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Abstract

The Nadaraya-Watson estimator of regression is known to be highly sen-

sitive to the presence of outliers in the sample. A possible way of robusti-

fication consists in using local L-estimates of regression. Whereas the local

L-estimation is traditionally done using an empirical conditional distribution

function, we propose to use instead a smoothed conditional distribution func-

tion. We show that this smoothed L-estimation approach provides compu-

tational as well as statistical finite sample improvements. The asymptotic

distribution of the estimator is derived under mild β-mixing conditions.
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bution function
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1 Introduction

The nonparametric estimation of regression functions has received much attention

in the literature and one of the most widely used estimator is, without any doubt,

the Nadaraya-Watson estimator by Nadaraya (1964) and Watson (1964). This es-

timator, being a local average of the response variable, is highly sensitive to the

presence of outliers in the data; see Barnett and Lewis (1979) for a general discus-

sion of the concept of an outlier. Indeed, possible outliers do not only increase the

variance of the estimator, but can also create fictitious peaks and therefore structure

in the estimation. In order to robustify this estimator, Boente and Fraiman (1994)

proposed to use a local L-estimate such as local α trimmed means instead of a lo-

cally weighted average. Their procedure consists in using an empirical conditional

distribution function that allows for the estimation of the amount of data to be

discarded. We demonstrate that the choice of an empirical conditional distribution

is not appropriate and our aim in this paper is to show that the use of a smoothed

conditional distribution function has substantial advantages. First, it does not need

the computation of estimates of the local conditional cumulative distribution func-

tion at every point of the sample but only on an integration grid. As a consequence,

it will be shown to be less computationally intensive. Second, following theoret-

ical arguments of Fernholz (1997) for non-conditional L-estimates, we expect our

estimator to have better finite sample properties.

Our work is organized as follows: in Section 2, we describe both the empirical

and the smoothed estimators of conditional distribution function and we explain how

they can be used to estimate the conditional L-estimator of regression. In Section 3,

we give asymptotic bounds for the smoothed conditional distribution function and

we derive the asymptotic distribution of the smoothed L-estimator. In Section 4, we
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show why the smoothed estimator can be computationally less time consuming than

the empirical one and we present the results of a simulation that illustrates these

improvements. In Section 5, we briefly recall the arguments given by Fernholz in

favor of smoothing (in the case of non-conditional L-estimates) and we lead a Monte-

Carlo comparison study that points out the superiority of the smoothed estimator

in finite samples. The proofs of the asymptotic results are given in Appendix A.

They are valid under mild β-mixing conditions and can thus be useful in a time

series context where outliers are particularly likely to appear as pointed out by

Lucas (1996).

2 Robust estimation of regression using L-estimates

2.1 Estimation of conditional cumulative distribution func-

tion

Given a (d + 1)-dimensional random vector (X, Y ) , the cumulative distribution

function of the random variable Y conditional on the event {X = x} is defined

by

Fx (y) =

y
∫

−∞

f (x, v)

f (x)
dv,

where f (x, y) is the joint density of (X, Y ) and f (x) is the marginal density of X.

The common practice in literature (Härdle, 1990) consists in estimating this function

using a local empirical conditional distribution function defined by

F̃x(y) =
n
∑

i=1

Kx

(

x−Xi

hx

)

n
∑

j=1
Kx

(

x−Xj

hx

)

I(Yi ≤ y), (1)

where I denotes the indicator function and Kx is a d dimensional kernel. This func-

tion, being a local empirical cumulative distribution, has a step function structure.
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As pointed out by Fernholz (1997) in the case of non-conditional cumulative distri-

bution function, using an empirical distribution function may not be the best choice

for estimating quantiles, and more generally, computing L-estimates. Furthermore,

the step structure of the local empirical cumulative distribution function and its

weak regularity properties can be difficult to handle in a theoretical framework.

Therefore, we propose to apply an additional smoothing to the variable Y and

to estimate Fx (y) by a local smoothed conditional distribution function

F̂x(y) =
n
∑

i=1

Kx

(

x−Xi

hx

)

n
∑

j=1
Kx

(

x−Xj

hx

)
KI

(

y − Yi

hy

)

(2)

where KI is a univariate cumulative distribution function (the integral of a kernel).

This estimator inherits the regularity properties of the univariate kernel KI and may

thus be used, for instance, for estimating the derivatives of Fx (y).

