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Abstract

We give sufficient conditions for a non-zero sum discounted stochastic game with
compact and convex action spaces and with norm-continuous transition probabilities,
but with possibly unbounded state space, to have a Nash equilibrium in homogeneous
Markov strategies that depends in a Lipschitz continuous manner on the current state. If
the underlying state space is compact this yields the existence of a stationary equilibrium.
For a special class of stochastic games which arise in microstructure models for financial
markets we establish the existence of equilibria which guarantee that the state sequence

converges in distribution to a unique stationary measure.
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1 Introduction

This paper considers infinite horizon discounted non-zero sum stochastic games with compact
and convex action spaces and with norm-continuous transition probabilities. We formulate
conditions on the utility functions and on the law of motion which guarantee the existence of
stationary equilibria in Markov strategies, i.e., of Markov equilibria which have the additional
property that the equilibrium process admits a stationary measure in the sense of Duffie,
Geanakopolos, MasColell, and McLennan (1994).

Discounted stochastic games have been introduced by Shapley (1953) as a general model of
strategic interaction with symmetric information and have since been intensively analyzed in
both the economic and the mathematical literature. Since a full characterization of equilibria
in stochastic games typically is intractable, one usually tries to prove the existence of time-
homogeneous equilibria in Markovian strategies. Such equilibria are appealing as they are
subgame-perfect and because, in equilibrium, the dynamics of the state sequence can be de-
scribed by a homogeneous Markov chain. For finite, or, more generally, countable state spaces
a variety of existence theorems have been established by, e.g., Shapley (1953), Parthasarathy
(1982), and Federgruen (1978). The existence of homogeneous Markov equilibria has also
been proved in special cases with uncountable state spaces, see, e.g., Parthasarathy and
Sinha (1989) for a result for games with state independent transitions. However, no gen-
eral existence result is yet known. Even less is known about the asymptotic behavior of
the state sequence in equilibrium. In the context of finite-horizon stochastic games with
mutually absolutely continuous transition probabilities Duffie et al. (1994) prove the exis-
tence of a stationary correlated equilibria. In a correlated equilibrium the behavior of the
players is coordinated by a public signal (a “sunspot”) transmitted by a fictitious mediator.
These authors also show that the equilibrium process admits a stationary measure, that is,
an initial distribution such that, in equilibrium, the state sequence is stationary and ergodic.
According to Duffie et al. (1994), there are a variety of reasons to focus on such equilibria:
Stationary equilibria “constitute the simplest sort of equilibria and are thus perhaps focal,”
and “there is (...) the suspicion that other equilibria require implausible (...) coordina-
tion.” In addition, Guesnerie and Woodford (1992) argue that “an equilibrium that does not
display minimal regularity through time — maybe stationarity — is unlikely to generate the

coordination between agents that it assumes.”



This paper extends some of the results proved in Duffie et al. (1994) to infinite horizon
stochastic games. Using a perturbation of the Moderate Social Influence condition introduced
in Horst and Scheinkman (2002), we show that stochastic games with compact state and
action spaces have homogeneous equilibria if the interaction between different players is not
too strong. Our proof is based on the observation that discounted stochastic games with
weak interactions have Nash equilibria in Markovian strategies that depend in a Lipschitz
continuous manner on the current state. This part of the paper is very much inspired by the
work of Curtat (1996) who analyzed supermodular stochastic games.

Supermodular games are games in which the marginal returns to increasing one’s own
action rise with increases in the competitors’ action. Such games have recently been at-
tracted much attention as they provide a unified approach to analyzing games with strategic
complementarities; see, e.g., Milgrom and Roberts (1990), Topkis (1998) and, in particular,
Amir (1996a, 1996b) for applications of supermodular games to the Cournot oligopoly and
to a capital accumulation problem, respectively. However, in view of many applications like
microstructure models for financial markets, it seems natural to relax the strategic comple-
mentarity condition. This calls for an extension of Curtat’s result to more general stochastic
games which we carry out in Section 2.1. For example, the state sequence could be a process
which describes the stochastic evolution of the mood of investors who are active on a financial
market. An investor’s opinion on the value a risky asset typically does not only depend on
his subjective perception of some underlying fundamental value, but is often also based on
the recommendations of financial experts or fund managers. The behavior of these market
participants typically affects the decisions of many small investors, and has thus a strong
impact on the evolution of stock prices. It seems natural to assume that these big players
anticipate the feedback effect their actions have on the formation of asset prices and, there-
fore, interact in a strategic manner. However, the players usually have conflicting interests,
and so there is no reason to assume that the underlying stochastic game displays strategic
complementarities.

Unlike Curtat (1996), our proof of the existence of Lipschitz continuous equilibria does not
need Topki’s (1978) Monotonicity Theorem. Instead of assuming strategic complementarities
we consider stochastic games in which the interaction between different players is sufficiently
weak and view an agents’ optimization problem as an optimization problem depending on

a parameter. Montrucchio (1987) shows that such problems have optimal solutions that



are Lipschitz continuous functions of the parameter, and this allows us to prove our main
result. In case the game has norm-continuous transition probabilities, the induced equilibrium
process can then be described by a Markov chain which has the Feller property. The existence
of stationary equilibria in discounted stochastic games with compact state spaces and weakly
interacting players thus follows from standard results from the theory of Markov chains on
compact state spaces.

In Section 3 we consider a special class of stochastic games which we shall refer to as
Stochastic Games with Complete Connections. For such games a stronger result can be
established. Assuming that the interaction between the players is not too strong we show
that stochastic games with complete connections have ergodic equilibria. That is, a Nash
equilibrium in Markovian strategies that does not only have an ergodic measure, but which
has the additional property that the induced state sequence converges in law to a unique
limiting distribution. Stochastic games with complete connections arise in certain classes of
microstructure models for financial markets as we shall illustrate in Section 4.

The remainder of the paper is organized as follows. In Section 2 we state conditions on
discounted stochastic games with guarantee the existence of Lipschitz continuous equilibria in
Markovian strategies and prove the existence of stationary equilibria for games with compact
state spaces and with weak interactions. Section 3 analyzes stochastic games with com-
plete connections. In Section 4 we apply our game-theoretic results in order to analyze the

asymptotic behavior of asset prices in a simple financial market model. Section 5 concludes.

2 Lipschitz continuous Nash equilibria in stochastic games

In this section we study non-zero sum non-cooperative discounted stochastic games with
compact and convex action, but with possibly unbounded state spaces. We formulate condi-
tions on the utility functions and on the law of motion governing the dynamics of the state
sequence, which guarantee the existence of homogeneous Lipschitz continuous equilibria in
Markov strategies. Unlike in the framework of supermodular games studied in Curtat (1996),
we do not need to impose strategic complementarity or monotonicity conditions on the game.
Instead, we shall work under a Moderate Social Influence condition. This means that the
interaction between different players is not too strong and that the impact of an individual

player on the dynamics of the state sequence is sufficiently weak.



2.1 The stochastic game

Let us now be more specific about the structure of the stochastic games we are going to
analyze. We define a discounted stochastic game as a tuple ¥ = (I, M, (XZ, U, B9, Q, &)

with the following components:
e I ={1,2,...,N} is a finite set of players.

e M is a possibly unbounded normed state space equipped with its Borel-o-field M.

