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Structural Equation Models for Finite Mixtures —
Simulation Results and Empirical Applications

Dirk Temme', John Willi ams? and Lutz Hil debrandt®

! Ingtitute of Marketing, Humboldt University of Berlin, 10178Berlin, Germany
2 Department of Marketing, Otago University, Dunedin, New Zedand
® Institute of Marketing, Humbaldt University of Berlin, 10178Berlin, Germany

Abstract. Unobserved heterogeneity is a serious but often negleded problem in
structural equation modelling (SEM) challenging the validity of many empiricd
results. Receantly, a finite mixture gproach to SEM has been proposed to resolve
this problem but until now only a few studies analyse the performance of the
relevant software. The @ntribution of this paper is twofold: First, results from a
Monte Carlo study into the properties of the program system MECOSA are
presented. Second, an empiricd applicaion to data from a large-scde cnsumer
survey in the fast moving consumer goods industry is described.

Keywords. Structural equation modelling, Unobserved heterogeneity, Model-based
clustering, Finite mixtures, Monte Carlo simulation

1 Introduction

Structural equation modelling (SEM) is an establi shed, widely used methoddogy in
the social sciences (e.g., sociology, psychology, marketing). One of its key benefits
is that it enables the estimation of relationships between urobservable theoreticd
congtructs (e.g., attitudes, customer satisfadion) which are operationalised by
multi ple observed, albeit individually imperfed measures.

Empiricd applications of SEM typicdly rest on the aamption that either the
analysed sample is homogenous with resped to the underlying model or that
heterogeneity can be aleguately taken into acaount by forming sub-samples using one
or two observed criteria (e.g., gender, age, brand loyalty). But, if unobserved
heterogeneity is (dill) substantial, parameter estimates might be serioudy biased
(Jedidi, Jagpa and DeSarbo, 1997). As an ad hoc solution to this problem one might
follow a two-step procedure, which combines cluster analysis in the first step with a
multi-group analysis in the second step. However, bath theoreticd considerations as
well as smulation evidence (Gorz, Hildebrandt and Annadker, 200Q Jedidi, Jagpal
and DeSarbo, 1997) have shown that this procedure isinappropriate.

Meawhil e two alternative solutions to the problem of unobserved heterogeneity in
SEM have been proposed. Whereas the finite mixture gproach presumes that
heterogeneity in the population can be sufficiently cgptured by a limited number of
homogenous sgments, hierarchicd Bayes methods (Ansari, Jedidi and Jagpal, 2000
rest upon the ideathat individual-level parameters follow a @ntinuous heterogeneity



distribution. In this paper, we exclusively focus on finite mixture SEM. Since urtil
now only a few studies exist which analyse the performance of this methoddogy we
first describe the design and main results of a Monte Carlo simulation study into the
properties of the MECOSA approacdh to conditional finite mixture SEM. Seand, the
results of an empiricd applicaion of MECOSA to data from a large-scde consumer
survey on éttitudes towards a spedfic brand in the German fast moving consumer
goodsindustry are reported.

2 Finite Mixture Structural Equation Models

2.1 Conditional and Unconditional M odels

The finite mixture gproach asuumes that the sample is a discrete mixture of a
limited, but generally unknown number of components ead charaderised by a
spedfic distribution. With resped to the distributional assumptions, two types of
finite mixture SEM can be distinguished. Unconditional models (Yung 1997
Jedidi, Jagpal and DeSarbo, 1997 Dolan and van der Mags, 1998 rely on the
assuumption that the exdogenous and exogenous variables follow a multivariate
normal distribution within the different components. In contrast, for conditi onal
models the somewhat weaker, more redistic asssumption applies that the dependent
variables are normally distributed given some exogenous regresor variables (e.g.,
demographics). To the best of our knowledge only two commercia software
programs for the estimation of conditiona finite mixture SEM are presently
available (MECOSA, Arminger, Wittenberg and Schepers, 1996 Mplus, Muthén
and Muthén, 1998.