2.2 Description of the L-empirical and the L-smoothed es-

timators

Following Boente and Fraiman (1994), we define the conditional L-estimate by

mL (x) =
∫

yJ {Fx (y)} dy (3)

where the L-score function J is continuously differentiable with compact support

[a, b] ⊂ ]0; 1[ .

Definition (3) encompasses many useful statistical parameters of interest. If

Fx (y) is symmetric around the conditional expectation m (x) = E (Y |X = x) and if

one considers the α-trimming score function J(u) = (1 − 2α)−1I[α;1−α](u) with α ∈

]0; 1[ , the equality mL (x) = m (x) holds. In this case, the α-trimmed conditional

expectation mL (x), can be used to remove outliers and to robustify the estimation

of regression. In the limit case α → 1/2, mL (x) is equal to the conditional median.
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A natural way of estimating mL (x) consists of plugging an estimator of Fx (y) in

expression (3) . If one plugs in the empirical conditional cdf (1) as proposed by Boente

and Fraiman (1994), mL (x) is then estimated by the local empirical L-estimator

m̃L (x) =
n
∑

i=1

Kx

(

x−Xi

hx

)

n
∑

j=1
Kx

(

x−Xj

hx

)

J
{

F̂x (Yi)
}

. (4)

Instead of plugging the empirical conditional cdf, we propose to plug-in the smoothed

conditional cdf (2) . The function mL (x) is then estimated by the local smoothed

L-estimator

m̂L (x) =
∫

yJ
{

F̂x (y)
}

dy, (5)

whereby the integral is approximated using classical numerical integration routines.

As will be shown in the next section, both the local empirical and the local

smoothed L-estimators have the same asymptotic properties. However, we demon-

strate that estimator (5) has superior computational and finite sample statistical

properties to (4) ; see Sections 4 and 5, respectively.

3 Asymptotic analysis

We begin by giving asymptotic bounds on the smoothed cumulative distribution

function (2) .

Lemma 1 Under assumptions (A1) to (A5) given in Appendix A.1 the following

uniform bound holds for F̂x (y)

sup
x,y

∣

∣

∣F̂x(y) − Fx(y)
∣

∣

∣ = Op

(

n−1/2h−d + hr
)

.

Proof: See Appendix A.2.

We can now derive the asymptotic distribution of the smoothed L-estimator (5) .
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Theorem 2 Under assumptions (A1) to (A5) given in Appendix A.1, the following

asymptotic distribution holds for m̂L (x) :

n1/2hd/2 {m̂L (x) − mL (x)} L→ N (0, V ),

where

V =
∫







+∞
∫

−∞

J{Fx(y)}
f(x)

[I(w ≤ y) − Fx(y)]dy







2

f(x, w)dw ·
∫

K2(x)dx.

Proof: See Appendix A.3.

4 Computational comparison

The asymptotic distribution of the smoothed L-estimator m̂L (x) is identical to that

of the empirical L-estimator m̃L (x) given by Boente and Fraiman (1994). On the

other hand, the computational burden for its computation is much less than for the

empirical L-estimator by Boente and Fraiman (1994). To show this, we will compare

the computational costs for the L-empirical and the L-smoothed estimators, both

from a theoretical and an empirical point of view. We assume that the computation

of Kx

(

x−Xi

hx

)

requires Cx(d) operations, the computation of KI

(

y−Yi

hy

)

requires CI

operations and the computation of the score function J requires CJ operations.

Although the cost of computing Kx

(

x−Xi

hx

)

depends on the dimension d, we consider

d to be fixed and thus Cx(d) to be a constant since d is determined only by the

number of employed explanatory variables.

Empirical Estimation The calculation of the empirical cumulative distribu-

tion function F̃x (·) at one point y using (1) needs n (Cx(d) + 3) operations. Since

the computation of m̃L (x) requires the computation of F̃x (·) at every point Yi, we
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get for the Boente and Fraiman (1994) m̃L (x)

n2 {Cx(d) + 3} + n {CJ + Cx(d) + 3} = O
(

n2
)

(6)

as the cost of operations.

Smoothed estimation Analogously, the computation of the smoothed cumu-

lative distribution function F̂x (·) at one point y requires n (Cx(d) + CI + 2). We

assume that the integral in expression (5) is approximated on a grid of k points,

whereby k is a fixed constant determined by the required precision of numerical in-

tegration. Thus, its computation needs O (k) operations. We do not consider higher

order numerical integration methods since the function to integrate is quite regu-

lar. Nevertheless, if such methods are used, the results do not change qualitatively.

