
Müller, Marlene; Härdle, Wolfgang

Working Paper

Exploring credit data

SFB 373 Discussion Paper, No. 2002,79

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Müller, Marlene; Härdle, Wolfgang (2002) : Exploring credit data, SFB 373
Discussion Paper, No. 2002,79, Humboldt University of Berlin, Interdisciplinary Research Project
373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10049513

This Version is available at:
https://hdl.handle.net/10419/65306

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10049513%0A
https://hdl.handle.net/10419/65306
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Exploring Credit Data

Marlene Müller and Wolfgang Härdle

October 17, 2002

Abstract: Credit scoring methods aim to assess the default risk of a potential
borrower. This involves typically the calculation of a credit score and the
estimation of the probability of default.

One of the standard approaches is logistic discriminant analysis, also re-
ferred to as logit model. This model maps explanatory variables for the default
risk to a credit score using a linear function. Nonlinearity can be included by
using polynomial terms or piecewise linear functions. This may give however
only a limited reflection of a truly nonlinear relationship. Moreover, an addi-
tional modeling step may be necessary to determine the optimal polynomial
order or the optimal interval classification.

This paper presents semiparametric extensions of the logit model which di-
rectly allow for nonlinear relationships to be part of the explanatory variables.
The technique is based on the theory generalized partial linear models. We il-
lustrate the advantages of this approach using a consumer retail banking data
set.
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Spandauer Str. 1, D-10178 Berlin, Germany. email: marlene@wiwi.hu-berlin.de. We are grateful to
Bernd Rönz, Humboldt-Universität zu Berlin, for his cooperation at an earlier stage of this project.
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1 Introduction

Credit scoring methods aim to estimate the default risk of potential borrowers and to
classify them into groups according to their default risk. This involves typically the
calculation of a credit score and the estimation of the probability of default (PD).

From a statistical point of view, classification between risky and non-risky borrowers
is first of all a discriminant analysis problem. Classical solutions to this are linear or
quadratic discriminant analysis and — on a more advanced level — logistic discriminant
analysis. All these methods are based on a score depending on explanatory variables.
Typically, the score summarizes the explanatory variables in a predefined form (linear or
quadratic). More complex nonlinear mappings can be considered by using polynomial
terms or piecewise linear functions. This gives, however, only an imprecise reflection of
a truly nonlinear relationship. Moreover, an additional modeling step is necessary to
determine the optimal polynomial order or the optimal interval classification.

Recently developed methods allow for a flexible modeling via neural networks and clas-
sification trees, for applications see Arminger, Enache and Bonne (1997) and Henley and
Hand (1996). Overviews on these methods for consumer credit risk can be found in Hand
and Henley (1997) and Hand (2001). These nonparametric approaches do not restrict the
possible nonlinear impact of explanatory variables. However, it is often hard to interpret
the resulting relationships between the explanatory variables and the classification rule.
This motivates our semiparametric approach.

We consider a modification of logistic discriminant analysis that allows for a more flexible
handling of a subset of the explanatory variables. Our approach is based on generalized
partial linear models which extend the “easy to interpret” structure of the logistic model
by nonparametric components. A particularly interesting feature of logistic discriminant
analysis (equivalently: fitting a logit model) is that simultaneously credit scores and PDs
are estimated. This leads to a growing interest in the logit model for redesigning credit
rating systems according to the requirements of the New Basel Capital Accord (“Basel
II”, cf. Banking Committee on Banking Supervision, 2001).

The paper is organized as follows: Section 2 explains the data structure for cross-sectional
credit samples and provides the notation of the data that we use throughout the paper.
Section 3 recalls the important terms for logistic discriminant analysis (the logit model)
and presents the results for our specific sample. Section 4 introduces the semiparametric
extension of the logit model. We estimate here several specifications of this semiparametric
model and compare the resulting fits to the estimated logit model. Finally, Section 5
discusses the estimated models with respect to performance criteria.

2 Data Structure

Before we describe the data that we use in the following, let us consider a typical example
for a cross-sectional credit data set. Suppose we have a sample of customers that apply
for a loan to buy a car. Assume further, that we have information if these customers paid
their installments without problems (Y = 0) or not (Y = 1). For the sake of simplicity, we
will call these two categories non-default and default in the following. Obviously, we have
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now a default indicator Y and explanatory variables X = (X1, . . . , Xp) for each member
of the sample. Table 1 shows for illustration descriptive statistics on a subsample of the
credit data used in Fahrmeir and Hamerle (1984) and Fahrmeir and Tutz (1994).

