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Abstract. Unobserved heterogeneity is a serious but often neglected problem in
structural equation modelli ng (SEM) challenging the validity of many empirical
results. Recently, a finite mixture approach to SEM has been proposed to resolve
this problem but until now only a few studies analyse the performance of the
relevant software. The contribution of this paper is twofold: First, results from a
Monte Carlo study into the properties of the program system MECOSA are
presented. Second, an empirical application to data from a large-scale consumer
survey in the fast moving consumer goods industry is described.
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1  Introduction 

Structural equation modelli ng (SEM) is an established, widely used methodology in
the social sciences (e.g., sociology, psychology, marketing). One of its key benefits
is that it enables the estimation of relationships between unobservable theoretical
constructs (e.g., attitudes, customer satisfaction) which are operationalised by
multiple observed, albeit individually imperfect measures.

Empirical applications of SEM typically rest on the assumption that either the
analysed sample is homogenous with respect to the underlying model or that
heterogeneity can be adequately taken into account by forming sub-samples using one
or two observed criteria (e.g., gender, age, brand loyalty). But, if unobserved
heterogeneity is (still ) substantial, parameter estimates might be seriously biased
(Jedidi, Jagpal and DeSarbo, 1997). As an ad hoc solution to this problem one might
follow a two-step procedure, which combines cluster analysis in the first step with a
multi -group analysis in the second step. However, both theoretical considerations as
well as simulation evidence (Görz, Hildebrandt and Annacker, 2000; Jedidi, Jagpal
and DeSarbo, 1997) have shown that this procedure is inappropriate.

Meanwhile two alternative solutions to the problem of unobserved heterogeneity in
SEM have been proposed. Whereas the finite mixture approach presumes that
heterogeneity in the population can be suff iciently captured by a limited number of
homogenous segments, hierarchical Bayes methods (Ansari, Jedidi and Jagpal, 2000)
rest upon the idea that individual-level parameters follow a continuous heterogeneity
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distribution. In this paper, we exclusively focus on finite mixture SEM. Since until
now only a few studies exist which analyse the performance of this methodology we
first describe the design and main results of a Monte Carlo simulation study into the
properties of the MECOSA approach to conditional finite mixture SEM. Second, the
results of an empirical application of MECOSA to data from a large-scale consumer
survey on attitudes towards a specific brand in the German fast moving consumer
goods industry are reported.

2  Finite Mixture Structural Equation Models
2.1  Conditional and Unconditional Models
The finite mixture approach assumes that the sample is a discrete mixture of a
limited, but generally unknown number of components each characterised by a
specific distribution. With respect to the distributional assumptions, two types of
finite mixture SEM can be distinguished. Unconditional models (Yung, 1997;
Jedidi, Jagpal and DeSarbo, 1997; Dolan and van der Maas, 1998) rely on the
assumption that the endogenous and exogenous variables follow a multivariate
normal distribution within the different components. In contrast, for conditional
models the somewhat weaker, more realistic assumption applies that the dependent
variables are normally distributed given some exogenous regressor variables (e.g.,
demographics). To the best of our knowledge only two commercial software
programs for the estimation of conditional finite mixture SEM are presently
available (MECOSA, Arminger, Wittenberg and Schepers, 1996; Mplus, Muthén
and Muthén, 1998).

2.2  The MECOSA Approach
The following description of the MECOSA model for conditional multivariate
normal mixtures is mainly based on Arminger, Stein and Wittenberg (1999;
abbreviated as ASW below). Let ,n,,,,ii �21=y  be a p -dimensional vector of

continuous dependent random variables and ix  a q -dimensional vector of

continuous or dummy-type independent variables. The sample points ( )ii xy ,  are

i.i.d. with density ( ) ( ) ( )iiiii gfh xxyxy ⋅= |, , where ( )ig x  is the marginal density

of the exogenous variables. If the dependent variables iy  are multivariate normal

in each component conditional on the regressors ix , the conditional density is

given by the following mixture:

 ( ) ( ) ( ) ( )KiKiKiiiiiif ΣΣΣΣΣΣ ;;;;;;| 222111 µµµµµµ yyyxy φπφπφπ +++= � ,

where ,,,2,1, Kkk �=π  are the mixing proportions of the K  mixture components

subject to the following constraints: 0≥kπ  and .1
1

=∑
=

K

k
kπ ( )kik ΣΣ;; µµ•φ  denotes

the multivariate normal density with mean vector ikµµ  and covariance matrix kΣΣ .

