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1 Multiplicative SARIMA models

Rong Chen, Rainer Schulz and Sabine Stephan

1.1 Introduction

In the history of economics, the analysis of economic fluctuations can reclaim a
prominent part. Undoubtedly, the analysis of business cycle movements plays
the dominant role in this field, but there are also different perspectives to look
at the ups and downs of economic time series. Economic fluctuations are usu-
ally characterized with regard to their periodic recurrence. Variations that
last several years and occur in more or less regular time intervals are called
business cycles, whereas seasonality (originally) indicates regularly recurring
fluctuations within a year, that appear due to the season. Such seasonal pat-
terns can be observed for many macroeconomic time series like gross domestic
product, unemployment, industrial production or construction.

The term seasonality is also used in a broader sense to characterize time series
that show specific patterns that regularly recur within fixed time intervals (e.g.
a year, a month or a week). Take as an example the demand for Christmas
trees: the monthly demand in November and especially in December will be
generally very high compared to the demand during the other months of the
year. This pattern will be the same for every year—irrespective of the total
demand for Christmas trees. One can also detect seasonal patterns in financial
time series like in the variance of stock market returns. The highest volatility is
often observed on Monday, mainly because investors used the weekend to think
carefully about their investments, to obtain new information and to come to a
decision.

As we saw so far, seasonality has many different manifestations. Consequently,
there are different approaches to model seasonality. If we focus on macroe-
conomic time series the class of seasonal models is confined to processes with
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dynamic properties at periods of a quarter or a month. However, when finan-
cial time series are studied, then our interest shifts to seasonal patterns at the
daily level together with seasonal properties in higher moments. Therefore, it
is no surprise, that a rich toolkit of econometric techniques has been developed
to model seasonality.

In the following we are going to deal with seasonality in the mean only (for
seasonality in higher moments see Ghysels and Osborn (2001)), but there are
still different ways to do so. The choice of the appropriate technique depends
on whether seasonality is viewed as deterministic or stochastic. The well-known
deterministic approach is based on the assumption, that seasonal fluctuations
are fix and shift solely the level of the time series. Therefore, deterministic
seasonality can be modelled by means of seasonally varying intercepts using
seasonal dummies. Stochastic seasonality however is a topic in recent time
series analysis and is modelled using appropriate ARIMA models (Diebold,
1998, Chapter 5). Since these seasonal ARIMA models are just an extension
of the usual ARIMA methodology, one often finds the acronym SARIMA for
this class of models (Chatfield, 2001).

The topic of this chapter is the modelling of seasonal time series using SARIMA
models. The outline of this chapter is as follows: the next Section 1.2.1 illus-
trates, how to develop an ARIMA model for a seasonal time series. Since these
models tend to be quite large, we introduce in Section 1.2.2 a parsimonious
model specification, that was developed by Box and Jenkins (1976)—the mul-
tiplicative SARIMA model. Section 1.3 deals with the identification of these
models in detail, using the famous airline data set of Box and Jenkins for il-
lustrative purposes. Those who already studied the Section ARIMA model
building in Chapter 4 on Univariate Time Series Modeling, will recognize that
we use the same tools to identify the underlying data generation process. Fi-
nally, in Section 1.4 we focus on the estimation of multiplicative SARIMA
models and on the evaluation of the fitted models.

All quantlets for modelling multiplicative SARIMA models are collected in
XploRe’s times library.
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1.2 Modeling seasonal time series

1.2.1 Seasonal ARIMA models

Before one can specify a model for a given data set, one must have an initial
guess about the data generation process. The first step is always to plot the
time series. In most cases such a plot gives first answers to questions like: ”Is
the time series under consideration stationary?” or ”Do the time series show
a seasonal pattern?”

Figure 1.1 displays the quarterly unemployment rate u; for Germany (West)
from the first quarter of 1962 to the forth quarter of 1991. The data are
published by the OECD (Franses, 1998, Table DA.10). The solid line represents

11.00 T
9.00
7.00
5.00
3.00

1.00

1965:1 1970:1 1975:1 1980:1 1985:1 1990:1

Figure 1.1: Quarterly unemployment rate for Germany (West) from 1962:1 to
1991:4. The original series u; is given by the solid blue line and the
seasonally adjusted series is given by the dashed red line.

XEGmsarimal.xpl

the original series u; and the dashed line shows the seasonally adjusted series.
It is easy to see, that this quarterly time series possesses a distinct seasonal
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pattern with spikes recurring always in the first quarter of the year.

After the inspection of the plot, one can use the sample autocorrelation func-
tion (ACF) and the sample partial autocorrelation function (PACF) to specify
the order of the ARMA part (see acf, pacf, acfplot and pacfplot). Another
convenient tool for first stage model specification is the extended autocorrela-
tion function (EACF), because the EACF does not require that the time series
under consideration is stationary and it allows a simultaneous specification of
the autoregressive and moving average order. Unfortunately, the EACF can
not be applied to series that show a seasonal pattern. However, we will present
the EACF later in Section 1.4.5, where we use it for checking the residuals
resulting from the fitted models.

Figures 1.2, 1.3 and 1.4 display the sample ACF of three different transfor-
mations of the unemployment rate u; for Germany. Using the difference—or
backshift—operator L, these kinds of transformations of the unemployment
rate can be written compactly as

AdA‘?Ut = (1 — L)d(l — LS)DUt ,

where L® operates as L3u; = u;_s and s denotes the seasonal period. A% and
Af stand for nonseasonal and seasonal differencing. The superscripts d and D
indicate that, in general, the differencing may be applied d and D times.