Yes No (in %)
Y default 26.4 73.6
X1 previous loans OK 66.2 33.8
X2 employed 73.2 26.8

Min Max Mean S.E.
X3 duration (in months) 4 54 21.8 10.6
X4 amount (in DM) 428 14179 3902.3 2621.9
X5 age (in years) 19 75 34.2 10.8

Table 1: Example data: Sample on loans for cars.

Note that Table 1 reflects the usual structure of the explanatory variables in credit data
sets: The variables may be of discrete (binary, categorical) or of continuous form. For the
discrete data, a sufficiently complex representation is possible by using dummy variables.
For the continuous variables, an appropriate way of including them into the score has to
be found.

The data that we explore and analyze in the rest of this paper have been provided by
the French bank Compagnie Bancaire. The used estimation sample consists of 6180 cases
(clients) and 24 variables:

• Response variable Y (credit worthiness, binary, 1 denotes default). The number of
faulty clients is relatively small (6%) which is typical for credit data.

• Metric explanatory variables X2 to X9. All of them have (right) skewed distribu-
tions. Variables X6 is discrete with only five different realizations. X8 and X9 in
particular have one realization which covers a majority of observations.

• Categorical explanatory variables X10 to X24. Six of them are binary. The others
have three to eleven categories (not ordered).

In addition to the estimation sample, the bank provided us with a validation data set of
1998 cases. Table 2 gives the number of non-defaults and defaults in the estimation and
validation data sets. We refer to Müller and Rönz (2000) for additional details.

Estimation Validation
data set data set

0 (non-defaults) 5808 (94%) 1891 (94.6%)
1 (defaults) 372 ( 6%) 107 ( 5.4%)
total 6180 1998

Table 2: Defaults and non-defaults in the French bank sample.

We now describe the variables in the estimation sample in more detail. The validation
sample will be only used to evaluate the semiparametric models.
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Figure 1: Histograms and kernel density estimates, variables X2 to X9.

We plot first the estimated probability density functions for the metric variables using
histograms and kernel density estimates. For more statistical and numerical details on
density estimation we refer to the monographs of Silverman (1986), Härdle (1991), or
Scott (1992). Figure 1 shows the density estimates for the variables X2 to X9. For
the kernel estimators we employed a rule-of-thumb bandwidths as smoothing parameter.
From the figure we can conclude that the variables X6, X8 to X9 are of quasi-discrete
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Figure 2: Scatterplots (upper display) and contour-plots (lower display), variables X2 to
X5. Default observations and contours for default are emphasized in black.

structure. Since nonparametric components require continuous variation of the relevant
variables, we will therefore concentrate on variables X2 to X5 and X7 for a nonparametric
analysis.

As a second step in exploration we display bivariate plots for the variables X2 to X5.
Figure 2 shows all bivariate scatterplots of X2 to X5. Due to the large number of non-
defaults, it is difficult to capture their bivariate distribution. We therefore show bivariate
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contours of the estimated densities for defaults and non-defaults. These density estimates
are again kernel estimates using a rule-of-thumb bandwidth (Härdle, Müller, Sperlich and
Werwatz, 2003; Scott, 1992). The figure shows that the assumptions of linear or quadratic
discriminant analysis (circular or elliptical contours) are not fulfilled.

3 Logistic Credit Scoring

Logistic discriminant analysis assumes that the probability of belonging to the group of
faulty clients is given by

P (Y = 1|X) = F

(
24∑

j=2

β>j Xj + β0

)
, (1)

where

F (u) =
1

1 + exp(−u)

is the logistic (cumulative) distribution function. Xj denotes the j-th variable itself if it
is metric (j ∈ {2, . . . , 9}) or a vector of dummies if it is categorical (j ∈ {10, . . . , 24}).
For all categorical variables we used the first category as reference.