Finally, the computation of m̂L (x) requires

n {Cx(d) + CI + 2}O (k) = O (nk) (7)

operations.

Computation time results In order to corroborate our theoretical results, we

performed a set of simulations in the univariate case. We used the data generating

process

Y = m (X) + ε, (8)

where the regression function is given by

mL (x) = −1 +
√

x − x2

and the regressor X is univariate and uniformly distributed on the interval [0; 1] . The

error term ε has a normal distribution with standard deviation 0.1. This distribution
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Table 1: Computational time in seconds

Sample size n 50 100 200 500 1000 2000

Method (k)

Empirical <1 3.6 12.8 77.6 301 1200

Smoothed (25) <1 1.4 2.0 6.0 11 22

Smoothed (50) 1 2.0 4.6 11.0 22 43

Smoothed (100) 2 4.6 9.0 22.0 43 85

Smoothed (150) 4 6.6 13.4 33.0 65 128

Smoothed (250) 6 11.6 22.0 55.0 107 212

Smoothed (500) 11 22.6 44.2 110 213 425

Table 2: Relative computational time

Sample size n 50 100 200 500 1000 2000

Method (k)

Empirical 0.4 0.8 1.4 3.5 7.0 14.0

Smoothed (25) 0.3 0.2 0.2 0.3 0.3 0.3

Smoothed (50) 0.5 0.4 0.5 0.5 0.5 0.5

Smoothed (100) 1.0 1.0 1.0 1.0 1.0 1.0

Smoothed (150) 2.0 1.4 1.5 1.5 1.5 1.5

Smoothed (250) 3.0 2.5 2.4 2.5 2.5 2.5

Smoothed (500) 5.5 4.9 4.9 5.0 5.0 5.0
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is symmetric so that the regression function m (X) and the α-trimmed expectation

mL (X) are equal. The estimations are performed a 10%-trimming score.

Table 1 and 2 contain the absolute and relative time necessary for the estimation

of the empirical estimator (4) and of the smoothed one (5) for different sample sizes

and different number of points on the numerical integration grid. Increasing the

number of integration points decreases the error of approximation in the integral

(4) . In our opinion, using 100–200 points is a good choice for applications. Table

1 contains the computation times expressed in seconds, whereas in Table 2 these

times are relative to the smoothed estimation using 100 points integration grid.

Results in Table 1 confirm our theoretical findings that the smoothed estimator will

be faster to compute for large samples. Already when the number of data points is

twice the number of points on the integration grid, the smoothed estimator performs

better. Furthermore, results in Table 2 support the theoretical conclusions (6) and

(7), which imply that these results should be proportional to n for the empirical

estimator and constant for the smoothed one.

5 Finite sample comparison

As noticed in Section 3, the empirical L-estimator and the smoothed one need not

be compared from an asymptotic point of view since they share the same asymp-

totic distribution. However, relying on arguments established by Fernholz (1997)

in a non-conditional setting, we can create the hypothesis that the smoothed L-

estimator has better finite sample properties than the empirical one. At the first

glance, this is surprising since the additional smoothing involved in the smoothed

conditional cumulative distribution function F̃x (·) may cause an additional bias

(asymptotically negligible but sensible in finite sample). Nevertheless, as demon-
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Table 3: Comparison of the Nadaraya-Watson, the L-empirical and L-smoothed

estimators by the mean square error under normal errors. All mean square errors

are multiplied by 103.

Method Empirical Nadaraya Smoothed Smoothed

Grid m̃L (x) Watson m̂L (x) (hy=0.15) m̂L (x) (hy=0.25)

0.05 1.53 1.51 1.88 1.78

0.10 1.32 0.95 1.00 0.95

0.15 1.11 0.76 0.83 0.75

0.20 0.90 0.61 0.63 0.62

0.25 0.90 0.61 0.65 0.61

0.30 0.76 0.56 0.58 0.57

0.35 0.81 0.59 0.63 0.63

0.40 0.87 0.63 0.67 0.63

0.45 0.83 0.61 0.65 0.64

0.50 0.91 0.64 0.71 0.68

0.55 0.82 0.65 0.74 0.72

0.60 0.71 0.53 0.63 0.58

0.65 0.77 0.54 0.59 0.54

0.70 0.89 0.60 0.62 0.61

0.75 0.98 0.67 0.68 0.70

0.80 1.08 0.74 0.81 0.74

0.85 1.08 0.77 0.84 0.80

0.90 0.99 0.77 0.88 0.85

0.95 1.07 1.28 1.70 1.60
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strated by Fernholz (1997), this additional bias goes along with a decrease of the

variance of the estimator. Because this decrease of the variance surpass the addi-

tional bias, the smoothing will result in a gain in terms of mean square error of the

smoothed conditional L-estimator.

