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Abstract:

In mathematical finance diffusion models are widely used and a variety of dif-
ferent parametric models for the drift and diffusion coefficient coexist in the
literature. Since derivative prices depend on the particular parametric model
of the diffusion coefficient function of the underlying, a misspecification of this
function leads to misspecified option prices. We develop two tests about a para-
metric form of the diffusion coefficient. The finite sample properties of the tests
are investigated in a simulation study and the tests are applied to the 7-day
Eurodollar rate, the German stock market index DAX and five German stocks.
For all observed processes, we find in the empirical analysis that our tests reject
all tested parametric models. We conclude that affine diffusion processes might
not be appropriate to model the evolution of financial time series and that a
successful model for a financial market should incorporate the history of the
observed processes or additional sources of randomness like stochastic volatility
models.

JEL classification: C12, C14, C22, C52

Keywords: Diffusion, Continuous-time financial models, Nonparametric meth-
ods, Kernel smoothing, Goodness of fit test, spot rate models, interest rate,
stock market index, Empirical Likelihood

1 Introduction

In mathematical finance diffusion processes are widely used to model the dy-
namics of stock prices, interest rates or other processes observed in the market.
In the last decades many parametric models have been proposed to capture the
dynamics of these processes. Since the prices of derivative securities and the
calculation of risk measures depend on the particular choice of the model, each
model yields different prices and risk measures.

In our approach we assume that the price process of an underlying is a one-
dimensional diffusion process {X (¢), t € [0,T]} defined on a probability space
(2, F, P, {Fi}icio,r7)- We assume that X is a strong solution of the stochastic
differential equation

dX(t) = m{X ()}t + o{X(®)}dW () t>0 (1.1)

where m and o are smooth functions, such that a unique strong solution of
(1.1) exists and {W (¢), t € [0,T]} is a standard Brownian Motion adapted to the
filtration {F;}¢c[o,7]- Furthermore we assume that o has continuous derivatives
up to the second order.
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Of particular interest in mathematical finance is the pricing of contingent
claims with a payoff function that depends on the evolution of the underlying
process X during the time period [0,T]. Since the derivative prices are calcu-
lated under the risk neutral equivalent martingale measure, the drift m does
not influence the prices, Karatzas & Shreve (1998) and Musiela & Rutkowski
(1991). The parameter of interest is the diffusion function o that captures the
volatility of the underlying. In financial application it is often assumed that the
diffusion coefficient o belongs to a set of parametric functions, i.e. there exists
an unknown parameter 6y € © such that o(x) = o(6p, ). A misspecification of
the diffusion coeflicient’s parametric form could lead to misspecified derivative
prices.

In the field of interest rate modelling, the specification of m is also important.
However, a first step in evaluating a particular parametric interest rate model
could be a test of the parametric form of its diffusion coefficient.

For the above reasons, we propose a procedure that tests a parametric form
of 02 using T'n discrete observations of X, where n is the number of observations
per unit of time. The hypotheses of the test are

Hy : 30p€0 : foreveryt € [0,T]: o?{X(t)} = 0*{, X(t)} P-a.s.
H, : V€O : foreveryte|[0,T]:
|02 {X ()} — o?{0, X (1)}| > crAn(X (1)) P-a.s.

where A,,, the local shift in the alternative, is a sequence of bounded functions
and ¢, is the order of difference between Hy and H;. This choice of the alter-
native ensures that the power of the proposed test depends on the number of
observations n.

A related problem is already discussed in the literature by Ait-Sahalia (1996b)
and Hong & Li (2002). Their aim is to test the complete dynamics of the diffu-
sion in (1.1) which is determined by the diffusion coefficient o as well as the drift
m. The test by Ait-Sahalia (1996b) is based on the comparison of the paramet-
ric marginal density with its nonparametric estimator. Since the dependency
structure of the observations is not reflected in the marginal distribution, this
test can not distinguish between processes with the same marginal density but
different dependency structures. Hong & Li (2002) extend the results by apply-
ing the Markov property of X. Their test compares the nonparametric estimator
of the transition density with the parametrically estimated transition density,
as implied by the null hypothesis.

As mentioned above, in many financial applications the parameter of interest
is the diffusion coefficient function ¢ of X. On the other hand the estimation
of the drift function m as well as the estimation of parameters of m is a diffi-
cult task, even if a long history of data is given, Merton (1980) and Ait-Sahalia
(1996a). For these reasons we introduce a test about o2 that does not incorpo-
rate the drift m and is thus robust to its misspecification.

The proposed test statistic is based on the comparison of a parametric es-
timator 02(d,z) and a nonparametric estimator S\ (z) of o0*(z). We apply an
estimator St(") (x) that is proposed by Florens-Zmirou (1993) and is a particular
choice of the more general estimator proposed by Jacod (2000).

We assume that the diffusion process X is observed at equidistant time
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points
0,1/n,...,([Tn] —1)/n,[Tn]/n

where [a] denotes the integer part of a. We denote by X; the value of X at i/n,
ie. X;:=X(@i/n)fori=0,...,[Tn].
For the remainder of the paper we make the following assumptions

(A1) The process X given as the solution of (1.1) is stationary and a-mixing,
ie.

a(u) = sup |P(AB) — P(A)P(B)| < ap"
Aeft;BEff_f_u

for some a > 0 and p € [0,1). Here F° denotes the o-algebra generated
by {(Xu),u > t}. For an introduction into a-mixing processes see Bosq
(1998) or Billingsley (1968). As shown by Genon-Catalot, Jeantheau &
Larédo (2000) this assumption implies that the both {X;,i =0,... ,[nt]}
and {(Xi41 — X;)%,i=0,...,[nt] — 1} are a-mixing.

