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Abstract 
 
This paper proposes a generalized panel data model with random effects and first-order 
spatially autocorrelated residuals that encompasses two previously suggested specifications. 
The first one is described in Anselin’s (1988) book and the second one by Kapoor, Kelejian, 
and Prucha (2007). Our encompassing specification allows us to test for these models as 
restricted specifications. In particular, we derive three LM and LR tests that restrict our 
generalized model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian, and Prucha 
model, and (iii) the simple random effects model that ignores the spatial correlation in the 
residuals. For two of these three tests, we obtain closed form solutions and we derive their 
large sample distributions. Our Monte Carlo results show that the suggested tests are powerful 
in testing for these restricted specifications even in small and medium sized samples. 
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1 Introduction1

The recent literature on spatial panels distinguishes between two di¤erent spa-

tial autoregressive error processes. One speci�cation assumes that spatial cor-

relation occurs only in the remainder error term, whereas no spatial correla-

tion takes place in the individual e¤ects (see Anselin, 1988, Baltagi, Song, and

Koh, 2003, and Anselin, Le Gallo, and Jayet, 2008; henceforth referred to as

the Anselin model). Another speci�cation assumes that the same spatial er-

ror process applies to both the individual and remainder error components (see

Kapoor, Kelejian, and Prucha, 2007; henceforth referred to as the KKP model).2

While the two data generating processes look similar, they imply di¤erent

spatial spillover mechanisms. For example, consider the question of �rm pro-

ductivity using panel data. Besides the deterministic components, �rms di¤er

also with respect to their unobserved know-how or their managerial ability to

organize production processes e¢ ciently. At least over a short time period, this

managerial ability may be time-invariant. Beyond that there are innovations

that vary from period to period like random �rm-speci�c technology shocks,

capacity utilization shocks, etc. Under this scenario, it seems reasonable to as-

sume that �rm productivity may be spatially correlated due to spillovers. Such

spillovers can occur, e.g., through information �ows (transmission of process

technologies) embodied in worker �ows between �rms at local labor markets or

through input-output channels (technology requirements and interdependence

of capacity utilization). Whereas the Anselin model assumes that spillovers are

1We would like to thank Matthias Koch, Ingmar Prucha, two anonymous referees and

the editor Esfandiar Maasoumi for their helpful comments and suggestions. Prelimimary

versions of this paper were presented at the 13th International conference on panel data held

in Cambridge, England, and the 23rd annual Canadian econometric study group meeting in

Niagara Falls, Canada.
2There has been a lot of attention to cross-sectional dependence in panel data models,

modeled through factor models. A rapidly growing reasearch topic within this general �eld

has been the reconciliation of factor models and spatial models, with attempts to express weak

and strong cross-sectional dependence, see Chudik, Pesaran, and Tosetti (2011), Pesaran and

Tosetti (2011), and Sara�dis and Wansbeek (2011), to mention a few.
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inherently time-varying, the KKP process assumes the spillovers to be time-

invariant as well as time-variant. For example, �rms located in the neighbor-

hood of highly productive �rms may get time-invariant permanent spillovers

a¤ecting their productivity in addition to the time-variant spillovers as in the

Anselin model. While the Anselin model seems restrictive in that it does not al-

low permanent spillovers through the individual �rm e¤ects, the KKP approach

is restrictive in the sense that it does not allow for a di¤erential intensity of

spillovers of the permanent and transitory shocks.

This paper introduces a generalized spatial panel model which encompasses

these two models and allows for spatial correlation in the individual and remain-

der error components that may have di¤erent spatial autoregressive parameters.

We consider a (quasi-)maximum likelihood estimator (MLE) for this more gen-

eral spatial panel model when the individual e¤ects are assumed to be random.

This in turn allows us to test the restrictions on our generalized model to obtain

(i) the Anselin model, (ii) the Kapoor, Kelejian, and Prucha model, and (iii) a

simple random e¤ects model that ignores the spatial correlation in the residuals.

We derive the corresponding LM and LR tests for these three hypotheses and

we compare their size and power performance using Monte Carlo experiments.

2 A Generalized Model

Econometric models for panel data with spatial error processes have been pro-

posed by Anselin (1988), Baltagi, Song, and Koh (2003), Kapoor, Kelejian, and

Prucha (2007), Anselin, Le Gallo, and Jayet (2008), Lee and Yu (2010a, 2010b)

to mention a few. A generalized spatial panel data model that encompasses

3



these previous speci�cations is given as follows:3

yt = Xt� + u1 + u2t; t = 1; :::; T

u1 = �1Wu1 + �

u2t = �2Wu2t + �t;

where the (N�1) vector yt includes the observations on the dependent variable

at time t, with N denoting the number of unique cross-sectional units. The

non-stochastic (N �K) matrix Xt gives the observations at time t for a set of

K exogenous variables, including the constant. � is the corresponding (K � 1)

parameter vector. The disturbance term follows an error component model

which involves the sum of two disturbances. The (N � 1) vector of random

variables u1 captures the time-invariant unit-speci�c e¤ects and therefore has

no time subscript. The (N � 1) vector of the remainder disturbances u2t varies

with time. Both u1 and u2t are spatially correlated with the same spatial

weights matrixW, but with di¤erent spatial autocorrelation parameters �1 and

�2, respectively. The (N � N) spatial weights matrix W has zero diagonal

elements and its entries are typically declining with distance.

We further assume that the row and column sums of W are uniformly

bounded in absolute value and that �r is bounded in absolute value and in-

dependent of N . In caseW is row normalized, the parameter space for �r is a

closed interval contained in (�1; 1). For the case where W is not normalized,

we assume that the parameter space for �r is contained in the closed interval

�1=�max < �r < 1=�max for all N and r = 1; 2, where �max is the largest ab-

solute value of the eigenvalues ofW. Hence, the spatial weights matrix may be

either row normalized or maximum row normalized (see Kelejian and Prucha,

2010). Further, let A = IN � �1W and B = IN � �2W. The matrices A and B

are non-singular for all �r; r = 1; 2 in the parameter space and all N .

The elements of � are assumed to be independently and identically distrib-

3To avoid index cluttering, we suppress the subscript indicating that the elements of the

spatial weights matrix may depend on N and that the dependent variable and the disturbances

form triangular arrays.
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uted as N(0; �2�) across i. The elements of �t are assumed to be independently

and identically distributed as N(0; �2�) across i and t. Also, the elements of �

and �t are assumed to be independent of each other. Appendix B provides a

more detailed set of assumptions.

Stacking the cross-sections over time yields

y = X� + u (1)

u = Z�u1 + u2

u1 = �1Wu1 + �

u2 = �2(IT
W)u2 + �,

where y = [y01; :::;y
0
T ]
0
; X = [X

0
1; :::;X

0
T ]
0
; etc., so that the faster index is i and

the slower index is t: The unit-speci�c errors u1 are repeated in all time periods

using the (NT � N) selector matrix Z� = �T 
 IN . �T is a vector of ones of

dimension T and IN is an identity matrix of dimension N .