2.2 The MECOSA Approach

The following description of the MECOSA model for conditional multivariate
normal mixtures is mainly based on Arminger, Stein and Wittenberg (1999
abbreviated as ASW below). Let y;,i =12,...,n, be a p-dimensional vedor of

continuous dependent random variables and X; a q-dimensiona vedor of
continuous or dummy-type independent variables. The sample points (yi ,xi) are
i.i.d. with density h(y;,x;)= f(y; |x;)T(x;), where g(x;) isthe marginal density
of the exogenous variables. If the dependent variables y; are multivariate normal
in eath component conditional on the regressors X;, the mnditional density is
given by the foll owing mixture:

Flyi 1) = melyi; pin Z2) + 001 Higi Z2)+ -+ e olyis i 2k ),
where my,k =12,...,K, are the mixing propartions of the K mixture cmmponents
subjed to the following constraints. 7, =0 and %nk =1 go(-; pik;zk) denotes
the multivariate normal density with mean vedor ;,;l and covariance matrix Xy .

The nditional mean E(y; |x;.k) is gedfied as a reduced form multivariate
linea model



Hik =Yk +TgX,
where y| isa p-dimensiona vedor of regresson constants and M, isa pxq
matrix of regresson coefficients. The @nditional covariance matrix X, contains
the variances and covariances of the regresson residuals.
The oonditional means and covariances are parameterised by component-spedfic

mean- and covariance structure models, for example a onditional LISREL model,
where the freeparameters are wlleded in avedor & :

mi 1 (xi. k)= By +Mixq + 4,
yi =vic+ A + 6.
For the conditional mean of the endogenous variables thisimplies
E(yi 1i.k)=vic + A =By ) Tk =y +Mixi

where y, =v, and MMy =/\k(l —Bk)_lrk. The nditional covariance matrix is
spedfied as

V{yi 1%:,K)= Al =B ) Wi (1 =B ) T AL +0y =5

MECOSA currently offers three etimation methods: Minimum Distance Estima-
tion (MDE), Dired EM (EM) and EM Gradient (EMG). The MDE method is a
two-step procedure. In the first stage, an urrestricted multivariate regresson model
for finite mixtures is estimated by an EM algorithm. In the second stage, a mini-
mum distance etimator is used to estimate the group-spedfic fundamental parame-

ters 3 based on the reduced form parameter estimates ., and ik in step one.

In contrast, maximisation in the M-Step of both dired EM agorithms (EM and
EMG) is diredly performed with resped to the fundamental parameters and the
mixing propartions 71 .

3 Simulation Study

3.1 Experimental Design

The eperimental design of our simulation study (for a more mmprehensive
description seeWilli ams, 2002 Willi ams, Temme and Hil debrandt, 2002 designed
to test the performance of the MECOSA approach to the estimation of finite
mixture SEM extends the experimental fadors: 1. Distribution of variables (skewed
or normal) and 2 Estimation method (MDE, EM and EM Gradient) used in the
study by ASW by four additional fadors: 3. Number of groups (two o three), 4.
Group propations (equal or mixed), 5. Knowledge @out number of groups
(known or unkrown) and 6. Differences between the parameters in ead group
(close or far). In total this design leads to 96 dfferent conditions. For ead condi-
tion 500 valid data sets with 2000 olservations ead have been simulated with
GAUSS acording to a parameterised structural equation model and subsequently
analysed ussing MECOSA.



3.2 Main Results

For al conditions with an unkrown number of components we used the a hoc
procedure (a modified likelihood ratio test) implemented in MECOSA to estimate
the number of groups. Whereas for two groups the number of components was
amost aways estimated corredly under all conditions, a completely different
picture emerged for those threegroup conditions with close parameters and mixed
propartions. More than 1000 dita sets had to be ssimulated to achieve 500 replica
tions with the number of groups estimated corredly, which is a prerequisite for
meaningful comparisons between the results for diff erent conditions.

The performance of MECOSA for the two group conditions in terms of estima-
tor variance and bias is dwown in Table 3.1. Both the highest mean MAD (mean
absolute deviation) and the highest mean bias result for the MDE under conditions
of mixed propations and close parameters. Further analysis of the individua
parameter recvery using a balanced ANOVA shows that the largest effed on
parameter recovery is due to the differences in parameter values between groups
(far versus close parameters). In addition, the negative dfed of mixed propartions
on parameter reqovery is quite pronounced, espedally in conjunction with close
parameters. Under most conditions the choice of the estimation method seems to
have only a negligible dfed but for mixed propations combined with close
parameters MDE performs considerably worse than Dired EM and EM Gradient.

