~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Cohen, Albert; Hoffmann, Marc; Reil3, Markus

Working Paper
Adaptive wavelet Galerkin methods for linear inverse
problems

SFB 373 Discussion Paper, No. 2002,50

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Cohen, Albert; Hoffmann, Marc; Reif3, Markus (2002) : Adaptive wavelet Galerkin
methods for linear inverse problems, SFB 373 Discussion Paper, No. 2002,50, Humboldt University
of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic
Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10049083

This Version is available at:
https://hdl.handle.net/10419/65296

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10049083%0A
https://hdl.handle.net/10419/65296
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Adaptive wavelet Galerkin methods
for linear inverse problems

Albert Cohen* Marc Hoffmann' Markus Reif3¥
May 14, 2002

Abstract

We introduce and analyse numerical methods for the treatment of
inverse problems, based on an adaptive wavelet Galerkin discretiza-
tion. These methods combine the theoretical advantages of the wavelet-
vaguelette decomposition (WVD) in terms of optimally adapting to
the unknown smoothness of the solution, together with the numeri-
cal simplicity of Galerkin methods. Two strategies are proposed: the
first one simply combines a thresholding algorithm on the data with
a Galerkin inversion on a fixed linear space, while the second one per-
forms the inversion through an adaptive procedure in which a smaller
space adapted to the solution is iteratively constructed. For both
methods, we recover the same minimax rates achieved by WVD for
various function classes modeling the solution.

1. Introduction

Let K : X — Y be a compact linear operator between Hilbert spaces X
and Y. The classical ill-posed inverse problem consists of recovering a good
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approximation f. for the solution f € X of the equation

Kf=g (1)

when only a perturbation g, of g € Y is known. In order to assess the quality
of a method, the convergence of f. to f is examined when g, tends to g in
a deterministic or stochastic sense. In this paper, we shall suppose that g.
is a perturbation of g by an additive white noise of level €. We are then
interested in the behaviour of the mean-square error E(||f. — f||*) as € tends
to zero.

The singular value decomposition (SVD) of K

o0

Kf =Y si(f, fr)dn, (2)

k=0

where (f;) k>0 and (g )x>o are orthonormal bases of X and Y, and the singular
values (si)r>o0 are arranged in decreasing order of moduli, gives rise to the
approximation

N
fs = Z S;1<gsagk>fka (3)
k=0

where N = N(e) has to be chosen properly. This SVD (or spectral cut-off)
method is theoretically very attractive and can be shown to be asymptotically
optimal in many cases, e.g. [16] and [14]. However, it suffers from two types
of limitations. First of all, the bases (fx)r>0 and (gi)r>0 might be difficult
to determine and to manipulate numerically. Secondly, while these bases are
fully adapted to describe the action of K, they might not be so appropriate for
the accurate description of the solution with a small number of parameters.

Concerning the first limitation, i.e. numerical simplicity, projection meth-
ods are more appealing. Given finite dimensional subspaces X, C X and
Y, C Y such that dim(X}) = dim(Y}), one defines the approximation f. as
the solution in X}, of the problem

(K [z, 9n) = (ge, gn), forall g, €Y. (4)

If (uk)k=o0,..n and (vg)k=o,..n are bases of X, and Y}, this amounts to solving
the (N + 1) x (N + 1)-dimensional linear system

Ky F, =G, (5)
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where K}, = ((Ku;,vj))ij=0,..~ and G. = ((ge,vj))j=0, N, and to define
fe = Zi]io F, ju;. A general approach to projection methods was developed
in [15].

In the case where X = Y and K is a selfadjoint positive definite op-
erator, we choose Y, = X, and the linear system (5) is particularly sim-
ple to solve since K} is symmetric positive definite. This is the so-called
Galerkin method. In the case of general X # Y and injective K, one may
choose Y}, := K(X}) which amounts to solving (5) with the matrix K :=
((K*Ku;,v;))ij=1,-~ and the right hand side G, = ((K*g.,v;));=0,--.N;
where K* denotes the adjoint of K. Hence, we are led back to the Galerkin
method applied to the least-square equation K*K f = K*g with data K*g¢,,
which is equivalent to finding the minimum of the functional | K f — g.||? over
X}p. Note that minimizing over the restricted set X}, has an effect similar to
Tychonov regularization, i.e. adding a penalization term (typically ||V f|?)
in the least square functional and minimizing over the whole space X. Fur-
ther, note that the least-square method reduces to the SVD-method if the
basis (ug)k=o,..~ of X} coincides with the N + 1 first vectors of the basis
(fr)k>0 in the SVD decomposition of K. We also refer to [12] for a detailed
introduction to regularization methods for inverse problems.