This model encompasses both the KKP model, which assumes that �1 = �2,

and the Anselin model, which assumes that �1 = 0. If �1 = �2 = 0, i.e., there is

no spatial correlation, this model reduces to the familiar random e¤ects (RE)

panel data model; see Baltagi (2008).

Let A = (IN � �1W) and B = (IN � �2W); then, under the present as-

sumptions we have

u1 = A�1� � N(0; �2�(A0A)�1) (2)

u2 = (IT 
B�1)� � N(0; �2�(IT 
 (B0B)�1).

Let ET = IT � JT , where JT = JT =T is the averaging matrix with JT being

a matrix of ones of dimension T . The variance-covariance matrix of the spatial

random e¤ects panel data model is given by


u = E(uu0) = E[(Z�u1 + u2)(Z�u1 + u2)
0] (3)

= �2�(JT 
 (A0A)�1) + �2�(IT 
 (B0B)�1)

= (JT 
 (T�2�(A0A)�1 + �2�(B
0B)�1)) + �2�(ET 
 (B0B)�1) = �2��u.
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where�u is de�ned as�u = (JT
(
T�2�
�2�
(A0A)�1+(B0B)�1)) +(ET
(B0B)�1).

This uses the fact that E[u1u02] = 0 since � and � are assumed to be indepen-

dent. The last equality in (3) replaces JT by TJT and IT by ET +JT . Note that

Z�Z
0
� = JT 
 IN . It is easy to show that the inverse of the (NT �NT ) matrix


u can be obtained from the inverse of matrices of smaller dimension (N�N) as

follows: 
�1u = (JT
(T�2�(A0A)�1+�2�(B
0B)�1)�1)+ 1

�2�
(ET
B0B) = 1

�2�
��1u ,

where

��1u = (JT 
 (
T�2�
�2�
(A0A)�1 + (B0B)�1)�1) + (ET 
B0B).

Also, det[
u] = det[T�2�(A
0A)�1 + �2�(B

0B)�1] det[�2�(B
0B)�1]T�1. We also

assume that the inverses A�1; B�1 and [T�2�(A
0A)�1 + �2�(B

0B)�1]�1 have

bounded row and column sums, uniformly in N and in the parameter space

(see Assumption A2 in the Appendix for further details). Under the present

assumptions, the log-likelihood function of the general model is given by

L(�;�) = �NT
2 ln 2� � 1

2 ln det[T�
2
�(A

0A)�1 + �2�(B
0B)�1]

�T�1
2 ln det[�2�(B

0B)�1]� 1
2 (y �X�)

0
�1u (y �X�), (4)

where � =(�2� ; �
2
�; �1; �2). The maximum likelihood estimates are obtained by

maximizing the log-likelihood function numerically using a constrained quasi-

Newton method.4

The hypotheses under consideration in this paper are the following:

(1) HA
0 : �1 = �2 = 0, and the alternative H

A
1 is that at least one component

is not zero. The restricted model is the standard random e¤ects (RE) panel

data model with no spatial correlation, see Baltagi (2008).

(2) HB
0 : �1 = 0; and the alternative is HB

1 : �1 6= 0. The restricted model

is the Anselin (1988) spatial panel model with random e¤ects. In fact, the

restricted log-likelihood function reduces to the one considered by Anselin (1988,

p.154).
4The numerical maximization procedure can be simpli�ed, if one concentrates the likelihood

with respect to � and �2� . However, our optimization for the Monte Carlo simulation using

MATLAB were quite fast using the constrained quasi-Newton method. Appendix F describes

some details on the numerical optimization procedure.
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(3) HC
0 : �1 = �2 = � and the alternative is HC

1 : �1 6= �2: The restricted

model is the KKP spatial panel model with random e¤ects.

In the next subsections, we derive the corresponding LM tests for these

hypotheses and we compare their performance with the corresponding LR tests

using Monte Carlo experiments.5 Appendix A describes some general results

used to derive the score and information matrix for these alternative models;

Appendix B proves the consistency of the (quasi-)ML estimates of the general

model; while Appendices C and E provide the derivations of the large sample

distributions of the LM tests for HA
0 and H

C
0 . Appendix D gives details on the

the LM test for HB
0 :

2.1 LM and LR Tests for HA
0 : �1 = �2 = 0

The (quasi-)ML estimates underHA
0 are labeled by a tilde and the corresponding

restricted parameter vector is indexed by A. The joint LM test statistic for the

null hypothesis of no spatial correlation, HA
0 : �1 = �2 = 0, is derived in

Appendix C and it is given by

gLMA =
1

2bAe�41 eG2A + 1
2bA(T�1)e�4� fM2

A; (5)

where e�21 = Te�2� + e�2� ; bA = tr[(W0 +W)2]; eGA = eu0[JT 
 (W0 +W)]eu;
and fMA = eu0[ET 
 (W0 +W)]eu. In this case, eu = y � Xe� denotes the

vector of the estimated residuals under HA
0 . The restricted model is the simple

random e¤ects (RE) panel data model without any spatial autocorrelation. In

fact, e�2� = eu0(ET
IN )eu
N(T�1) and e�21 = eu0(JT
IN )eu

N . Under HA
0 , the gLMA statistic is

asymptotically distributed as �22 as shown in Appendix C. Note this test does

not require the assumption of normally distributed disturbances.

Under normal disturbances one can also derive the corresponding LR test

for HA
0 : �1 = �2 = 0 as

LRA = 2(LG � LA),
5LM tests for spatial models are surveyed in Anselin (1988, 2001) and Anselin and Bera

(1998), to mention a few. For a joint test for the absence of spatial correlation and random

e¤ects in a panel data model, see Baltagi, Song, and Koh (2003).
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using the maximized log-likelihood of the general model denoted by LG and the

maximized log-likelihood under HA
0 :

LA = �NT
2 ln 2�e�2� � N

2 ln
e�21e�2� � 1

2
eu0 e
�1u eu.

This test statistic is likewise asymptotically distributed as �22.

2.2 LM and LR Tests for HB
0 : �1 = 0

Under HB
0 : �1 = 0, the restricted model is the spatial panel data model with

random e¤ects described in Anselin (1988). The corresponding LM test for HB
0

is a conditional test for zero spatial correlation in the individual e¤ects, allowing

for the possibility of spatial correlation in the remainder error term, i.e., �2 6= 0.