X" is the compact and convex normed action space for player 7 € I.

o Ul: M x [Lics Xi — R is the utility functionfor player ¢ € 1.

B € (0,1) is the discount factor for player i € I.

Q is the law of motion, i.e., a stochastic kernel from M x [[;.; Xi to M which governs

the conditional transition dynamics of the state sequence.

e ¢ € M is the starting point of the state sequence.

A typical action of player i € I is denoted z* € XZ The actions taken his competitors are
denoted 77 € X := {27" = (27)jenqip }» and X := {z = (2')ser : 7' € XZ} is the compact
set of all action profiles.

We consider stochastic games in which actions are chosen at discrete times t = 1,2,....
At each time t € N, the players observe the current position & € M of the state sequence.
They take their actions z% = 7¢(¢;) independently of each other according to a homogeneous
Markov strategy 7° : M — Xz The selected action profile z; = (7%);c; along with the present
state & yields the instantaneous payoff U?(&,z¢) = U(&;, 2%, ;%) to the agent i € I, and
the conditional distribution of the new state £;+1 in the following period ¢ + 1 is given by
Q(&t,z4;-). We denote by Q := MY the path space of the state sequence {¢;} and by F
the product-o-field on 2. A homogeneous Markov strategy 7 = (7%);cs along with an initial
distribution p for the starting point of the state sequence and together with the law of motion
@ induces a probability measure P}, on (£2,F) in the canonical way. Under the measure P},

the state sequence {¢;} is a Markov chain on the state space M.



Remark 2.1 Recall that the transition operator K™ of the Markov chain ({ft},ng) acts on

a bounded measurable function f: M — M according to

Jom [ 0 i = [ 50000 (1)

For a stationary strategy 7, the expected discounted reward to player 7 € I is given by

(e}

7> o) UK ft,a:t)] : (2)

t=0

Ji(g,T) = Ji(gaTi,T N =F

Here fe axpectition7i8) jakerAwith respect to the measure P7

sh equilibrium for ¥ if no players can increase

?

if

J'(& a7

(3)

Xi and each ¢ € I.

The existence of (e-) equilibrium strategies for discounted non-zero sum stochastic games
has been established under rather general assumptions on the state and the action spaces
and on the players’ utility functions; see, e.g., Mertens and Parthasarathy (1987), Nowak
(1985) or Duffie et al. (1994). The existence of equilibria which display additional continuity
properties, however, turns out to be more involved. To the best of our knowledge, this issue
has so far only been addressed in the context of supermodular games by Curtat (1996), and
in a game of stochastic capital accumulation by Amir (1996b). In the following section we
are going to generalize this results to a larger class of discounted stochastic games where the
action spaces are compact and convex subsets of Hilbert spaces. At the same time, we aim

at filling what appears — at least to us — to be a gap in Curtat’s theory.

2.2 Assumptions and the main results

For the remainder of this section we assume that the action and state spaces satisfy the

following conditions.

Assumption 2.2 (i) The action space XZ s a closed, compact and convex subset of some

Hilbert space (H',|| - ||;)-

(ii) The state space M is a convez subset of a normed space (H,|| - ||am)-



The norm on the product space X is defined by [|lz]|? := Y, [lz%]%.

Before we give
conditions of the stochastic game Y. which guarantee the existence of a Lipschitz continuous

Nash equilibrium, we recall the notion of an a-concave function.

Definition 2.3 Let Y be a convex subset of a Hilbert space H and let o > 0 be a positive
constant. Following Montrucchio (1987) we say that the function f:Y — R is a-concave if

the map y — f(y) + selyl|? is concave on Y.

In the differentiable case, there are simple criteria to verify a-concavity. For example, if
f is concave and twice differentiable on an open set Y7 containing Y, then f is a-concave
whenever

ly' D% f (y1)y| > oyl forally; €Y1 and y €Y.
A twice differentiable function f : [a,b] — R is a-concave if f” < —a.

We will also need the notion of directional derivatives.

Definition 2.4 Let Y be a convex subset of a Hilbert space H and let f : Y — R be a finite
function. f is differentiable at y € Y in the feasible direction h € H if y +th € H for some
t > 0 and if the limit

£uh) = lim 7 (F(y + th) — F0)

is exists and is finite.

In terms of directional derivatives, we have the following characterization of a-concavity

which is a corollary to Propositions 4.8 and 4.12 in Vival (1983).

Lemma 2.5 Let Y be a convex subset of a Hilbert space (H,| - ||). A function f:Y — R is

a-concave if and only if one of the following conditions is satisfied:

1
fly) — fly2) — f'y2s92 — 1) < —§a||y2 — (y1,92 €Y)
or
f is locally Lipschitz continuous and f'(y1;y1 — y2) — £ (Y2391 — v2) < —allyr — v2 -

We are now going to formulate our assumptions on the utility functions U?. We need to
assume strong concavity of an agents’ utility function which respect to his own action and
need to place a quantitative bound on the dependence of his instantaneous utility on the

actions taken by his competitors.



Assumption 2.6 (i) The utility functions U' : M x X — R are bounded and Lipschitz

continuous:
[U*(é1,2) — U2, )| < L([I& — &allma + llz — yl])

for some L < oo and for all &1, € M and each =,y € X.
(ii) The map U*(€,-,z7%) is a(€)-concave on XZ for all z7% € X_i and infecpr a(§) > 0.

(ii) There are constants L% (&) such that he partial derivative U?(€,z;h) of the utility
function U* at (€,z) in the direction h* € H' satisfies

[Ui(€, 2%, a5 0 — Ui (€, 2%,y hY)| < L9 (€) |27 — o7||;]1Rs

for all actions profiles %, y~" € X_i with ¢ = y* for k ¢ {i,j}. Moreover there are

constants Lt such that
Ui (&1, 2", 27" BY) = Ui(&o, 2%, 27" BY)| < LU1& — &ollm |||l
or all &1,& € M and each v € X.

The quantity L/ (¢) may be viewed as a measure for the dependence of agent i’s instan-
taneous utility of the choice of player j if the current state is £. By analogy, L' measures
the dependence of his one-period utility of the current position on the state sequence. If the
utility functions are sufficiently smooth, these quantities can be expressed in terms of the

partial derivatives of U? as the following example shows.

Example 2.7 (i) Let us assume that both M C R and XL C R are compact and convez
and that the utility functions U are twice continuously differentiable. In this case the
map =t — UYE, 5%, 27%) is a(€)-concave on X whenever 8(6—2)2Ui(§,x) < —a(f) < 0.

xt
The constants L™ (§) and L' can be chosen as

2

8:5,-8:1:]-

2

and L'=sup U'(€, ).

&

£49(6) = sup \ Ui, z)

(i) Suppose now that M, Xz C R™ for some m € N and assume again that each U’ is twice
continuously differentiable. In this case we may choose
32

i J
0z, OTm,

32

a-’L'g,“ 85m2 U (é-’x)

and L'= sup

ml:m27§aw

L"(¢) = sup U'(€,z)

my,ma,r

7

where x* = (z%,...,2%) eXi and £ = (&1,...,&m) € M.



