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Abstract

This paper extends the class of AK models with an explicit solution to the case where there
are two capital goods in the model. This extension holds, even if an external effect in the use
of human capital in goods production is assumed.
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1 Introduction

In the neoclassical growth theory, it is well known that a closed-form solution exists for the AK
model with logarithmic preferences, Cobb Douglas production, and full depreciation of capital. The
expression closed-form solution means to know the explicit form of the value function. This paper
extends this class of explicit solutions to AK models with two capital goods. We assume a goods
production sector with a Cobb Douglas technology using physical and human capital. The produced
good can be consumed or invested for future production. Furthermore, we assume an educational
sector producing next period’s human capital stock. The production of new human capital is linear
in existing human capital. We will argue that there still exists a closed-form solution for this wider
class of models. This property holds even if an external effect in the use of human capital in the
goods production is assumed. The paper is organized as follows: In the second section I will briefly
describe the model and then characterize the decentralized as well as the centralized solutions by
the usual Euler equations. Section three introduces an iterative method for finding a candidate
for the value function and a criterion for verifying this guess. The main idea is summarized in a
verification theorem. Then this method is applied in order to find and verify the value functions
of the representative agent and the social planner respectively. The fourth section concludes. The
appendix provides some proofs omitted for convenience in the main text.

2 The Model

Consider a closed economy populated by an infinite number of homogenous agents, who produce
a single homogenous good and then can be consumed or invested. The representative agent has
logarithmic preferences over consumption ¢; and is maximizing her discounted lifetime utility

Zﬂt In (), (1)

{ut,Ct}t 0%

where 8 € (0, 1) is the subjective discount factor and wu; is a second choice variable. The interpreta-
tion of u; is postponed for a second. The agent enters every period with predetermined endowments
of human and physical capital, h; and k;, respectively. There are two sectors in the economy. The
goods sector describes the accumulation of physical capital. Next period’s stock of physical capital
is the difference between output, on the one hand, and consumption on the other, i.e. we assume
that there is full physical capital depreciation.Output is produced using a Cobb-Douglas technology
in physical and human capital:

= Ak (ughy)' =% h] . (2)

The state variable A; denotes the total factor productivity. Here we assume that A; is constant,
i.e.

Ar=A>0 vt > 0. (3)
We therefore consider the following law of motion for physical capital:
kt+1 =Yt — Ct, Vi >0, kg > 0. (4)

The variable u; describes the allocation of human capital to goods production. A very intuitive
way to think about u; is to assume a normalized time budget of one unit in every period. Then u;
can be interpreted as the fraction of time spent in goods production. Of course, u; € [0,1] must



hold. The variable h,; stands for the average level of human capital per agent. This variable is due
to an external effect and therefore responsible for the difference in the market and social planner
solution to the model. Because the agents are homogenous the following symmetry

hat = hy, Vi>0 (5)

holds in equilibrium. The educational sector describes the accumulation of human capital. The
production of next period’s human capital is due to a linear technology and we again assume that
there is full depreciation of human capital, i.e.

ht+1 =B (]. — ut) he, Vit >0, hg > 0. (6)

Here, we can interpret 1 — u; as the fraction of time spent in the educational sector. The variable
B; is the marginal and average productivity in this sector and is also assumed to be constant. That
is

B,=B>0 Vt>0. (7)

The case where A; and B; follow stochastic processes is teated in another paper. The following two
subsections describe the decentralized and the centralized solutions to the model using standard
dynamic programming methods.

2.1 The Decentralized Solution

In the decentralized case, we assume a representative agent with rational behavior. The agent
knows that her stock of human capital equals the average level of human capital in the economy.
Furthermore, she knows that the external effects of human capital in the goods production, captured
by the term hz’t, may increase her and all the other agents wealth. But here, in the decentralized
case, the market mechanism prevents a coordination of agents’ actions. This can be understood
as a Nash game producing the prisoner’s dilemma. Although the external effect of the economy’s
average human capital stock in period ¢ is not exploited, the whole path of h,; is predictable and
is therefore treated as given.

We start the analysis of the decentralized economy with the definition of the value function as

the solution to the representative agent’s problem:

V (ki hushay) = max Y B°In(c,) st (2), (3), (4), (6), and (7).