In fact, under HB
0 , the information matrix is block-diagonal with the lower

block being independent of �. Let d� be the (4 � 1) score vector referring to

the parameter vector � = (�2�; �
2
� ; �1; �2) and denote the 4 � 4 lower block of

the information matrix by J�. The (quasi-)ML estimates under HB
0 are labeled

by a hat. The corresponding estimated residuals are then bu = y �Xb�, whereb� is the (quasi-)ML-estimator of � under HB
0 . The LM test for HB

0 makes use

of the estimated score bd� = [0; 0; bd�1 ; 0]0 with
bd�1 =

@L

@�1

����
HB
0

= � 1
2Tb�2�tr[bC1C2] + 1

2b�2�bu0(JT 
 bC1C2 bC1)bu
= 1

2Tb�2�[(bu0 bGBbu)� bgB ];
where bC1 = [Tb�2�IN + b�2�(bB0 bB)�1]�1 and C2 = (W0 +W); bGB= (JT 
bC1C2 bC1), and bgB = tr[bC1C2]. Under normal disturbances an estimate of
the lower (4� 4) block of the information matrix bJ� under HB

0 is given by6

bJ����
HB
0

=2666666664

1
2 tr[

bC3
2] +

N(T�1)
2b�4� T

2 tr
hbC3

bC1

i T b�2�
2 tr[bC3

bC1C2]
b�2�
2 tr[

bC3
bC1
bC5] +

(T�1)
2b�2� tr[bC4]

T
2 tr

hbC3
bC1

i
T2

2 tr
hbC2

1

i T2 b�2�
2 tr[bC2

1C2]
T b�2�
2 tr[bC2

1
bC5]

T b�2�
2 tr[bC3

bC1C2]
T2 b�2�
2 tr[bC2

1C2]
T2 b�4�
2 tr[(bC1C2)

2]
T b�2� b�2�

2 tr[bC1C2
bC1
bC5]b�2�

2 tr[
bC3
bC1
bC5] +

(T�1)
2b�2� tr[bC4]

T b�2�
2 tr[bC2

1
bC5]

T b�2� b�2�
2 tr[bC1C2

bC1
bC5]

b�4�
2 tr[(

bC1
bC5)

2] +
(T�1)

2 tr[bC2
4]

3777777775
,

6Detailed derivations are available form the authors upon request.
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where bC3 = (bB0 bB)�1 bC1, bC4 = (W0 bB+ bB0W)(bB0 bB)�1 and bC5 = (bB0 bB)�1 bC4.
The LM test for HB

0 is calculated as

LMB = bd0�bJ�1� bd� = bd2�1bJ�133 , (6)

where bJ�133 is the (3; 3) element of the inverse of the estimated information matrixbJ�1� under HB
0 . This test statistic has no closed form representation, but using

similar assumptions and proofs as in the Appendices, this test statistic should

be asymptotically distributed as �21. Under non-normal disturbances the LM-

test can be derived following White (1982) and in the Appendix D it is derived

as

LMB;robust = bd0�bJ�1� R0
�
R
�bJ�1� + bJ�1� b��bJ�1� �R0

��1
RbJ�1� bd0�; (7)

where we de�ne the 4� 4 matrix �� with klth element [ 12
PNT

i=1 ak;iial;ii(�
(4)
� �

3)] and R = [0; 0; 1; 0]. The elements ak;ii are de�ned in the Appendix D,

while �(4)� = E[
�
S�1u

�4
] with 
u = SS0. This robust LM-test statistic is

asymptotically distributed as �2(1):

With normal disturbances the corresponding LR test is based upon the max-

imized log-likelihood under HB
0 :

LB = �NT
2 ln 2�b�2� � 1

2 ln det(
bC1) + T�1

2 ln det(bB0 bB)� 1
2
bu0 b
�1u bu.

This restricted log-likelihood is the same as that given by Anselin (1988, p.

154).

2.3 LM and LR Tests for HC
0 : �1 = �2 = �

Under HC
0 : �1 = �2 = �, the true model is the one suggested by Kapoor,

Kelejian, and Prucha (2007). In this case, B = A and the parameter estimates

under HC
0 are labeled by a bar. The corresponding estimated residuals are given

by u= y �X�. The score and the information matrix needed for this test are

derived in Appendix E. With normal disturbances the joint LM test statistic

for HC
0 is given by

LMC =
T

2bC(T�1)�41

�
GCb � �21tr[D]

�2
; (8)

9



with GC = u0(JT 
 F)u, F =W0A +A
0
W and D = F(A

0
A)�1. Also, bC =

tr[D
2
] � (tr[D])2=N , �21 =

u0[JT
(A
0
A)]u

N and �2� =
u0[ET
(A

0
A)]u

N(T�1) . Under HC
0 ,

the LMC statistic is asymptotically distributed as �21 as shown in Appendix F.

If the disturbances are not normally distributed one may use the robust version

of this LM test, which is derived in Appendix E as

LMC;robust = LMC
1

1 +
�
db + d

0
w

�
(T�1T )

: (9)

The true correction factors are de�ned as db =
PN

i=1 l
2
ii

�
�4�T

2
�
�(4)
�
�3
�
+
1
T �

4
�(�

(4)
� �3)

�
2�41tr[D

2]

and d0w =
PN

i=1 l
2
ii
1
T (�

(4)
� �3)

(T�1)22tr[D2]
, respectively (see Appendix E for details).

Under normal disturbances the LR test is based on the following maximized

log-likelihood under HC
0 :

LC = �NT
2 ln 2��2� � N

2 ln(
�21
�2�
) + T

2 ln det(A
0
A)� 1

2u
0


�1
u u.

Kapoor, Kelejian, and Prucha (2007) consider a generalized method of moments

estimator, rather than (quasi-)MLE, for their spatial random e¤ects panel data

model. LC is the maximized log-likelihood for the KKP model with normal

disturbances.

3 Monte Carlo Results

In the Monte Carlo analysis, we use a simple panel data model that includes

one explanatory variable and a constant (K = 2)

yit = �0 + �1xit + uit; i = 1; :::; N and t = 1; :::; T ,

where �0 = 5 and �1 = 0:5. xit is generated by xit = �i + zit, where �i s

i:i:d: U [�7:5; 7:5] and zit s i:i:d: U [�5; 5] with U [a; b] denoting the uniform

distribution on the interval [a; b]. The processes �i and zit are assumed to

be independent and held �xed in repeated samples. We conduct an extensive

analysis for the case of normally distributed disturbances as summarized in

Tables 1-3 and dispense with the assumption of normality in Table 4. In the

10



former case, the individual-speci�c e¤ects are drawn from a normal distribution

so that �i s i:i:d: N(0; 20�), while for the remainder error we assume �it s i:i:d:

N(0; 20(1 � �)) with 0 < � < 1. � =
�2�

�2�+�
2
�
is the proportion of the total

variance due to the heterogeneity of the individual-speci�c e¤ects. This implies

that �2� + �
2
� = 20.

We generate the spatial weights matrix by allocating observations randomly

on a grid of 2N squares. Consequently, as the number of observations N in-

creases, the number of squares in the grid grows larger, too. The probability

that an observation is located on a particular coordinate is equal for all coor-

dinates on the grid. This results in an irregular lattice, where each observation

possesses 3 neighbors on average. The spatial weighting scheme is based on

the Queens design, where each observation (except that in the �rst and last

row and column) has four neighbors situated in the north, south, east and west

neighboring cells. The corresponding spatial weights matrix is normalized so

that each row sums to one.

The parameters �1 and �2 vary over the set f�0:8;�0:5;�0:2; 0; 0:2; 0:5; 0:8g.