In order to prove the existence of Lipschitz continuous equilibria for the game 3 we also

need to impose smoothness conditions on the law of motion.

Assumption 2.8 (i) The probability measure Q(&, z;-) has a density q(&, z, ) with respect
to some measure p on (M, M) and ¢* := supg , [ |q(&, z,n)|u(dn) < oco.

(i) The conditional densities are Lipschitz continuous functions of the parameters £ and x:

lg(&1,2,m) —a(ée,y,m)| < L (& — &llm + [lz —ylD) (4)
for some L < oo and for all £,,6 € M and z,y € X.

(iii) The directional derivative q;(&, z,m;h?) of the density q at (€,z,7m) in the direction h' €
H' is dominated by some function o(n) which is integrable with respect to u, and there
exists functions Lb . M x X x M — R such that
if 2% = y* for all k ¢ {3,7} and such that

Moreover, there are constants L such that

|qi(£1,$an; h’Z) - Qi(§2a$,77; hz)| < IA’Z”fl - §2||M||hz||l
for each &1,6 € M and all z = (2*,27%) € X.

Observe that the Lipschitz continuity condition (4) translates into a norm-continuity
condition on the transition probabilities Q(&, z;-). If &, — £ and z, — x, then

sup |Q(£n,$n,B) - Q(£,$73)| —0 asn—oo.
BeM

Such an assumption has also been imposed by, e.g., Mertens and Parthasarathy (1987) and
Duffie et al. (1994). Note also that in case the conditional densities are smooth enough the
random variables L% (¢, z,n) may be chosen as

2

0z;0x;

f’i’j(fvman) = Q(ﬁax,ﬁ)- (6)



In order to guarantee the existence of Lipschitz continuous equilibria in discounted stochas-
tic games we need to assume that the interaction between different agents is not too strong.
Since the players interact through their utility functions and through their individual impacts
on the evolution of the state sequence, we need to control both the impact of an action of
player j on the instantaneous reward to the agent i and the dependence of the law of motion
on the actions taken by an individual player. We formulate this conditions in terms of a per-
turbation of the weak interaction assumption introduced in Horst and Scheinkman (2002).

To this end, we denote by
LH9(€) == sup | L™ (¢, @, )|
T

the canonical upper bound of the L'-norms of the random variables L/ (¢, z, -) with respect
to the measure p and by || - ||occ the usual sup-norm. We say that Moderate Social Influence

occurs if the following condition is satisfied.

Assumption 2.9 There exists v < 1 such that

3 () + 251U oo X ey LH9(6) . -
o(é)

Before we state the main result of this section, we consider some case studies where

our Moderate Social Influence Assumption 2.9 can indeed be verified. A detailed discussion

including a motivation of Assumption 2.9 is postponed to the end of Section 2.4.

Example 2.10 Assume that M C R and that XL = [0,1]. Assume moreover that the play-
ers’ utility functions U are twice continuously differentiable on an open set containing X.

Consider a law of motion QQ which is of the form

Q) = ZLEQue) + (1- 225 Que).

If the measure Q;(&;-) has a density q;(&,-) with respect to some law p on R that satisfies

lgi(&1,m) — ¢i(&2,m)| < L|&1 — & (i=1,2)

then our Moderate Social Influence condition translates into an assumption on the marginal
rates of substitution. Indeed, in our present setting we may choose f,Z’J(f) =0, and so (7)

holds if, for example,
62

82
<
=7 ‘3(%)2

8.’51' 6.’1,']'

> U'(¢, ) U'(¢, )

J#
for all i € I and for some v < 1.




Let us now show how the dynamic extension of Diamond’s (1982) search model studied

in Curtat (1996) fits into our framework.

Example 2.11 Consider Curtat’s (1996) dynamic extension of the Diamond search model.
In this case XZ =10,1] and M = [1,2]. The one-period reward functions are given by

Ui, x) = & ij — 1.74(1 + z%)3,
J#i
and the law of motion is of the form

Ty ... N 1. ... N
Qo) = EEEIET 0,0+ (1- L EEET ) gy,

In view of Example 2.10, the game has a Lipschitz continuous equilibrium if N <5 because

o* 0?
— U’ =¢< -
1507 U'é,z) =¢(<2 and o)

Among others, Nowak (1987) and Kiienle (1999) consider stochastic games with additive

U'(€,2) = —10.44(1 + z°) < —10.44.

reward and additive transition structure. For such games our Moderate Social Influence

conditions also takes a particularly simple form.

Example 2.12 Consider an ARAT game, i.e., a stochastic game where both the reward
functions and the transition probabilities are the sum of N terms, and where the i-th term

depends only on the action taken by the player 1 € I. More precisely, assume that
U¢, ) =Y u(&a’) and that Q&) =) Q&%)
jel jeI
Assume also that the law Q*(¢,z%;-) has a Lipschitz continuous and sufficiently smooth density

g (€, %) with respect to some measure u' and that the map z° — u>* (€, 2%) is a(€)-concave

on XZ In such a situation moderate social interaction prevails if there is v < 1 such that

.
o {2 0o sup

We are now going to state a first result which guarantees the existence of Lipschitz

0% . ;
‘WQZ(Q ' )

} < ya(§).

1

continuous equilibria in stochastic games with compact state spaces. It will be proved in

Section 2.5 below.

10



Theorem 2.13 FEvery discounted stochastic game X with a compact state space that satisfies
Assumptions 2.2, 2.6, 2.8 and 2.9 has a homogeneous equilibrium in Markov strategies T

which is Lipschitz continuous. That is, there exists L* < oo such that
I78(&) — (€l < L& —ballr (i €1).

Theorem 2.13 may also be viewed as an extension of Theorem 4.1 in Duffie et al. (1994).
In the context of finite-horizon stochastic games and under a mutual absolute continuity
assumption on the conditional transition laws — but without any kind of Moderate Social
Influence assumption — these authors obtain the existence of a “special kind of (stationary)
correlated equilibrium” for discounted stochastic games. That is, they obtain the existence

of a correlated equilibrium where the equilibrium process admits an ergodic measure.

Definition 2.14 Following Duffie et al. (1994) we say that a discounted stochastic game ¥
has a stationary equilibrium if there exists a homogeneous equilibrium in Markovian strategies
7 and an initial distribution p on (M, M) such that the Markov chain ({&}, IP’L) is stationary

and ergodic.

The following theorem shows that a discounted stochastic game with compact state space
has a stationary equilibrium, whenever the interaction between different agents is not too

strong.

Theorem 2.15 Every discounted stochastic game X which satisfies the assumptions of The-

orem 2.13 admits a stationary equilibrium.

Theorem 2.15 guarantees the existence of a Markov strategy 7 and an initial distribution
p such that the equilibrium process is stationary and ergodic under PPj. An extension of this
result will be established in Section 3 where we introduce a new class of stochastic games
called Stochastic Games with Complete Connections. We shall see that such games admit
a homogeneous Markov strategy 7 such that, independently of the initial distribution, the
state sequence converges in law to a unique stationary measure.