The numerical simplicity of projection methods comes from the fact that
X, and Y, are typically finite element spaces equipped with standard lo-
cal bases. As in the SVD-method, the discretization parameter A has to be
properly chosen. The choice of finite element spaces for X; and Y, is also
beneficial with respect to the second limitation of SVD, since the approxi-
mation properties of finite elements can be exploited when the solution has
a certain smoothness. To be more specific, assume that X = Y = L?(Q)
where Q C RY is a domain, and that K is self-adjoint and acts along the
scale of Sobolev spaces H® with a degree of ill-posedness ¢t > 0 (i.e. maps H*
onto H**"). Then, under the assumption that the solution f belongs to some
Sobolev ball B := {f € H*; ||f|lgs < M}, it is known that the Galerkin
method using finite element spaces X, with the proper choice h(e) := £ T
attains the rate of convergence

4s
sup E(|| fe — fI[Z») < Ce>ra, (6)
feB

which is optimal over all estimators (see e.g. [9] for the upper bound and
[13] for the lower bound).



The above Galerkin projection method suffers from two drawbacks, which
are encountered in all linear estimation methods. First of all, the choice of A
with respect to the noise level ¢ depends on the regularity s of the solution
which is almost always unknown in advance. Secondly, the use of a finite el-
ement space X} imposes a uniform mesh size h and therefore does not allow
any spatial adaptation. In recent years, nonlinear methods have been devel-
oped, with the objective of automatically adapting to unknown smoothness
and local singular behaviour of the solution. In the case of simple denoising,
i.e. when K is the identity, wavelet thresholding is probably one of the most
attractive nonlinear method, since it is both numerically straightforward and
asymptotically optimal for a large variety of Sobolev or Besov classes as mod-
els for the unknown smoothness of the solution, see e.g. [11]. This success
strongly exploits the fact that wavelets provide unconditional bases for such
smoothness spaces. In order to adapt this approach to the framework of ill-
posed inverse problems, Donoho introduced in [10] a wavelet-like decompo-
sition which is specifically adapted to describe the action of K, the so-called
wavelet-vaguelette decomposition (WVD), and proposed to apply a thresh-
olding algorithm on this decomposition. In [1], this method was compared
with the similar vaguelette-wavelet decomposition (VWD) algorithm. Both
methods rely on an orthogonal wavelet basis (1)) and associated Riesz bases
of “vaguelettes” defined as

vy = K 'y and uy = By (K*) M, (7)

where the scaling coefficients 3 typically depend on the order of ill-posedness
of K. We thus have the WVD and VWD decompositions

F =Y B UK funyn =D By UK f, da)va (8)
) )

In the WVD method, for a white noise model, one estimates the coefficients
(K f,ux) by applying a thresholding operator T, : x — xX(|z| > t(¢)) (where
X(P) stands for the boolean function which is 1 if P holds and 0 otherwise)
to the observed coefficients g5 := (g., u,). The estimator is thus given by

fe =3 BVT(95) ¥ (9)
)
In the VWD method, the same procedure is used, but now with g5 := (g., ¥»)
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and obtains the estimator
fer= " BT(g5)va- (10)
A

Note that the latter simply amounts to denoising the data by wavelet thresh-
olding, followed by an exact application K '. Observe also that this is equiv-
alent to applying a least-square method with X} spanned by the vaguelettes
vy (then Kj, is diagonal) to such denoised data.