The cross-sectional and time dimensions are N = 50; 100 and T = 3; 5; 10,

respectively. Lastly, the proportion of the variance due to the random individual

e¤ects takes the values � = 0:25; 0:50; 0:75. In total, this gives 882 experiments.

For each experiment, we calculate the three LM and LR tests as derived above,

using 2000 replications.7

===== Tables 1-3 =====

Table 1 reports the frequency of rejections for N = 50, T = 5, and � = 0:5

in 2000 replications. This means that �2� = �2� = 10. The size of each test is

denoted in bold �gures and is not statistically di¤erent from the 5% nominal

size. The only exception where the LM test might be undersized is for the

7 In a few cases, we got negative LR test statistics due to numerical imprecision. These

cases occur mainly with the Anselin model at �1 = 0. However, this happened in less than

0:5 percent of the Monte Carlo experiments. We drop the corresponding experiments in the

subsequent calculations of the size and power of the tests.
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KKP model, for high absolute values of �1 and �2; both equal to 0:8. The

size adjusted power8 of the LR and LM tests is reasonably high for all three

hypotheses considered. The performance of the LM test is almost the same

as that of the LR test, except for a few cases. For HA
0 : �1 = �2 = 0; when

�1 = �0:5 and �2 = 0, the size adjusted power of the LM test is 61:4% as

compared to 64:6% for LR. At �1 = 0:5 and �2 = 0, the size adjusted power of

the LM test is 70% as compared to 66:4% for LR. Similarly, for HB
0 : �1 = 0,

when �1 = �0:5 and �2 = 0, the size adjusted power of the LM test is 70:2%

as compared to 72:9% for LR. At �1 = 0:5 and �2 = 0, the size adjusted power

of the LM test is 76:7% as compared to 74:6% for LR. For HC
0 : �1 = �2 = �,

when �1 = �0:5 and �2 = 0, the size adjusted power of the LM test is 66:1% as

compared to 68:5% for LR. At �1 = 0:5 and �2 = 0, the size adjusted power of

the LM test is 70:6% as compared to 65% for LR.

Tables 2 and 3 repeat the same experiments but now for � = 0:25 and 0:75,

respectively. These tables show that as we increase �, we increase the power

of these tests. In fact, the power of all three tests is higher, the higher the

variance of the individual-speci�c e¤ect as a proportion of the total variance.

For example, for HA
0 : �1 = �2 = 0; when �1 = �0:5 and �2 = 0, the size

adjusted power of the LM test increases from 61:4% for � = 0:5 (in Table 1)

to 68% for � = 0:75 (in Table 3), while the size adjusted power of the LR test

increases from 64:6% to 74:8%. Similarly, when �1 = 0:5 and �2 = 0, the size

adjusted power of the LM test increases from 70% for � = 0:5 to 78:4% for

� = 0:75; while the size adjusted power of the LR test increases from 66:4% to

77:4%. For HB
0 : �1 = 0, when �1 = �0:5 and �2 = 0, the size adjusted power of

the LM test increases from 70:2% for � = 0:5 to 81% for � = 0:75; while the size

adjusted power of the LR test increases from 72:9% to 83:4%. At �1 = 0:5 and

�2 = 0, the size adjusted power of the LM test increases from 76:7% for � = 0:5

to 86:6% for � = 0:75; while the size adjusted power of the LR test increases

8The size corrected critical level for the test is inferred from the empirical distribution

of the test statistic in the Monte Carlo experiments, so that the rejection region under the

empirical distribution has the correct nominal size.
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from 74:6% to 84:9% for LR. For HC
0 : �1 = �2 = �, when �1 = �0:5 and

�2 = 0, the size adjusted power of the LM test increases from 66:1% for � = 0:5

to 73% for � = 0:75; while the size adjusted power of the LR test increases from

68:5% to 74:8%. At �1 = 0:5 and �2 = 0, the size adjusted power of the LM test

increases from 70:6% for � = 0:5 to 80:4% for � = 0:75; while the size adjusted

power of the LR test increases from 65% to 77:3%.

Things also improve if the number of observations increases. The increase in

power is larger when we doubleN from 50 to 100 as compared to doubling T from

5 to 10.9 We conclude that the three LM and LR tests perform reasonably well

in testing the restrictions underlying the simple random e¤ects model without

spatial correlation, the Anselin model and the KKP model in small and medium

sized samples.

Figures 1-4 plot the size adjusted power for the various hypotheses consid-

ered. In Figure 1, the pure random e¤ects model is true, whereas in Figure 2,

the Anselin model is true. In Figures 3 and 4, the KKP-type model is true with

di¤erent values for the common �.

===== Figures 1-2 =====

Let us start with a comparison of the panels given in Figure 1, which assumes

that the random e¤ects model is true (�1 = �2 = 0). On the left hand side,

we plot the size adjusted power of the LM test for deviations of �1 from 0,

maintaining that �2 = 0. On the right hand side it is the other way around.

Observe that the power of the LM test is higher for deviations of �2 from 0 as

compared to deviations of �1 from 0. Keep in mind that the estimates of �2 are

based on NT observations, while those of �1 rely on only N observations. The

top two panels show that the power increases for deviations in �1 as � increases.

However, for deviations in �2, the power of the test is insensitive to �. The

two panels at the center of Figure 1 illustrate that both the size and the power

9We do not include the corresponding Tables for (N = 50; T = 10) and (N = 100; T = 5);

for � = 0:25; 0:50; and 0:75, in order to save space. However, these tables are available upon

request from the authors.
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of the LM test improve as the sample size increases, especially as N becomes

larger. A comparison of the two panels at the center with those at the bottom

of Figure 1 provides information on the interaction of sample size (N , T ) and

the relative importance of �. It is obvious that for deviations of �1 from 0 (on

the left), the power improves with N , especially as � increases.

Figure 2 assumes that the Anselin-type process of the error term is the true

model (�1 = 0). One important di¤erence when compared to Figure 1 is that

�2 is now a nuisance parameter. The qualitative e¤ects of an increase in N , T ,

and � are similar to those in Figure 1 on the left hand side. The right hand side

panels of Figure 2 show that the size adjusted power of the LM test is lower if

�2 is high (0:5 compared to 0), especially for low � (0:25 compared to 0:75).

===== Figures 3-4 =====

Figures 3 and 4 assume that the KKP model is the true one. Note that an

assessment of the performance of the LM test is di¤erent here, since the KKP

model assumes that �1 = �2. The null hypothesis in Figure 3 is �1 = �2 = 0:2

and the one in Figure 4 is �1 = �2 = 0:5. The major di¤erence between the

two �gures is that assuming a null that is di¤erent from �1 = �2 = 0 shifts

the size adjusted power function and renders it skewed to the right. Otherwise,

the conclusions regarding the impact of �, N , and T are qualitatively similar

to those of the random e¤ects model. A major di¤erence from the random

e¤ects model is that for the KKP model the power is lower in the �2 direction,

especially for small �.