Our Theorem 2.13 is applicable to stochastic games with compact, and hence bounded
state spaces. However, in many applications it seems natural to assume an unbounded state
space. This calls for an extension Theorem 2.13 to stochastic games with unbounded state

spaces. Such an extension can indeed be established under a mild additional assumption on

11



the conditional densities (¢, z,-). To make this more precise, let M,, T M be an increasing
sequence of compact and convex subsets of H and ¢,(£,z,-) (n € N) be a sequence of

conditional densities which converges to ¢(&, z,-) uniformly on compact sets:

n—-x

sup |gn(&,z,m) —q(&,z,m)| — 0 for all compact sets K C M. (8)
nekK

Remark 2.16 Let Q,, be the stochastic kernel from M, x X to M, that is defined in terms of
the conditional density q, and consider the stochastic game %, = (I, My, (Ui,Xi,ﬂi), Qn,§).
Our condition (8) translates into an assumption on the conditional transition dynamics of the
state sequences {&'} and {&} associated to the respective games Xy, and ¥. In order to see

this, we fiz a state £ € M, and an action profile * € X and introduce the measures pin (€, ;")

and p(&, z;-) by
dpn (€, ;°) = qu(& 735 )dp and  dp(é, z;-) = q(§, =5 -)dp, 9)

respectively. For any bounded function h : H — R with compact support K C H we have

lim ‘/ h(n) [pn (&, x5dn) — p(€, z5dn)]| < ||hlloo sup |gn (€, =, 1) — q(§, z,n)| = 0.
K eEK

n—00
n

Thus, under (8) the sequence of conditional transition probabilities {pn(€,x;-)} converges

weakly to the probability measure p(€,x;-).

We are now ready to formulate an extension of Theorem 2.13 to stochastic games with

unbounded state spaces which will be proved below.

Theorem 2.17 Let ¥ = (I, M, (XZ, U, 8Y),Q,€) be a discounted non-cooperative stochastic

game that satisfies the following conditions:
(i) The action spaces satisfy Assumption 2.2 (i).
(i) The utility functions satisfy Assumption 2.6.
(75i) The law of motion Q satisfies Assumption 2.8.

(iv) There exists an increasing sequence of closed compact convex sets M, T M and a family

of conditional densities (q,,) satisfying (8) and Assumption 2.8 (i) - (iv).

Then the game X has a Lipschitz continuous stationary Nash equilibrium in Markov strategies.

12



Let us illustrate our Theorem 2.17 in a situation where the interaction between different
players is local on the level of instantaneous utilities and global on the level of the law of

motion.

Example 2.18 Let M = R and XZ = [-1,1]. Let ¢(m,-) be the density of the normal
distribution with mean m and standard deviation 1. Assume that Q(&,z;-) = q(&,z,n)dn and

that N
q(& ;) = ¢ <£+ L"J:le ) :

Thus, for games with many players, the impact of an individual agent on the distribution
of the new state is weak. It is easily seen that these densities satisfy (8). Moreover, a

straightforward calculation shows that

LH(€) < sup for some ¢ < oo and for alli,j € I.
T

32

Let us also assume that the direct interaction between different players is local in the sense

< ©
- N?

that U'(€,z) depends on the entire action profile z € X only through z* and through the
action x7 taken by player i’s neighbor, agent j = (i + 1) mod N. In this case LI (-) = 0 for
all j # (i+ 1) mod N and moderate social influence occurs if
82 82 .
Ortoritl =7 ‘3(3502 (&)

for some v < 1 and if N 1is sufficiently large.

U'(¢,z)

2.3 Lipschitz continuous solutions to parameterized optimization problems

Unlike Curtat (1996), our existence proof for Lipschitz continuous Nash equilibria in dis-
counted stochastic games does no need Topki’s (1978) Monotonicity Theorem. Instead, we
combine our Moderate Social Influence condition with a result in Montrucchio (1987). Mon-
trucchio gives general conditions under which a collection of optimization problems, with
the objective function depending on a parameter, has optimal solutions that are Lipschitz
continuous functions of the parameter. More precisely, in his Theorem 3.1 he proves the

following;:

Theorem 2.19 Let X be a closed and convex subset of some Hilbert space (Hy,||-||1) and let

Y be a convex subset of a normed space (Ho,|| - ||2). Let F: X xY — R be a finite function

which satisfies the following conditions:'
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(i) For ally €Y, the map x — F(z,y) is a-concave and upper-semicontinuous on X.

(i) For all feasible h € H, the directional derivative Fy(x,y;h) of F at (x,y) in the direction

h satisfies the Lipschitz continuity condition

|F1(z, y15h) — Fi(2,y2; h)| < Lilyr — yall2/|Rll1
for all yi1,y2o €Y and all z € X.

Under the above assumptions there exists a uniqgue map 6 :' Y — X that satisfies sup,cx =

F(z,y) = F(0(y),y). Moreover, 6 is Lipschitz continuous and

L
10(y1) — 0(y2)| < aHyl —yall2

for all y1,yo €Y.

2.4 Lipschitz continuous equilibria in a static one-shot game

Let us prepare the proof of Theorem 2.13. To this end, we introduce the vector u = (u');cr
with components u; := ||U%||o and denote by (B,(M,RN), || - |/s) the Banach space of all
measurable functions f : M — RY satisfying || f*||cc < u’. To each such average continuation
function we associate the reduced one-shot game Y := (I , M, (Xi,Ui’f ),f) with payoff

functions

Uil (€,2) = (1 - B)U(€,2) + B /M Fin)a(€, 2, m)u(dn). (10)

Remark 2.20 Notice that Ui’f(f, x) is the payoff to player i € I in the stochastic game %, if
the game terminates after the first round, if the players receive rewards according to the payoff
functions f* in the second period, and if first period payoffs are discounted at the respective

rates 1 — B3°.

Our aim is now threefold. We wish to sow that (i) the conditional best reply g} (&,27Y)
of the player i € I, given the actions z—* € X_i of his competitors, is uniquely determined,
(ii) the reduced game ¥ has a unique equilibrium g (¢) and (iii) the map gy : M — X is
Lipschitz continuous with a constant that is independent of the average continuation function.

The latter property turns out to be the key to the proof of Theorem 2.13.

"Montrucchio (1987) formulated this theorem under the additional assumption of Y being a closed and

convex subset of a Hilbert space H>. His proof, however, shows that this assumption is redundant.
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Lemma 2.21 Under the Assumptions of Theorem 2.183 the following holds:

(i) For each € € M and 27 € X_i, the map ' — UST (&, 5%, x7%) is & (€)-concave on XZ

The concavity parameter &*(€) if given by
6'(6) = min { (1 - F)a(§) —u'FLH ()}
and infe &°(€) > 0.

(i) The conditional best rely g}(ﬁ,x_i) of player © € I depends in a Lipschitz continuous

manner on the actions of his competitors. More precisely, we have

(1— )L (&) +u'B LY (€)

||93°(£7'T71) - 93*(§ay71)||z < OAlZ(f) ||$] - y]”J (11)
if o8 = y¥ for all k # j. Moreover, there ezists L < co such that
g (€1, 27") — g (&2, 27"l < Ll — &llm (12)

for all &,&, € M and each z—* € X_i
(iit) The reduced game X has a unique equilibrium gg(§) = {g}({)}ig €X.