Us,Cs fg—t s—t

The corresponding Bellman equation is given by

V (kt, hes hay) = max {In(c;) + BV (ktt1, er1)]} (8)

The first order conditions for the optimal choices of consumption and the optimal allocation of
human capital between the two sectors are

. 1 _ p0Viqa

Ct. o ’Bakt+1 , (9)
. WVip1 (1-a)yt _ p0Viga WVip1 -yt _ OViqa

wug: ﬂakt+1 Ut - ﬂaht+1 Bht « Okt 41 ht ~ Oht41 BUt ’ (10)

where Vi1 is a shortcut for V (ki, hi; hayt). Equation (9) is very standard and characterizes the
effect of shifting one unit of today’s output from consumption to investment. Today’s marginal



change in utility should equal the discounted marginal change in tomorrow’s wealth with respect
to tomorrow’s capital stock. Equation (10) states that the weighted marginal change in wealth
with respect to physical capital equals the weighted marginal change in wealth with respect to
human capital. The first weight is the marginal product of human capital in goods production for
a certain choice of u; and the second is the potential marginal product of human capital when the
same fraction of human capital is allocated to the educational sector. Note that the last equation
can be written as follows

|~

V4 _ oV, vy a
u— — Oheps B k7 o= oy (1— ) Ahg, Ky
T V(1) apY, \ I - Vi1 p he
Okt i1 a,t Ohtt1
Using the envelope property of the optimal decision rules,
c; =c(ky,hy) and uf =u (ke hye), (11)

leads us to the following envelope condition for the stock of physical capital:

oVy 1 0c ﬁthH ou Vi1 <% n (1-a)y Ou 6c>

PR p— Bh;,—— -
8kt C:fk 6’% 8ht+1 tc’)kt + ﬂakH_l kt Ut 6kt 8kt

Substituting in the first order conditions for the optimal consumption (9) and for the optimal
allocation of human capital (10) and simplifying gives

Ve _ gOVinaye  OVi kv _ 0Vin
Ok; Okyr1 Ky Ok; oy, Ok’

(12)

Notice that the right-hand sides of (9) and (12) are the same. We therefore can equate the left
hand sides:

Vik _1  0Vi_ 1oy

= & = .

Ok ay, Ct Ok, ¢ ky
Of course, this relationship holds along the whole path such that we finally arrive at the Fuler
equation in consumption

1 B ayn

¢ cy1 ke

(13)

The envelope condition for the stock of human capital is given by:

Wy _ 1 0c 0V o\ np 0u Vi1 (A-—)y  (1-a)y: Ou  Oc
Ol & Ohy ¥ Ot (B (1) Bthtaht) B B + ‘

ht Uy 0 ht 0 ht

By using the first order conditions (9) and (10) we can replace the last term and end up with the
following relationship

o _
Ohy

Vi1
Ohy i1

MWisr p ., OVe Bhy

h Ohi oh; B

=3 Bhy. (14)

Comparing the right hand sides of (10) and (14) gives

OV, Bhy _ ,0Via (1 — o)y o ov,

_ OV, ,0VinBA-a)y
oh; B ki1 w Ohy '

b Ok 1 Bhyuy



Notice that we can insert the first order condition (9) on the right-hand side of this expression.
Furthermore, we know that these equations hold along the whole path, such that we get the Euler
equation for the optimal human capital allocation:

1
ahipruer ARg \ © Ky
— : 1
ut ( ki1 (15)

B hy

The two Euler equations (13) and (15) are necessary for a policy to attain the optimum. Together
with the following transversality conditions they are also sufficient:

jgilgoﬁTé%kT =0 and Tli_r)r;oﬂTé%hT =0 (16)
Notice that the first fraction in both conditions is the derivative of the utility function and the
second fraction is the derivative of the goods sector production function with respect to the inputs
of physical and human capital. To be more precise, the last derivative is taken with respect to
the fraction of human capital that is allocated to the goods sector: wugh;. These derivatives are
multiplied by the respective state vaiable. The transversality conditions tell us that the discounted
marginal utility of an additional unit of ”last period’s” capital stocks is equal to zero. These
requirements rule out Ponzi games.

2.2 The Social Planner’s Solution

So far we considered a representative agent, who did not exploit the external effect of the economy’s
average human capital stock. Now we assume that there is a social planner taking this effect into
account, i.e. we consider the following maximization problem:

V (kb)) = max > Bn(q) st. (2),(3), (4), (5), (6), and (7).
t=0

{us,ee}i2o =

Notice that the value function of the social planner is not restricted to a given path of h, ;. Because
the first order conditions of the planning problem remain the same as before, we turn immediately
to the envelope conditions. It turns out that the envelope property of the optimal decision rules
and the necessary conditions (9) and (10) lead us to the same relationship for the stock of physical
capital as before:

Ve _ gOVinayy  OVi ki _ 0Vin
Ok; 5kt+1 k¢ Ok; oy, 3kt+1.

