entries are the observations—and thus
given by y;1—and the last (N — IVy) entries are the missing values. However,
all missing values must be replaced with zeros.

For our proof, we use the following generalized formulation of the measure-

ment equation
Yi,1 dia Z1 €pn
I — 3 + E) Q + E)
|:ytv2:| |:dt’2:| |:Zta2:| ‘ [6;?2
Y H;1n Hyo
co ) = .
v (517572) |:Ht,12 Ht,22:|
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Y+, contains the observations and y;» the missing values. The procedure of
Shumway and Stoffer employs the generalized formulation given above and sets
Y2 =0,di2 =0, Zy 2 =0, and Hy 12 = 0 (Shumway and Stoffer, 2000, p. 330).
We should remark that the dimensions of these matrices also depend on ¢ via
(N — N;). However, keep notation simple we do not make this time dependency
explicit. It is important to mention that matrices with subscript 1 and 11 are
equivalent to the adjusted matrices of XploRe’s filtering routines.

First, we show by induction that both procedures deliver the same results
for the Kalman filter. Once this equivalence is established, we can conclude that
the smoother also delivers identical results.
PROOF:
Given p and ¥, the terms a;|o and P| are the same for both procedures. This
follows from the simple fact that the first two steps of the Kalman filter do not
depend on the vector of observations (see Subsection 5.3).

Now, given a;;_; and P;;_;, we have to show that also the filter recursions

ar = ayp—1 + Pyy—1Z{ F7'vy, Pr=Pyy—1 — Pyy—1Z F; ' ZyPypq (13)

deliver the same results. Using ss to label the results of the Shumway and
Stoffer procedure, we obtain by using

) 0,
that -
_ | ZeaPyp-12; O Hypn O
Ft,ss - [ 0 0 + 0 Ht,22
The inverse is given by (Sydseter, Strgm and Berck, 2000, 19.49)
F7 0
-1 _ t,1
Fros = [ 0 Ht_,212:| (14)

where F} 1 is just the covariance matrix of the innovations of XploRe’s procedure.

With (14) we obtain that
Z;_ssFt,_sls = [Zt—,rlthll O]

and accordingly for the innovations

_ |Vt
Ut,ss = 0 .

T -1 ST -1
Zy s By 55Vt,ss = Zt,lFt,l U1 -

Plugging this expression into (13)—taking into account that as;—y and Py,
are identical—delivers

We obtain immediately

at.ss = At,1 and Pt,ss = Pt,l -

This completes the first part of our proof.

The Kalman smoother recursions use only system matrices that are the same
for both procedures. In addition to the system matrices, the output of the filter
is used as an input, see Subsection 5.5. But we have already shown that the
filter output is identical. Thus the results of the smoother are the same for both
procedures as well. [
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6.2 Smoothed constant state variables

We want to show that the Kalman smoother produces constant estimates through
time for all state variables that are constant by definition. To proof this result,
we use some of the smoother recursions given in Subsection 5.5. First of all, we
rearrange the state vector such that the last k¥ < K variables are constant. This
allows the following partition of the transition matrix

Tpor = |:T11(,)t+1 T12jt+1 (15)

with the k x k identity matrix I. Furthermore, we define with the same partition
=~ def T Py Prag
Pt:Tt 1PtT :|:~ ’ ~ ’:|

* i Pray Pogy

The filter recursion for the covariance matrix are given as
T
Bij1pp =T BTy + Ry

where the upper left part of Ry contains the covariance matrix of the dis-
turbances for the stochastic state variables. We see immediately that only the
upper left part of P,y is different from B,

Our goal is to show that for the recursions of the smoother holds

(16)

P = [Mll,t M12,t:| :

0 I

where both Ms stand for some complicated matrices. With this result at hand,
we obtain immediately

k k k
Qg7 = Ggyq7 = T (17)

for all ¢, where afT contains the last k elements of the smoothed state ay -
Furthermore, it is possible to show with the same result that the lower right
partition of Py is equal to the lower right partition of Pr for all ¢. This lower
right partition is just the covariance matrix of aflT. Just write the smoother
recursion
Pyr = B(I = T\ P[T) + P/ Pyar P T

Then check with (15) and (16) that the lower-right partition of the first matrix
on the right hand side is a k£ x k matrix of zeros. The lower-right partition of
the second matrix is given by the the lower-right partition of Py 7.
PROOF:

Now we derive (16): We assume that the inverse of Tyy; and Tiq 441 exist. The
inverses for our model exist because we assume that ¢» # 0. For the partitioned
transition matrix (Sydsaeter, Strom and Berck, 2000, 19.48) we derive

_ T —T5 Tio441
Tt—',-ll — 11(,)t+1 11,64+1 L (18)

Now, it is easy to see that

Pr= Ttlllptptfm ) (19)
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We have (Sydsaeter, Strgm and Berck, 2000, 19.49)

p-1 Ay _AtINle,tPQE;

= Ly S L S 20
it _P22,1tpl2,tAt Pzz,lt + Pzz,ltP12,tAtP12,tP22,1t ( )

with A; as a known function of the partial matrices. If we multiply this matrix
with the lower partition of P; we obtain immediately [0 I]. With this result and
(18) we derive (16). O
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