(i) The mapping & — g} (&) is Lipschitz continuous and the Lipschitz constant can be chosen

independently of the average continuation function f € By, (M,RY).
(v) The map f g}() from B, (M,RY) to B(M,X) is continuous.
PROOF:

(i) Let us fix an average continuation function f, an action profile z—¢ € X " and a state

¢ € M. In view of Lemma 2.5 it is enough to show that
Pl (6,af o750t —3) — UL (6,4, 07500 —4) < —a(@)lla' — 47 (13)
for all 2%, &% € X In order to prove (13), we put
Fieaa )= [ Fae o muldn).

By Assumption 2.8 (iii), the directional derivative F}(¢,z%,z% 2% — &%) of the map

ot FY ¢ 28,z at (€,2) in the direction 2 — & exists and satisfies
|[Fi(g, ', a™h et = ) = Fi(§,4", a7 o' — )| <w'LH(9)]l2” — 417
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(iii)

Since U*(&, -, x7%) is a(€)-concave on XL we have
Ul(,2', 252" —2%) — Uj(§, 85075 0" — &) < (@)’ — ',

and so (13) holds if (1—8%)a(¢) > f*ulL*(€). This, however, as well as infecpr & (€) > 0

follows from the Moderate Social Influence condition.

Since an agent’s utility function is strongly concave with respect to his own action, his
conditional best reply given the choices of his competitors is uniquely determined. To
establish the quantitative bound (11) on the dependence of player i’s best reply on the
—i

—1

behavior of all the other agents, we fix a player j # ¢ and action profiles z7* and y
which differ only at the j-th coordinate. Under the assumptions of Theorem 2.13 the
directional derivative Uf’f(f,wi,w*i; k) of the map z — UHS (€, 2%, 277 at (€, z) in the

direction h* € H'® satisfies
U (6,0, 705 0) — UL (¢, )

< {@=BYLH(E) + BuLH @)} lla? — ol

Thus, (11) follows from Theorem 2.19. Our estimate (12) follows from similar consid-

erations.

The existence of an equilibrium in pure strategies for the static game 3 follows from
strict concavity of the utility functions U/ with respect to the player’s own actions
along with compactness of the action spaces using standard fixed points arguments. In
order to prove uniqueness, we proceed as in the proof of Proposition 4.21 in Horst and
Scheinkman (2002). Our Moderate Social Influence condition yields

1_/31 Lz,g& _|_13i iﬁi’jf
by UG )

<1

Wi

Thus, given the action profiles ™% and y ™ of player i’s competitors, it follows from

(11) that

g (&2 ") — g (&y )i < imjax 27 — 47 |);.
For z # y, we therefore obtain

max [lg7 (¢, 27") — g7(&,y7")li < max ||z’ —y']l;
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Thus, the map = — (g}({ ,z~ ")) has at most one fixed point. This proves uniqueness of

equilibria in ¥ .
Let g/ (£) be an equilibrium. Then gf( €)= (f {gf( )}ji), and so

lgh (&) — g€l < llgh(&r, {g}E)}iri) — g% (€0, {0 (€2) iz s
+Hg% (€1, {0 (&) }ii) — 9 (&2, {gh (&) i) i

< LY 1gi(6) - ghElly + Lliés — Ellar-
J#i
This yields
g% (&) — g5(€)lli < ——=I&1 — &llm,

(1 ~ L)
and so the equilibrium mapping gy : M — X is Lipschitz continuous which a constant

that does not depend on the average continuation function f.

In order to prove this assertion we fix £ € M and z7* € X * and apply Theorem 2.19

to the map

Due to Assumption 2.8 (i) we have for all f,g € B, (M,RN) that
U (€, o, 275 hT) — UPP (€, 2%, 275 bE) | < B f1 — FalloolIB,
and so Theorem 2.19 shows that

i i i —iy||. Biq*

Thus, similar arguments as in the proof of (iii) yield the assertion.

11 = falloo-

a

Our Moderate Social Influence conditions appears to be rather strong. However, for

the proof of Theorem 2.13 it will be essential that the equilibrium mappings gy : M — X

are Lipschitz continuous with a constant that does not depend on the average continuation

function f. For this, we need uniqueness of equilibria in the reduced one-shot games ¥ y. We

guarantee uniqueness by assuming that the utility functions U%/ inherit enough concavity

in the player’s own actions from the original reward functions U’. This is accomplished

by assuming that the dependence of an agents’ utility function on the actions taken by his
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competitors is not too strong, and that the impact on an individual player on the dynamics
of the state sequence is sufficiently weak. Examples 2.10 and 2.18 show that this is indeed
true for games where the law of motion Q(¢,z;-) depends in a linear manner of the action
chosen by the agents ¢ € I and in games with many players where the distribution of the
new state only depends on the average action and if the direct interaction between different

players is local.

Remark 2.22 Lemma 2.21 may be viewed as an extension of Theorem 4.2 in Curtat (1996)
to stochastic games with more general state and action spaces. However, at least to us,
Curtat’s result appears to be somewhat incomplete. Basically, this author assumes that XZ
and M are compact intervals, and that the transition law Q(&, x;-) has “doubly stochastically

increasing differences in © and £”. Inter alias this means that, for any increasing function

f: M — R, the map
ot fuate,zmvidn) (14)

has doubly increasing differences in x and £. Thus, there is a Lipschitz continuous function

¢ : R — R such that the map

o / £ () a(€, §(€)1 — ;i) w(dn) (15)

has increasing differences in x and &. Here 1 denotes the vector (1,1,--- ,1) in RN . For
the proof of Theorem 4.2 in Curtat (1996) it is now essential that the Lipschitz continuous
“change of variables” ¢ can be chosen independently of f. Unfortunately, the author does not
give general conditions which guarantee this. In his Theorem 2.4, Curtat (1996) essentially
shows that a sufficiently smooth function F : X xR — R has doubly increasing differences, if

and only if it has increasing differences in x and & and if it satisfies the diagonal dominance

condition
O°F O’F

i = < - -
fa: 0%zt + C~ OrifxI —
J#

Applied to the mapping defined in (14), such a diagonal dominance condition holds if the
conditional densities depend linearly on the players’ actions, and in this case Curtat’s con-
ditions are equivalent to our Moderate Social Influence assumption. But does it also hold in

more general situations? If fi < 0, then the change of variables ¢ : R — R can be chosen as

max;

9’F
0x;0¢ 00

maX; || flleo

d(&) =c& where c>
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For the map defined by (14), this yields a change of variables whose Lipschitz constant depends
on f. We are unaware of any conditions which ensure the existence of a change of variables
which is Lipschitz continuous uniformly in the average continuation function. This motivated

our Moderate Social Influence condition.

Remark 2.23 In the 2-Person stochastic capital accumulation game with conver transition
probabilities studied by Amir (1996b), the conditional densities take the form q(& —y' —1y?,-).

In this special case, the Lipschitz continuous change a variables can easily be given: ¢(&) = &.