Model (1) can be motivated as follows: Suppose that we know the true (negative) credit
score which has the form

Y ∗ = v(X)− u

with v(•) denoting a “regression” (or index) function and u an error term. We observe a
default if the score Y ∗ is positive. (For practical purposes we consider higher score values
to indicate higher risk of default.) Thus, our model is

Y =

{
1 if Y ∗ = v(X)− u > 0,
0 otherwise.

This is equivalent to (1) if u has a (standard) logistic distribution and

v(X) =
24∑

j=2

β>j Xj + β0 = β>X (2)

holds. Modifications of the logit model usually concern the distributional assumptions (a
Gaussian distribution of u leads to the probit model) or the assumptions on the index
function v(•).

The logit model is estimated by maximum–likelihood (cf. McCullagh and Nelder, 1989).
Table 3 shows the estimated coefficients βj. We find that most of the variables contribute
to the explanation of the response Y . As mentioned above, the modeling for the categorical
variables is sufficiently complex due to their representation by dummy variables. For the
metric variables we achieve different levels of significance. Variables X2, X3, X6, X8,
and X9 have coefficients significantly different from zero. This means, their effect on the
response is obviously well specified by considering them as a linear component in the
index function v(•).
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Variable Coefficient S.E. t-value Variable Coefficient S.E. t-value
constant -2.605280 0.5890 -4.42 X19#2 -0.086954 0.3082 -0.28
X2 0.246641 0.1047 2.35 X19#3 0.272517 0.2506 1.09
X3 -0.417068 0.0817 -5.10 X19#4 -0.253440 0.4244 -0.60
X4 -0.062019 0.0849 -0.73 X19#5 0.178965 0.3461 0.52
X5 -0.038428 0.0816 -0.47 X19#6 -0.174914 0.3619 -0.48
X6 0.187872 0.0907 2.07 X19#7 0.462114 0.3419 1.35
X7 -0.137850 0.1567 -0.88 X19#8 -1.674337 0.6378 -2.63
X8 -0.789690 0.1800 -4.39 X19#9 0.259195 0.4478 0.58
X9 -1.214998 0.3977 -3.06 X19#10 -0.051598 0.2812 -0.18
X10#2 -0.259297 0.1402 -1.85 X20#2 -0.224498 0.3093 -0.73
X11#2 -0.811723 0.1277 -6.36 X20#3 -0.147150 0.2269 -0.65
X12#2 -0.272002 0.1606 -1.69 X20#4 0.049020 0.1481 0.33
X13#2 0.239844 0.1332 1.80 X21#2 0.132399 0.3518 0.38
X14#2 -0.336682 0.2334 -1.44 X21#3 0.397020 0.1879 2.11
X15#2 0.389509 0.1935 2.01 X22#2 -0.338244 0.3170 -1.07
X15#3 0.332026 0.2362 1.41 X22#3 -0.211537 0.2760 -0.77
X15#4 0.721355 0.2580 2.80 X22#4 -0.026275 0.3479 -0.08
X15#5 0.492159 0.3305 1.49 X22#5 -0.230338 0.3462 -0.67
X15#6 0.785610 0.2258 3.48 X22#6 -0.244894 0.4859 -0.50
X16#2 0.494780 0.2480 2.00 X22#7 -0.021972 0.2959 -0.07
X16#3 -0.004237 0.2463 -0.02 X22#8 -0.009831 0.2802 -0.04
X16#4 0.315296 0.3006 1.05 X22#9 0.380940 0.2497 1.53
X16#5 -0.017512 0.2461 -0.07 X22#10 -1.699287 1.0450 -1.63
X16#6 0.198915 0.2575 0.77 X22#11 0.075720 0.2767 0.27
X17#2 -0.144418 0.2125 -0.68 X23#2 -0.000030 0.1727 -0.00
X17#3 -1.070450 0.2684 -3.99 X23#3 -0.255106 0.1989 -1.28
X17#4 -0.393934 0.2358 -1.67 X24#2 0.390693 0.2527 1.55
X17#5 0.921013 0.3223 2.86
X17#6 -1.027829 0.1424 -7.22
X18#2 0.165786 0.2715 0.61
X18#3 0.415539 0.2193 1.89
X18#4 0.788624 0.2145 3.68
X18#5 0.565867 0.1944 2.91 df 6118
X18#6 0.463575 0.2399 1.93 Log-Lik. -1199.6278
X18#7 0.568302 0.2579 2.20 Deviance 2399.2556

Table 3: Results of the logit estimation. Bold coefficients are significant at 5%.