(A2) The following holds for o2:
lo%(8,z) — 02 (0o, )| < D()]|6 — 6| Vzelx
where D(z) is a constant depending on z and the set Ix is defined by
Ix :=={z | f(z) > e >0}

with an arbitrary number ¢, where f(z) denotes the marginal density of
X.

(A3) fis a square root consistent parametric estimator of § within the family
of the parametric model, i.e. [|§ — 8|| = O,((nt)~/2).

The particular choice of 6 does not influence the test as long as assumption
(A3) holds. However, there exists a large literature about parameter estimation
in diffusion models, see among others Bibby & Sgrensen (1996).

The paper is organized as follows. In Section 2 we introduce two testing
procedures that are based on the comparison between parametric and nonpara-
metric estimation of ¢2. In Section 3 we analyze the finite sample properties
of both tests by a simulation study. Finally we apply one proposed test to the
7-day Eurodollar rate, the German stock market index DAX and five German
stocks.

2 Testing procedure

As mentioned in the introduction our test is based on the comparison of a
parametric estimates and a nonparametric estimates of o2. In a first step we
discuss nonparametric estimators of 2.
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2.1 Nonparametric estimation of the Diffusion coefficient

Florens-Zmirou (1993), Jiang & Knight (1997) and in a more general framework
Jacod (2000) introduce a nonparametric estimator for o2 that is based on the
local time of X.

DEFINITION 2.1 For a diffusion X we define
e occupation measure vy: vi(B,w) = fot 1p{X (u,w)}du
e Local Time: Ly(.,w) = d”* for P—a.e.w € Q)

This definition is given in Bosq (1998). Heuristically speaking, the occupa-
tion measure v;(B) measures the time that the process X spends in the set B
up to time ¢ and the local time L;(x) measures the time that X spends in a
neighborhood of z.

Note, that a different definition of the semimartingale local time is given by
Karatzas & Shreve (1991). They define the semimartingale local time A;(z) as
a random field such that for every Borel-measurable function k£ : R — [0, 00)
the following equation holds among others:

/ KX () Yo (X (u,w))du = 2 / ~ k(a)Ay(a, w)da (2.1)
0 —o0

for P —a.e. w € Q. The relationship between L and A is

where f(z) denotes the marginal density of X.
For the nonparametric estimator based on the discrete sample of X we in-
troduce the notation

)= ()

where K is a Lipschitz continuous kernel with support [—1; 1], i.e. a probability
density function on [-1,1] and A > 0 is a bandwidth parameter. From the
definition of L it follows

=li Ky ( . 2.2
= lim / 2(X (u) ~ 2)du (2.2
A nonparametric estimator Lg") (z) of L¢(x) based on the observation Xy, . .. , X[z

is then given by an approximation of the integral in (2.2), i.e

LM (z Z Ky, (X (2.3)

where h,, is bandwidth tending to 0 for n — oco. Florens-Zmirou (1993) proves
that L\ (z) converges in the L? sense to Ly(z), i.e. if nhi —s 0 then

E [{L§"> (z) — Lt(x)}2] —0. (2.4)
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Using equation (2.1) we get

t
2,(z) = lim / Kn (X (1) — 2) d(X)a
h—0 0
where (X); denotes the quadratic variation of X up to time ¢. We define our
estimator of A(x) by approximating the integral,

[tn]—1

2A™ (z Z Kn, (X; — 2) {Xip1 — X;}2. (2.5)

Combining (2.3) and (2.5) yields a nonparametric estimator S,g") (z) for o%(x),

n Yt K ( i m) {Xiy1 — X}’
SEncs)

which was first given in Florens-Zmirou (1993).
Other estimators of o2 are discussed in the literature. Kutoyants (1998)
propose a discrete approximation of the Tanaka-Meyer formula,

(@) = (2.6)

t
Ay(z) = (X(t) —2)” —(X(0) —2)" +/0 1(—o0,0) (X (u))dX (u)

while Ait-Sahalia (1996a) applies the Kolmogorov forward equation for ergodic
diffusions to get an estimator for A,

x
Efo)] = [ m(@)f(a)da
—0oQ

where f denotes the marginal density of X. Note, that the last equation directly
follows from the Tanaka-Meyer formula. Stanton (1997) proposes a nonpara-
metric method that separately estimates the drift m and the diffusion coefficient
. S,g") (x) coincides with one of the estimators given there. As we are interested
in a smooth estimator for o2 and do not want to use any information about the
drift coefficient m, we will apply the estimator in (2.6).