Figure 1.2 shows the sample ACF of the original data of the unemployment
rate u;. The fact, that the time series is neither subjected to nonseasonal
nor to seasonal differencing, implies that d = D = 0. Furthermore, we set
s = 4, since the unemployment rate is recorded quarterly. The sample ACF
of the unemployment rate declines very slowly, i.e. that this time series is
clearly nonstationary. But it is difficult to isolate any seasonal pattern as all
autocorrelations are dominated by the effect of the nonseasonal unit root.

Figure 1.3 displays the sample ACF of the first differences of the unemployment
rate Au; with
A’Ll/t = Ut — U7 -

Since this transformation is aimed at eliminating only the nonseasonal unit
root, we set d = 1 and D = 0. Again, we set s = 4 because of the frequency
of the time series under consideration. Taking the first differences produces a
very clear pattern in the sample ACF. There are very large positive autocor-
relations at the seasonal frequencies (lag 4, 8, 12, etc.), flanked by negative
autocorrelations at the ’satellites’, which are the autocorrelations right before
and after the seasonal lags. The slow decline of the seasonal autocorrelations
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Sample autocorrelation function (acf)
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Figure 1.2: Sample ACF of the unemployment rate u; for Germany (West) from
1962:1 to 1991:1.
Q XEGmsarima2.xpl
P

indicates seasonal instationarity. Analogous to the analysis of nonseasonal non-
stationarity, this may be dealt by seasonal differencing; i.e. by applying the
Ay = (1— L*) operator in conjunction with the usual lag operator A = (1 — L)
(Mills, 1990, Chapter 10).

Eventually, Figure 1.4 displays the sample ACF of the unemployment rate that
was subjected to the final transformation

Adguy = (1-L)(1 - L,
(= tt) — (s — )

Since this transformation is used to remove both the nonseasonal and the
seasonal unit root, we set d = D = 1. What the transformation AA, finally
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Sample autocorrelation function (acf)
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Figure 1.3: Sample ACF of the first differences of the unemployment rate Awu,
for Germany (West) from 1962:1 to 1991:1.

Q XEGmsarima3.xpl

does is seasonally differencing the first differences of the unemployment rate.
By means of this transformation we obtain a stationary time series that can be
modeled by fitting an appropriate ARMA model.

After this illustrative introduction, we can now switch to theoretical consid-
erations. As we already saw in practice, a seasonal model for the time series
{x+}E | may take the following form

o(L)
o(L)

AdA£$t = ag , (].l)

where A? = (1 — L)? and AP = (1 — L*)P indicate nonseasonal and seasonal
differencing and s gives the season. a; represents a white noise innovation.
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Sample autocorrelation function (acf)

Figure 1.4: Sample ACF of the seasonally differenced first differences of the un-
employment rate AA u; for Germany (West) from 1962:1 to 1991:1.

Q XEGmsarima4.xpl

®(L) and O(L) are the usual AR and MA lag operator polynomials for ARMA
models
®(L)=1-¢1L— poL? — ... — $p,LP

and
OL)=1+60,L+60,L%+...+0,L9.

Since the ®(L) and O(L) must account for seasonal autocorrelation, at least
one of them must be of minimum order s. This means that the identification of
models of the form (1.1) can lead to a large number of parameters that have to
be estimated and to a model specification that is rather difficult to interpret.
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1.2.2 Multiplicative SARIMA models

Box and Jenkins (1976) developed an argument for using a restricted version
of equation (1.1), that should be adequate to fit many seasonal time series.
Starting point for their approach was the fact, that in seasonal data there are
two time intervals of importance. Supposing that we are still dealing with a
quarterly series, we expect the following to occur (Mills, 1990, Chapter 10):

e a seasonal relationship between observations for the same quarters in
successive years, and

e a relationship between observations for successive quarters in a particular
year.

Referring to Figure 1.1 that displays the quarterly unemployment rate for Ger-
many, it is obvious that the seasonal effect implies that an observation in the
first quarter of a given year is related to the observations of the first quarter
for previous years. We can model this feature by means of a seasonal model

O (L)AP 2 = 0, (L)v; . (1.2)

@, (L) and ©4(L) stand for a seasonal AR polynomial of order p and a seasonal
MA polynomial of order ¢ respectively:

By(L) =1— s 1 L° — s oL® — ... — ¢s pL'*

and
Os(L) =1+ 0,1 L° + 0, 2L% + ...+ 0, oL,

which satisfy the standard stationarity and invertibility conditions. v; denotes
the error series. The characteristics of this process are explained below.

It is obvious that the above given seasonal model (1.2) is simply a special
case of the usual ARIMA model, since the autoregressive and moving average
relationship is modeled for observations of the same seasonal time interval in
different years. Using equation (1.2) relationships between observations for the
same quarters in successive years can be modeled.

Furthermore, we assume a relationship between the observations for succes-
sive quarters of a year, i.e. that the corresponding error series (v, vy 1,0 2,
etc.) may be autocorrelated. These autocorrelations may be represented by a

nonseasonal model
®(L)A%,; = ©(L)ay . (1.3)
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vy is ARIMA(p, d, q) with a; representing a process of innovations (white noise
process).