For X4, X5, and X7 non-significant coefficients indicate that either these variables have no
influence on the response or that their specification is insufficient. We will now investigate
the latter conjecture. As a further graphical tool we use scatterplots for these explanatory
variables. In contrast to linear regression, it is not useful to directly plot Xj vs. Y .
However, if we assume model (1) as the underlying, the logits

log

(
P (Y = 1|X)

P (Y = 0|X)

)
should relate in a linear way to the explanatory variables X. We therefore divide the
range of each ot the variables X2 to X5 and X7 into intervals (classes) of similar length
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Figure 3: Marginal dependencies, variables X2 to X5, X7. Thicker bullets correspond to
more observations in a class.

and estimate the logits in these intervals using the observed frequencies of Y = 0 and
Y = 1. The class centers are then plotted against the estimated logits. The resulting
“scatterplots” are presented in Figure 3. It is obvious that the scatterplots for X2 and
X3 follow a linear trend whereas for the other three variables a linear relationship is not
obvious. The variables X4, X5 and X7 are hence the most interesting components for
considering a nonlinear (nonparametric) modification of the index function (2).

4 Semiparametric Credit Scoring

The logit model (1) is a special case of the the generalized linear model (GLM, see
McCullagh and Nelder, 1989) which is defined as

E(Y |X) = G(β>X)

with G(•) denoting a “link” function. Since in our problem Y is binary, it holds

E(Y |X) = P (Y = 1|X).

Thus, the logit model is a GLM with the logistic distribution function F (•) as link func-
tion. This property makes it easy to consider several extensions of the GLM which then
hold automatically for the logit model.

The semiparametric modification that we consider here generalizes the linear argument
(2) to a partial linear argument. Consider a vector of explanatory variables that splits up
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into a vector X and a second vector T . The generalized partial linear model (GPLM)

E(Y |X,T ) = G{β>X + m(T )}

allows us to describe the influence of the component T nonparametrically. As before, we
assume G(•) to be a known function (here the logistic link F ) and β to be an unknown
parameter vector. In addition we have to estimate m(•), an unknown smooth function.
The parametric component β and the nonparametric function m(•) can be estimated in
several ways, for a comparison of estimation algorithms and their numerical properties see
Müller (2001). Details on the implementation of these estimators can be found in Müller
(2000).

We consider the GPLM for several of the metric variables separately as well as for combi-
nations of them. As mentioned earlier, we only consider variables X2 to X5 and X7 to be
used within a nonparametric function because of the quasi–discrete structure of X6, X8
and X9. The semiparametric modification of the logit model takes the following form, as
indicated here for the example of including X5 in a nonlinear way:

P (Y = 1|X) = F

(
24∑

j=2,j 6=5

β>j Xj + m5(X5)

)
.

A possible intercept is contained in the function m5(•).

Table 4 contains the parametric coefficients for the parametric and semiparametric es-
timates for variables X2 to X9. Coefficients for X10 to X24 are estimated in each of
the specified models, but are not listed here. The column headed by “logit” repeats the
parametric logit estimates from Table 3.

nonparametric in
X2,

logit X2 X3 X4 X5 X7 X4,X5 X4,X5
constant –2.605 – – – – – – –
X2 0.247 – 0.243 0.241 0.243 0.233 0.228 –
X3 –0.417 –0.414 – –0.414 –0.416 –0.417 –0.408 –0.399
X4 –0.062 –0.052 –0.063 – –0.065 –0.054 – –
X5 –0.038 –0.051 –0.045 –0.034 – –0.042 – –
X6 0.188 0.223 0.193 0.190 0.177 0.187 0.176 0.188
X7 –0.138 –0.138 –0.142 –0.131 –0.146 – –0.135 –0.128
X8 –0.790 –0.777 –0.800 –0.786 –0.796 –0.793 –0.792 –0.796
X9 –1.215 –1.228 –1.213 –1.222 –1.216 –1.227 –1.214 –1.215

Table 4: Parametric coefficients in parametric and semiparametric logit, variables X2 to
X9. Bold values are significant at 5%.