3.1 Robustness Checks

We also assess the performance of the proposed LM tests with respect to (i)

non-normal errors (using the derived robust vs. the non-robust LM test sta-

tistics) and (ii) the speci�cation of the spatial weighting matrix. To compare

the simulated power functions for normal vs. non-normal errors, we generate

the remainder error term �rst as �it s t(5) and normalize its variance to 10.
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Hence, � = 0:5 holds in this case and the results are comparable to the ba-

sic Monte Carlo set-up de�ned above. This implies that the distribution of

the remainder error exhibits heavier tails as compared to the normal distrib-

ution but it is still symmetric. Second, we analyze a skewed error distribu-

tion assuming that �it follows a log-normal distribution with variance 10, i.e.,

�it =
p
10(e� � e0:5)=

p
e2 � e1, where � s N(0; 1).

For N = 50 and T = 5, the Monte Carlo experiments show that on average

there are relatively small e¤ects on the size of the (non-robust) LM tests under

either error distribution in comparison to the tests under normality.

===== Table 4 =====

In Table 4, we focus on the size of the LM and LR tests under alternative

distributional assumptions of the error term for N = 50, T = 5 and � = 0:5. In

the �rst pair of columns we give the true parameters �1, �2, the second pair of

columns summarizes the size of the tests under the assumption that �it s t(5),

in the third pair of columns we assume that �it follows a log-normal distribution

with variance 10.

It turns out that both the (non-robust) LM tests and the LR tests are fairly

insensitive to the chosen alternative assumptions about the distribution of the

disturbances at intermediate levels of �1 and �2. However, the LM tests tend to

be somewhat more undersized than the LR tests, especially for �1 = �2 = 0:8.

With the caveat of the limited experiments we performed, this �nding suggests

that the (non-robust) LM tests considered are fairly robust to deviations from

the assumption of a normally distributed error term.

Interestingly, with small samples as the ones considered and a relatively small

signal-to-noise ratio as assumed here, there is no gain from using robust LM test

statistics rather than non-robust ones. In many cells of Table 4, the robust test

size is more o¤ the nominal size than this is the case for the non-robust test

size. The reason for this result is the following. The correction factors of the

LM statistics de�ate the non-robust test statistics. Hence, with oversized LM

tests, the corresponding correction factors would adjust the test size towards the
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nominal size (see Yang, 2010, for an example with cross-section data). In our

case, there is no systematic over-rejection in the samples considered so that the

correction factors lead to even more pronouncedly undersized tests. In broader

terms, problems with such correction factors in small samples also accrue to the

use of higher moments of the disturbances which can not be estimated without

bias in small samples (see Teuscher, Herrendörfer, and Guiard, 1994).10

Furthermore, we repeated the LM and LR tests for the same model con-

�guration as in Table 1 for an alternative model which assumes the vector of

explanatory variables, x, to be generated as a spatial moving average of the

form

x = [IT 
 (IN + 0:5WN )]xold

where xold is the speci�cation of x as de�ned above. Our original conclusions

are not sensitive to this alternative speci�cation of x. We also investigated the

extent to which the speci�cation of the spatial weighting scheme matters for

the size and power of the tests considered. We generated an alternative spatial

weighting matrix allowing for a more densely populated grid. In particular, we

randomly allocated the observations on the grid so that there are 5 rather than

3 neighbors per observation on average. As expected, the power of the tests is

somewhat lower in this case, but still big enough to detect relevant deviations

from the null.11

4 Conclusions

The recent literature on �rst-order spatially autocorrelated residuals (SAR(1))

with panel data distinguishes between two data generating processes of the er-

ror term. One process described in Anselin (1988) and Anselin, Le Gallo and
10With robust LM tests, we estimate the kurtosis from the realized (true) disturbances for

every draw. In applications, one would have to rely on the estimated kurtosis which can be

biased substantially in small samples.
11All results on the mentioned sensitivity checks are available from the authors upon request.

They are suppressed here for the sake of brevity.
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Jayet (2008) assumes that only the remainder error component is spatially cor-

related. In an alternative process put forward by Kapoor, Kelejian, and Prucha

(2007) both the individual and remainder components of the disturbances are

characterized by the same spatial autocorrelation pattern. This paper formu-

lates a SAR(1) process of the residuals with panel data that encompasses these

two processes. In particular, this paper derives three LM tests based upon the

more general model, testing its restricted counterparts: the Anselin model, the

Kapoor, Kelejian, and Prucha model, and the random e¤ects model without

spatial correlation. For the latter two tests, closed-form expressions for the LM

statistics can be obtained. In addition, we derive robust LM tests that do not

rely on the assumption of normally distributed disturbances.

Our Monte Carlo study assesses the small sample performance of the derived

tests. We �nd that under normal disturbances the LM tests are properly sized

and powerful even in relatively small samples. Interestingly, with small samples

and a relatively small signal-to-noise ratio as considered in the Monte Carlo

study, there is no gain from using robust LM test statistics rather than non-

robust ones. The LM tests are easy to calculate and their power is reasonably

high for all three tests considered. Under normal disturbances the power of

these LM tests matches that of the corresponding LR tests except in few cases.

In general, the power of the tests increases with the relative importance of the

individual e¤ects�variance as a proportion of the total variance, as well as with

increasing N and T . They are robust to non-normality of the error term and

sensitive to the speci�cation of the weight matrix. Hence, these LM and LR tests

are recommended for the applied researcher to test the restrictions imposed by

the RE model with no spatial correlation, the Anselin model, and the Kapoor,

Kelejian, and Prucha model.
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Appendix A: Score and Information Matrix

Below we make use of the following derivatives to obtain the score and the

relevant part of the information matrix:12

@
u
@�2�

= JT 
 (B0B)�1 +ET 
 (B0B)�1= IT 
 (B0B)�1

@
u
@�2�

= JT 
 T (A0A)�1

@
u
@�1

= JT 
 T�2�(A0A)�1(W0 +W � 2�1W0W)(A0A)�1

@
u
@�2

= IT 
 �2�(B0B)�1(W0 +W � 2�2W0W)(B0B)�1:

Appendix B: Identi�cation and Consistency

In the sequel, we use subscript 0 to indicate true parameter values where

necessary. First, we state the full set of Assumptions.

Assumptions13

A1 (random e¤ects model): The model comprises unit-speci�c random ef-

fects denoted by the (N � 1) vector �. The elements of � are i:i:d: (0; �2�) with

0 < �2� < b� < 1. � is the vector of remainder errors and its elements are

i:i:d: (0; �2�) with 0 < �2� < b� < 1. The elements of � and � are indepen-

dent of each other. Furthermore E[j�ij
4+�� ] < 1 and for some �� > 0; and

E[j�itj4+�� ] <1 and for some �� > 0:

A2 (spatial correlation):

(i) Both u1 and u2t are spatially correlated with the same (N � N) non-

stochastic spatial weighting matrixW whose elements may depend on N .
12Hartley and Rao (1971) and Hemmerle and Hartley (1973) give a general useful for-

mula that helps in obtaining the score of � = (�2� ; �
2
�; �1; �2)
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�1u

@
u
@�r


�1u
�
u; r = 1; :::; 4: To derive the relevant part of the information ma-

trix, we use the general di¤erentiation result given in Harville (1977): Jrs = E
h
� @2L
@�r�s

i
=

1
2
tr
h

�1u

@
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@�r


�1u
@
u
@�s

i
:

13To avoid index cluttering, we suppress the subscript indicating that the elements of the

spatial weights matrix may depend on N and that the dependent variable and the disturbances

form triangular arrays. For a similar set of assumptions and a discussion of them see Lee

(2004a) and Lee and Yu (2010a and 2010b).
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The elements ofW are non-negative and wii = 0:

(ii) The row and column sums ofW are uniformly bounded in absolute value.