In this section, we attempt to compare the finite sample properties of the empir-

ical and smoothed L-estimators using Monte Carlo simulations. The comparison is

made for a range of bandwidth choices and sample sizes as well as for errors coming

both from a Gaussian and a heavier-tailed distribution. All simulations are done in

the statistical computing environment XploRe.

Table 3 contains the mean square errors for the Nadaraya-Watson, the L-empirical

and the L-smoothed estimators (for two different bandwidths hy) using the data gen-

erating process (8) . They were calculated at 19 points from 0.05 to 0.95, for 100

observations and a bandwidth hx = 0.05 using 1000 simulations. The L-smoothed es-

timator clearly outperforms the L-empirical estimator for points ranging from 0.10 to

0.90. At the boundaries, the bias effect of the additional smoothing becomes predom-

inant on the variance decrease so that the L-smoothed estimator performs worse. For

comparison, we also computed the Nadaraya-Watson estimator. It has to be noticed

that the L-smoothed estimator performs almost as well as the Nadaraya-Watson es-

timator whereas the L-empirical performs apparently worse. This is particularly

interesting since the data contain no outliers and errors are normally distributed.

Therefore, using the L-smoothed estimator can be a good strategy for estimating

regression even if the presence of outliers in the data is only hypothetical, since the

effects of outliers on the classical Nadaraya-Watson estimator can be very damaging.

The sensitivity of the Nadaraya-Watson and robust properties of L-based esti-

mators are documented by Table 4 containing mean square errors for all estimators
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Table 4: Comparison of the Nadaraya-Watson, the L-empirical and L-smoothed

estimators by the mean square error under t2-distributed errors. All mean square

errors are multiplied by 103.

Method Empirical Nadaraya Smoothed Smoothed

Grid m̃L (x) Watson m̂L (x) (hy=0.15) m̂L (x) (hy=0.25)

0.05 3.98 7.63 7.86 19.61

0.10 1.03 3.44 1.63 5.96

0.15 0.99 4.00 0.97 2.32

0.20 1.15 5.68 1.02 1.67

0.25 1.17 6.66 1.02 1.37

0.30 1.11 5.94 1.02 1.34

0.35 1.06 4.39 0.99 1.48

0.40 1.01 3.33 0.94 1.92

0.45 0.95 2.92 0.93 2.26

0.50 0.95 2.80 0.91 1.97

0.55 0.95 2.71 0.94 1.76

0.60 0.98 2.62 0.92 1.46

0.65 0.95 2.98 0.89 1.26

0.70 1.01 4.13 0.91 1.18

0.75 1.06 6.46 0.99 1.16

0.80 1.15 10.80 1.17 1.86

0.85 1.33 16.72 1.51 5.09

0.90 1.77 21.87 3.47 13.03

0.95 4.04 25.98 11.24 29.37
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at 19 points from 0.05 to 0.95. We use again model (8) with 100 observations and

bandwidth hx = 0.10, but the error term ε had the Student t2 distribution with two

degrees of freedom this time. Thus, we increase the probability that a large error

occurs. The immediate consequence is that the mean square error of all estimates

increases. However, the Nadaraya-Watson estimator, which performed best in the

simulation using normally distributed data, is now worst of all methods, whereas the

L-smoothed and L-empirical estimators are affected much less and are therefore bet-

ter now. Additionally, we can see that the L-smoothed estimator with y-bandwidth

hy = 0.15 still outperforms L-empirical in the central part of the domain, [0.15, 0.80],

but its counterpart with hy = 0.25 is significantly worse. Hence, if the L-smoothed

estimator is to be robust, we should not oversmooth when estimating the conditional

distribution Fx(y).

In order to show that the previous results are not due to a special choice of

the bandwidth, we tried different choices of bandwidth for data with normally dis-

tributed errors and calculated the average of the mean square errors for points

ranging from 0.15 to 0.85. The extreme points of the grid are not considered for the

bias reasons discussed earlier. These results are summarized in Table 5 and confirm

the previous conclusions.