Table 3.1. Mean MAD and Mean Bias for the two group condtions

Mean MAD Mean Bias
Known Unknown Known Unknown
Equal | Mixed | Equal [ Mixed | Equal | Mixed | Equal | Mixed
Close Parameters
MDE| .0339 | .0443 | .0338 | .0452 | -.0049 | -.0116 | -.0049 | -.0127
Skewed EM | .0316 | .0409 | .0319 | .0400 | -.0010 | -.0018 | -.0014 | -.0012
EMG| .0317 | .0399 | .0317 | .0392 | -.0021 | -.0018 | -.0013 | -.0020
MDE | .0337 | .0456 | .0340 | .0451 | -.0047 | -.0134 | -.0061 | -.0118
Normal EM | .0320 | .0400 | .0322 | .0396 | -.0015 | -.0020 | -.0002 | -.0016
EMG| .0323 | .0398 | .0319 | .0402 | -.0018 | -.0019 | -.0029 | -.0033
Far Parameters
MDE | .0230 | .0283 | .0227 | .0282 | -.0016 | -.0033 | -.0022 | -.0028
Skewed EM | .0221 | .0272 | .0226 | .0268 | -.0003 | -.0004 | -.0002 | -.0007
EMG| .0223 | .0270 | .0224 | .0272 | -.0004 | -.0006 | -.0007 | -.0006
MDE | .0222 .0269 .0223 .0271 | -.0018 | -.0026 | -.0019 | -.0024
Normal EM | .0216 | .0265 | .0216 | .0259 | -.0007 | -.0010 | -.0004 | -.0004
EMG| .0215 | .0265 | .0217 | .0257 | -.0002 | -.0005 | -.0005 | -.0006

4 Empirical Application

For marketing pradice measuring customer based brand equity is of grea impor-
tance in order to assessthe dfed of long-term investments in a brand. Marketing
reseach companies and acalemics aike have proposed various approades to
measure brand equity. In this gudy we focus on the Brand Potential Index® (BPI)
developed by the German company GfK, Nuremberg. The BPI consists of 9 items



which form a unidimensional confirmatory fador model. The following items are
measured on a 7-point scde with the endpants (7) “I totally agree” and (1) “I
totally disagree” (items 2 —9 are dl formulated in comparison to ather brands): 1.
will buy the brand in the future (buy), 2. will pay more for the brand (pay), 3.
identify with the brand (identify), 4. trust the brand (trust), 5. will recommend the
brand (recom), 6. brand pdsitively differentiates itself (positive), 7. like the brand
(like) 8. regret if brand is not available (regret) and 9. brand is of higher quality
(qudity). Data for this gudy has been colleded by a mnsumer survey of 1048
subjeds who rated several competing brands in a spedfic convenience food
caegory on the 9 BPI items. In addition, socio-demographic (e.g., age, household
size) and behavioural (brand loyalty) information on the respondents has been
gathered. These variables were used as exogenous regresors in a @nditional
confirmatory fador model. After eliminating several outliers with inconsistent
answers a sample size of 1037remained.

The data has been analysed with MECOSA, using first the two-stage MDE pro-
cedure. Sincethere was no clea a priori information about the number of segments,
we let MECOSA estimate the number of components in the data. Based on the
finite mixture multi variate regresson of the BPI items on the exogenous regresors
the a hoc test (LR o) @ Well as the parametric boadstrap test (LRgoy) point to a
three group solution athough the BIC indicates a two group segmentation (see
Table 4.1.) Since the entropy measure (Ramaswamy, DeSarbo, Reibstein and
Robinson, 1993 for the three group estimation is .791, which indicaes a good
separation of the groups, we dedded in favour of threegroups.