Another approach to estimate the diffusion coefficient is based on time dis-
cretization. From It6’s formula we get with an appropriate function p depending

on m and o
(i+1)/n
/ o2{ X (u)}du

i/n

{(Xip1 — X;)°

(i+1)/n
+ / p{ X ()W () + O(n~2)

A Jz(Xi)% + l"(Xi)\/gwi (2.7)

where w; ~ N(0,1) for all ¢ = 0,...,[Tn] — 1. This approach is applied by
Hoffmann (1999) to develop an adaptive nonparametric estimation procedure
for o using wavelets. In Hérdle, Kleinow, Korostelev, Logeay & Platen (2001)
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a discrete time approximation similar to (2.7) is applied to nonparametrically
estimate the drift m and the diffusion coefficient ¢ in (1.1) with a Nadaraya-
Watson estimator. Note, that a Nadaraya-Watson estimator for o2 (x) applied
in (2.7) coincides with S\™ (z).

To achieve a test statistic for a particular set of points z1,...,z; we will
now investigate the joint asymptotic distribution of S(")( 1)y--- ,S§”) (zk)-

PROPOSITION 2.1 Given k points z1,... ,Tr and under the assumption
nh3 — 0 the random vector

20 = (2@, AP @)

with

(n)
Z"(z)) = \/nhL{™ (z;) <5t2 (z1) 1) I=1,... .k (2.8)
o?(xp)

converges in distribution to a random vector Z where Z has a joint standard
normal distribution.

PROOF:
We proof the result only for ¢ = 1. From Theorem 1 in Florens-Zmirou (1993)

and Theorem 1 in Jiang & Knight (1997) we know that Zl(") (x;) converges in
distribution to Z; ~ N(0,1) for every [ = 1,... ,k. We introduce the notation

a = min{|z;, — x| b,l=1,...,k 1 #12}
ng = min{nla > 2h,}. (2.9)

Following Florens-Zmirou (1993) we define

mit1(21) \/>K< ) [{Xz+1 - X} - @

[nt]—1
MM (x Z miy1(z)
and get
(n) M™ ()
Zl (.’L'l) = = .
o?(z1)\/ Ly (z1)
From (2.4) we have that
(n)
~ M (z
Zn(ml) = ! ( l)

o2 (z1)y/Li(mi)
also converges in distribution to a standard normal random variable.
For k arbitrary numbers u; we define

u

C=——M
o?(x1)/Le(z1)
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and
~ k . [nt]—1 k
A Zulzn(ﬂvl): Z chmz’+1($l)
=1 =0 1=1

Then we have from Lemma 2 in Florens-Zmirou (1993) for every n > n¢ and
with the notation E“"[.] = E[.|F;/,] that

[nt]—1 [nt]—1

k 2
> o (S cmnta) | = St 3 it
=0 =1
ZC, (z1) Le () ZUI

and

[nt]—1 [nt]—1

}:xy"E:amﬂlm <§:Km3§21%|mﬁlmn.

Applying proposition 5 in Florens-Zmirou (1993) we have that

200 7

in distribution, where Z(®) is normal distributed with zero expectation and
variance Ele u?. Since Lg") (1) converges in the Lo sense to L;(x;) the same
follows for

k
> wZi™ (x) .
=1

The convergence in distribution of Zt( " toa joint normal distribution follows
from applying the Cramér-Wold device, Billingsley (1968). O

We remark that Proposition 2.1 is also valid if we replace o?(z) in (2.8) by
its smoothed version

S K, (X — 2)0?(X5) (2.10)
S Ko (Vi)

k2

% (x) :=

It is well known that for fixed n and h,,, S\ (z) is a biased estimator of o2 (z).
Thus we will not compare it directly with o2(6,x) but with 2(6, z).

2.2 Goodness of Fit Test

For an arbitrary point z € I'x we introduce the test statistic

(n)
T\ (2) = \/nhaL{™ (2) (M - 1) (2.11)

2(0,x)

(n)
: ndem<§@f >+MW)
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From Proposition 2.1 we know that Tt(") (z) converges in distribution to Z + R,
where Z is standard normal distributed and R is the limit of

52 — 520 (n)
Rg") () =/ nhnLgﬂ) (z) (:2_2(& $§05m) S&t2 (:(;;.)

for n — oo. Proposition 1 and 3 in Florens-Zmirou (1993) imply that

5™ (2)/5%(x) converges to 1 in the L? sense if nh* tends to 0. Under H
assumption (A2) and (A3) imply

and it follows with Proposition 1 in Florens-Zmirou (1993) and L.(z) = tf(z)
that

R (z) = V(@) O0p(Vhy) {1+ Op(nh)} = Op(v/1y).

To study the properties of the test statistic Tt(n) () under the alternative
H,, we make the following assumption about ¢, and A,,.

(A4) A, (z) is bounded with respect to n and z. and ¢, = 1/+/nth,,.

With assumption (A4) we have under the alternative

&2($) - &2 (éa Z‘) N 0'2('7:) - 02(é3 .’E) ann(m)
52(6, ) 02(6, z) (6o, )
and thus R (z) = A, (z) /0> (6o, x)

To get a global Goodness-of-F'it test we choose k arbitrary points 1,... ,zx €
Ix and built the test statistic

7" = f{n"” (21)}? - (2.12)

1=1
We now study the asymptotic distribution of Tt(") under the null hypothesis.

PROPOSITION 2.2 If Hy holds and nh3 tends to zero, we have for every
k and every set of points x1,... ,xy € Ix with x; # x; for i # j that Tt(")
converges in distribution to a x2-distributed random variable with k degrees of
freedom.