2.5 Existence of Lipschitz continuous equilibria in stochastic games with

bounded state spaces

This section proves our Theorem 2.13. We therefore assume that M C H is compact. For the
average continuation function f € B, (M,RY), we denote by g;(¢) the unique equilibrium in

the one-shot game ¥ ¢, and introduce an operator T on B, (M, RY) by

(TF) (&) =1 —BHE gr(E) + B /M F (mq(&, g5(€),n)u(dn). (16)

A standard argument in discounted dynamic programming shows that for any fixed point F

of T, the action profile gp(§) is an equilibrium in the non-zero sum stochastic game . The

equilibrium payoff to player ¢ € I is given by fi(éz , and the map gr : M — X is Lipschitz

continuous, due to Lemma 2.21.
In order to prove Theorem 2.13 it is therefore enough to establish the existence of a fixed

point for the operator T'. To this end, we will need the following basic properties of T.

Lemma 2.24 Under the assumptions of Theorem 2.13 the following holds:
(i) For all f € By(M,RYN), the mapping & — (Tf)(€) is Lipschitz continuous.

(i) The operator T is continuous in the sense that lim, o ||Tf — T fnllco = 0 whenever

limy, 00 ||f - fn”oo =0.
PROOF:

(i) It follows from Lipschitz continuity of the utility functions and the densities that

[(Tf)! (&) — (Tf)' (&) < [(1—B)L+ BLu'] (I|& — &l + llgp(€1) — 97(E2)llar) -
(17)
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Thus, Lipschitz continuity of the mapping ¢ — gf(€) yields Lipschitz continuity of
(T /).

(ii) To prove continuity of 7" in the topology of uniform convergence, we fix functions
fn € By,(M,RN) that converge to f in the topology of uniform convergence. Lemma,
2.21 (v) yields lim, 0 ||9f, — gflloc = 0. Thus, Lipschitz continuity of the reward

functions and the densities gives us

(T fa)'(€) = (T1) (O] < (1= B)Lllgs, — glloo + B {f2 = *lloo +u'Lllgs, — gslloo}

and so

lim ||Tf, — Tf|loo = 0.
n—,oo

This finishes the proof. O

Remark 2.25 Our Lemma 2.24 might be viewed as a modification of Theorem 4.4 in Curtat
(1996). Since the Nash equilibrium correspondence is closed valued, ||fn, — fllco — 0 yields

lim gy, (§) = g7(§) for all § € M.

n—oo

Howewver, there is a-priori no reason to assume that the convergence is uniform over & € M.
It therefore remains unclear to us, why the operator T defined in Section 4.2 in Curtat (1996)
maps a certain set of increasing functions continuously, i.e., with respect to the topology of
uniform convergence, into itself. From our point of view, continuity of T in operator morm

requires continuity of the maps f — g¢(§) uniformly in § € M.
Let Ly be the common Lipschitz constant of the maps gy : M — X and define
L* :=max {[(1—B)L+p'Lu’] 1+ Ly) :i € I}

We introduce the class £(L*,u) of all functions f € B, (M, R") which are Lipschitz continuous
with constant L*. For f € £(L*,u) we obtain from Lemma 2.24 (i) that

T fi(€1) — T fi(§2)| < L¥[|€1 — Eallna-

Thus, T maps the set £(L*,u) continuously into itself. We are now ready to prove the main

results of this section.
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PROOF OF THEOREM 2.13: Due to the Arzela-Ascoli theorem, the set £(L*,u) is compact
and convex with respect to the topology of uniform convergence. Since the operator T is
continuous and maps to set £(L*,u) into itself, it has a fixed point F* by Kakutani’s theo-
rem. Moreover, gg~ is a Lipschitz continuous equilibrium for our non-cooperative discounted

stochastic game 3. O

PROOF OF THEOREM 2.15: Due to Theorem 2.13 the stochastic game ¥ admits a Lipschitz
continuous equilibrium 7. The transition operator K7 of the Markov chain {{;} acts on
bounded measurable functions on M according to (1). Since both the densities and the

equilibrium strategies are Lipschitz continuous,

Tim [K7f() ~ Kf©] < Tim | flloollaén 7(€n).m) — a6, 7(€).m) o
< Tim Ll — ¢l + 7€) = 7(©]) = 0
whenever lim,,_, &, = £. In particular, the Markov chain {{;} has the Feller property. Thus,

the existence of an initial distribution y such that {¢;} is stationary and ergodic under PP,

follows from compactness of the state space M. O
2.6 Existence of Lipschitz continuous equilibria in stochastic games with
unbounded state spaces

In this section we prove our existence result for Lipschitz continuous equilibria in non-

cooperative stochastic games with unbounded state spaces.

PROOF OF THEOREM 2.17: We introduce the operator Ty, : Bu(Mn,RﬂY) — Bu(Mn,]RﬂY) by

(Tnfa)'(€) = (1= B)U" (€, 97, (€)) + B /M (M an (&, 95, (6),m)ps(dn).-

Here, gy, (¢) denotes the unique equilibrium in the one-shot game X, with average contin-
uation function f, € By(M,,R") and conditional densities g,,. Let F,, be a fixed point of
T,. Due to our Lemmas 2.21 and 2.24, the mappings g, : M, — X and F, : M,, — RN
(n € N) are Lipschitz continuous with common Lipschitz constants. In particular the sequence

{(9F,,Fn)} is equicontinuous, and so the theorem by Arzela and Ascoli yields a subsequence
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(nk) and Lipschitz continuous functions F : M — R and g : M — X such that
klim |Fr, (&) — F(€)] =0 and klim |9F,, (§) —9g(§)] =0 uniformly on compact sets.
—00 —00

Since the utility functions are uniformly bounded, weak convergence of the sequence of prob-

ability measures {pn, (¢, 2;-)} defined in (9) to p(¢, z;-) yields

k—00

tim [ T (1), (€ gr,, (€), mia(dn) = / Fi(n)a(é, g(€), n)uldn).
H H

We deduce that

Fi(e) = (1 - YU (£, g(6)) + B /H F(n)g(€, 9(€), m)p(dn).

It is easily seen that g(§) is an equilibrium in the one-shot game ¥ with conditional transition
densities g. Thus, g is a Lipschitz continuous Nash equilibrium in Markov strategies in the

stochastic game ¥ with unbounded state space. O

3 Ergodic equilibria in stochastic games with complete con-

nections

So far we proved the existence of Nash equilibria in stochastic games which have the additional
property that the equilibrium process is stationary and ergodic, given the starting point is
chosen according to a suitable initial distribution. In this section we are going to extend
this result for a special class of stochastic games which we shall call stochastic games with
complete connection. Our goal is to formulate conditions which guarantee the existence of
stationary Nash equilibria which ensure that the equilibrium process settles down in the long

run. More specifically, our focus is on the existence of ergodic equilibria.

Definition 3.1 Let 3 be a discounted non-cooperative stochastic game. We call a stationary
Nash equilibrium in Markov strategies T an ergodic equilibrium if the Markov chain ({&}, ]P’g)

converges in distribution to a unique stationary measure " on (2, F).

Clearly, an ergodic equilibrium is at the same time a stationary equilibrium; if 4™ denotes
the unique limiting distribution of the state sequence, then the process {{;} is stationary and
ergodic under the law PJ-(-) = [P(-)u"(df). A stationary equilibrium, of course, is not

necessarily ergodic.
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3.1 Random systems with complete connections

Before we introduce the notion of stochastic game with complete connections we recall the
concept of a random system with complete connections: Let (M, dys, ) be a metric space and
let (Ms, Ms) be a measurable space. Let Z be a stochastic kernel form M; to Mo, and let

v : My X My — M be a measurable mapping.