It turns out, that all linear coefficients vary little over the different estimates. This holds
as well for their significance. Variables X4, X5 and X7 are constantly insignificant over
all estimates. The semiparametric logit model is estimated by semiparametric maximum-
likelihood, a combination of maximizing a classical (parametric) likelihood for estimating
β and a smoothed (local) likelihood for estimating the function m(•). The fitted curves
for the nonparametric components according to Table 4 can be found in Figure 4 (separate
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Figure 4: Estimated curves for variables X2 to X5 and X7. Parametric logit fits (thin
dashed lines) and GPLM logit fits (thick solid curves).

nonparametric functions in X2 to X5 and X7) and Figure 5 (bivariate function in X4 and
X5).

For the assessment of whether the semiparametric fit outperforms the parametric logit or
not, we present the reported statistical characteristics in Table 5. The deviance is minus
twice the estimated log–likelihood of the fitted model in our case. For the logit model,
the degrees of freedom just denote

df = n− k

where n is the sample size and k the number of estimated parameters. In the semi-
parametric case, a corresponding number of degrees of freedom can be approximated
using the trace of the corresponding hat matrix. The deviance and the (approximate)
degrees of freedom of the parametric and the semiparametric model can then be used
to construct a likelihood ratio test to compare both models (Buja, Hastie and Tibshi-
rani, 1989; Müller, 2001). The obtained significance levels from these tests are denoted
by α. Finally, we report pseudo R2 values in the style of McFaddens pseudo R2 values for
the logit case (Greene, 1993, Sec. 21.4.2) representing an analog to the linear regression
coefficient of determination.

It is obvious to see that in particular models containing variable X5 in the nonparamet-
ric part considerably decrease the deviance and increase the coefficient of determination
R2. Accordingly, the significance level for the test of parametric versus nonparametric
modeling decreases.
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nonparametric in
X2,

logit X2 X3 X4 X5 X7 X4,X5 X4,X5
deviance 2399.26 2393.03 2395.19 2391.29 2387.17 2388.63 2372.63 2372.43
df 6118.00 6113.72 6113.57 6113.34 6113.41 6113.61 6103.82 6100.23
α – 0.210 0.458 0.133 0.026 0.041 0.023 0.077
AIC 2523.3 2525.6 2528.0 2524.6 2520.4 2521.4 2525.0 2533.0
Pseudo-R2 14.7% 14.9% 14.8% 15.0% 15.1% 15.1% 15.6% 15.6%

Table 5: Statistical characteristics in parametric and semiparametric logit fits. Bold values
are significant at 10%. Estimation data set.

5 Evaluation of the Scores

For a credit rating system it is important that relevant explanatory variables are detected
and enter the model in an optimal way. The semiparametric technique introduced above
may help to find transformations of explanatory variables that improve the prediction of
defaults.

How can different models (different scores) be compared? The easiest approach is to use
misclassification rates. Suppose we have estimated the score S = S(X) for a potential
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borrower. For example, S may denote

S =
24∑

j=2

β>j Xj + β0

in the parametric logit model and

S =
24∑

j=2,j 6=5

β>j Xj + m5(X5)

in the semiparametric logit model when fitting X5 nonparametrically. Typically one
predicts

Ŷ =

{
1 F (S) > τ,
0 otherwise,

where the threshold τ is taken as
τ = 0.5.

Considering a range of τ -values allows us to obtain a more detailed picture of the clas-
sification of different score values. Table 6 reports misclassified observations from the
validation sample (of size 1998) at three different threshold values τ .

nonparametric in
X2,

threshold τ logit X2 X3 X4 X5 X7 X4,X5 X4,X5
0.25 129 133 129 136 130 128 132 130

non-default 41 44 40 49 40 40 46 40

default 88 89 89 87 90 80 86 90

0.5 111 110 111 111 110 108 111 110
non-default 5 5 5 5 5 2 5 4

default 106 105 106 106 105 106 106 106

0.75 107 107 107 107 107 107 107 107
non-default 0 0 0 0 0 0 0 0

default 107 107 107 107 107 107 107 107

Table 6: Misclassifications for Ŷ = 1 (default) if F (S) ≤ t and Ŷ = 0 (non-default) if
F (S) > t. Validation data set.