The conditional mean ( )kE ii ,| xy  is specified as a reduced form multivariate

linear model
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ikkik xΠΠ+= γγµµ ,

where kγγ  is a p -dimensional vector of regression constants and kΠΠ  is a qp×
matrix of regression coeff icients. The conditional covariance matrix kΣΣ  contains

the variances and covariances of the regression residuals.
The conditional means and covariances are parameterised by component-specific

mean- and covariance structure models, for example a conditional LISREL model,
where the free parameters are collected in a vector ϑϑ :
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For the conditional mean of the endogenous variables this implies

( ) ( ) ikkikkkkii kE xxIxy ΠΠΓΓΒΒΛΛ +=−+= − γγνν 1,| ,

where kk ννγγ =  and ( ) kkkk ΓΓΒΒΛΛΠΠ 1−−= I . The conditional covariance matrix is

specified as

( ) ( ) ( ) kkkkkkkii kV ΣΣΘΘΛΛΒΒΨΨΒΒΛΛ =+−−= −− '',| 11 IIxy .

MECOSA currently offers three estimation methods: Minimum Distance Estima-
tion (MDE), Direct EM (EM) and EM Gradient (EMG). The MDE method is a
two-step procedure. In the first stage, an unrestricted multivariate regression model
for finite mixtures is estimated by an EM algorithm. In the second stage, a mini-
mum distance estimator is used to estimate the group-specific fundamental parame-

ters ϑϑ  based on the reduced form parameter estimates kk ΠΠ̂,γ̂γ  and kΣΣ̂  in step one.

In contrast, maximisation in the M-Step of both direct EM algorithms (EM and
EMG) is directly performed with respect to the fundamental parameters and the
mixing proportions kπ .

3  Simulation Study
3.1  Experimental Design
The experimental design of our simulation study (for a more comprehensive
description see Willi ams, 2002; Willi ams, Temme and Hildebrandt, 2002) designed
to test the performance of the MECOSA approach to the estimation of finite
mixture SEM extends the experimental factors: 1. Distribution of variables (skewed
or normal) and 2. Estimation method (MDE, EM and EM Gradient) used in the
study by ASW by four additional factors: 3. Number of groups (two or three), 4.
Group proportions (equal or mixed), 5. Knowledge about number of groups
(known or unknown) and 6. Differences between the parameters in each group
(close or far). In total this design leads to 96 different conditions. For each condi-
tion 500 valid data sets with 2000 observations each have been simulated with
GAUSS according to a parameterised structural equation model and subsequently
analysed using MECOSA.
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3.2  Main Results
For all conditions with an unknown number of components we used the ad hoc
procedure (a modified likelihood ratio test) implemented in MECOSA to estimate
the number of groups. Whereas for two groups the number of components was
almost always estimated correctly under all conditions, a completely different
picture emerged for those three group conditions with close parameters and mixed
proportions. More than 1000 data sets had to be simulated to achieve 500 replica-
tions with the number of groups estimated correctly, which is a prerequisite for
meaningful comparisons between the results for different conditions.

The performance of MECOSA for the two group conditions in terms of estima-
tor variance and bias is shown in Table 3.1. Both the highest mean MAD (mean
absolute deviation) and the highest mean bias result for the MDE under conditions
of mixed proportions and close parameters. Further analysis of the individual
parameter recovery using a balanced ANOVA shows that the largest effect on
parameter recovery is due to the differences in parameter values between groups
(far versus close parameters). In addition, the negative effect of mixed proportions
on parameter recovery is quite pronounced, especially in conjunction with close
parameters. Under most conditions the choice of the estimation method seems to
have only a negligible effect but for mixed proportions combined with close
parameters MDE performs considerably worse than Direct EM and EM Gradient.