Substituting (1.3) into (1.2) yields the general multiplicative seasonal model
®(L)D,(L)AAL 2, =5+ 0(1)O4(L)ay . (1.4)

In equation (1.4) we additionally include the constant term ¢ in order to allow
for a deterministic trend in the model (Shumway and Stoffer, 2000). In the
following we use the short-hand notation SARIMA (p,d,q) x (s, P, D,Q) to
characterize a multiplicative seasonal ARIMA model like (1.4).

1.2.3 The expanded model

Before starting with identification and estimation of a multiplicative SARIMA
model a short example may be helpful. This example sheds some light on
the connection between a multiplicative SARIMA (p,d, q) x (s, P,D, Q) and a
simple ARMA (p, ¢) model. It reveals that the SARIMA methodology leads to

parsimonious models.

Polynomials in the lag operator are algebraically similar to simple polynomials
ax + bz?. So it is possible to calculate the product of two lag polynomials
(Hamilton, 1994, Chapter 2).

Given that fact, every multiplicative SARIMA model can be telescoped out
into an ordinary ARMA(p, ¢) model in the variable

def A D Ad
yt:AsAl’t-

For example, let us assume that the series {z;}7_; follows a SARIMA(0,1,1) x
(12,0,1,1) process. In that case, we have

(1- L)1~ L)z = (1+6,L)(1 + 051L')ay . (1.5)
After some calculations one obtains
Yt = (l + 91L + 9571[/12 + 919571[/13)045 (16)

where y; = (1 — L'?)(1 — L)z;. Thus, the multiplicative SARIMA model has
an ARMA(0,13) representation where only the coefficients

def def
01, 012 = 95,1 and 613 = 9195,1



12 1 Multiplicative SARIMA models

are not zero. All other coefficients of the MA polynomial are zero.

Thus, we are back in the well-known ARIMA(p,d,q) world. However, if we
know that the original model is a SARIMA(0,1,1)x(12,0,1,1), we have to es-
timate only the two coefficients 6, and 6, ;. For the ARMA(0,13) we would
estimate instead the three coefficients 01, 012, and 613. Thus it is obvious that

SARIMA models allow for a parsimonious model building.

In the following, a model specification like (1.6) is called an ezpanded model. In
Section 1.4 it is shown that this kind of specification is required for estimation
purposes. Only an expanded multiplicative model can be estimated directly.

1.3 Identification of multiplicative SARIMA
models

This section deals with the identification of a multiplicative SARIMA model.
The required procedure is explained step by step, using the famous airline data
of Box and Jenkins (1976, Series G) for illustrative purposes. The date give
the number of airline passengers (in thousands) in international air travel from
1949:1 to 1960:12. In the following G; denotes the original series.

The identification procedure comprises the following steps: plotting the data,
possibly transforming the data, identifying the dependence order of the model,
parameter estimation, and diagnostics. Generally, selecting the appropriate
model for a given data set is quite difficult. But the task becomes less compli-
cated, if the following approach is observed: one thinks first in terms of finding
difference operators that produce a roughly stationary series and then in terms
of finding a set of simple ARMA or multiplicative SARMA to fit the resulting
residual series.

As with any data analysis, the time series has to be plotted first so that the
graph can be inspected. Figure 1.5 shows the airline data of Box and Jenkins.
The series G; shows a strong seasonal pattern and a definite upward trend.
Furthermore, the variability in the data grows with time. Therefore, it is
necessary to transform the data in order to stabilize the variance. Here, the
natural logarithm is used for transforming the data. The new time series is
defined as follows

gt déf lnGt .

Figure 1.6 displays the logarithmically transformed data g;. The strong sea-



1.3 Identification of multiplicative SARIMA models 13

625.00 T

500.00 T

375.00 T

250.00 T

125.00 T

1950:1 1952:1 1954:1 1956:1 1958:1 1960:1

Figure 1.5: Number of airline passengers G; (in thousands) in international air
travel from 1949:1 to 1960:12.

Q XEGmsarimab.xpl

sonal pattern and the obvious upward trend remain unchanged, but the vari-
ability is now stabilized. Now, the first difference of time series g; has to be
taken in order to remove its nonseasonal unit root, i.e. we have d = 1. The
new variable

Agr = (1= L)g (1.7)

has a nice interpretation: it gives approximately the monthly growth rate of
the number of airline passengers.
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Figure 1.6: Log number of airline passengers g; in international air travel from
1949:1 to 1960:12.
Q XEGmsarima6.xpl

The next step is plotting the sample ACF of the monthly growth rate Ag;. The
sample ACF in Figure 1.7 displays a recurrent pattern: there are significant
peaks at the seasonal frequencies (lag 12, 24, 36, etc.) which decay slowly. The
autocorrelation coefficients of the months in between are much smaller and
follow a regular pattern. The characteristic pattern of the ACF indicates that
the underlying time series possesses a seasonal unit root. Typically, D = 1
is sufficient to obtain seasonal stationarity. Therefore, we take the seasonal
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Figure 1.7: Sample ACF of the monthly growth rate of the number of airline
passengers Ag;.

Q XEGmsarima7.xpl

difference and obtain the following time series
ApAg = (1-L)(1- le).gt

that neither incorporates an ordinary nor a seasonal unit root.