(iii) The parameter space for �r is a closed interval contained in �1=�max <

�r < 1=�max for all N and r = 1; 2, where �max is the largest absolute

eigenvalue ofW. �max is assumed to be bounded away from zero by some

�xed positive constant.

(iv) Let A = IN � �1W and B = IN � �2W. The non-stochastic matrices A,

B are non-singular for all �r in the parameter space and have bounded

row and column sums, uniformly in N . Also, its inverses have bounded

row and column sums, uniformly in N and uniformly in the parameter

space of �1 and �2 .

(v) The inverse ��1u
�
�2�; �

2
� ; �1; �2

�
= (JT 
 (

T�2�
�2�
(A0A)�1 + (B0B)�1)�1) +

(ET 
B0B) has bounded row and column sum uniformly in N and uni-

formly in the parameter space of
�
�2�; �

2
� ; �1; �2

�
:14

A3 (compactness of the parameter space): The parameter space � with

elements (�;�2�; �
2
� ; �1; �2) is compact. The true parameter vector (indexed by

0) lies in the interior of �.

We note that Assumptions A1 and A2 imply that� = f(�; �1; �2)j(�2�; �2� ; �1;

�2) 2 �g with � = �2�=�2� is also compact. In the following, the elements of �

are denoted by the vector #.

A4 (identi�cation of #): For every #2�, # 6= #0, and any " > 0 :

lim supN!1max#2N"(#0)
(� 1

2 ln(
1
NT tr[�u(#0)�u(#)

�1])� 1
2

1
NT ln[det�u(#)=

det�u(#0)]) < 0, where N"(#0) is the complement of an open neighborhood of

#0 of diameter ".

14Under HC
0 we have ��1u

�
�2�; �

2
� ; �1; �2

�
= (JT 
 (

T�2�
�2�

(A0A)�1+(A0A)�1)�1)+ (ET 


A0A) = (JT 
(
T�2�+��

�2�
IN )+(ET 
IN ) (IT 
A0A) : Hence, in this case a su¢ cient condition

for Assumption A2 (v) is A2 (iv). Note Lemma 1 shows that this inverse exists for all�
�2�; �

2
� ; �1; �2

�
in the parameter space.
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A5 (identi�cation of � under HC
0 ): The non-random matrix X has full col-

umn rank K < N and its elements are uniformly bounded by some �nite con-

stant. Further, let Q0 = ET 
 IN and Q1 = JT 
 IN and de�ne X�(�) =

IT 
 A. The non-random matrices limN!1(
1
NTX

�(�)QiX
�(�)); i = 0; 1 are

�nite. The nonrandom matrices limN!1(
1
NTX

0X); limN!1(
1
NTX

�(�)0X�(�))

and limN!1(
1
NTX

0�u(#)
�1X) are �nite and non-singular.

A6 (positive variance of LM tests): NT�12(�2�41 + (1� �)2(T � 1)�4�)�

tr[(H(A0A)�1)2]� (NT )
�1
3
PN

i=1 l
2
ii

�
�2T 2 + T

�
(1� �) + 2��1

T

�2�
> bQ for

some bQ > 0; �21 = T�
2
� + �

2
� and 0 � � � 1: H and lii are de�ned in Lemma 4

below.

Consistency of the (quasi-)ML estimates under the general model.

In proving the consistency of (quasi-)MLE, we make use of the following

Lemmata.15

Lemma 1 Under the maintained assumptions A1-A3, (i) the row and column

sums of (A0A)�1 and (B0B)�1 are bounded in absolute value, uniformly in N

and in # 2 �. (ii) the row and column sums of �u(#) are bounded in absolute

value, uniformly in N and in # 2 �. (iii) �u(#)�1 exists.

Lemma 2 Under assumptions A1-A3, the matrices �u(#) and �u(#)�1 are

positive de�nite.

The proof of consistency of the maximum likelihood estimates is based on

the concentrated log-likelihood which is

Lc(#) = �NT
2 (ln 2� + 1)� NT

2 ln b�2�(#)� 1
2 ln det�u(#):

As non-stochastic counterpart of Lc(#) we use

Q(#) = max
�2� ;�

E[L(�)] = �NT
2 (ln 2� + 1)� NT

2 ln��2� (#)� 1
2 ln det�u(#):

15The proofs of these Lemmas are skipped to save space. However, they are included in the

long version of the Appendix which is available form the authors.
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Theorem 3 Let Assumptions A1-A5 hold: Then (i) the maximum likelihood

estimates of # are unique and consistent. (ii) Assume in addition that HC
0

holds:
�b�(b#)� �0� p! 0; where b# is a consistent estimator of #.

Proof. To prove consistency, we have to show that 1
NT (L

c(#)�Q(#)) con-

verges uniformly to 0 in probability. Note that 1
NT (L

c(#)�Q(#)) = � 1
2 (ln b�2�(#)�

ln��2� (#)) and that b�2�(#) = 1
NT u(

b�(#))0�u(#)�1u(b�(#)) = 1
NT u(�0)

0�u(#)
�1u(�0)

� u(�0)0�u(#)�1M(#)u(�0) = 1
NT tr[�u(#)

�1(INT�M(#))u(�0)u(�0)0], where

M(#) � X
�
X0�u(#)

�1X
��1

X0�u(#)
�1. Hence, ln b�2�(#)� ln��2� (#) =

1
NT tr[�u(#)

�1M(#)u(�0)u(�0)
0]: Observe, that

1
NT tr[�u(#)

�1M(#)u(�0)u(�0)
0]

=
�2�;0
NT tr

h�
X0�u(#)

�1X
��1

X0�u(#)
�1u(�0)u(�0)

0�u(#)
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��1i
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NT Kc1tr

�
1
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�
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�1u(�0)u(�0)
0�u(#)
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��
:

The third line follows since
�
X0�u(#)

�1X
��1

and X0�u(#)
�1u(�0)u(�0)

0�

�u(#)
�1X are positive de�nite matrices (see Abadir and Magnus, 2005, p. 216

and 329) for all # 2 � and the elements of
�
1
NTX

0�u(#)
�1X

��1
are uniformly

bounded by some positive constant, say c1, uniformly in the parameter space of

# by Assumptions A2 (v) and A5 (see also Kapoor, Kelejian and Prucha (2007,

p. 118f.). This implies

sup
#2�

�
��2� (#)� b�2�(#)� � �2�;0

NT Kc1tr
�
1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
��
:

Now.