On a theoretical level, similarly to wavelet thresholding in the case of
simple denoising, both WVD and VWD methods allow to recover the same
rate g TFora (up to a logarithmic factor) as for the projection method, under
weaker smoothness conditions which reflect their ability for spatial adaptiv-
ity. More precisely, this rate is obtained if the model for the unknown function
is a Besov ball B:={f € B, ,; ||fllss, <M} with 1/p=1/2+ s/(2t + d).
On a more applied level, numerical implementations in [1] and [9] have il-
lustrated the efficiency of both WVD and VWD methods, in the case of the
integration operator K f(z) = [y f(t)dt. For more general operators, how-
ever, the assumption that K~y or (K*)~'¢, are known for all indices A
only transfers the inversion problem. If an integral operator has a kernel with
a complicated structure, or if this kernel is itself derived from observations
(see [17]), this inversion has to be done numerically with additional compu-
tational cost and error. In other words the vaguelettes u) and v, might be
difficult to handle numerically (similar to the SVD functions), and in par-
ticular they are not ensured to have compact support. In this context, a
natural goal is to build a method which combines the numerical simplicity of
linear Galerkin projection methods with the optimality of adaptive wavelet
thresholding methods.

Note that adaptive Galerkin methods are well established in the context
of solving operator equation without noise: typically, the finite element space
is locally refined based on a-posterior: error analysis of the current numeri-
cal solution. Such adaptive algorithms were recently extended to the context
of wavelet discretizations, exploiting both the characterization of function
spaces and the sparse representation of the operator by wavelet bases, see
e.g. [4]. Our goal in this paper is to introduce and analyse similar adap-
tive wavelet Galerkin algorithms in the context of statistical inverse prob-
lems. Such adaptive algorithms only involve the wavelet system (1)) and
are therefore easier to handle numerically than WVD and VWD in general



situations. On the other hand, their optimality will essentially rely on the
assumption that K has certain mapping properties with respect to the rel-
evant function spaces, a fact which is also implicitly used in the WVD and
VWD approaches. Last but not least, we shall exploit in addition the fact
that the Galerkin discretization of K in the wavelet basis might be sparse
even for nonlocal integral operators, in order to improve the computational
efficiency of our algorithm.

Our paper is organized as follows. In §2, we introduce some general as-
sumptions on the models which are used in this paper, both in terms of the
mapping properties of the operator K between smoothness spaces, and of
wavelet characterization of these spaces. In §3, we briefly recall the analysis
of the linear Galerkin method, using the wavelet multiresolution spaces V;. A
first nonlinear method is proposed in §4, which initially operates in a similar
way as VWD, by thresholding the wavelet coefficients g5 := (ge, ¥,) with A
restricted up to a maximal scale level j = j(¢), and then applies a linear
Galerkin inversion of these denoised data on the multiresolution space V;.
The dimension of V; behaves like e~ so that this Galerkin approximation
can become computationally heavy, while the solution could still be well rep-
resented by a small adaptive set of wavelets within V;. Therefore, we propose
in §5 an adaptive algorithm which iteratively produces such a set together
with the corresponding Galerkin estimator. This algorithm intertwines the
process of thresholding with an iterative resolution of the Galerkin system,
and it exploits in addition the sparse representation of K in the wavelet basis.
Both methods are proved to achieve the same minimax rate as WVD and
VWD, under the same general assumptions on the operator K. For the sake
of simplicity, we present our methods and results in the case where K is ellip-
tic. The generalization of these methods and results to non-elliptic operators,
via a least square approach, is feasible and the objective of a forthcoming
paper, where we shall also compare the different estimators on the example
of a singular integral equation of the first kind.

2. Models and notations

We are interested in the statistical formulation of linear inverse problems:
we observe the action of a compact operator K : L?(2x) — L?(2y) on an



unknown function f € L?(Q2x) polluted by an additive white gaussian noise
of variance €2, i.e.
g: = Kf +edW. (11)

The unknown and observation domains 2x and 2y have dimension d and
might differ from one another. In the following when mentioning L? or more
general function spaces, we shall omit to specify the domain Q2x or €2y when
this information is obvious from the context. Note that observing g. does
not make sense pointwise but in a measure sense: for any v € L?, we observe

(9c,v) = (K f, v) +€l|v]|2 0, (12)

where 7, is a standard normal variable with covariance E(n,n,) = 0 for
(v,v")y = 0.

2.1. Assumptions on the operator K

The ill-posed nature of the problem comes from the assumption that K
is compact and therefore its inverse is not L?-bounded. This is generally
expressed by a smoothing action: K typically maps L? into H? for some
t > 0. More generally we say that K has the smoothing property of order ¢
with respect to some smoothness space H® (resp. Wy, B;,q) if this space is
mapped onto H*** (resp. WS, Bsth).