After that, the sample ACF and PACF of Aj2Ag; has to be inspected in
order to explore the remaining dependencies in the stationary series. The
autocorrelation functions are given in Figures 1.8 and 1.9. Compared with
the characteristic pattern of the ACF of Ag; (Figure 1.7) the pattern of the
ACF and PACF of Aj2Ag,; are far more difficult to interpret. Both ACF and
PACF show significant peaks at lag 1 and 12. Furthermore, the PACF displays
autocorrelation for many lags. Even these patterns are not that clear, we might



16 1 Multiplicative SARIMA models

feel that we face a seasonal moving average and an ordinary MA(1). Another
possible specification could be an ordinary MA(12), where only the coefficients
0, and 615 are different from zero.

Sampl e autocorrel ation function (acf)

Oi5

Figure 1.8: Sample ACF of the seasonally differenced growth rate of the airline
data A12Ag;.
Q XEGmsarima8.xpl

Thus, the identification procedure leads to two different multiplicative SARIMA
specifications. The first one is a SARIMA(0,1,1)x(12,0,1,1). Using the lag-
operator this model can be written as follows:
1-L) A -L""G;, = (1+6,L)(1+0,,1L")a,
= (1+60,L+0,,L" +0,051L")a.

The second specification is a SARIMA(0,1,12)x (12,0,1,0). This model has the
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Figure 1.9: Sample PACF of the seasonally differenced growth rate of the air-
line data A12Ag;.
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following representation:
(1-L)(1—-L"G; = (1 +6,L+015L")ay,.

Note, that in the last equation all MA coefficients other than #; and 6,2 are
zero. With the specification of the SARIMA models the identification process
is finished. We saw that modeling the seasonal ARMA after removing the
nonseasonal and the seasonal unit root was quite difficult, because the sample
ACF and the PACF did not display any clear pattern. Therefore, two different
SARIMA models were identified that have to be tested in the further analysis.
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1.4 Estimation of multiplicative SARIMA models

This section deals with the estimation of identified SARIMA models, i.e. we
want to estimate the unknown parameters 1 of the multiplicative SARIMA
model. If the model contains only AR terms, the unknown coefficients can be
estimated using ordinary least squares. However, if the model contains MA
terms too, the task becomes more complicated, because the lagged values of
the innovations are unobservable. Consequently, it is not possible to derive
explicit expressions to estimate the unknown coefficients and therefore one has
to use maximum likelihood for estimation purposes. In the next subsection
1.4.1 the theoretical background of maximizing a likelihood function is briefly
outlined.

In order to convey an idea of what follows, we will shortly outline the procedure:
first, one sets up the multiplicative SARIMA model—in the following also called
original model— with some initial values for the unknown parameters 1. In
subsection 1.4.2 it is explained how to set the original SARIMA model using
the quantlet msarimamodel. Restrictions can be imposed on the coefficients.
The simplest restriction is that some of the coefficients are zero. Then the value
of the likelihood function—given the initial parameters—is evaluated.

Unfortunately, in most cases the original SARIMA model cannot be estimated
directly. If one looks at the SARIMA(3,1,1)x(12,1,0,0) model in section 1.4.3—
equation (1.18)—one recognizes on the left hand side the product of two ex-
pressions. Both of them contain lag-operators. Such expressions have to
be telescoped out first. XploRe provides a very convenient tool to do so:
msarimaconvert. This quantlet is explained in detail in subsection 1.4.3. The
result you get from msarimaconvert is an ordinary ARMA (p,q) model which
can be estimated.

Under the assumption that an ARMA model is stationary and invertible and
that the observations are normally distributed, it can be estimated using the
maximum likelihood approach. By making suitable assumptions about initial
conditions, the maximum likelihood estimators can be obtained by minimizing
the conditional sum of squares. In subsection 1.4.4 the quantlet msarimacond
is presented. It calculates the conditional sum of squares function and allows
for zero restrictions on the coefficients. Given this function, numerical methods
have to be applied to maximize the likelihood function with respect to 1.

To evaluate the fit of the estimated model, the quantlet msarimacond also
delivers several criteria for diagnostic checking. The residuals of the model
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should be white noise. The quantlet eacf provides an easy way to check the
behavior of the residuals.

However, the conditional sum of squares is not always very satisfactory for
seasonal series. In that case the calculation of the exact likelihood function
becomes necessary (Box and Jenkins, 1976, p. 211). One approach is to set up
the likelihood function via Kalman filter techniques. We briefly discuss how to
set up the airline model in state space form and how to use the Kalman filter
to evaluate the exact likelihood function. Once again, numerical methods are
necessary to maximize the exact likelihood function.

1.4.1 Maximum likelihood estimation

The approach of maximum likelihood (ML) requires the specification of a par-
ticular distribution for a sample of T observations ;. Let

fYT,YT71,---,Y1 (ZUWJ)

denote the probability density of the sample given the unknown (n x 1) parame-
ters 1. y is the vector of all observations (yr, yr—1,--.,¥y1)- f(y[t) can be inter-
preted as the probability of having observed the given sample (Hamilton, 1994,
p. 117).

With the sample y at hand, the above given probability can be rewritten as
a function of the unknown parameters given the sample. We use the notation
L(y|y) to denote the likelihood function evaluated at the given sample and
given specified values of the unknown parameters 1). We have to find the value
of ¢ that maximizes L(¢|y). This explains the name of the ML approach:
given a specified distribution and a sample of observations, find the values of
the unknown parameters that maximize the likelihood of the observed sample.