6 Conclusion

Clearly, our theoretical and empirical results point out the superiority of the L-

smoothed estimator over the L-empirical one both for computational and finite

sample properties. Although one might argue that with increasing sample size, the

difference between the two estimators disappear as suggested by the asymptotic re-

sults, it is necessary to keep in mind the high computational burden connected with
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Table 5: Comparison of the Nadaraya-Watson, the L-empirical and the L-smoothed

estimators for different bandwiths and sample size. All values are multiplied by 103.

Sample size, Empirical Nadaraya Smoothed Smoothed

Bandwidth m̃L (x) Watson m̂L (x) (hy=0.15) m̂L (x) (hy=0.25)

n = 100, hx=0.05 0.90 0.64 0.68 0.65

n = 100, hx=0.07 0.70 0.51 0.50 0.47

n = 100, hx=0.10 0.73 0.58 0.51 0.49

n = 200, hx=0.05 0.41 0.32 0.36 0.33

n = 200, hx=0.07 0.37 0.31 0.29 0.27

n = 200, hx=0.10 0.40 0.37 0.30 0.28

the L-empirical estimator. The use of the smoothed L-estimator is thus indicated

in all cases.

A Proofs

A.1 Assumptions

• (A1) : The sequence {(Xi, Yi)}i=1..n is a sequence of strictly stationary and

β mixing realizations of the vector (X, Y ) satisfying kδβk → 0 for some fixed

δ > 1. Here βk = E sup
{∣

∣

∣P
(

A
∣

∣

∣F l
m

)

− P (A, )
∣

∣

∣ : A ∈ F∞

k+l

}

where F t′

t is the σ

algebra generated by (Xt, Yt), ......, (Xt′, Yt′)

• (A2) : The density f(x, y) is compactly supported and admits continuous

derivatives up to order r.
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• (A3) : The density f(x) admits a strictly positive lower bound, b.

• (A4) : The univariate function K is a symmetric compactly supported kernel

of order r.

• (A5) : The bandwidth satisfies lim
n→∞

h = 0 (the dependence of h on n is left

implicit for the simplicity of notations) in such a way that lim
n→∞

n1/2h3d/2 → ∞

and lim
n→∞

n1/2hr+d/2 → 0.

A.2 Proof of lemma1

∣

∣

∣F̂x(y) − Fx(y)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

y
∫

−∞

f̂(x, v)

f̂(x)
dv −

y
∫

−∞

f(x, v)

f(x)
dv

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

f̂(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y
∫

−∞

f̂(x, v)dv −
y
∫

−∞

f(x, v)dv

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

y
∫

−∞

f(x, v)

f̂(x)
dv −

y
∫

−∞

f(x, v)

f(x)
dv

∣

∣

∣

∣

∣

∣

For n large enough, we have almost surely sup
x

∣

∣

∣f̂(x)
∣

∣

∣ ≥ b

2
(which comes from the

almost sure uniform convergence of f̂(x) towards f(x) under assumptions (A1) to

(A5)). Using sup
x

|f(x)| ≥ b (assumption (A3)) we obtain first

sup
x,y

∣

∣

∣

∣

∣

1

f̂(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y
∫

−∞

f̂(x, v)dv −
y
∫

−∞

f(x, v)dv

∣

∣

∣

∣

∣

∣

≤ 2b−1 sup
x,y

∣

∣

∣

∣

∣

∣

y
∫

−∞

f̂(x, v)dv −
y
∫

−∞

f(x, v)dv

∣

∣

∣

∣

∣

∣

∞

.

Using the expression

sup
x,y

∣

∣

∣

∣

∣

∣

y
∫

−∞

f(x, v)

f̂(x)
dv −

y
∫

−∞

f(x, v)

f(x)
dv

∣

∣

∣

∣

∣

∣

= sup
x,y







∣

∣

∣

∣

∣

f (x) − f̂ (x)

f̂(x)f (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y
∫

−∞

f(x, v)dv

∣

∣

∣

∣

∣

∣







,

we also obtain

sup
x,y

∣

∣

∣

∣

∣

∣

y
∫

−∞

f(x, v)

f̂(x)
dv −

y
∫

−∞

f(x, v)