In order to avoid a blow up of the noise, the estimator f. will be searched
within a finite dimensional subspace V of L?({2x) based on the projection
method which was recalled in the introduction. In the case where Qx =
Qy =  and K is self-adjoint positive definite, we shall use the Galerkin

method, i.e.
find f. € V such that (K f.,v) = (g.,v) forallv e V. (13)

The smoothing property of order ¢ will then be expressed by the ellipticity
property

(Kf, ) ~ N f oo (14)
where H~*/? stands for the dual space of the Sobolev space H*? appended
with boundary conditions that might vary depending on the considered prob-
lem (homogeneous, periodic...).



In the case where 2x # )y or when K is not self-adjoint positive definite,
one can consider the least square method, i.e.

find f. € V which minimizes ||Kv — g.||2: among all v € V. (15)

As already remarked, this amounts to applying the Galerkin method on the
equation K*K f = K*g with data K*g. and trial space K (V). The smoothing
property of order ¢ will then be expressed by the ellipticity property

1K fllze = (KK S f) ~ 1L f e (16)

We shall not deal with this general situation here, and we therefore assume
for the next sections that K is self-adjoint positive definite and verifies (14).
As already explained, our goal is to propose an adaptive choice of V' through
the selection of appropriate basis functions within a standard wavelet basis.
A key ingredient in the analysis of our methods will be the fact that such
bases allow the characterization of the function spaces which describe both
the smoothness of the solution and the smoothing action of the operator. We
now recall these properties.

2.2. Wavelet bases

Wavelet bases have been documented in numerous textbooks and survey
papers (see [7] for a general treatment). With a little effort they can be
adapted to fairly general domains Q C RR? (see [3] for a survey of these
adaptations as well as a discussion of the characterizations of function spaces
on ) by wavelet coefficients).

A wavelet basis consists of two types of functions: scaling functions ¢,
and wavelet functions 1/,. The index A concatenates the usual scale and space
parameters j and k. Thus for standard wavelet bases on IR, we simply have
Ya = iy, = 29/2(29 - —k) (and similarily for ¢,). However, the notation
1y takes into account the possible adaptations of wavelets to multivariate
bounded domains in which case the functions 1, and ¢, usually change form
near the boundary. At the scale level j which corresponds to resolution 277,
the scaling functions (¢x)xer; span a space V; within a hierarchy V, C Vi C
-«+ C L? of nested approximation spaces. The space V; should be thought
of as a finite element space Vj, with uniform mesh size h ~ 277, and local



basis (¢x)aer;- The wavelets (1)) rev; span a complement W of V; into Vj 1.
With these notations, the wavelet decomposition takes the form

=Y aen+ > > h, (17)

AETy, 3>jo AEV;

where (¢,) xer; is the scaling function basis spanning the approximation at
level 7, (¥) xev; is the wavelet basis spanning the details at level j, and
a=a(f) and f\ = fi(f) are the scaling function and wavelet coefficients of
f, respectively. In what follows, we shall (merely for notational convenience)
always take j; := 0.

The approximation and detail coefficients of f are linear functionals of f
which can be evaluated according to

ar = (f, &) and fr = (f, ), (18)

where @, and 1 are the corresponding dual scaling functions and wavelets.
In the orthonormal case, which we do not impose here, these are the same
as the primal scaling functions and wavelets ) and ,. We also use the
notation [A| = jif A € T'; or A € V,. Finally, to simplify notation even more,
we incorporate the first layer of scaling functions (¢))aer, into the wavelet
layer (¢\)xev, and define V = U;>(V;, so that we simply have

= ha= i > Haa. (19)

AEV 3=0 |A|=j

If we truncate this expansion at level j, we obtain the oblique projector onto
the space V;

Pif =3 axpr= Y frha (20)

[A|=j IA|<j

It is well known (see e.g. [3]) that wavelet bases provide characterizations
of smoothness spaces such as the Holder spaces C*, Sobolev spaces W and
Besov spaces B, , for a range of indices s that depend both on the smoothness
properties of ¢ and 1Z For the scale of Besov spaces (which includes as
particular cases C° = B3  and W) = B, if s ¢ N or if p = 2), the

00,00
characterization result has the form

£ 113y, ~ 12722222 (£3) 51=5le, )iolle, (21)

where d is the space dimension (2 C RY).
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3. Linear Galerkin estimation