(17)

Notice that the right-hand sides of (9) and (17) are the same. Equating the left-hand sides, we
obtain:

Wik _1  0Vi_ 1oy

Ok ay, Ct Ok, c ke
This relationship holds along the whole path such that we finally get the Euler equation in con-
sumption:

1_ B opn (18)

¢ cy1 ke



But the envelope condition for the stock of human capital is slightly different:

B(1—u)—Bh 2L 4 g2t (A-atny (A-a)y Ou e
Ohy Okt 1

oV, 10dc _0Vi

O~ @ oh O

ht Ut 0 ht 0 ht

We can see that the planner takes the external effect of human capital into account. Therefore,
the marginal social gain of exploiting this effect in goods production occurs in the second term on
the right-hand side. Inserting the first order conditions (9) and (10) together with some transfor-
mations, we arrive at the following relationship:

oVy _ 0V BA—atyuw) , 0V 1-—a)ly _ﬂthH
3ht - GhtH l1—a 3ht 1—a+ Yug N 6ht+1

Bhy. (19)

Comparing the right-hand sides of (10) and (19) and replacing ﬁg‘k/:ﬂ with the first order condition

in consumption (9) yields the Euler equation for the optimal allocation of human capital between
the two sectors:

1
uy = (aut+1ht+1 (1 — Oé) A ) @ Ky (20)

ki (I—a+yusa)B) b

Again we need two transversality conditions in order to establish the sufficiency of the two Euler
equations (18) and (20):

1 1 (1=
Tliir;oﬂTa%kT =0 and Jim 57— [( uTz)TyT + ff] hr = 0. (21)
Since the social planner exploits the external effect of human capital, the derivative of the pro-
duction function with respect to human capital looks different. The derivative of the production
function with respect to human capital is the sum of the private marginal return of uzh; plus the
marginal social gain of the average stock of human capital h;. The interpretation of these conditions
is slightly different from the decentral case. The planner cannot play Ponzi games but he has to
obey his budget constraint. This is done by (21).

3 Finding the Value Functions by Iteration

In this section we will use an iterative method to find the value functions that attain the suprema
of the two optimization problems considered in the previous section. This is done by applying a
more general result published by Strauch (1966), whose treatment is adapted from the Stokey and
Lucas (1989) textbook, chapter 4. The latter source states that under certain conditions a solution
to the Bellman equation is necessary and sufficient even in the unbounded returns case. The main
idea is summarized in a verification theorem. In order to state the theorem, I have to introduce
some preliminary concepts of dynamic programming.

Let X be any set, I' : X — X the correspondence describing the feasibility constraints, F' :
(z,T' (z)) — R the one period return function, and S the discount factor. We assume that I (z) is
nonempty, for all z € X, such that we will call any sequence {zyy1};-, a plan. Given zg € X, let
IT (zp) be the set of all plans that are feasible from zg:

1T (zo) := {{ze};20 |21 € I (z1) ,t € No}.



For each n € Ny we define u, : II(zg) — R by

un (Z) := ZﬂtF (@4, x441), where z € II (o) .
t=0

Then u,, () is a partial sum of the discounted returns in periods 0 through n from the feasible plan
z. We assume that for all zg € X and z € II (z¢),

Jim Z B'F (x4, T411) (22)
=0

exists. Under this assumption we can also define u : II (zg) — R as
u(Z) := lim u, (2).
n—oo
We can then define the supremum function v* : X — R as

v* (xg) := sup u(T).
z€ll(zo)
Theorem 1 Verification of the supremum function under unbounded returns
Let X, T, F, B, II, u, and v* be defined as above. Suppose there is a function v : X — R such that
1. Tv < v
2. lim ™ (z,) <0, for all zg € X, all € 1 (xp);
n—o0

3. u(Z) <V (xp), for all xy € X, all T € I ().
If the function v : X — R defined by

v(z) = lim (T™) (z)

n—oo

s a fized point of T, then v = v*.

Proof. See Stokey and Lucas (1989), page 93. =

In the following subsections we will apply this theorem to the two economies considered. First,
we turn to the decentralized market economy, then we will examine the centralized social planner’s
case. In order to write down the two applications of the theorem in a clear and comprehensible way,
we will state claims at various points. The proofs of these claims can be found in the appendix.