Table 3.1. Mean MAD and Mean Bias for the two group conditions

Mean MAD Mean Bias
Known Unknown Known Unknown

Equal Mixed Equal Mixed Equal Mixed Equal Mixed
Close Parameters

Skewed
MDE

EM
EMG

.0339

.0316

.0317

.0443

.0409

.0399

.0338

.0319

.0317

.0452

.0400

.0392

-.0049
-.0010
-.0021

-.0116
-.0018
-.0018

-.0049
-.0014
-.0013

-.0127
-.0012
-.0020

Normal
MDE

EM
EMG

.0337

.0320

.0323

.0456

.0400

.0398

.0340

.0322

.0319

.0451

.0396

.0402

-.0047
-.0015
-.0018

-.0134
-.0020
-.0019

-.0061
-.0002
-.0029

-.0118
-.0016
-.0033

Far Parameters

Skewed
MDE

EM
EMG

.0230

.0221

.0223

.0283

.0272

.0270

.0227

.0226

.0224

.0282

.0268

.0272

-.0016
-.0003
-.0004

-.0033
-.0004
-.0006

-.0022
-.0002
-.0007

-.0028
-.0007
-.0006

Normal
MDE

EM
EMG

.0222

.0216

.0215

.0269

.0265

.0265

.0223

.0216

.0217

.0271

.0259

.0257

-.0018
-.0007
-.0002

-.0026
-.0010
-.0005

-.0019
-.0004
-.0005

-.0024
-.0004
-.0006

4  Empir ical Application 

For marketing practice measuring customer based brand equity is of great impor-
tance in order to assess the effect of long-term investments in a brand. Marketing
research companies and academics alike have proposed various approaches to
measure brand equity. In this study we focus on the Brand Potential Index® (BPI)
developed by the German company GfK, Nuremberg. The BPI consists of 9 items
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which form a unidimensional confirmatory factor model. The following items are
measured on a 7-point scale with the endpoints (7) “ I totally agree” and (1) “ I
totally disagree” (items 2 – 9 are all formulated in comparison to other brands): 1.
will buy the brand in the future (buy), 2. will pay more for the brand (pay), 3.
identify with the brand (identify), 4. trust the brand (trust), 5. will recommend the
brand (recom), 6. brand positively differentiates itself (positive), 7. like the brand
(li ke) 8. regret if brand is not available (regret) and 9. brand is of higher quality
(quality). Data for this study has been collected by a consumer survey of 1048
subjects who rated several competing brands in a specific convenience food
category on the 9 BPI items. In addition, socio-demographic (e.g., age, household
size) and behavioural (brand loyalty) information on the respondents has been
gathered. These variables were used as exogenous regressors in a conditional
confirmatory factor model. After eliminating several outliers with inconsistent
answers a sample size of 1037 remained.

The data has been analysed with MECOSA, using first the two-stage MDE pro-
cedure. Since there was no clear a priori information about the number of segments,
we let MECOSA estimate the number of components in the data. Based on the
finite mixture multivariate regression of the BPI items on the exogenous regressors
the ad hoc test (LRad hoc) as well as the parametric bootstrap test (LRBoot) point to a
three group solution although the BIC indicates a two group segmentation (see
Table 4.1.) Since the entropy measure (Ramaswamy, DeSarbo, Reibstein and
Robinson, 1993) for the three group estimation is .791, which indicates a good
separation of the groups, we decided in favour of three groups.