PROOF:
With (2.9) we have for every n > ng and for every i # j that

Cov{T{™ (z:), T,™ (25)} = 0

and from Proposition 2.1 it follows that Tt(") is asymptotically x2-distributed
with &k degrees of freedom. |
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With a similar proof we obtain that Tt(") converges under the alternative
to a non-central x2-distributed random variable with k degrees of freedom and
non-centrality parameter S A2 (z;)/0* (6o, 1)

We remark that the proposed test statistic is asymptotically equivalent to
the L, distance between S\™ and 52(f,.). In a nonparametric regression context
Hérdle & Mammen (1993) propose a Lo test statistic

Tyt = nhi / (5™ (2) = 5(6, )V (w)da

with a certain weight function w(z). For a fixed bandwidth h,, and with &k, =
1/(2hy), 1 = hyp +2h, (I = 1) for I =1,... , k, we get that

kn +(n)
L () 1 Lt (1) (n) ~2/) 2
—Ty" = —nhy, E h 570,z
kn t kn i 0_4(0 .’L‘){ ( ) ( l)}

is the Riemann approximation of v/h,THra with the weight function 7 (z) =
L (2)/5" (6, ).

In the simulation study in Section 3 we find that a test based on Tt(") is
too conservative for all considered models. The reason could be that w(x) does

not reflect features of the empirical distribution of S(")( 1) = 62(8,z;). One
way to improve the test is to change the weighting function 7 (z). The approx-
imation in (2.7) suggest to modify the test statistic in a way that captures the
heteroscedasticity of the error terms p(X;)+/1/nw;. For this reason we will now
propose a test statistic based on the empirical likelihood concept.

2.3 Empirical Likelihood

The main advantage of Empirical Likelihood methods is their ability to studen-
tize internally and to correct test statistics and confidence intervals for empiri-
cally properties of the data. This is the reason, why we introduce a test about
o based on the EL methodology. For a detailed discussion of EL tests and con-
fidence bands we refer to Owen (2001). In a time series context a EL test about
a parametric model of the drift of a time series is proposed by Chen, Hirdle &
Kleinow (2001) and in a diffusion context by Chen, Hardle & Kleinow (2002).
We will follow the results of Chen et al. (2001) without giving the proofs. We
remark that all proofs are also valid in the context of this paper. However, for
the convenience of the reader we show the main principles of the EL as applied
to the present situation.

For the sake of simplicity we study the test of o based on the observations
up to time ¢t = 1. The general case for ¢ € [0, 7] follows directly.

With the notation

0" {s}:= K (X"h_”’> [0 {Xii1 = XY = s@)]  i=0,.,m—1

for a positive function s with support Ix, we get from the definition of S§") (z)
for any z € I'x

5™ (@) - 6%(0,2) = 2 {526

nhy, L(")
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and might rewrite 7" (z) in the following way

n—1
(n) / 1 (s

The first part of (2.13) is a factor to standardize the variance of Tl(") (). The
second part is a mean over ngz){&2 (4,.)} that gives equal weight 1/n to every i.

To introduce the EL concept we now replace Tl(") (z) by a similar statistic
which gives different weights to each i.

() @) 152(4 ‘
T (z) = W\fzpm 36,0 (1)

with 7' p; = 1. For a fixed point # we follow Chen et al. (2001) to derive an
EL test statistic.
The empirical likelihood £ for s(z) is defined by

L{s(z)} := max 1:[ pi(z) (2.15)
=0
subject to
ipi(x) =1 and ipi(x)ngw){s} =0. (2.16)
=0 =0

The second condition reflects that under the null hypothesis E[n{™{52(4,.)}]
converges to 0 for n — oo and h,, — 0. The test is based on the EL ratio

£{5%(0,2)}/£{S™ ()}, which should be close to 1 if the null hypothesis is true.
To formalize this idea and to derive a test statistic we study the properties of

L{s(x)}.
Following Owen (2001), we find the maximum of £{s(z)} by introducing
Lagrange multipliers and maximizing the Lagrangian function

n—1 n—1 n—1
H(p, A1, 2) = Z log pi(z) — A1 sz-(w)m@{s} — A2 {sz(l") - 1}
=0 =0 =0
where \; and Ay depend on x. The first order conditions are the equations in

(2.16) and

6%(1), )\17)\2) _ 1
Ipi(z)  pi(x)

for all i = 0,...,n— 1. With the normalization Ay = n and A(z) = A\ /A2 we
obtain the optimal weights

— )\1’)711){5} )\2 =0

pil) =n~ L+ M@ ()] (2.17)
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where A(z) is the root of

n—1 (z)
i {s} _
; 1+ (@)™ {s} > (218

The maximum empirical likelihood is achieved at p;(x) = n~! corresponding to

the nonparametric curve estimate s(z) = Sf") (z). For a parameter estimate 6
we get the maximum empirical likelihood for the smoothed parametric model
L£{5%(0,z)}. The log-EL ratio is

L{*@,2)} _
£{s{" ()}

To study properties of the empirical likelihood based test statistic we need to
evaluate £{52(6,z)} at an arbitrary = first, which requires the following lemma
about the Lagrange multipliers A(z) that is proved in Chen et al. (2001).