3.1 The decentralized economy

The optimization problem can be rewritten so that in every period ¢ the states h; and k; are given
and period’s states hy+1 and k;+1 have to be chosen, i.e. we want to replace the variables ¢; and
u;. Equation (4) can be solved for ¢, and the resulting expression can be substituted in the utility
function. Similarly, we solve equation (6) for u;h; and insert the result into the production function.
In terms of the state variables, the maximization problem is now given by

max tIn | AK® (h — —h > K, —k
{kt+1,ht+1}§6 t t— gl a,t t+1
such that
ht = ha,ta
0 < ht+1 < Bhy,
0 < ki1 < AkPh;~°R],.



We have argued in section 2 that the representative agent does not exploit the external effect,
because the market mechanism prevents agents from coordinating their actions. However, the path
of hey is predictable and the representative agent treats this path as given.

Let us now turn to the policy correspondence I', which is given by:

T (ho, ko; hap) = {(ht, k) 3

-«
Ak ht—@ BY ,—ky1 €Ryy; ko, ho>0; gy =Ry allt >0 b
(] ll,t H

First notice that I' is non-empty. This follows because the sequence

1 1 _
(Ptt1, k1) = <§Bht, §Akfh% ahz,t>

is always feasible, hence I' # (). Next we have to prove that the total discounted returns are
bounded. The first step in this proof is to show that the sequence of human capital stocks is
bounded!:

Inhipq < (t+1)In B + In hg, Vi>0

Inhgsi1 < (t+1)InB+1Inhsg, V¢> 0.

Using this result, we learn that the sequence of physical capital stocks is also bounded:

—att t ottt —q 1—oft tH ¢
Inkipy < o lnA+(1—a—|—’y)<1_a—|— (1_a)2>1n3+ﬁ'ylnha,o+(1—a )lnho—i—a In kg,

for all ¢ > 0. Hence for any pair (kg, ho) and for any feasible path {k;, h;}, the sequence of one
period utility returns F' (ky, hy, kiy1, he 1) satisfies

F (ki hyy kg1, higr)

S F (kta hta Oa 0)
1—attt t—a offl —a? 1— ot . )
— In A+(1—a+7) (1—a + (1—a)2 >ln B+ ﬁ'yln a0+ (1—04“‘ )ln ho+at1n k.
Then for any feasible sequence {k;, b},
nh—I»Iolo ; ,Bt In Ak? <ht — Eht+l> hz,t — kt—i—l] (23)
In A l1—a+v)BInB alnky (1—a)lnhg YInhgp

<

Q-B)1-aB) (1-p>1-aB) 1-0op 0B (1-0of)  (1-A1-ab)

Hence assumption (22) holds. Following the verification theorem we need a function that is an
upper bound for the supremum function v7,. Since (23) implies that for all £ > 0 and h, =h >0

alnkg (1 —a)lnhg yInhg g
v k, h, ha < ¢ + + ’ )
n(bhile) <Ot o5 T T B (1—af) T 1-H)(1-aB)
!'Note that we have used the fact that EZ:O sa’® = aﬁg - %

8



where
_ In A (1—a+~v)8InB
P4 = A5 (1-aB) T (1-B2(1—aB)’
we consider the following function vy, as the upper bound:
alnk, n (1—a)lnh n yinhg .
l—af  (1-B)1-apf) (1-5)(1-ap)

Furthermore, we define the operator T' as follows

(24)

Um (Kt ha; hia) = dap +

1 1—a
Ak (ht——hm) B~k

(Tf) (kta ht; ht,a) - { max {ln B

ker1,hev 1}

+ Bf (kt1, Pe1; Py 1,a) } .

We apply this operator to vy, (k, h), i.e. we consider the mapping

1 1—a
(Ti)\m) (kt, ht; ht,a.) = max {ln Akg (ht— —ht+1) hz,t_kt-i-l

+ B0 (kg1 hag1; ht+1,a)} :

{kt+1,ht+1} B
(25)
This implies the following first order conditions
h’:‘,k%—l = 5Bhta (26)
fa = af(1—B)'" " ARh{ TR . (27)

Claim 2 The first order conditions (26) and (27) are sufficient for a decentralized mazimum.