In most cases it is easier to work with the log likelihood function [(v|y) =
In L(¢|y). Due to the fact that the logarithm is a strictly monotone increasing
function, the maximization of the log likelihood function is equivalent to di-
rectly maximizing L(¢|y). Let ¢ denote the parameter vector that maximizes
the likelihood for the observed sample y. The ML estimator satisfies the so-
called likelihood equations, which are obtained by differentiating I(1|y) with
respect to each of the unknown parameters of the vector ¢ and setting the
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derivatives to zero (Harvey, 1993)

Al(Yy)
oY

As a rule, the likelihood equations are non-linear. Therefore, the ML estimates
must be found in the course of an iterative procedure. This is true for the exact
likelihood function of every Gaussian ARMA (p,q) process (see Hamilton, 1994,
Chapter 5).

=0. (1.8)

As already mentioned above, there are two different likelihood functions in
use: the conditional and the exact likelihood function. Both alternatives can
be estimated using XploRe.

In many applications of ARMA models the conditional likelihood function
is an alternative to the exact likelihood function. In that case, one assumes that
the first p observations of a Gaussian ARMA (p,q) process are deterministic and
are equal to its observed values y. The initial residuals a; for t € {p,...,p —
q+ 1} are set to its expected values 0. In that case, the log likelihood function
is

1) :—%(Tfp)1n2ﬂ'7%(Tfp)h’10'27 52(;/)2) (1.9)
where ¢ = (¢/,0%) and S(¢') denotes the sum of squares
T
S@)= 3 (). (1.10)
t=p+1

The notation as (") emphasizes that a; is no longer a disturbance, but a residual
which depends on the value taken by the variables in v'.

Note, that the parameter o2 is an additional one, that is not included in vector
', Tt is easy to see that (1.9) is maximized with respect to ¢’ if the sum of
squares S(¢’) is minimized. Using the condition (1.8), this leads to

T
3at(¢')
4, =0. (1.11)
2 o ™

Thus, the ML estimate for ¢’ can be obtained by minimizing (1.10). Further-
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more, we obtain from (1.9) and (1.8) that

o SW)
0'2— T—p.

(1.12)

Thus, given the parameter vector @Z’ that maximizes the sum of squares—
and thus the conditional log likelihood function (1.9)—one divides the sum of
squares by T — p to obtain the ML estimate 2. Another estimator for the
variance of the innovations corrects furthermore for the number of estimated

coefficients k.

As already mentioned, one approach to calculate the exact log likelihood is
to use the Kalman filter. We want to show this for the airline model. This
model can be written in state space form (SSF) as

o = 0 fs at,1+[1 01 0 ... 051 010, 1]Tat (113&)
0 0 ’ ’
gy = [1 0 ... 0oy (1.13b)

where I3 is an (13 x 13) identity matrix (Koopman, Shephard and Doornik,
1999). Here,

0 I3

{0 B } (1.14)

is the so-called transition matrix.

Given Gaussian error terms a;, the value of the log likelihood function I(v) for
the above given state space form is

T 1« 1
—511'1271' - 5;ln|Ft| — 5 ;’UJFtil’Ut . (115)

Here,
def
Ut = Yt — ZtE[atU:t—l]

are the innovations of the Kalman filtering procedure and F;_; is the informa-
tion set up to t—1. Z; is the matrix from the above given state space form that
contains the identity matrix. The matrix F} is the covariance matrix of the in-
novations in period ¢ and it is a by-product of the Kalman filter. The above log
likelihood is known as the prediction error decomposition form (Harvey, 1989).

Given some initial values for ¢, the above exact log likelihood is evaluated with
the Kalman filter. Using numerical methods, the function is maximized with
respect to .
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Once the ML estimate 1& is calculated, one wants to have standard errors for
testing purposes. If T is sufficiently large, the ML estimate 1 is approximately
normally distributed with the inverse of the information matrix divided by T as
covariance matrix. The inverse of the Hessian for [(1)|y) is one way to estimate
the covariance matrix (Hamilton, 1994, Section 5.8). One can calculate the
Hessian applying numerical methods.

1.4.2 Setting the multiplicative SARIMA model

msarimamodelOut = msarimamodel (d,arma,season)
sets the coefficients of a multiplicative seasonal ARIMA model

The original model is specified by means of the quantlet msarimamodel. The
three arguments are lists that give the difference orders (d, D), the ordinary
ARMA parts ®(L) and ©(L), and the seasonal AR and MA polynomials ®,(L)
and ©4(L). If the model has no seasonal difference, one just omits D.

The arma list has at most four elements: the first element is a vector that
specifies the lags of the AR polynomial ®(L) that are not zero. The second
element is a vector that specifies the lags of the MA polynomial ©(L). If the
model has only one polynomial, one sets the lags of the other one to 0.

The third element of the arma list is a vector with

- the AR coefficients

i) if the model has both an AR and a MA polynomial
ii) if the model has only an AR polynomial

- the MA coefficients if the model has only a MA polynomial .