H5%(0,x)} = og[L{5% (8, z)}n").

LEMMA 2.1 For s(z) = 62(0, ) and under the assumptions (A1) - (A4) and
the additional assumption E{exp(ao|n(X;y1 — X;)? — 0?(X1)|)} < oo for some
ag > 0 we have

sup |A(@)| = 0p{(nhs) ™'/ log(n)}.
rzEelx

where we use the notation A, = 0p(By) iff Ve > 0 : lim, o P[|An/By| >
e] =0.

An application of the power series expansion of 1/(1 —.) applied to (2.18)
and Lemma 2.1 yields

Zn”’{a [2 iG50,0p7 =0, (@219)

With the notation

Uj(z h Z[nu){

we have from Lemma 2.1 and (2.19)
Nez) = Uy Hz)Uy(2) + 6p{(nhyn) log?(n)}. (2.20)
From (2.17), Lemma 2.1 and the Taylor expansion of log(1 + .) we get
Ha%(0,2)} = —2log[L{5(8,z)}n"

n—1

= 2 Z log[1 + A(@)n{" {526, ) })]

1=0
= 2h,A(@)0y — nhp X2 (2)0s + 0,{(nhy)~"/?log®(n)}
(2.21)

Inserting (2.20) in (2.21) yields

U 0,0)} = nhaTy " (@)07 (@) + Op{(nhn) +/*log?(n)}
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and with the definition of U; and U, we approximate /{52(f,z)} by

526,2)) = Sice 1745 6,.))
t{5*(0,2)} = S0P {52(8,.)})2

and for the general case t € [0,T] we have

. [tn]—l (w) ~9 é
6{5*(0,2)} = %2731 s {f; ( ")}2 : (2.22)
Yizo (m; {6%(8,.)})
For k points 1, ...,z we define the global EL Goodness of Fit test statistic

7™ as in Chen et al. (2001),

k
71(") = 252{&2(é> 1)}
=1

and for t € [0, T

k
7 =Y 616 (0,7)} (2.23)

=1

Asin Chen et al. (2001) we can show that the asymptotic distribution of 7;(")
under the null hypothesis is again a x2-distribution with k degrees of freedom
and that 1/ k’ﬁ(") is asymptotically equivalent to a L, distance between St(") and
52(6, ). This means that both test statistics, Tt(") and 7;(”), are asymptotically
equivalent. However, the simulation study shows that the ability of the EL test
statistic to internally use features of the empirical distribution of St(n) —52(0, z)
results in a smaller empirical level and thus produces more reliable results.

2.4 Extension to Time-inhomogeneous Diffusion Coeffi-
cients

To extend the proposed methodology to time-inhomogeneous coefficients, we
now assume that the diffusion process X is given as the solution of

dX(t) = m{X(t),t}dt + o{X(t),t}dW (t) t>0
and we replace our null hypothesis by

H) : 36,€0 : foreveryt € [0,T]:
o {X(t),t} = 0%{6o, X (t),t} P-as. .

Furthermore we replace assumption (A2) by
(A2)

1026, z,t) — 02(80, ,t)| < D(z,t)||0 — 0ol Vazelx, Vte[0,T]
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where D(z,t) is a constant depending on z and ¢ and the set I'x is defined as
in (A2).
Applying Itd’s formula to g(z,t) := fow l/a(é,z,t)dz7 Karatzas & Shreve
(1991), we get for Y (¢) := g(X (¢),1)
v () = my {X (1), 4t + 2D gy s o
o(f,X(t),t)

where my (z,t) is given by

iy (2,0 = 2g(,1) + g, Omla, ) + 055 g, )0, 0,9)

By replacing x by ¢g~!(y) in the last equation, we get from the assumptions
(A2’) and (A3) under the null hypothesis a diffusion ¥ with constant diffusion
coefficient equal to 1 4+ O,((nt)~1/2), for which 1 is a square root consistent
estimator. Since the proposed tests do not depend on the drift, and the diffusion
coefficient of Y is asymptotically independent of ¢, we are now in the situation
described above.

3 Finite Sample Properties

We investigate the finite sample properties of the two proposed tests by simu-
lating various models and applying the test to simulated data. The simulated
process X follows the general stochastic differential equation

dX(t) = m{0, X (t)}dt + o {0, X () }dW ()  t>0 (3.1)

where 6 is a parameter vector. To get discrete observations of X we use a
Milstein scheme

X (t +0) = X(t) + m(8, X ()8 + o (8, X ())Voe(t) + 302(0, X(1))6{e(t)? — 1)

for § > 0 and a sequence of independent standard normal random variables &(¢),
Kloeden & Platen (1999).

In the empirical analysis we test parametric models for the diffusion coef-
ficient of the spot rate. For this reason we will investigate the fixed sample
properties of the tests applied to these models. A summary of the investigated
models is given in Table 1. The parameters are chosen according to the esti-

Name o(x) 03
constant (VC) f;  0.013
square root (CIR) 03/ 0.066

Chan, Karolyi, Longstaff, Sanders (CKLS) 63z'® 1.2

Table 1: Diffusion coefficient models used in the simulation study

mated values in Ahn & Gao (1999). They estimate the parameters of different
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models applied to the one month US treasury bill rate. Note that they did not
estimate the parameters for all combination of drift and diffusion coefficients
that we use here. However, the parameters in our simulation study generate
trajectories that are positive and in the range of about 0.02 - 0.2 and thus
might be a good choice to simulate interest rate processes.