Note, that (26) implies for the average stock of human capital:

ha,t+1 = ﬂBha,ta
Substituting hq ;41 together with the maximizing values hy,; and &} ; into the mapping (25) and
simplifying, we obtain:
YInhgy alnk, (1—a)lnh

(TVm) (Kt hi; hay) = dap + ¢+ -0 (1-af) 1-aB  1-5(1—ap)

where
(1-a)ln[1-7 n aflna n (1—aB+v)BIng
1—af 1—ap (1-f)(1-ap)

Notice that the restrictions on the parameters a and ( imply that ¢ is strictly negative and
TUm — U < 0 holds, i.e.

¢=In[l—af]+

(28)

TV, (Kt hy) — Um (ke he) = ¢ < 0.

Iterating the operation gives (T%Up, ):

1 1—a
Ak (ht— Eht-}-l) hy i —kir1| + Boap + B

ByIn ha,t+1 afInkiiq (1 - a) Bln iy
1-p)(1-aB) 1-af (1-p)(1-apB)

(Tzﬁm) (kta ht; ha,t) = In

9



Again equations (26) and (27) are necessary and sufficient conditions for a maximum. Inserting
hi,; and k;,, and collecting terms finally yields:

YInhgy alnk; (1—a)lnh
1-B)(1-aBf) 1-af (1-8)(1-ap)

Obviously, T?0, — Tt < 0 holds. Continuing the iteration procedure, one can show that the n-th
iteration is given by:

(T2%) (ku, s hag) = (1 + B) + pap +

YInhg alnk; (1—a)lnh
1-80-aB) 1-af (1-0)01-ab)

(T"0m) (kty s Bag) = (1+ .+ 8" ) ¢+ dap +

Hence, T" %, — T™0,, < 0 holds for every n. And for lim (T"%,,) (z) we have
n—oo

Jm (T"5,) (2) = 725 + dan+ ¢

YInhg +ozlnkt+ (1—-a)lnh,
1-8)1-af) 1-af (1-pF)(1—-ab)

U (2) - (29)
Indeed, it turns out that
(Tvr,) (e, he) = vpy (e, ha)
holds. Therefore
(kpin, hust) = (aﬂ (1—B)'~* AkZhl—®h],, BBht> . Wt>0
is the utility-maximizing sequence of capital stocks in the decentralized economy.

3.2 The centralized economy

As in the decentralized case, we can express the planner’s maximization problem in terms of the
state variables only:

max “1n | AK® (h — —h ) h! —k
o ; B b e — e ] — ki1

such that

0 < ht+1<Bht,
0 < ki < AkRR; .

Note that we have dropped the index a. As mentioned above, we assume that the planner takes
the external effect into account and knows that the economy’s average human capital level is equal
to the representative agent’s level of human capital.

Since we follow the same strategy as in the decentralized case, we want to find a function that
is an upper bound for the supremum function. Again our first step is to prove the boundedness of
the sequences of the two capital stocks. After some algebra, we get:

Inhi1 < (t+1)ImB+1Inhy, V£>0

11—ttt t+1_
[In A4+(1—a+v) Inho]+(1—a+7) (1 ¢ +2 a) In B.

Ink 1 n k @
Nk < o n K9+ P (]_—04)2

—

10



Hence, for any pair (kg,ho) and for any feasible path {k;, h;}, the sequence of one period returns
F (k}t, ht, kt—l—l, ht+1) satisfies

F (ky, hyy ke, hig)
F (kt, h,0,0)
1—Oét+1 1— t+1

t a(l—at)
< ottt mA+—2 (1- 1 1— _ InB.
< oMt Inky+ T + - (1—a+y)Inho+(1—a+7) o (1_a) n

IN

Then for any feasible sequence, it must be that

n 11—
nanolo Zﬂt In Akf (ht — éhH-l) hz,t — kt+1]
=0
In A (1—a+v)BInB alnky (1 —a+~v)nhg
< .
T (0-80-aB) (1-p2(1-af) 1-aof (1-p)(1-0ap)

Hence assumption (22) holds. Next we have to define the function v, that is an upper bound of

the supremum function v;. Condition (30) implies for all k > 0, h > 0, that

(30)

alnk (1—-a+~)lnh
l—af  (1-5)(1-ap)

holds, where ¢ 45 was defined in the previous subsection (24). We define the upper bound for the
supremum function v, of the social planner’s problem as follows:

’U; (ka h) < ¢AB +

alnky, (1—a+v)lnh
l—of  (1-p8)(1-apf)

Up (kg hy) = dap +

The operator T is defined as follows

1 1—a
Ak <ht - Ehm) hY — ki

{kt+1,ht+1}

(Tf) (ky, hy) = max {ln

+ Bf (kty1, ht+1)} .