If the model has both an AR and a MA polynomial then the fourth argument
is necessary. It is a list that contains the coefficients of the MA polynomial.
For example,

arma = 1ist((113),0,(0.1]1-0.25))

specifies an ARMA(3,0) part with ¢o =0, ¢; = 0.1 and ¢3 = —0.25.
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The last argument season is a list that contains the information concerning
the seasonal AR and MA polynomials. This list has at most five elements: the
first element specifies the season s. If the data show no seasonal pattern, one
sets s = 0 as the only argument of the list season. The second element is the
lag structure of the seasonal AR polynomial. You have to fill in the lags that
are different from zero. The third element is the lag structure of the seasonal
MA polynomial. The last two elements are for the coefficient vectors of the
polynomials. As explained for the arma list, one can omit the respective vector
if the model has only one polynomial. For example,

season = list(12,0,(114),(-0.3]0.1))

gives a model with no seasonal AR polynomial and with the seasonal MA(4)
polynomial
1-03L"% +0.1L% . (1.16)

To understand what msarimamodel does, let us assume that the multiplicative
SARIMA model is given as

(1 —=0.1L +0.25L%) Az = (1 — 0.3L*2 + 0.1L*)e, . (1.17)

Here d = 1 and D = 0, so that we can set d=1. The lists for the ordinary
and seasonal polynomials are given above. To have a look at the output of
msarimamodel, one just compiles the following piece of XploRe code

arma = 1ist((113),0,(0.11-0.25)) ; ordinary ARMA part

season = 1ist(12,0,(114),(-0.310.1)) ; seasonal ARMA part
msarimamodelOut = msarimamodel(1,arma,season)

msarimamodelOut ; shows the list msarimamodelOut in the output window

The output is

Contents of msarimamodelQOut.d

[1,] 1
Contents of msarimamodelOut.arlag
(1,] 1
[2,] 3
Contents of msarimamodelOut.malag
[1,] 0

Contents of msarimamodelQOut.s
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[1,] 12

Contents of msarimamodelQOut.sarlag
[1,] 0

Contents of msarimamodelQut.smalag
[1,] 1

[2,] 4

Contents of msarimamodelQOut.phi
[1,] 0.1

[2,] -0.25

Contents of msarimamodelOut.theta
[1,] 0

Contents of msarimamodelQOut.Phi
[1,] 0

Contents of msarimamodelOut.Theta
[1,] -0.3

[2,] 0.1

and it resembles our example in general notation (see equation (1.4)). The
list msarimamodelQut is an easy way to check the correct specification of the

model.

1.4.3 Setting the expanded model

{y,phiconv,thetaconv,k}

ARIMA model

sets the coefficients of an expanded multiplicative seasonal

= msarimaconvert (x,msarimamodelOut)

If you want to estimate the coefficients in (1.4), you have to telescope out the
original model. Given the specification by the list msarimaOut (see Subsection
1.4.2) and the time series {z;}_;, the quantlet msarimaconvert telescopes out
the original model automatically.

Let us consider the following SARIMA(3,1,1)x(12,1,0,0) model with ¢ = 0:

(1 — s 1 L) (1 — ¢1 L — ¢3L*)Axy = (1 + 61 L)ay. (1.18)

Telescoping out the polynomials on the left-hand side leads to an ordinary
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ARMA model:
(1= ¢§L — ¢5L° — 67, L' — 73 L"° — ¢35 L)y, = (1 4 05 L)ay (1.19)

. def def def def def def
with Yt é AIta ? é ¢17 ¢§ é ¢3a ?2 é ¢S,17 ¢§.j é _¢1¢8,17 ¢§5 é
def
—p3¢s,1, and 6% = 0.
The superscript e denotes the coefficients of the expanded model. The output of
the quantlet is thus self-explaining: the series y; is just the differenced original

series x4 and the other two outputs are the vector ¢° (with ¢§ def 1) and the

vector ¢ (with 6§ e 1). The first vector has the dimension (sP+p+1) x 1

and second one has the dimension (sQ + ¢ + 1) x 1. The scalar k gives the
number of coefficients in the original model. For the above given example, we
have k& = 4, whereas the number of coefficients of the expanded model is 6.
Later on, we need k for the calculation of some regression diagnostics.

1.4.4 The conditional sum of squares

{S,dia} = msarimacond(y,phiconv,thetaconv,mu{,k})
calculates the conditional sum of squares for given vectors of co-
efficients

The sum of squares is a criterion that can be used to identify the coefficients of
the best model. The output of the quantlet is the conditional sum of squares
for a given model specification (Box and Jenkins, 1976, Chapter 7).

For an ARMA (p,q) model this sum is just

T T

SWYE ST (@@)’ = Y (6°(L)ye —p—65(L)ar)* . (1.20)

t=p+1 t=p+1

Here T denotes the number of observations y;. Recall that the first entries
of the lag-polynomials are for LY = 1. #° (L) denotes the MA-polynomial
without the first entry. The first ¢ residuals are set to zero.

The arguments of the quantlet are given by the output of msarimaconvert. mu
is the mean of the series {y;}~_;. k is the number of coefficients in the original
model and will be used to calculate some regression diagnostics. This argument,
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is optional. If you do not specify k, the number of coefficients in the expanded
model is used instead.

Furthermore, the quantlet msarimacond gives the list dia that contains several
diagnostics. After the maximization of the conditional sum of squares, one
can use these diagnostics to compare different specifications. In the ongoing k
denotes the number of ARMA parameters that are different from zero. In our
example we have k = 2 for both specifications.

The first element of the list—that is dia.s2—is the estimated variance of the
residuals

S
i (1.21)
T—-p—k
The second element dia.R2 gives the coefficient of determination
S
RR=1-—"— . 1.22
(T'—p—1)57 (1.22)

The variance of the dependent variables y; is calculated for the observations
starting with ¢ = p+ 1. It is possible in our context that R? becomes negative.

The adjusted coefficient of determination R? is calculated as
T—p—1

R*=1-(1-R)—"——.

(1.23)

It is the third argument of the list and is labeled dia.aR2.