We recall here some classical results on the linear Galerkin projection
method. For some scale j > 0 to be fixed later, we define our first estimator
Je = Xyer; fenpy € Vj as the unique solution of the finite dimensional linear
problem

find f. € V; such that (K f.,v) = (g.,v) forall v e V. (22)

Defining the data vector G. := ((gc, ¥4))yer;, and the Galerkin stiffness
matrix K := ((K©,,©u))yuer;, the coordinate vector F, := (f; ) er; of fe
is therefore the solution of the linear system

K,F, =G.. (23)
The analysis of this method can be done by decomposing f. according to

fs:fj+hsa (24)

where the terms f; and h. are respectively solutions of (22) with ¢ = K f
and edW in place of g. as the right hand side. This gives the classical
decomposition of the estimation error into a bias and variance term

E(If = flz2) = I1f = fillz> + E(llhellz2)- (25)

Both terms are estimated with the help of some specific properties of the
spaces V;, namely inverse and direct estimates with respect to Sobolev spaces.
The variance term can be estimated as follows: we first use the ellipticity
property (14), which gives

hellf-r2 S (Khe, he) = e(dW, he) < el PjdW ||a|hellze. (26)

Using the Bernstein inequality which states that g2 < 2%/2|\g|| -/ for
all g € V; and dividing by ||h.||.2, we obtain

[helle < €29 PidW |12, (27)
and therefore

E(|lhe]l3) 5 €2% dim(V;) 5 %20+, (28)

10



For the bias term, we take any g; € V; and write

1f = fillee < AIf = gille2 + [1f5 — g4l
S = gillee + 29711 £ = gjll oo
S NF = gjllee + 2972 f = gjll g-vre,s

where we have again used the Bernstein inequality and the fact that the
Galerkin projection satisfies || f — fj||g-2 < ||f — gjl|g-+/2 for any g; € V.
It follows that

If = fillee S inf (I = gjllee + 29711 F = g5ll g-vr2)- (29)
g;€Vj

Assuming that f belongs to the Sobolev ball B := {f € H* ; ||f|lus < M},
we obtain from approximation theory the estimate

inf [[If — gille> + 292\ f = gilli-w] S 277, (30)

f
g; €EVj

and therefore .
If = fillze S 27 (31)
Equilibrating the bias and variance terms gives the optimal choice of resolu-

tion
Q*j(é‘) ~ 52/(25+2t+d), (32)

and the rate of convergence

E(|f = fll7) < ete/@sr2itd), (33)

which is known to be minimax over the class B. As we already explained,
the main defects of this linear method are its lack of adaptation to unknown
smoothness (j(¢) depends on s) and its lack of spatial adaptation in the
presence of singularities.

4. Nonlinear estimation by linear Galerkin

Our first nonlinear estimator f, will simply consist of applying a thresh-
olding algorithm on the data to which we apply the linear Galerkin inversion

11



which was described in the previous section: for some j > 0 to be fixed
further, we define f, = 375 <; featn € Vj such that

<Kf571/))\> = TE(<g€)¢A>) (34)

for all |A\| < j. In the thresholding operator T.(z) = zX(|z| > t(¢)), the
threshold ¢(¢) has the usual form

t(e) = Cey/|loge|. (35)

Note that such an estimator can be viewed as a variant of the vaguelette-
wavelet estimator truncated at level 7. Such an estimator would indeed be
given (in the case where (¢,) is an orthonormal basis) by

fe = Z T5(<967¢A>)K_1w)\- (36)

[Al<g

The solution f. of (34) has a similar form with the vaguelettes K 'ty re-
placed by their Galerkin approximations u} € V; such that

(Kui,v) = (1h,v) (37)

for all v € V;. We therefore expect that this estimator behave in the same
optimal way as the VWD estimator provided that j is large enough. The
following theorem shows that this is indeed true if 277 < /* where ¢ is the
degree of ill-posedness of the estimator. It should be noted that the lower
bound on j does not depend on the unknown smoothness of f.