lim
N!1

1
NT E

�
tr
�
1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
���

= lim
N!1

1
NT tr

�
1
NT

�
X0�u(#)

�1�u(#0)�u(#)
�1X

��
� lim

N!1

�2�;0
NT Kc2 = 0:

This follows from Assumptions A2 and A5 and the observations made in Kapoor,

Kelejian and Prucha (2007, p. 118f.). In particular, �u(#)�1�u(#0)�u(#)�1

possesses bounded row and column sums, uniformly in N and uniformly in the
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parameter space of # using Assumption A2 (v), and the elements of X are uni-

formly bounded by Assumption A5. Then the elements of 1
NTX

0�u(#)
�1�u(#0)�

�u(#)
�1X are bounded, uniformly in N and uniformly in the parameter space

of #; say by some constant c2. Next observe that

V ar[ 1NT
�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
�
]

=
2�4�;0
(NT )2

tr
h�

1
NT

�
X0�u(#)

�1�u(#0)�u(#)
�1X

��2i � 2�4�;0
(NT )2

K2c22:

By Chebyshev�s inequality, we conclude that plimN!1
1
NT (X

0�u(#)
�1u(�0)�

u(�0)
0�u(#)

�1X) = 0 and, hence,

sup
#2�

�
��2� (#)� b�2�(#)� = op(1):

Using the mean value theorem it follows that ln b�2�(#) = ln��2� (#)+ b�2�(#)���2� (#)
�2�(#)

with the �2�(#) lying in between �
�2
� (#). Since b�2�(#)���2� (#)=op(1) uniformly

in �, b�2�(#) will be bounded away from zero uniformly in probability if ��2� (#) is
bounded away from zero. Below we show that lim supN!1max#2N"(#0)

1
NT (Q(#)

� Q(#0)) < 0 under the present assumptions so that

1
NT (Q(#)�Q(#0))

= � 1
2 ln�

�2
� (#) +

1
2 ln�

�2
� (#0)� 1

2NT ln (det�u(#)=det�u(#0))

= � 1
2 ln�

�2
� (#) +

1
2 ln�

�2
� (#0) +

1
2NT ln

�
det�u(#)

�1=det�u(#0)
�1� < 0

or

ln��2� (#) > ln��2� (#0) +
1
NT ln

�
det�u(#)

�1=det�u(#0)
�1�

uniformly in # 2N"(#0);where N"(#0) is the complement of an open neighbor-

hood of #0 of diameter ": ��2� (#0) > 0 by Assumption A1. By Lemmata 1 and

2 det�u(#)�1=det�u(#0)�1 > 0, uniformly in N and uniformly in the para-

meter space of # and we conclude that ��2� (#) is bounded away from zero and

�2�(#) = OP (1) uniformly in #. Therefore, we obtain sup
#2�

2
NT jL

c(#)�Q(#)j =

sup
#2�

j ln b�2�(#)� ln��2� (#)j = sup
#2�

1
�2�(#)

���b�2�(#)� ��2� (#)��� = op(1) uniformly in �.
Secondly, we have to prove the following uniqueness identi�cation condi-

tion (see Lee, 2004a). For any " > 0, lim supN!1max#2N"(#0)
1
NT (Q(#) �
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Q(#0)) < 0, where N"(#0) is the complement of an open neighborhood of

#0 of diameter ". Note, Q(#) � Q(#0) = �NT
2 [ln�

�2
� (#) � ln��2� (#0)] �

1
2 ln[det�u(#)=det�u(#0)]. Now, ln�

�2
� (#)�ln��2� (#0) = ln tr 1

NT [�u(#0)�u(#)
�1]

� ln 1
NT tr[INT ] = ln tr

1
NT [�u(#0)�u(#)

�1] and lim supN!1max#2N"(#0)
1
NT (Q(#)

� Q(#0)) = lim supN!1max#2N"(#0)
(� 1

2 ln
1
NT tr[�u(#0)�u(#)

�1]�
1
2

1
NT ln(det�u(#)=det�u(#0))) < 0 by Assumption A4. Accordingly, we con-

clude that the maximum likelihood estimator b# of #0 under the general model
is unique and consistent, since Q(#) is continuous and the parameter space is

compact.

Lastly, the consistency of b�(b#) under HA
0 or HC

0 is established by observ-

ing that our assumptions imply those made in Theorem 4, part b, given in

Kapoor, Kelejian and Prucha (2007). Hence, we conclude that under HA
0 or

HC
0 (NT )

1=2
�b�(b#)� b�(#)� p! 0; since b# is a consistent estimator of # as

shown above. Note, b�(#) is a (NT )1=2-consistent estimator of �0 and the

consistency of b�(b#) follows. See Lee and Yu (2010b) for a similar proof.
Appendix C: LM Test for random e¤ects

The following Lemma is useful in proving Theorems 6 and 7 that derive the

asymptotic distribution of the LM tests for the random e¤ects model and the

KKP model.

Lemma 4 Assume that Assumptions A1, A2 and A6 hold and that �1 = �2 = �:

Consider the quadratic form Q = (Z�A�1�+(IT
A�1)�)0
�
(�JT + (1� �)ET )
H

�
�

(Z�A
�1� + (IT 
 A�1)�); where H is a conformable symmetric matrix and

0 � � � 1 is a real number. Then,

E[Q] = (��21 + (1� �)�2�(T � 1))tr[H(A0A)�1]

V ar[Q] = 2(�2�41 + (1� �)2 (T � 1)�4�)tr[(H(A0A)�1)2]

+�2T 2
NX
i=1

l2ii�
4
�

�
�(4)
�
� 3
�
+ ((1� �) + 2��1

T )2
NT+NX
i=N+1

c2ii�
4
�

�
�(4)� � 3

�

with L = A0�1HA�1; �(4)
�
= E[�4]

�4�
; and �(4)� = E[�4]

�4�
. lii and cii denote the iith
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elements of L and C, respectively, where the latter is de�ned below and

Q� E[Q]p
V ar[Q]

d! N(0; 1):

Proof. Inserting Z� = (�T 
 IN ) yields

Q : = �0C� = �0

26666664
�TL �L :: �L

�L L((1� �) + 2��1
T ) :: L( 2��1T )

:: :: :: ::

�L L( 2��1T ) :: L((1� �) + 2��1
T )

37777775 �

= �T�0L�+2�
TX
t=1

�0tL�+(1� �)
TX
t=1

�0tL�t + (2�� 1) 1T

 
TX
t=1

�0t

!
L

 
TX
t=1

�t

!
;

where L = A0�1HA�1; tr(L) = tr[H(A0A)�1]. � =(�0;�01; :::;�
0
T )
0 with E[�] =

0 and

V ar[�] := 
� =

26666664
�2�IN 0 :: 0

0 �2�IN :: 0

:: :: :: ::

0 :: :: �2�IN

37777775 :

Let 
� = SS
0 with

S=

26666664
��IN 0 :: 0

0 ��IN :: 0

:: :: :: ::