Table 4.1. Summary statistics for model selection results

K LL LRad hoc df p LRBoot
1 BIC

1
2
3
4

-13655.64
-12932.54
-12620.46
-12407.62

-
1446.20
624.16
425.68

-
270
405
540

-
.000
.000
.999

-
331.15
450.29
450.47

28248.73
27746.93
28067.17
28585.88

1Greatest Boot-strap LR value

With respect to the unconditional means of the BPI items (not shown here for
space reasons) a clear order of the three groups emerges. Group 1 (N = 181) has the
highest values (except for the item buy where the mean in group 2 is higher),
followed closely by group 2 (N = 531). Group 3 (N = 325) clearly differentiates
itself from the two other groups since all it em means are considerably lower. For
most of the regressors the mean differences between the groups are only minor. The
most pronounced difference concerns the variable loyalty. Whereas in the first
group about 71% of the subjects report that most of the time they buy the focal
brand for the two other groups this percentage is considerably lower (63% for
group 2 and only 53% for group 3). Belonging to the western or eastern parts of
Germany also makes a difference: In group 3 23% of the subjects live in East
Germany whereas in group 1 this holds for only 17%. By far the strongest effect  on
the BPI items occurs for the regressor loyalty, which is, as can be expected,
positive and highly significant in all three groups. Only for group 3 age positively



6

influences the items positive and regret. Respondents from those German federal
states where the analysed food category is especially popular tend to react more
positively to the items recom and li ke than inhabitants of other states.

In the next stage, we used the three alternative estimation methods to estimate the
fundamental parameters of a conditional common regression model (CRM; Yung,
1997):

.'

,

kkk

ikkkik

ΘΘΛΛΛΨΛΨΣΣ

ΛΓΛΓΛΛ

+=

++= xανµ

The estimation using MDE yields a 2χ  statistic of 606.76 with 325 degrees of

freedom. Although the model is rejected by this test (p = .000), the RMSEA = .042
is below the cut-off value of .05 and thus indicates a good fit. Because of space
limitations we only report those parameter estimates where significant differences
between the three estimation methods occur.

Table 4.2. Parameter estimates for the conditional common regression model

MDE EM EMG
Group
1

Group
2

Group
3

Group
1

Group
2

Group
3

Group
1

Group
2

Group
3

ν1 2.21 2.67 2.87 2.49 2.98 3.18 2.49 2.98 3.17
ν2 1.92 .93 1.20 2.45 1.62 1.42 2.45 1.61 1.43
ν3 1.64 2.15 2.15
ν4 2.14 2.42 2.42
ν5 2.15 2.51 2.51
ν6 2.23 2.64 2.64
ν7 1.90 2.42 2.42
ν8 1.85 2.33 2.33
ν9 2.41 2.73 2.74
α .00a 2.50 .76 .00a 1.79 .41 .00a 1.81 .40
γ1 .23 -.10 .09 .22 -.12 .27 .23 -.13 .27
γ2 -.12 -.06 .08 -.33 -.03 .05 -.34 -.02 .05
γ3 .25 .09 -.25 .44 .12 -.23 .43 .11 -.22
γ4 .09 -.01 .02 .07 -.00 .01 .07 -.00 .01
γ5 .16 .03 .09 .45 -.01 .15 .47 -.03 .16
γ6 .14 -.03 .21 -.37 -.06 .09 -.37 -.05 .09
γ7 -1.20 .09 .17 -.49 -.08 .19 -.52 -.07 .18
γ8 -.21 .23 .21 .18 .30 .13 .18 .29 .15
γ9 2.68 .90 .70 2.87 1.08 .91 2.86 1.08 .92
afixed; significant parameters (α = .05) are set in bold type

Whereas the direct EM and the EMG methods yielded almost identical estimates,
the MDE estimations in part considerably deviate from those of the EM methods
(see Table 4.2.), leading to substantially different conclusions. For example,
whereas age (γ1) has a significant positive effect on BPI in group 3 when estimated
using the EM methods (see also the results for the first step) this parameter is insig-
nificant in the MDE solution. Also the MDE estimate for the dummy variable
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West/East Germany (γ7) seems unreasonably high. Overall , in line with the
simulation results, the EM estimates for this three groups/mixed proportions case
seem to be more trustworthy than the MDE estimates.

5  Conclusion 

Since both the simulation results and the empirical application have shown that in
situations which typically occur in empirical studies (mixed proportions and/or
close parameters) the MDE method performs worse than the EM algorithms, we
suggest to use only the first stage of the MDE procedure and to estimate the
fundamental parameters by using the EM Gradient method.
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