The fourth element dia.logl gives the values of the log likelihood function
evaluated at 9. Given the likelihood function (1.9), 52 is a function of +’. To
take this into account, we plug (1.12) into (1.9) and obtain

z@):-? 1+ln2ﬂ+ln{§(—m}] . (1.24)

—-p

This expression is the value of the log likelihood function.

The fifth element dia.AIC gives the Akaike Information Criteria (AIC)

_ 2{l) — K}
AIC = — == - (1.25)

The sixth element dia.SIC gives the Schwarz Information Criteria (SIC)

sic = - 210) *Tk_lnIET —o)} (1.26)
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For both criteria see Shumway and Stoffer (2000). These criteria can be used
for model selection (Durbin and Koopman (2001)). Eventually, the last element
dia.a gives the (T'— p) x 1 vector of the residuals a;.

Now we can come back to our example of the airline data: recall that we
have identified two possible specifications for this data set. The first specifica-
tion is a SARIMA(0,1,1)x(12,0,1,1) with ¢y = (61,051,02). The second is a
SARIMA(0,1,12)x(12,0,1,0) with vy = (61,612, 02).

We maximize the conditional sum of squares for both specifications using the
BFGS algorithm. Given the estimates v, the standard errors are obtained by
means of the Hessian matrix for the log likelihood. The Hessian is calculated
for this function using numerical methods. The square roots of the diagonal
elements of the inverse Hessian are the standard errors of the estimates 1.

The results of the first specification are presented in the following table:

" Estimation results for the SARIMA(0,1,1)x(12,0,1,1) specification "

" Convergence achieved after 11 iterations "
" 131 observations included "

" Variable Coefficient t-stat p-value "
" theta_1 -0.3776 -4.3206 0.00 "
" theta_s,1 -0.5728 -8.2073 0.00 "
" Sum of squared resids 0.1819 s2 0.0014 "
" R2 0.3343 adj. R2  0.3292 "
" AIC -3.7110 SIC -3.6672 "

Q XEGmsarima9.xpl
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The results of the second specification are given in the next table:

" Estimation results for the SARIMA(0,1,12)x(12,0,1,0) specification"

" Convergence achieved after 10 iterations "
" 131 observations included "

" Variable Coefficient t-stat p-value "
" theta_1 -0.2464 -3.6852 0.00 "
" theta_12 -0.5080 -7.9028 0.00 "
" Sum of squared resids 0.1917 s2 0.0015 "
" R2 0.2984 adj. R2  0.2930 "
" AIC -3.6585 SIC -3.6146 "

Q XEGmsarimalO.xpl

It is obvious that both specifications deliver good results. However, the sum
of squared resids is smaller for the specification with a seasonal MA term.
Additionally, both information criteria indicate that this specification is slightly
better.

1.4.5 The extended ACF

eacf(y,p,q)
displays a table with the extended ACF for time series ¥;

After estimating the unknown parameters 1 for competing specifications, one
should have a look at the residual series {a;}{_,,,. They should behave like
a white noise process and should exhibit no autocorrelation. In order to check
for autocorrelation, one could use the ACF and PACF. However, the extended
autocorrelation function (EACF) is also a convenient tool for inspecting time
series (Pena, Tiao and Tsay, 2001, Chapter 3) that show no seasonal pattern.

In general, the EACF allows for the identification of ARIMA models (differ-
encing is not necessary). The quantlet eacf generates a table of the sample
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EACF for a time series. You have to specify the maximal number of AR lags
(p) and MA lags (q). Every row of the output table gives the ACF up to g
lags for the residuals of an AR regression with k < p lags. Furthermore, the
simplified EACF is tabulated. If an autocorrelation is significant according to
Bartlett’s formula the entry is 1. Otherwise the entry is 0. Bartlett’s formula
for an MA(q) is given as

1

Varlp(a + 1)] =

q
1+2) p(j)?

j=1
where T is the number of observations (Pena, Tiao and Tsay, 2001). For

identification, look for the vertex of a triangle of zeros. You can immediately
read off the order of the series from the table.

We use the EACF to explore the behavior of the residuals of both specifica-
tions. The next table shows the EACF of the residuals that come from the
SARIMA(0,1,1) x(12,0,1,1) specification.

EACF
g= 0 1 2 3 4 5 6 7 8 9 10
p=0 +0.01 +0.03 -0.12 -0.10 +0.08 +0.08 -0.05 -0.02 +0.11 -0.05 +0.02
p=1 -0.30 +0.00 -0.09 -0.13 +0.09 +0.08 -0.07 +0.00 +0.10 +0.00 -0.03
p=2 +0.21 +0.09 -0.05 -0.06 -0.01 +0.02 +0.04 +0.01 +0.09 -0.01 -0.01
p=3 -0.50 +0.43 -0.26 -0.06 -0.03 -0.01 +0.04 -0.04 +0.06 -0.02 +0.03
p=4 +0.50 +0.48 -0.18 +0.11 +0.01 -0.02 +0.03 +0.00 +0.07 +0.02 +0.04
p=5 -0.50 +0.47 +0.04 +0.05 +0.12 -0.02 +0.02 -0.04 +0.06 -0.02 +0.00
p=6 +0.48 +0.43 -0.02 +0.11 +0.11 +0.08 -0.01 -0.07 +0.07 +0.00 -0.03
q= 0 1 2 3 4 5 6 7 8 9 10
p=0 O 0 0 0 0 0 0 0 0 0 0
p=1 1 0 0 0 0 0 0 0 0 0 0
p=2 1 0 0 0 0 0 0 0 0 0 0
p=3 1 1 1 0 0 0 0 0 0 0 0
p=4 1 1 0 0 0 0 0 0 0 0 0
=5 1 1 0 0 0 0 0 0 0 0 0
p=6 1 1 0 0 0 0 0 0 0 0 0

Q XEGmsarimall.xpl
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It is obvious, that the vertex of zeros is at position ¢ = 0 and p = 0. Thus we
conclude that the residuals are white noise. Notice, that the first line in the
above table at p = 0 just gives the ACF of the residual series. According to
Bartlett’s formula, all autocorrelation coefficients are not significantly different
from zero.