To study the influence of the unknown drift function m(z) on our test results,
we use two different drift functions in our simulation, a linear mean reverting
drift and a non linear function proposed by Ahn & Gao (1999). Both functions
are given in Table 2 together with the parameter values used for the simulation.

Name m(x) 01 02
Linear mean reverting model (LMR) 6:(f2 —z) 0.13 0.08
Ahn, Gao model (AG) 0:(02 —x)x 34 0.08

Table 2: Drift models used in the simulation study

Ahn & Gao (1999) also estimate a model introduced by Duffie & Kan (1996),
where the diffusion coefficient is given by o(z) = /03 + f42. Since this model
is not consistent for values of X (¢) smaller than —65/6, we will not use it in our
simulation study.

For the simulation we use every combination of the given diffusion coefficient
and drift function, i.e. we simulate paths from 6 models. For every model we
simulate 1000 paths of length nt = 1000, nt = 3000 and nt = 5000. For
nt = 1000, 3000 we simulate 10 observations each day, but sample the process
daily. For nt = 5000 we simulate 20 observations per day and sample the data
daily. Since the parameter values given in Tables 1 and 2 are annual values,
we choose n = 250 (250 trading days per year) and ¢t = 4,12,20 years. The
parameter estimates are obtained from the quadratic variation.

Both test statistics, Tt(”) and 7;("), depend on the choice of the degrees of
freedom k, on the bandwidth h and on the points z1, ... ,z;. For given degrees
of freedom k we choose

h=1/(2k) and z; =h+2h(l—1) (3.2)

forl =1,...,k. This choice guarantees that the random variables Tt(") (1) and
2{52(,2;)} are uncorrelated.

For nt = 1000 the empirical levels of both tests are shown in Figure 1. The
results indicate that the empirical level of the EL test statistic 7;(") is close to
the nominal level only for degrees of freedom between about 4 and 6 and the
test based on Tt(") is too conservative even for small degrees of freedom. This
statement holds independently of the model that is tested. The nonlinearity of
the drift seems to have almost no impact on the empirical level of the test.

Figure 2 shows the empirical level for the test about the CKLS diffusion
coeflicient when the length of the simulated paths is 3000 (left column) and
5000 (right column), respectively. For the simulation we used a nonlinear drift
(the AG model). As we expected the empirical level is closer to the nominal
level when the sample size is increasing. For the LMR drift and the other two
diffusion functions we get similar pictures.
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Figure 1: Empirical level of T\™ and 7™ for different models and path length
nt = 1000. On the vertical axis the empirical level is displayed and the horizontal

axis shows the degrees of freedom (k). The solid line is the level of 7;("), the
dotted line is the level of Tt(") and the thin vertical line is the nominal level of
0.05.

5 10 15 5 10 15
Figure 2: Empirical level of Tt(") and 7;(”) for the CKLS model with AG drift
and path lengths nt = 3000 (left) and nt = 3000 (right). On the vertical axis the
empirical level is displayed and the horizontal axis shows the degrees of freedom

(k). The solid line is the level of 7, the dotted line is the level of T\™ and
the thin vertical line is the nominal level of 0.05.
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The simulations show that the performance of the test strongly depends
on the choice of k, the degrees of freedom of the asymptotic x2-distribution.
If k£ is too large, the approximation of Tt(") (z) and £,{5%(0,2)} by normally
distributed random variables fails and thus the test statistics 7, and 7™ are
not x2-distributed. In addition we see from Figure 1 that the empirical level of
the test increases with k. The reason seems to be clear, the larger k the smaller
is h,. It is a well known feature of nonparametric estimators that the variance
of the estimator is decreasing in h,. Thus a larger k, i.e. smaller h,, yields a
larger variance of Tt(") () and £,{62(6,z;)} and thus a larger expectation of the
test statistics. For the 6 simulated models we report the estimated variance and
mean of the test statistics in Table 3. It also appears from Figure 1 and Table 3
that the internal studentization of the EL test statistics reduces the variance of
7;(") and thus the empirical level of the test is closer to the nominal level than

the empirical level of the T,™ test.

Vasicek Square Root CKLS
k mean Var mean Var mean Var

EL test statistic 7,
LMR 3 242 532 231 489 237 538
7 687 16.84 6.75 16.25 7.08 19.06
11 11.60 35.04 11.74 31.12 1218 34.40
AG 3 2.43 5.49 2.34 5.11 2.25 4.88
7 6.89 16.51 6.91 16.66 6.85 17.18
11 11.81 3430 12.056 37.71 11.93 34.31

test statistic T,
LMR 3 2.82 7.54 2.61 6.75 2.82 7.44
11 12.70 41.56 12.26 37.10 12.42 37.98
AG 3 283 745 2.63 6.72 2.66 6.71
11 12.67 37.16 12.43 39.56 12.51 41.07

Table 3: Mean and variance of the two test statistics estimated from a sample
of 1000 paths with length nt = 1000.