Theorem 1. Let us assume that f belongs to B == {f ; ||fllss, < M}
with s > 0 and 1/p = 1/2 + s/(2t + d). Also assume in addition that K is
an isomorphism between L? and H' and that it has the smoothing property
of order t with respect to the space B, ,,. Then, the above described estimator

satisfies the minimazx rate

] 4s/(25+2t+d)

BIf - £l 5 [=y/iToge] , (39)

provided that j is such that 277 < g/t

12



Proof: We again write f! = f; + h., where f; € V; is the solution of
the linear problem with data g

find f; € V; such that (K f;,v) = (g,v) forallv € V. (39)

Now the term h. represents the solution of the linear problem with the
thresholding error as data, in other words h. € V; such that

<Kh5,1ﬁ)\> = Ts((Qsa ¢A>) - (g,du), (40)

for all |A| < j. Similarly to the analysis described in the previous section, we
need to estimate || f — f;]|2, and E(||h.||3,). For the deterministic term, we
remark that the space B} , is continuously imbedded into H* whenever

a<s+d/2—d/p=2ts/(2t + d). (41)

By the same arguments as in the previous section, we therefore obtain the
estimate o,
If = fillze S 27™@= (42)

This gives the optimal order £*¢/(2s+24+4) if j is large enough so that
973 < TR, (43)

For ¢ < 1, we have ¢/t < ¢+ gince s > 0, with equality if s = 0.
Therefore, if 277 < ¢!/t we obtain

”f _ fy”%? < 845/(25+2t+d). (44)

~J

We next turn to the stochastic term E(||h.||2,). If H, is the coordinate vector
of h. in the basis (1x)|x<;, we therefore want to estimate E(||H.||%). We can
write
-1
H. = K; (T.(G.) — G), (45)

where G := ((g,¥x))n<;j and To(G:) == (To({ge, ¥a)))7<j- We remark that
T.(G:) — G is exactly the error when estimating G, by the thresholding
procedure on the data G.. We shall take into account the action of K U by
measuring this error in the wavelet version of the H? norm

U115 = > 22 Pua|” (46)

|Al<j
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Indeed, we shall see that the stability property
1K Ulle S U - (47)
holds under the assumption that K~! maps H® onto L?. Our result will

therefore follow from

] 4s/(25+2t+d)

B(IT.(G) ~ Gyllt) < [=/[logel

~J

(48)

Such a rate is a particular case of classical results on wavelet thresholding,

using the fact that g belongs to a Besov ball B = {g € B1'; ||gl[s++ < M}

For this model, (48) follows e.g. from Theorem 4 in [6]. We are thus left
with proving the stability property (47). To do so, we remark that if
KU =V = (05) 5 (49)

then the function v = 375/« Ua¥, is the Galerkin approximation of K Ly,
where u is the function defined by

U= ({u,¥a))a<j and (u,9x) =0 if |[A| > j. (50)
It follows that
1K™ = vl g S 277K ullre S 27972 uf e (51)

For the projection P;K 'u, we also have the error estimate

1K 'u — K| g—ee < 2792\ K | < 27902 ul| g (52)
It follows that _
v — iK™ ull g-ee < 27772 ]| e (53)

Using the Bernstein estimate, we obtain
lv— PiE ullre < llullae, (54)
so that

lWlize S Nullm + 15K ullee S llullme + 1K ullze S llullae (55)

14



Using the wavelet characterization of L? and H!, this yields
Ve < 1Uks, (56)

i.e. the stability estimate (47). O

Remark: The assumption that K maps H! into L? which we are using
in the above result is also implicit in the vaguelette-wavelet method when
assuming that the vaguelettes

vy = B K 1y = 27N K1y, (57)

constitute a Riesz basis of L.

5. Nonlinear estimation by adaptive Galerkin

The main defect of the method that we have described in the previous
section remains its computational cost: the dimension of V; is of order
N; = 249 ~ ¢ 4! and might therefore be quite large. Moreover, in the
case of an integral operator the stiffness matrix K; might be densely popu-
lated. In this section we shall try to circumvent this problem by replacing
the full Galerkin inversion by an adaptive algorithm which operate only in
subspaces of V; generated by appropriate wavelets, and exploits in addition
the possibility of compressing the matrix K; when discretized in the wavelet
basis. Our estimator f, will therefore belong to an adaptive subspace of V;

Vi, = Span{e, ; A € A}, (58)

where A, is an appropriate subset {|A| < j}. A first intuitive guess for A, is
the set obtained by the thresholding procedure applied on g. in the previous
section, namely

Ac:={A[ <75 [{ge, a)| = ()} (59)
It would thus be tempting to define then f. € V), by applying the Galerkin
inversion in this adaptive subspace:

(Kfsﬂﬁ,\) = <957¢)\> for all A € A.. (60)

However, it is by no means ensured that such an estimator f. will achieve
the optimal convergence rate obtained in the previous section when inverting
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the thresholded data in the full space V. Indeed, there are many instances
of operator equations K f = g where the adapted wavelet set for the solution
f differs significantly from the adapted set for the data g.