The Lorenz curve (cumulative accuracy profile, CAP) visualizes the accuracy of the score
with respect to its predictive power for a default. Figure 6 shows the principle of the
Lorenz curve. For both axes, sorted score values (from bad=high to good=low) are
considered. The horizontal scale shows the percentages of observations above a certain
value s, whereas the vertical axes shows percentages of faulty observations above this
value s. Mathematically, the Lorenz curve is a plot of

P (S > s) versus P (S > s|Y = 1).

Typically, i.e., if the PD is a monotone increasing function of the score, the curve is
concave and located above the diagonal. The diagonal can be interpreted as a “worst
score”: If S and Y have no relation at all, then P (S > s) = P (S > s|Y = 1). The “best
score” does a perfect separation of defaults and non-defaults. This leads to the optimal
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Figure 6: Principle of the Lorenz curve.

curve shown in Figure 6. A quantitative measure for the performance of a score is based
on the area between the Lorenz curve and the diagonal. The Gini coefficient G denotes
twice this area. To compare different scores, their accuracy ratios

AR =
G

Gopt

,

i.e., the Gini coefficient G relative to the Gini coefficient of the optimal Lorenz curve can
be used. Variants of the Lorenz curve are the receiver operating characteristic (ROC)
curve (Hand and Henley, 1997) and the performance curve (Gourieroux and Jasiak, 2001,
Ch. 4). See also Sobehart and Keenan (2001) for a relation between Lorenz curve and
ROC and Keenan and Sobehart (1999) for a general overview on criteria for measuring
the accuracy of credit scores.

Lorenz curves can also be used for assessing the impact of single variables. Table 7 shows
the AR values for all metric explanatory variables on the estimation data set. We find
that those variables which are highly significant in the logit fit (cf. Table 3) also achieve
high accuracy ratios. (Note that we used appropriate +/– signs here for each variable,
such that the maximal possible AR is reported.)

nonparametric in
+X2 –X3 –X4 +X5 +X6 –X7 –X8 –X9

AR 0.076 0.168 0.043 0.023 0.024 0.052 0.165 0.107

Table 7: Accuracy ratios of variables X2 to X9. Estimation data set.

Let us have a closer look at the Lorenz curves for the three variables X4, X5, X7 which
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had an obvious nonlinear effect in the score. Figure 7 shows the Lorenz curves and in
comparison density estimates separately for defaults and non-defaults. In particular for
X5 and X7 we see that the impact of these two variables on Y is non-monotonous: The
Lorenz curve crosses the diagonal and the densities cross several times. This means that
the nonlinear relationship in the index function v(•) is as well reflected in the Lorenz
curve (and vice versa).

AR = 0.043, -X4

0 0.5 1
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0
0.

5
1
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Figure 7: Lorenz curves (left) and density estimates (right, conditionally on default/non-
default) for X4, X5, X7.
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Performance Logit-Modell, AR=0.543
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Figure 8: Lorenz curve for logit model (solid) and optimal curve (dashed).

Consider now the Lorenz curves and AR values for the fitted logit and semiparametric
model. Figure 8 shows the result for the logit fit achieving an AR value of 0.543. Note
that most of the performance of the score is contributed by the categorical variables. The
continuous variables altogether explain only a small part of the default.

nonparametric in
X2,

logit X2 X3 X4 X5 X7 X4,X5 X4,X5
AR 0.543 0.538 0.543 0.527 0.556 0.538 0.548 0.552

Table 8: Accuracy ratios in parametric and semiparametric logit. Bold values improve
the logit fit. Validation data set.

Table 8 compares the AR performance of the parametric logit fit and the semiparamet-
ric logit fit obtained by separately including X2 to X5 nonparametrically. Indeed, the
semiparametric model for the influence of X5 improves the performance with respect to
the parametric model. The semiparametric models for the influence of X2 to X4 do not
improve the performance with respect to the parametric model, though.

Figure 9 compares the performance of the parametric logit fit and the semiparametric
logit fit obtained by jointly including X4, X5 nonparametrically. This performance curve
improves versus nonparametrically fitting only X4, but shows less power versus fitting
only X5. Hence, the improvement of using both variables jointly may be explained by the
influence of X5 only.
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Performance Variable X5, AR=0.556
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Figure 9: Performance curves with variables X5 (left) and with variables X4, X5 (right)
jointly included nonparametrically. Validation data set.
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