On the other hand, the comparison of the parametric function 52(6,.) and

St(") is done only at k points. This means that the smaller & the less func-
tion values are used for the test decision. One way to solve this trade off is
to use overlapping intervals for the calculation of the smoother. But in this
approach we lost the asymptotic independence of Tt(") (x;) and thus Tt(") is not
asymptotically x2-distributed. A similar argument holds for 7;(").

One possible solution to solve the problem of small sample sizes and to make
the test more reliable in such situations is the use of a bootstrap approximation
of the asymptotic distribution. Using the bootstrap methodology we could
construct the test statistics from small overlapping intervals (z; — hy, 27 + hy,).
One possible bootstrap approach that could be applied in this situation is the
local bootstrap method introduced by Paparoditis & Politis (2000). It captures
the dependency structure of the data. However, the application of bootstrap is
beyond the scope of this paper.
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To investigate the power of the EL test we simulate 1000 paths of the Vasicek
model with linear drift (nt = 1000) and test the three diffusion coefficient models
given in Table 1 with this data. The result is shown in Figure 3. It appears
from that figure that the power of the test for the square root model is smaller
than that of the CKLS model. However, the difference of the empirical rejection
level between the (true) Vasicek model and the square root model is significant.
This means that the proposed test is able to distinguish these two models. An
inclusion of the Ahn, Gao drift does not change the result in principle. Since
the test based on Tt(") does not hold its nominal level, we will not use it in our
empirical analysis and we do not investigate its power.

1

02 04 06 08

Figure 3: Empirical power of the EL test 7;(") the upper line corresponds to
the CKLS model and the middle one to the square root model. The lower line
represents the empirical level of the Vasicek model. The paths are simulated
from the Vasicek model (nt = 1000, 1000 trajectories)

3.1 Empirical Analysis

We now apply the proposed EL test to the observations of the 7-day Eurodollar
rate (interest rate), the DAX stock market index and five German stocks. As
already mentioned above, the Tt(") test statistic is not applied to the empirical
data, since it does not produce reliable results when applied to finite samples.

We start with the analysis of the 7-day Eurodollar rate. The data we use
are daily observations of the spot rate from 1975/01/02 to 2002/02/18. This
are 7078 observations.

All models in Table 1 are tested. The parameters estimated from n = 250
trading days per year are given in Table 4 along with the values of the EL
test statistic. As can be seen, the EL test rejects all models, independently of
the chosen degrees of freedom of their asymptotic y2-distribution. This result
indicates that the deviations of the estimated parametric diffusion functions
from the nonparametrically estimated one can not be explained by random
fluctuations. Since the drift is not used in the construction of the test, an
inclusion of a specific drift function will not change the result. In particular,
we have seen in the simulation study that the test is robust at least against
quadratic drift functions. This means that despite the importance of the drift



18 Kleinow: Testing Diffusions

20.00
17.50
15.00
12.50
10.00
7.50
5.00
2.50

1975:01 1980:01 1985:01 1990:01 1995:01 2000:01

source: Thomson Financial Datastream

Figure 4: The 7-day Eurodollar rate

function of interest rate models for the valuation of continent claims, all spot
rate models that use one of the tested diffusion coefficients can be rejected. This
result coincides with the empirical findings by Hong & Li (2002).

value of 7, ]
k 3 7 11
0.05 critical values  7.815 14.067  19.675
o(0,z) =40 68.906 274.721 550.362 0.04260
o(0,z) = 0z 19.481 56268  111.100 0.12554
o(9,z) = Oz 89.528 260.461 195.044 1.77895

Table 4: Values of the EL test statistic and estimated parameters for the 7-day
Eurodollar rate.

The EL test is also applied to the German stock market index DAX and to
the German stocks Allianz, Bayer, Deutsche Bank, RWE and VW. The data we
use are daily observations of the assets from 01.07.1991 to 19.02.2002. These
are 2778 observations. We apply the test not to the original data but to the log
prices, X (t) = log P(t), where P(t) is the observed price of the asset at time ¢.
The results of the EL test are given in Table 5.

As for the interest rate, all supposed models are rejected by the test, except
the CKLS model, which is not rejected for the VW stock price process when
k=05.

The emprirical results indicate that affine diffusion processes might not be
appropriate to model financial time series, like interest rates or stock prices. A
number of alternative models is proposed in the literature. Hobson & Rogers
(1998) propose a complete model, i.e. without an additional source of random-
ness. They model price processes as the solution of a stochastic delay differential
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value of 7™ 6
k 3 7 11
0.05 critical values 7.815 14.067  19.675
DAX o(0,7) =6 95495 274.544 276.595 0.181
o(8,2) = 0/ 78.983 332413 367.068 0.073
a(0,z) = 6z 33.779  239.898 253.275 0.009
Allianz a(f,z) =90 71.274  260.952 266.548 0.259
a(0,z) =0z 59.163 335.127 336.712 0.126
o(0,z) = 6z'5 21.158 210.860 220.641 0.024
Bayer o(0,z) =0 119.001 135.356 248.024 0.221
o(0,7) = /7 145471 130.443  255.342 0.138
o(0,z) = 65 18203  55.027 117.207 0.041
Deutsche o(6,2) =46 164.887 101.440 455.881 0.243
Bank o(0,z) =0z 232.280 105.342 569.002 0.145
a(0,z) = 0z 122.952 55.802 421.737 0.036
RWE o(0,z) =0 120.130 172.589 289.700 0.229
o(0,z) =0+/x 113.045 187.370 314.577 0.136
o(0,z) = 65 37.562  103.120 174.242 0.038
vw o(0,z) =0 43.655 199.624 196.352 0.290
o(8,7) = 0/7 20.487 187.114 183.105 0.164
o(0,z) = x> 3.817 117371 137.169 0.047