In order to build a better adapted set of wavelets, we shall introduce a
level dependent thresholding operator S, to be applied in the solution domain
(in contrast to 7. which operates in the observation domain) according to

S.(uy) = upX(Jua| > 2Pt (e)). (61)

The role of the weight 2!* is to take into account the amplification of the
noise by the inversion process. The L? approximation error obtained by such
level dependent thresholding procedures is well understood: see in particular
theorem 7.1 in [5], which implies that for f = >\c¢ fatha € By, with s >0
and 1/p=1/2+ s/(2t + d) and S.(f) = Xaev S:(f2)¥r we have

1 =S-DBe v~ X 102 S Il 07 ? = 115, 7™/, (62)

[£al<2tAg

Our first result shows that .S, is well adapted to build an adaptive solution of
the inverse problem in the following sense: if we apply S, to the coordinates
of the estimator f. defined in the previous section by (34), then the resulting
estimator

Sa(fe) = Z Sa(fa,)\)dj)\a (63)

Al<i

also satisfies the optimal convergence rate.

Theorem 2. Let us assume that f belongs to B == {f ; ||fllss, < M}
with s > 0 and 1/p =1/2 + s/(2t + d). Then, we have the estimate

] 4s/(25+2t+d) (64)
64

BIf = S(R)B:) £ [ey/loge]

It follows that the adaptive estimator Sc(f:) = Xz <j Se(fer)¥n is also opti-
mal.

Proof : We want to estimate the expectation of

”fs - Ss(fe)”%? ,S Z |f6,)\|2- (65)

‘)‘|<ja|f5,)\|<2t|)‘|t(6)
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Using the fact that if |a| < n we have for all b
jal < la = bX(|b] = 2n)], (66)

we derive

1fe = Sc(fl2: < Eaev [fer — HAX( Al = 200 (e)) |2
SO = fellfe 4 32 gy <otiisryey [ Al
<

If = fellZa + e/ [ log e[ /o204,

Taking the expectation, we therefore obtain (64)

] 4s/(25+2t+d)

E(If = S.(f)l) 5 [eviloge] , (67

and the last assertion follows by triangle inequality. O

Of course, computing S.(fe) is at least as costful as computing f., and
we cannot be satisfied with this new estimator. However, it shows us that
the level dependent thresholding operator S. maintains optimality. Based
on this observation we shall now build an adaptive procedure which aims at
reducing the computational cost. To this effect, we consider a simple method
for solving

KjFE = Ts(Gs)a (68)

namely the fixed step gradient iteration : F° = 0 and
F? :F£71+T(Ts(GE) _Kstnil)' (69)

The convergence rate of F to F, will slow down for large j due to the
bad condition number of K;. Wavelet discretizations are well adapted to
circumvent this problem, using the preconditioned iteration

Fr=F"' 4 TDJ-_I(TE(GE) — K;FM ), (70)

where D; = Diag(27"). From the ellipticity of K and the wavelet charac-
terization of H~*2, it indeed follows that the condition number k(Dj 'K;)
remains bounded independently of j, so that a proper choice of 7 that de-

pends on K only will ensure a fixed error reduction rate

IF: = Flllee < pllFx = F7'ee, (71)
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with p €]0, 1] independent of j. The idea is now to perturb this iteration by
the thresholding operator S, i.e. define

FI' = S[F!™ + 7D |(To(Ge) = KGFI ), (72)

At each step n, the vector F* = (fI,) is supported on an adaptive index set
A?. The corresponding estimator for f is given

=20 [ (73)