f(x)
dv

∣

∣

∣

∣

∣

∣

≤ 2b−2 sup
x,v

|f(x, v)| sup
x

∣

∣

∣f̂(x) − f(x)
∣

∣

∣

15



so that finally

sup
x,y

∣

∣

∣F̂x(y) − Fx(y)
∣

∣

∣ ≤ 2b−1 sup
x,y

∣

∣

∣

∣

∣

∣

y
∫

−∞

f̂(x, v)dv −
y
∫

−∞

f(x, v)dv

∣

∣

∣

∣

∣

∣

+2b−2 sup
x,v

|f(x, v)| sup
x

∣

∣

∣f̂(x) − f(x)
∣

∣

∣

From Äıt-Sahalia (1995), under assumptions (A1) to (A5), we have

sup
x,y

∣

∣

∣

∣

∣

∣

y
∫

−∞

f̂(x, v)dv −
y
∫

−∞

f(x, v)dv

∣

∣

∣

∣

∣

∣

= Op

(

n−
1

2 h−d + hr
)

and

sup
x

∣

∣

∣f̂(x) − f(x)
∣

∣

∣ = Op

(

n−
1

2 h−d + hr
)

so that

sup
x,y

∣

∣

∣F̂x(y) − Fx(y)
∣

∣

∣ = Op

(

n−
1

2 h−d + hr
)

A.3 Proof of theorem2

Let us denote by T the functional T (Fx) =
∫ +∞

−∞

yJ{Fx(y)}dFx(y) and let’s denote

by τ the function τ (t) = T (Fx + tHx) where Hx : R → R is a continuously differen-

tiable function with derivative compactly supported satisfying sup
x,y

|Hx(y)| < ∞.

We have

τ ′(t) =

+∞
∫

−∞

yHx(y)J ′{Fx(y) + tHx(y)}d {Fx(y) + tHx(y)}

+

+∞
∫

−∞

yJ(Fx(y) + tHx(y))dHx (y) .

An integration by parts gives us
+∞
∫

−∞

yHx(y)J ′{Fx(y) + tHx(y)}d (Fx(y) + tHx(y)) = [yHx(y)J {Fx(y) + tHx(y)}]−∞

+∞

−
+∞
∫

−∞

Hx(y)J {Fx(y) + tHx(y)} dy

−
+∞
∫

−∞

yJ {Fx(y) + tHx(y)}dHx(y)

16



so that

τ ′(t) = −
+∞
∫

−∞

Hx(y)J {Fx(y) + tHx(y)}dy.

In particular, for t = 0, we obtain

τ ′(0) = −
+∞
∫

−∞

Hx(y)J{Fx(y)}dy

The second derivative of τ is

τ ′′(t) = −
+∞
∫

−∞

H2
x
(y)J ′ {Fx(y) + tHx(y)}dy

so that, under assumptions (A2), we have, for all t ∈ [0; 1]

|τ ′′(t)| = O

(

sup
x,y

|Hx(y)|2
)

.

Now a Taylor expansion of τ between 0 and 1 gives us :

T (Fx + Hx) = T (Fx) −
+∞
∫

−∞

Hx(y)J{Fx(y)}dy + O

(

sup
x,y

|Hx(y)|2
)

(9)

Taking Hx(y) = F̂x(y) − Fx(y) in expression (9) and using Lemma 1, we obtain

m̃ (x) − m (x) = −
+∞
∫

−∞

[

F̂x(y) − Fx(y)
]

J {Fx(y)}dy + Op

(

n−1h−2d + h2r
)

Let us study the leading order term

Ln = −
+∞
∫

−∞







y
∫

−∞

f̂(x, v)

f̂(x)
− f(x, v)

f(x)
dv







J{Fx(y)}dy

Ln =

+∞
∫

−∞





y
∫

−∞

(

f̂(x, v) − f(x, v)
)

f(v) − f(x, v)
(

f̂(x) − f(x)
)

f̂(x)f(x)
dv



 J{Fx(y)}dy

using sup
x

∣

∣

∣

∣

∣

f̂(x) − f(x)

f̂(x)

∣

∣

∣

∣

∣

= op(1) (which holds under assumptions (A1) to (A5)). We

get

Ln =







+∞
∫

−∞





y
∫

−∞

(

f̂(x, v) − f(x, v)
)

f(x) − f(x, v)
(

f̂(x) − f(x)
)

f 2(x)
dv



 J{Fx(y)}dy







(1 + op(1))
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so that, using Slutsky theorem, we only have to study the asymptotic distribution

of

L̃n =







+∞
∫

−∞





y
∫

−∞

(

f̂(x, v) − f(x, v)
)

f(x) − f(x, v)
(

f̂(x) − f(x)
)

f 2(x)
dv



J{Fx(y)}dy







If we define Kh (·) = 1
h
K
(

·

h

)

, we have

L̃n =
1

n

n
∑

i=1

∫



















+∞
∫

−∞

J{Fx(y)}
f(x)











Kh(x − Xi)
y
∫

−∞

Kh(v − Yi)dv

−
y
∫

−∞

f(x, v)dv − Fx(y) (Kh(x − Xi) − f(x))











dy



















.