Table 5: Values of the EL test statistic and estimated parameters for the DAX
and the five German stocks.

equation, where the diffusion and drift coefficients depend on the whole history
of the process. Stochastic volatiltiy models, where the diffusion coefficient de-
pends on an additional non observable volatility process are another way to
capture the dynamics observed in the market, Hofmann, Platen & Schweizer
(1992). As these models yield incomplete markets, derivative prices are not
unique.

References

Ahn, D.-H. & Gao, B. (1999). A parametric nonlinear model of term structure
dynamics, The Review of Financial Studies 12(4): 721-762.

Ait-Sahalia, Y. (1996a). Nonparametric pricing of interest rate derivative secu-
rities., Econometrica 64(3): 527-560.

Ait-Sahalia, Y. (1996b). Testing Continuous-Time Models of the Spot Interest
Rate, Review of Financial Studies 9: 385—426.

Bibby, B. M. & Sgrensen, M. (1996). On estimation of discretely observed
diffusions, a review, Theory of Stochastic Processes 2(18): 49-56.

Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes, Vol. 110 of
Lecture Notes in Statistics, Springer-Verlag, Heidelberg.



20 Kleinow: Testing Diffusions

Chen, S. X., Hardle, W. & Kleinow, T. (2001). An empirical likelihood goodness-
of-fit test for time series, Discussion paper 1/2001, Sonderforschungsbereich
373, Humboldt-Universitit zu Berlin.

Chen, S. X., Hardle, W. & Kleinow, T. (2002). An empirical likelihood goodness-
of-fit test for diffusions, in W. Hardle, T. Kleinow & G. Stahl (eds), Applied
Quantitative Finance, Springer Verlag.

Duffie, D. & Kan, R. (1996). A yield-factor model of interest rates., Math.
Finance 6(4): 379-406.

Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete
observations., J. Appl. Probab. 30(4): 790-804.

Genon-Catalot, V., Jeantheau, T. & Larédo, C. (2000). Stochastic volatility
models as hidden markov models and statistical applications, Bernoulli
6(6).

Hardle, W., Kleinow, T., Korostelev, A., Logeay, C. & Platen, E. (2001).
Semiparametric diffusion estimation and application to a stock market in-
dex, Discussion Paper 24/2001, Sonderforschungsbereich 373, Humboldt-
Universitit zu Berlin.

Hardle, W. & Mammen, E. (1993). Comparing nonparametric versus parametric
regression fits, Ann. Statist. 21: 1926-1947.

Hobson, D. G. & Rogers, L. (1998). Complete models with stochastic volatility.,
Math. Finance 8(1): 27-48.

Hoffmann, M. (1999). Adaptive estimation in diffusion processes., Stochastic
Processes Appl. 79(1): 135-163.

Hofmann, N.; Platen, E. & Schweizer, M. (1992). Option pricing under incom-
pleteness and stochastic volatility., Math. Finance 2(3): 153-187.

Hong, Y. & Li, H. (2002). Nonparametric specification testing for continuous-
time models with application to spot interest rates, Working paper, Cornell
University.

Jacod, J. (2000). Non-parametric kernel estimation of the coefficient of diffu-
sion., Scand. J. Stat. 2'7(1): 83-96.

Jiang, G. & Knight, J. (1997). A nonparametric approach to the estimation of
diffusion processes, with an application to a short-term interest rate model,
Econometric Theory 13(5).

Karatzas, I. & Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus,
Springer Verlag New York.

Karatzas, I. & Shreve, S. E. (1998). Methods of Mathematical Finance, Vol. 39 of
Applications of Mathematics, Stochastic Modelling and Applied Probability,
Springer Verlag New York.

Kloeden, P. E. & Platen, E. (1999). Numerical Solution of Stochastic Differential
Equations, Vol. 23 of Applications of Mathematics, Springer Verlag Berlin
Heidelberg.



Kleinow: Testing Diffusions 21

Kutoyants, Y. (1998). Efficient density estimation for ergodic diffusion pro-
cesses., Stat. Inference Stoch. Process. 1(2): 131-155.

Merton, R. C. (1980). On estimating the expected return on the market, Journal
of Financial Economics 8: 141-183.

Musiela, M. & Rutkowski, M. (1991). Martingale methods in financial modelling,
Springer Verlag New York.

Owen, A. B. (2001). Empirical Likelihood, Vol. 92 of Monographs on Statistics
and Applied Probability, Chapman & Hall/CRC.

Paparoditis, E. & Politis, D. N. (2000). The local bootstrap for kernel estimators
under general dependence conditions., Ann. Inst. Stat. Math. 52(1): 139—
159.

Stanton, R. (1997). A nonparametric model of term structure bynamics and the
market price of interest rate risk, Journal of Finance 52: 1973-2002.