AEAT

When comparing (72) with (70), we observe a first obvious gain in computa-
tional time : the cost of the matrix-vector multiplication K;F"~! in (72) is
of order (dim(V}))? ~ 22% while the cost of the matrix-vector multiplication
K;F" 1 in (72) is of order dim(V}) x #(A”) ~ 2%4(A"). Additional compu-
tational time can be gained using the fact that for many relevant instances of
operators K, the matrix K; can be compressed by discarding most of its en-
tries. Such instances include in particular pseudo-differential operators and
singular integrals with Calderon-Zygmund type kernel, see e.g. Chapter IV in
[3]. For such operators, the entries K;(A, i) can be a priori estimated, allow-
ing to predict in advance those coefficients in F" ' +7D; ' (T.(G.) — K; F' 1)
which will be thresholded by S. and to avoid their exact computation. With
such an approach, we can hope to decrease significantly the cost of each
iteration (72).

We shall now prove that after a sufficient number of iterations indepen-
dent of the unknown smoothness, the estimator fI* also attains the optimal
rate of convergence.

with s >0 and 1/p=1/2+ s/(2t + d). For n > log(e)/log(p), we have

Theorem 3. Let us assume that f belongs to B := {f ; ||f|ls;, < M}

] 4s/(25+2t+d) )
74

BIf = f213) 5 [e/loge]
1t follows that the adaptive estimator fI' is also optimal.

Proof : The result will follow from proving the reduction estimate
E(|F. = F2 i) < PPE(|F. — FI7Y[%) + Cley/|loge[]*/Z+2+40 (75)
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for any p > p where C' depends on the closeness of p to p. Indeed, assuming
that this estimate holds, since

E(|F. = Flz) = E(|F|2) < IFI < C, (76)
we obtain after n steps
E(|F. — FI'[2) < max{p™ [ey/[loge|]*/=+2+01, (77)
Since 4s/(2s + 2t + d) < 2, we have

,,3210g(6)/10g(p):5210g(ﬁ)/10g(p) < B |10g5”48/(28+2t+d) (78)

if p is chosen close enough to p, so that (74) holds. In order to prove (75),
we introduce the intermediate vector

1::_:71—1/2 - an_l + TDJ-_I(TE(GE) - Kstn_l)’ (79)

for which we have
IF. = E2 e < plIF. = E 0

We can then write

1P — F2% = 3 [ for — 5 PXU A2 > 28 e)) 2 (81)

[Al<g

Denoting by K a constant strictly larger than 1 to be fixed later, we split
the above sum into three parts >;, ¥y and X3, respectively corresponding to
the index sets

L= {A < jst [f252] < 22P8(e) and | foa] < K22P¢(e)},

L = {|A < st [fI372 2 2M(e)),

Iy = {\ < gst [f257] < 208¢(e) and |f. 5] > K20PE(e)}.

If A € I, we have |f. ) — f";l/QX(\f:;l/Q\ > 2!At(¢))| = |f..z|. Using again

£,

the fact that if |a| < n we have |a| < |a—bX(|b] > 2n)| for all b, we can write

[ferl < [fer = HX( ] = 2K2V8(e))]
<|fer = Al +1H = AX( AL > 2K21(e))).
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It follows that

N1 <20 = fllFe + 22 gy carzirine) |l

N Hfs - f||%z + [5 |10g5|]45/(25+2t+d)’

so that
E(El) 5 [8 |10g6”45/(25+2t+d). (82)
If A € I, we have
fea = FINEXUF ) = 2908(0)) ] = (o — £2517), (83)
so that
= |F. — FI 75 (84)

If X € I3, we have |f.\ — fr) 1/2 X(|f25 1/2| > 28¢(e))| = | for| and

< \f“— [ 1/Q\Jr?'”t( )-

On the other hand, since |f. | > K2!*t(e) and |f2;\1/2\ < 28t (e), we also
have
Fer = 123171 2 (K = 1)2%¢(e)). (85)

It follows that

Fea = IINPXULZRT 2 2900(€)) | < ol fen = S2X1, (86)

so that
K\’ n—1/2|2
So < (g ) IE = 2 g, (87

Combining (84) and (87), we obtain

K \? n—1/212 K \? 2 n—1)]2
Lo+ S0 < () IR = F27 2 < () PR - F27 e (89)

Combined with (82), this yields the claimed estimate (75) with p = £-p,
which can be made arbitrarily close to p by taking K large enough up to

enlarging the constant C' which comes from the estimation of ;. O
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