Definition 3.2 Following Iosefescu and Theodorescu (1968) we call the quadruple

T = ((My,dar,), (Ma, Ma), Z,v)

a homogeneous random system with complete connections (RSCC for short). Given an initial
value £, a RSCC induces two stochastic processes {&} and {(;} on the canonical probability
space (2, F,P¢) taking values in My and My, respectively, by

§ev1 = 0(&,G)  and PelGr € -6, i1, 66-15 G2, - -] = Z(Ets7)-

Here P¢[éo = &] = 1. These processes are called the associated Markov chain and the signal

sequence, respectively.

The following theorem summarizes results about asymptotic stability of Markov chains
associated to RSCC that appear as Theorem 4.2 in Norman (1972) and as Theorem 2.1 in
Barnsley, Demko, Elton, and Geronimo (1988), respectively.

Theorem 3.3 Let T = ((M,dar, ), (Ma, Ms), Z,v) be a random system with complete con-

nections and assume that the following conditions are satisfied:

(i) The map v: My x My — M, satisfies the mean contraction condition

dary (v(€1, €), (&2, €)) Z (€15 dC) < rdnry (€1, 82) (18)

M1
for some r <1 and all &1,&2 € M.

(i) There exists a probability measure v on (Q,F) and a constant ¢ > 0 such that Z(&;-) >
cv() and such that

/M dur, (v(€1,€), v(€2, Q))v(dC) < rdas (&1,62)- (19)
Moreover, there is L < oo such that
sup |Z(&1; B) — Z(§2; B)| < L, (€2,2). (20)
BeMo>
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Then the Markov chain {&} associated to T' has the Feller property. If, in addition, M is
compact or My is finite, then the sequence {&;} converges in distribution to a unique stationary
measure ji.

3.2 Stochastic games with complete connections

We are now ready define the notion of a stochastic game with complete connections. We
define a stochastic game with complete connections as a RSCC where the associated Markov

chain is under the simultaneous control of several players.

Definition 3.4 A stochastic game with complete connections (SGCC henceforth)
L= (L, (M- ), .U, B)ier, (M2, M), Z, v, €)

is defined in terms of the following objects:

e I ={1,2,...,N} is a finite set of players.

(My,|| - 1)) is a normed compact state space and (Ma, M3) is a measurable space.

e Y is a common compact and convex action space.

U; : My x X — R is the utility function for player i € I where X := [Lic: Y.

B € (0,1) is a common discount factor.

7 is a stochastic kernel from M; x X to M.

v: My X My — My is a measurable mapping.

o £ € M is the starting point of the state sequence.

A stochastic game with complete connections is played as follows: At each time ¢t € N
the agents observe the current state & and select, independently of each other, their action
zt € Y. The selected action profile along with the current state results in the instantaneous
payoff U?(&;,z;) to the player i € I, and the new state &, in the following period ¢ + 1 is
given by

§i+1 =v(&, Gt) where G~ Z(&, mt50)-
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If the players are restricted to the use of stationary Markov strategies 7 = (7%);cs, then the

state sequence {£;} may be viewed as the Markov chain associated with the RSCC
T = ((My, ]| 1), (M2, M2), Z7,v)  where  Z7(&;) = Z(&,7(€);)- (21)

This illustrates the connection between random systems with complete connections and
stochastic games with complete connections.

We are now going to combine our results about existence of Lipschitz continuous equilib-
ria in discounted stochastic games established in the previous section with Norman’s (1972)
stability result for Markov chains associated to RSCC. However, we shall see that the prob-
abilistic structure of the state sequence associated to a SGCC is more complex than the
structure of the state sequences in the games analyzed so far. To simplify our analysis we
will therefore assume that the law Z(z;-) depends on the action profile z € X only through
the average action. We also need to assume that the impact of an individual player on the

stochastic dynamics of the state sequence is sufficiently weak.

Assumption 3.5 (i) The measures Z(&,x;-) on (May, Ms) take the form

N
Z(f,ﬂ?; ) :Z (67%2-’515)

for some kernel A from My xY to My and for some constant ¢ > 0. The law Z(f,y; )
has a density z(€,y, ) with respect to some measure pu on (Ma, Ms). The map z is two
times continuously differentiable and the quantities |Dz(€,y,n)| and |D2z(f,y,n)| are

dominated by some functions p1(n) and po(n), respectively, which are integrable with

respect to .

(i) There exists a probability measure v on (M2, M3) and a constant X\ > 0 such that
Z(& ;) > A ().

(i7i) The map v is Lipschitz continuous and satisfies the mean-contraction conditions
max{ [ o(61,6) = 0(62,012(6,7340), [ Io(61,6) = 0(62, (a0 } < rlles — ol
for some r < 1 and for all v € X.

(iv) The action space is a closed and conver subset of a Hilbert space and the utility functions

U’ are uniformly bounded and satisfy Assumption 2.6.
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(v) The Moderate Social Influence condition holds.

We are now ready to prove that a stochastic game with complete connections in which
the impact of an individual player on the dynamics of the state sequence is weak enough has

an ergodic equilibrium.

Theorem 3.6 Let 3 be a stochastic game with complete connections that satisfies Assump-

tion 8.5. There exists C* > 0 such that, for all c < C*, the game ¥ has an ergodic equilibrium.

PROOF: Let us assume that the stochastic game with complete connections I'" admits a Nash
equilibrium in Markov strategies 7* that depends in a Lipschitz continuous manner on the
current state. In this case it is enough to show that the random system T defined by (21)
satisfies the assumptions of Theorem 3.3. For this, it suffices to show that there is a constant
L so that

sup (Z7 (&1;B) — Z7 (é2; B)| < L||& — &)
BeEM>

This, however, follows from (21) and from Lipschitz continuity of 7*. If L* denotes the
Lipschitz constant of 7*, then

sup |Z7 (€13 B) — Z7 (&3 B)| < L(1 + L*)||é1 — &, (22)
BeM:

due to Assumption 3.5 (i). Thus, it remains to show that ¥ has a Lipschitz continuous
equilibrium in Markov strategies.
By analogy with our previous considerations, we introduce the reduced one-shot game I';

with payoff functions
U (¢,0) = (1 — BT (€, 2) + B /M £ 0 (€, )26, 2 m)w(de). (23)

Using the same arguments as in the proof of Lemma 2.21 (iii) one can easily show that 3 has
a unique equilibrium g¢(§). However, since the integral term in (23) depends on the current
state £ both through z(¢, ) and through f;owv(&,-), the map gy typically will not be Lipschitz
continuous uniformly in the average continuation function f € B, (M,RN).