Applying this operator to vy, (k, h), i.e.

R 1 1—a
(T'Up) (kta ht) = max {ln Ak? (ht — Eht+l> hz — kt+1

{Ft+1,ht+1}

+ BV (Kiy1, ht+1)} (31)

gives rise to the following first order conditions:

* _ IB(l_a+7)

o 1—a)(1-p8)\'*
kf, = aBAkhI <%> . (33)

Claim 3 The first order conditions (32) and (33) are sufficient for a centralized mazimum.

After some algebra, the insertion of (32) and (33) into the mapping (31) yields

alnky, (1—a+v)lnh

(Tvp) (ke he) = dap + o+ ¢+ 1_a5+ 1-p8)(1—-aB)’

11



where

_(1-a)n[l -4 n 1-—a+v)BIn[l —a+4] (1—a+ﬂ’y)ln[1—a+’)/5]_

[—af -5 (1P I CEY:)

Since we have to ensure that T, < v, holds, we have to know the sign of ¢ + ¢. Like in the
decentralized case, all terms are negative. However, the minus sign in front of the last term forces
us to investigate ¢ + ¢ more thoroughly, which we do in detail in the appendix. There we show
that ¢ + ¢ must be negative:

Claim 4 Given a € (0,1), 8 € (0,1), and v € [0,0] the condition T, < U, holds.
Now we apply the operator T a second time. Notice that the first order conditions are the same
as before. Now we obtain:

alnk; n (1-—a+~)nh
l1—af (1-8)1-0ap)

(T%Tp) (kiy he) = dpap + (1+B) (¢ + ) +

And for (T37,), we get:

alnk, (1—-a+~v)lnh
1-af (1-8)(1-0ap)

(T%0) (ki he) = dap + (1+ B8+ 6%) b+ ) +

In general, we find that the following holds:

alnk; n 1-—a+v)Inh
1—af  (1-B8)1-ap)

(T"0p) (ks he) = pap+ (1 + B+ ..+ 8" Y) (¢+9) +

so that

. e _ p+¢ alnky (A—a+y)lnh
nh_)nolo (T"vp) (Kt i) = ¢ap + 1-4 + 1-aB (1-8)1-aB) =% (e, e) (34)

Indeed, it turns out that
(Twy) (ke he) = vy (kg ba)

holds. Therefore

(B - (1) Akph, " B(1—a+v)Bhy
(kt+1aht+1)—< 0 _at ) et 8 , V>0

is the utility maximizing sequence of capital stocks in the centralized economy.

4 Summary and Concluding Remarks

We have proven that the functions (29) and (34) are the value functions of the representative agent
and the social planner, respectively. In the decentralized case, we can use the value function (29)
and the first order condition (9) in order to find the optimal level of consumption:

Cm,t = (1 - aﬂ) Yt- (35)

This result is the typical consumption rule for the standard AK model with logarithmic preferences,
Cobb Douglas technology, and full depreciation of physical capital. It is easy to check that this
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result does fit the Euler equation in consumption (13). Similarly, we can use (29) and the first
order condition for the optimal human capital allocation (10):

Um,t = 1-— ﬂ (36)

We have found that the optimal way to shift human capital between the two production sectors is
to hold u; constant, once we have found the optimal allocation. Similar to the consumption rule,
it can be shown that this policy rule fulfills the Euler equation (15). Furthermore, the restriction
Um,¢ = [0,1] holds. In order to ensure the sufficiency of these rules, it remains to be shown that
the two transversality conditions in (16) are met, i.e. for physical capital:

. 1 ayr . afT
T — _— =
P T ahyur ke T AT ap)
and for human capital:
BT (-a)yr _ T (1-a)

lim = lim =0.