We are going to separate the study of L̃n into a determinist ‘bias’ term B̃n and a

stochastic ‘variance’ term Ṽn:

B̃n =
∫







+∞
∫

−∞





J{Fx(y)}
f(x)

Kh(x − u)





y
∫

−∞

Kh(v − w)dv − Fx(y)







 dy







f(u, w)dudw.

With the change of variable ξ =
x − u

h
in the integration with respect to u and

ς =
y − w

h
in the integration with respect to w, we obtain

B̃n =

+∞
∫

−∞

J{Fx(y)}
f(x)





y
∫

−∞

∫ ∫

K(ξ) (K(ς) − Fx (y)) f(x− hξ, v − hς)dξdςdv



 dy.

Using a Taylor expansion of f(x − hξ, v − hς) and of f(x − hξ) up to order r,

under assumption (A4), we obtain B̃2n = O (hr) and, under assumption (A5),we

have n1/2hd/2B̃2n = op(1).

We now have to study the ‘variance’ term normalized at rate n1/2hd/2

n1/2hd/2Ṽn =
n
∑

i=1

√

hd

n





+∞
∫

−∞

J{Fx(y)}
f(x)

Kh(x − Xi)





y
∫

−∞

Kh(v − Yi)dv − Fx(y)



dy − B̃2n





Let us define Fn,i the σ field generated by {Xj, Yj}j=1,...i and let us define the random

variable

Zn,i =

√

hd

n





+∞
∫

−∞

J{Fx(y)}
f(x)

Kh(x − Xi)





y
∫

−∞

Kh(v − Yi)dv − Fx(y)



dy − B̃2n




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such as n1/2hd/2Ṽn =
n
∑

j=1

Zn,j. The array







i
∑

j=1

Zn,j,Fn,i, 1 ≤ i ≤ n, n ≥ 1







is a zero

mean, square integrable martingale array. We have

i
∑

j=1

E(Z2
n,j) = hd

∫ ∫







+∞
∫

−∞

J{Fx(y)}
f(x)

Kh(x − u)





y
∫

−∞

Kh(v − w)dv − Fx(y)



 dy







2

.

f(u, w)dudw − hd(B̃2n)2

With the change of variable ξ =
x − u

h
in the integration with respect to u, we

obtain :

i
∑

j=1

E(Z2
n,j) =

∫

〈

{

∫ +∞

−∞

J{Fx(y)}
f(x)

[

y
∫

−∞

Kh(v − w)dv − Fx(y)

]

dy

}2

·

·
{∫

K2(ξ)f(x − hξ, w)dξ

}

〉

dw−hd(B̃2n)2

With lim
n→∞

y
∫

−∞

Kh(v−w)dv = 1 if y ≥ w and 0 otherwise, and with B̃2n = O(hr), we

obtain

lim
n→∞

E





n
∑

j=1

Z2
n,j



 =
∫







+∞
∫

−∞

J{Fx(y)}
f(x)

[

I]−∞,y](w) − Fx(y)
]

dy







2

.f(x, w)dw.
∫

K2(ξ)dξ

so that

n
∑

j=1

E
(

Z2
n,j/Fn,j−1

)

P→
∫







+∞
∫

−∞

J{Fx(y)}
f(x)

[

I]−∞,y](w) − Fx(y)
]

dy







2

f(x, w)dw·
∫

K2(ξ)dξ.

Under assumptions (A1) to (A4), conditions 3.19 and 3.20 of Corollary 3.1 of Hall

and Heyde (1981, pp 58) are satisfied, so that we obtain

n1/2hd/2Ṽn → N (0, V ),

where

V =
∫







+∞
∫

−∞

J{Fx(y)}
f(x)

[

I]−∞,y](w) − Fx(y)
]

dy







2

f(x, w)dw ·
∫

K2(ξ)dξ.
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