The next table gives the EACF of the residuals of the SARIMA(0,1,12)x
(12,0,1,0) specification.

EACF

-0.12 +0.03 -0.15 -0.08 +0.08 +0.04 -0.07 -0.02 +0.12 -0.06 +0.03
+0.13 -0.02 -0.12 -0.14 +0.08 +0.05 -0.07 -0.01 +0.11 -0.02 -0.03
+0.10 -0.36 -0.13 -0.05 -0.05 -0.02 +0.03 +0.00 +0.09 -0.02 -0.06
.49 +0.40 -0.25 +0.04 -0.02 -0.02 +0.01 -0.01 +0.04 +0.00 +0.02
+0.42 +0.32 -0.27 -0.23 -0.01 -0.03 +0.02 +0.00 +0.04 +0.01 +0.03
-0.48 +0.25 -0.28 +0.05 -0.06 -0.04 +0.03 -0.03 +0.03 +0.00 +0.04
+0.37 +0.39 -0.05 -0.12 +0.07 +0.13 -0.05 -0.02 +0.05 +0.01 +0.03

"U"U"U"ﬁ"d"d"d
OO W NP O
1
o

P PR, P, OOO
P PR, PP OO
O, P, P, OOO
OO OO OO
O O O O O O O
O O O O O O O
O OO O O OO
O O O O O O O
O O O O O O O
O OO O O OO
O OO O O O O

"U"d"d"ti'il"d"d"d
OO WN PO

Q XEGmsarimal2.xpl

We can conclude that the vertex of zeros is at position ¢ = 0 and p = 0. Thus
the residuals are white noise. According to Bartlett’s formula, once again all
autocorrelation coefficients are not significantly different from zero.
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1.4.6 The exact likelihood

{gkalfilOut,loglike} = gkalfilter(Y,mu,Sig,ca,Ta,Ra,
da,Za,Ha,1)
Kalman filters a SSF and gives the value of the log likelihood

As already mentioned in the introductory part of this section, the Kalman filter
can be used to evaluate the exact log likelihood function. For the estimation of
the unknown parameters the evaluated log likelihood function 1.15 is required.
The second element of the quantlet provides the value of the exact log likelihood
function.

We now shortly describe the procedure of the Kalman filter and the imple-
mentation with gkalfilter. Good references for the Kalman filter are—in
addition to Harvey (1989)—Hamilton (1994), Gourieroux and Monfort (1997)
and Shumway and Stoffer (2000). The first argument is an array with the ob-
served time series. The vector mu specifies the initial conditions of the filtering
procedure with corresponding covariance matrix Sig. Due to the fact that our
SSF (1.13) contains no constants, we set ca and da to zero. Furthermore, we
have no disturbance in the measurement equation that is the equation for y,
in (1.13) so we also set Ha to zero. The covariance matrix for the disturbance
in the state equation is given as

16 0 0 61 610,.]
6, 02 0 ... 0 0.0, 620,
) 0 0 0 ... 0 0 0
R=o .
95,1 9195,1 0 0 03,1 019371
0.6, 620,, 0 0 0,02, 0307,

Eventually, Za is an array for the matrix Z given in the measurement equation.

The state space form of the airline model is given in (1.13). It is a well known
fact that the product of eigenvalues for a square matrix is equal to its deter-
minant. The determinant of the transition matrix T for our model—given in
equation (1.14)—is zero and so all eigenvalues are also zero. Thus our system
is stable (Harvey, 1989, p. 114). In that case, we should set the initial values to
the unconditional mean and variance of the state vector (Koopman, Shephard
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and Doornik, 1999). We easily obtain for our model (1.13) that

1 ¥ Elag] =0 (1.27)
and ;
2 Y Varjag) =TSTT + R .

A way to solve for the elements of X is
vece(L) = (I —T®T) 'vec(R) . (1.28)

Here, vec denotes the vec-operator that places the columns of a matrix below
each other and ® denotes the Kronecker product.

For the estimation, we use the demeaned series of the growth rates g; of the
airline data. The standard errors of the estimates are given by the square roots
of the diagonal elements of the inverse Hessian evaluated at @Z’ . The following
table shows the results:

" Estimation results for the SARIMA(0,1,1)x(12,0,1,0) specification "
" Exact Log Likelihood function is maximized "

" Convergence achieved after 12 iterations "
" 131 observations included "

" Variable Coefficient t-stat p-value "
" theta_1 -0.3998 -4.4726 0.00 "
" theta_s,1 -0.5545 -7.5763 0.00 "
" sigma2 0.0014 8.0632 0.00 "
" AIC -3.6886 SIC -3.5111 "

Q XEGmsarimal3.xpl

The estimators are only slightly different from the estimators we have calculated
with the conditional likelihood. The variance &2 is identical.
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