Instead of working with B, (M, RM), let us introduce the class EZ,U(M ,RY) of all Lipschitz
continuous function f : M — RM™ which are Lipschitz continuous with constant L and satisfy

I f¥lloo < u'. Applying the same arguments as in the proof of Lemma 2.21 (ii) and (iv) and
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taking into account Assumption 3.5 (i) and (i), the fact that f is Lipschitz with constant L

and because v is Lipschitz continuous we obtain ¢; and co such that

o 7
o} (&) — i@l < P2 e — &l

Thus, there is a constant c3 such that the operator T defined by
T1O) = (1= FIT € gr€) +8 [ 10 0(6.02(6,97()mwd0)
2
M,RN) where L*(L) is of the form

cli + o
-~ |

maps L3 (M, R") continuously into L@yl

L*(L) = c3 (1 +c

Thus, choosing C* = % we see that, for all ¢ < C*, there exists a sufficiently large L such
that L*(IAJ) < L. In particular, T maps to compact set £ ﬁ,u(M ,RY) continuously into itself
and therefore has a fixed point by Brower’s theorem. This yields the existence of a Lipschitz
continuous equilibrium in Markov strategies by analogy to the proof of Theorem 2.13. For

more detailed arguments we refer the reader to Horst (2002). O

4 A toy model for asset pricing with strategic interaction

This section illustrates how stochastic games with complete connections arise in simple mi-
crostructure models for financial markets. At the same time we are going to show how
strategic interaction between different market participants creates an additional source of
uncertainty in financial market models.

Standard financial market models usually assume identical investors who all share the
same rational expectations of a future asset price, and who instantaneously and rationally
discount all market information into the present price. From this academic point of view, large
price shifts reflect rational changes in the valuation of an asset rather than irrational swings in
the sentiment of investors. Traders, by contrast, often consider markets as being less rational.
Many believe that technical trading is possible, that some kind of “market psychology” exists,
and that herd effects unrelated to economic fundamentals can cause bubbles or crashes. In
view of such market realities there has recently been an increasing interest in microstructure

models for financial markets; see, e.g., Brock and Hommes (1997), Féllmer and Schweizer
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(1993) or Follmer, Horst, and Kirman (2002). Most of these models regard asset prices as
the result of an interaction between many small agents with bounded rationality. Our aim is
to introduce an additional strategic component into the interaction.

Following Horst (2000), we consider a financial market model with an infinite set A of
economic agents trading a single risky asset. In reaction to a proposed price p in period ¢t € N

the agent a € A forms the excess demand

ef11(p,w) =M Sf,, (w) — Inp, (24)

where S',§‘+1 (w) denotes his random individual reference level for the following period ¢+1. For

simplicity, we assume log linear benchmarks. More precisely, In SfH € {RY 15 R} 41} where
=S +y(F' —InS) (F*<F"

for some v < 1. Thus, the agent a € A can choose between two fundamentalist benchmarks
in the sense of Follmer et al. (2002). We refer the interested reader to Follmer et al. (2002)
and the references therein for microstructure models which take trend chasing and learning
effects into account. In our simple toy model S; € [F°, F!], and so we may with no loss of
generality assume that F* = 0 and that F! = 1.

We denote by yf € {0,1} the individual choice of agent a € A at time ¢ € N. That
is, yf = ¢ if S'fﬂ = R;.,. The configuration of individual states in period ¢ is denoted
yt = (yf)aca and to y; we associate the fraction

T = lim 1 ¢

(yt) 00 [ A anAn Yi
of “optimistic” agents if the limit exists along a fixed increasing sequence of finite sets A,, 1 A.
The actual stock price is now determined by the market clearing condition of zero total excess
demand, and so the logarithmic asset price process is described by the stochastic sequence

{S;} defined recursively by the linear relation
Ste1 = (1 =)t + ym(yr).

Remark 4.1 Observe that the evolution of the average action is the only component affecting

the formation of equilibrium prices.

Let us now specify the dynamics of the microscopic process {y;} which described the

stochastic evolution of all the individual states. We wish to allow for imitation and contagion
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effects in the formation of agents’ expectation, and so we assume that an agent a € A chooses
his new state yf, ; at random according to a probability law which depends on (i) his current
state y{, (i) on some signal s; € [0, 1] about the actual mood of the market 7(y;) and (iii) on
a signal m; € [0,1] that depends on the actions z; = (z},z2,...,z) € [0,1]" taken by some
big players. The conditional laws K (7(y;);-) and Q(x¢;-) of the signals s; and my, given the
current mood 7(y;) and the action profile z;, respectively, are described by the respective
stochastic kernels K on [0,1] and @ from [0,1]" to [0,1]. Given (s;,m;), the agent a € A
chooses his new state according to the probability distribution 7, ,,, (yf;-) on {0,1}. The

dynamics of the microscopic process {y;} therefore is described by a Markov chain

Iy, m, (Y25 +) = H T ym (YE5 )
acA

in the random environment {(s;,m)}, and the evolution of the sequence {(s¢, m;)} is partially
controlled by the big players. If the average action 7(y;) exists, the law of large numbers for

i.i.d. random variables yields

T(ye+1) = v(m(ye), st,ma) 2= Ty me (1 D)7 (ye) + sy m, (=151) (1 = 7(ys)) (25)

for I, mm, (yt; +)-a-e. ye41. Thus, the sequence {m(y;)} exists almost surely if w(yo) exists. Let
us now assume that the big players wish to control to evolution of the mood of the market
and, thereby, also the dynamics of stock prices. In view of (25), the process {7 (y;)} may be

viewed as the state sequence associated to the stochastic game with complete connections
r'= (Ia [Oa 1]5 ([O’ 1]’ Uia:B)iEIa [Oa 1]2’ Za ’U) .

Here the map v : [0,1]® — [0, 1] is given by (25), the stochastic kernel Z from [0,1] x [0, 1]V
to [0, 1]? takes the form
Z(n(y), ;) = K(n(y);) @ Q(a; )

and the utility functions U? : [0,1] x [0,1]Y — R are bounded and two times continuously
differentiable.

One can now show that v(s,m;-) is a contraction on [0, 1] uniformly in (s,m) € [0,1]% if
0 < m(y* 1) < 1. Thus, if the assumption of Theorem 3.6 are satisfied, i.e., if the impact of
an individual big player on the choices of the small investors is sufficiently weak, then there
exists an equilibrium strategy 7 for the big players such that the mood of the market settles

down in the long run. Given 7, the process {(St, 7(z;))} may be viewed as the Markov chain
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on [0,1]2 associated to a suitable random system with complete connections that satisfies
the assumptions of Theorem 3.3. In particular, there exists a unique measure u” such that
the price process converges in law to p”. In this sense the asymptotic behavior of asset
prices is uniquely determined, conditioned on the equilibrium strategy 7. In contrast to
microstructure models for financial markets without strategic interaction, however, there is
no reason to assume that the asymptotic behavior of the stock price process is uniquely
determined. In this sense, strategic interaction between different market participants may be

viewed as an additional source of uncertainty in financial markets.

5 Conclusion

We established the existence of stationary Markov equilibria for a class of stochastic games
with compact state and action spaces and norm-continuous transition probabilities. Our
proof is based on the observation that infinite horizon discounted stochastic games in which
the interaction between different players is not too strong have equilibria in Markov strategies
that depend in a Lipschitz continuous manner on the current state. For the special class of
stochastic games with complete connections this yields the existence of ergodic equilibria, i.e.,
of equilibria which guarantee that the equilibrium process settles down in the long run. Such
games arise in microstructure models for financial markets in which they provide a framework

for analyzing the evolution of asset prices in the presence of strategically interacting agents.
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