T—oo(1—aB)yr (1-7) T—oo(1—af) (1 —70)
Thus the policy rules (35) and (36) of the representative agent are necessary and sufficient for a
utility maximizing path. In the centralized case we apply the social planners value function (34)
to the first order condition (9). This leads us to the same consumption rule as before:

it = (1 — )y (37)
But for the optimal allocation of human capital we find a slightly different value:
_(A-a(1-p)

Just as in the previous case, the allocation of human capital in the centralized economy is constant
over time. Furthermore, the optimal u; is a little bit smaller than in the decentralized case, although
up,t € [0,1] still holds. Hence, the path of human capital in the centralized economy lies above the
human capital path in the decentralized economy given the same initial stocks of capital. The two
policy functions (37) and (38) satisfy the Euler equations (18) and (20) for the centralized case.
Finally, we check the transversality conditions (21):

. 1 ayr . ﬂTayT
rloyr, _ _poyr
Ao or kr b TIE%O(l—Oéﬁ) yr &
. BT -a)yr | yyr . BT—at)
’_Ill—IgoCT urhr * hr hT_TlEI;O(l—aﬂ)(l—ﬂ) =0

This shows the sufficiency of our results in the centralized case.

5 Appendix

Before we prove the two claims that the first order conditions, (26) and (27) for the decentralized
economy and (32) and (33) for the centralized economy, are sufficient to derive the maximizing
policies, we want to state a very useful criterion for sufficiency. Exploiting the fact that we consider
a 2 X 2 Hessian matrix, we can easily check for negative definiteness. The idea is stated in the
following theorem.
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Theorem 5 The derived values for hi,, and ki, , describe the utility-mazimizing policy if the
Hessian matriz has a positive determinant and the upper left entry is negative.

Proof of Theorem 5 Let the symmetric matrix H (kf,,h},;) be given by

* * a b
H(t+1a t+1):[b C}a

where a < 0. The corresponding quadratic form is given by

ItHIA

= ak®+ 2bkh + ch?

2 12
= a<k+9h) +Mh2.
a a

Hence, if a < 0 and det H = ac — b?> > 0, then the quadratic form is negative definite and
( I A +1) determines the maximum.

Proof of Claim 2 The second order derivatives are given by:
0 (Tm) (ki; hi; hayt) -1 ap

Oki110k111 (kg (b= Fhoen) B3 — k) 7@K
0 (Tﬁm) (kt, hy; ha,t) _ 0 (T@) (kt, hy; ha,t) _ _% (1 - a) Ak (ht - %htﬂ)_a hg,t
Ok +10hy 11 Ohy 10k 1 (A2 (b Bern) "1~ kt+1)2
0 (T0m) (ke hishay)  —(1—a) A%k (hy — Lhe) ™ 2,
Ohy10hy 11 B2 (Akfg‘ (he — %htﬂ)l_a W, - kt+1)2
La(l—a) Ak (he = Fhi) ™ B i B(1—a)

— 2 _ IR 2

Substituting (26) and (27) into the expressions above:

0 (Ti)\m) (kt, ht, ha,t) i —_1 1
Oky 10k 41 aff (1—apB)® (1 — B)* 2 A2k3*h}~*h2),
O (T0m) (ki hes hay) -(1-o
Okt 110ht11 (1—apB)* (1 — B)*~* BhyAkghi~*h),
0 (Tam) (kt’ hy; ha,t) _ (1 - a) (Oé2,32 —1+aB— aﬂz)
Ohi410h 11 (1-ap)?BB2R} (1-B)*
Hence the Hessian matrix H is given by:
2
-1 1 —(1-a)
H = af \ (1-aB)(1-B)'~“Akgh, *h], (1-aB)*(1-B)* *Bh: Akgh; “h),
—(1-a) (1-a)(a2B*~1+af—0p?)
(1—aB)*(1-B)* *Bhi Akghy “h] , (1—aB)?BB2h2(1-B)?
-1 1 —(1-a) 1
B 1 aB(1-B) % (Akghl *hY,)?  (1-B) ® BheAkghi “h],
- _ 2 a2 —(1—a) 1 (1—a) (a2ﬂ2—1+aﬂ—aﬂ2)
(1=af)"(1-5) (1-B)~° BhiAkghy~*h] , BB2h?
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It is easy to see that the upper left entry of this matrix is negative. The determinant of the
Hessian is obviously positive if the following inequality holds:

—(1—a)(@®F-1+af—-af?) —(1-a)
af(1-B)"*p (1-p)"2

Given the above set of parameters, we know that

0<1-—af+206%(1-a)
holds. Then
23 -1+af—aBft<af?(1l—a)
must also hold. Dividing by a8% (1 — 8)™2* > 0 gives

?f—14+af-af® (1-a
P -
Multiplying both sides of this inequality by — (1 —a) < 0 gives the desired result. Hence

det H > 0 holds and our findings (26) and (27) are the maximizing values for tomorrows
capital stocks. l