Table4.1. Summery datistics for model seledion results

K LL LRugrec | Of p L Rgoq BIC

1 [-1365564 - - - - 2824873

2 |-1293254 |144620 | 270 | .000 | 33115 | 2774693

3 |-1262046 | 62416 | 405| .000 | 45029 | 2806717

4 |-1240762 | 42568 | 540 | .999 | 45047 | 2858588
TGreatest Bod-strap LR value

With resped to the unconditional means of the BPI items (hot shown here for
spacereasons) a dea order of the threegroups emerges. Group 1 (N = 181) hasthe
highest values (except for the item buy where the mean in group 2 is higher),
followed closely by group 2 (N = 531). Group 3 (N = 325 clealy differentiates
itself from the two ather groups snce dl item means are @wnsiderably lower. For
most of the regressors the mean diff erences between the groups are only minor. The
most pronounced dfference @ncerns the variable loyalty. Whereas in the first
group about 71% of the subjeds report that most of the time they buy the focd
brand for the two other groups this percentage is considerably lower (63% for
group 2 and only 53% for group 3). Belonging to the western or eastern parts of
Germany also makes a difference In gooup 3 236 of the subjeds live in East
Germany whereas in group 1this holds for only 17%. By far the strongest effed on
the BPI items occurs for the regresor loyalty, which is, as can be expeded,
positive and highly significant in all threegroups. Only for group 3 age positively



influences the items positive and regret. Respondents from those German federal
states where the analysed food caegory is espedally popular tend to read¢ more
positively to the items recom and like than inhabitants of other states.

In the next stage, we used the three dternative estimation methods to estimate the
fundamental parameters of a @nditional common regresson model (CRM; Yung,
1997:

Hik =V *Aay +ATgX,

S AW +0,.

The estimation using MDE yields a )(2 statistic of 606.76 with 325 degrees of

freedom. Althoughthe model isrejeded by thistest (p = .000), the RMSEA = .042
is below the aut-off value of .05 and thus indicaes a good fit. Becaise of space
limitations we only report those parameter estimates where significant differences
between the three atimation methods occur.

Table 4.2. Parameter estimates for the @mndtional common regresson model

MDE EM EMG
Group | Group |Group |Group |Group |Group |Group | Group | Group
1 2 3 1 2 3 1 2 3
A 221 2.67 2.87]2.49 2.98 3.18 249 2.98 317
Vy 1.92 .93 1.20|2.45 1.62 142 245 161 143
V3 1.64 215 215
Vg 214 242 242
Vg 215 251 251
Ve 2.23 2.64 2.64
vy 1.90 242 242
Vg 1.85 2.33 2.33
Vg 241 2.73 274
o oo 2.50 .76 00 1.79 41 00 181 40
Vi .23 -.10 .09 22 -12 27 .23 -13 27
Yo -12 -.06 .08 -.33 -.03 .05 -.34 -.02 .05
Va .25 .09 -.25 44 12 -.23 43 A1 -.22
Va .09 -01 .02 .07 -.00 01 .07 -.00 .01
Vs .16 .03 .09 45 -01 15 47 -.03 .16
Vs 14 -.03 21 -.37 -.06 .09 -.37 -.05 .09
Vo -1.20 .09 A7 -49 -.08 19 -52 -.07 .18
Ve -21 .23 21 18 .30 13 18 .29 15
Yo 2.68 .90 .70 2.87 1.08 91 2.86 1.08 .92

*fixed; significant parameters (o = .05) are set in bdd type

Whereas the dired EM and the EMG methods yielded almost identicd estimates,
the MDE estimations in part considerably deviate from those of the EM methods
(see Table 4.2)), leading to substantially different conclusions. For example,
whereas age (y1) has a significant positive dfed on BPI in group 3 when estimated
using the EM methods (see &so the results for the first step) this parameter isinsig-
nificant in the MDE solution. Also the MDE estimate for the dummy variable




West/East Germany (y;) seens unreasonably high. Overal, in line with the
simulation results, the EM estimates for this three groups/mixed propartions case
seem to be more trustworthy than the MDE estimates.

5 Conclusion

Since both the simulation results and the enpiricd applicaion have shown that in
situations which typicdly occur in empiricd studies (mixed propartions and/or
close parameters) the MDE method performs worse than the EM algorithms, we
suggest to use only the first stage of the MDE procedure and to estimate the
fundamental parameters by using the EM Gradient method.
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