Proof of Claim 3 Again we apply Theorem 5 in order to show that these results are sufficient
for a maximum. The second order derivatives are given by:

0 (Tp) (ky, hy) -1 B aof
= 2 2

Oky 110k 11 (Akfg‘ (he — Lheyt) " h) — kt+1) (1 —aB) (kt11)
O(Tay) (bh) _ O(TD) (ki) _ (L= @) ARE (b — Fhurn) ™ () )

Ok 10hy 11 Ohy110k 1 (Akf‘ (hy — %hﬂ-l)l By — kt+1)
O(T%) (kh) _ _ (@B-1)A-atyB)f (1—a+ty8)

Ohy 110y 11 B2(1-aB)?(1—-a)(1-8)>%h2 B2(1-aB)(1—-0)(1—a+7)phi
Substituting in (32) and (33) gives
3 (Ty,) (ki hy) —(1—a+98)*™

= 2

8kt+16kt+1 (1 o aﬂ)z Otﬂ (Ak?h%_a+7 (1 o a)l—a (1 . 6)1—(1)
0 (Tp) (kuyhe) —(1—a+98)*"

Oky110hy 11 (1—aB)? (1 —B)* " BhAkeh, M (1 — )™
O(Ttp) (khe) _  (a8-1)(1-a+9B)? (1-a+18)?

Ohy110ht 11 (1-af)*(1-a)(1-p)?B2r2 (1-6)(1—-af)(1—-a+v)BB2h}
Hence the Hessian matrix H is given by:

5 —(latyp) > 1 —(1—aiy8)~* 1
g (1=atyf)” | (appAi-a)® (0-8)" (arent *1) (-e) *(-aBX1-0)"* Bhedkgh; *"
(1-8)(1—ap) —(lo4yB8)~* 1 ( -1 1 ) 1
(1-0) *(1-aB)1-8)"* Bhi Ak h} > (1B la)1-B8) (Iat)B8) (Bh:)?
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The upper left entry of this matrix is obviously negative. The determinant of the Hessian is
positive if

—(1—a+49p)™ o?f—1 . —(-atp)™ (30)
(1-aB)af(1-a)™**(1-p)** (1=af)(1-a)1-F) " (1-af)*(1-a)**(1-F)"™
holds. We know that
1>af
holds. Substracting a?3 and dividing by a8 (1 — a) > 0 gives
1—-ao2p
— > 1.
af(i—a)
—2a
Multiplying both sides of this inequality by ia ﬁ)Q((l 1__‘3;27@& (e 0 gives:
(1-a?8)(1-a+yB)* (1-a+q8) -0

Otﬂ (1 o a) (1 o Otﬂ)Q (1 o a)Z—Za (1 o ﬂ)Q—Za > (1 o Otﬂ)2 (1 o a)2—2a (1 o ﬂ)Q—Za

This expression can be rewritten to arrive at (39) and we therefore have the desired result.
[

Proof of Claim 4 The condition 70 < v is equivalent to ¢ + ¢ < 0. Since (28) implies that
qﬁ—(T_% is negative (28) it is sufficient to show that

ByIn g (I—a)lfl-o] (-a+ty)flnfl-a+tsy] (-at+By)h[l-at+yb] _ 0

(1-ap) (1-5) l-af (1-8) (1-ap) (1-p) (1—ap) -
(40)

holds. Given the above parameter space the concavity of the In function implies

1-f)ln[l—a]+pfln[l—a+v]—-In[l-a++6] <0. (41)
1—a

Multiplying both sides of this inequality by =B (=ap) > 0 gives:

(1-o)lnfl—ao] (1-a)flnfl-a+q] (-—a)lnfl-a++f

T—ap -5 01 —ap) -ma-es -0 @
Because we know that
l-a+y)B<l—a+9p
holds, we can use the fact that the logarithmic function is strictly increasing:
In[l —a+v]+lmpf<lnfl —a+~4|. (43)

Substracting the left hand side of (43) and multiplying both sides of the inequality by
_—ﬁ’% > 0 giVGSZ
(1-apB)(1-5)
pyinfl—aty]  _ bylnf Syl —a+yf|
1-af)1-8) (1-af)(1-8) @A-aB)(1-7P)

Notice that the inequality is no longer strict, as we allow for v = 0. Adding the two inequalities
(42) and (44) gives the desired result stated in (40). This proves that ¢ + ¢ is negative. B

<0. (44)
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