0 :: :: ��IN

37777775
and de�ne � = S�1� so that �(4)� = E[

�
�i
��

�4
] and �(4)� = E[

�
�i
��

�4
]. cii;� is the

iith element of

S0CS =

26666664
�2��TL �����L :: �����L

�����L �
2
�L((1� �) + 2��1

T ) :: �2�L(
2��1
T )

:: :: :: ::

�����L �2�L(
2��1
T ) :: �2�L((1� �) + 2��1

T )

37777775 :
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It can easily be veri�ed that

E[Q] = (��21 + (1� �)�2�(T � 1))tr[H(A0A)�1]

V ar[Q] = 2tr (C
�C
�) +
NX
i=1

c2ii;�

�
�(4)
�
� 3
�
+
NT+NX
i=N+1

c2ii;�

�
�(4)� � 3

�
= 2(�2�41 + (1� �)2(T � 1)�4�)tr[(H(A0A)�1)2]

+�2T 2
NX
i=1

l2ii�
4
�

�
�(4)
�
� 3
�
+ T

�
(1� �) + 2��1

T

�2 NX
i=1

l2ii�
4
�

�
�(4)� � 3

�
:

For � = 1 one obtains

E[Q] = �21tr[H(A
0A)�1]

V ar[Q] = 2�41tr[(H(A
0A)�1)2] +

NX
i=1

l2ii

�
�4�T

2
�
�(4)
�
� 3
�
+ 1

T �
4
�

�
�(4)� � 3

��
and for � = 0

E[Q] = �2�(T � 1)tr[H(A0A)�1]

V ar[Q] = 2(T � 1)�4�tr[(H(A0A)�1)2] + (T�1)2
T

NX
i=1

l2ii�
4
�

�
�(4)� � 3

�
:

The present assumptions imply that V ar[Q] is uniformly bounded away from

zero by some positive constant under and that the row and column sums of

A, (A0A)�1 and H are uniformly bounded and so are those of L. Since the

elements of � are independently distributed by Assumption A1, the assumptions

of the central limit theorem for linear quadratic forms given as Theorem 1 in

Kelejian and Prucha (2001, p. 227) are ful�lled and the claim of the Lemma

follows.

Under HA
0 : �1 = �2 = 0, B = A = IN . Using the general formulas

for the score and the information matrix given above one can show that the

corresponding LM test statistic is given by

gLMA =
1

2bAe�41 eG2A + 1
2bA(T�1)e�4� fM2

A;

where eGA = eu0 �JT 
 (W0 +W)
� eu , fMA = eu0 [ET 
 (W0 +W)] eu and bA =

tr
�
(W0 +W)2

�
:
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Theorem 5 (LMA) Suppose Assumptions A1 - A5 hold and HA
0 : �1 = �2 = 0

is true. Then, gLMA =
1

2bAe�41 eG2A + 1
2bA(T�1)e�4� fM2

A is asymptotically distributed

as �22.

Proof. First, use the residuals of the true model u = y �X�0 and de�ne

GA = u0GAu and MA = u0MAu, where GA = JT 
 (W0 +W); and MA =

ET 
 (W0 +W):

(i) We can apply Lemma 4 by setting � = 1 and A = IN so that H =(W0+W)

with tr[H] = 0; because tr[W] = 0. Also observe that lii = 0 under HA
0 . Hence,

E[GA] = 0 and V ar[GA] = 2�41bA with bA = tr[H
2]. By Assumption A2 the row

and column sums of H are uniformly bounded. �21
p
2bA is bounded away from

zero by some positive constant as shown in Lemma 4, so GA

�21
p
2bA

d! N(0; 1):

(ii) Setting � = 0 in Lemma 4 implies that MA

�2�

p
2(T�1)bA

d! N(0; 1).

(iii) Inspection of the proof in Lemma 4 establishes the independence of GA

and MA. From Lemma 4 it follows that �01
�21
p
2bA
GA +

�02
�2�

p
2(T�1)bA

MA with

�01
�21
p
2bA

+
�02

�2�

p
2(T�1)bA

= 1 is also asymptotically normal and, hence, the vec-

tor of quadratic forms
�

GA

�21
p
2bA
; MA

�2�

p
2(T�1)bA

�0
converges to a bivariate stan-

dard normal by the Cramér-Wold device. Consequently, LMA = 1
2bA�41

G2A +

1
2bA(T�1)�4�

M2
A is asymptotically distributed as �

2
2.

(iv) Notice that 1p
NT
eu0GAeu� 1p

NT
u0GAu =

2
NT u

0GAX
p
NT (e���0)+ (NT )� 3

2 �
p
NT (e� � �0)0X0GAX

p
NT (e� � �0). Given a pN -consistent estimator of �0

under HA
0 , say e� and eu = y �Xe�, we have 1p

NT
eu0GAeu� 1p

NT
u0GAu = op(1),

since X and GA are non-stochastic matrices (see Lemma 1 in Kelejian and

Prucha, 2001, p. 229). Similarly, 1p
NT
eu0MAeu� 1p

NT
u0MAu = op(1). Further,

(NT )�12�41bA > c1 > 0 for some constant c1 and (NT )�12�4� � (T � 1)bA >

c� > 0 for some constant c� , since �2� > 0 and �
2
� > 0 by Assumption A1 and

0 < cbA � bA by Assumption A2. As shown in Appendix B, e�21 = �21 + op(1)

and e�2� = �2� + op(1). Then, Theorem 2 of Kelejian and Prucha (2001, p. 230)

implies that
eGAp
2e�41b2A� GAp

2�41b
2
A

= op(1) and
fMAp

2e�4�(T�1)bA � MAp
2�4�(T�1)bA

= op(1).

Hence, gLMA � LMA = op(1).
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Appendix D: LM Test for the Anselin Model

Remember that under HB
0


u = (JT 
 T�2�IN + �2�(B0B)�1) + �2�(ET 
 (B0B)�1):

We diagonalize 
u = SS
0 so that 
�1u = S0�1S�1: In the following the index r

stands for restricted estimation so that H0: �1 = 0 is true. Following Kelejian

Prucha (2010), let � = S�1u and E[�3it] = �
(3)
� and E[�4it] = �

(4)
� and let �k refers

to �2�, �
2
� ; �1 or �2: In general, one obtains

@L

@�
: = s�(�;�r) = X

0
�1u u

@L

@�k

����
�=�r

: = s�k(�r) = � 1
2 tr

�

�1u

@
u
@�k

�
�=�r

+ 1
2u

0
�

�1u

@
u
@�k


�1u

�
�=�r

u

E[s�k(�r)] = � 1
2 tr

�

�1u

@
u
@�k

�
�=�r

+ 1
2 tr

"�

�1u

@
u
@�k


�1u

�
�=�r


u

#
Cov[s�k(�r); s�(�;�r)] = 0

Cov[s�k(�r); s�l(�r)] = tr

"�

�1u

@
u
@�k


�1u

�
�=�r


u

�

�1u

@
u
@�k


�1u

�
�=�r


u

#

+ 1
2

NTX
i=1

a�k;iia
�
l;ii(�

(4)
� � 3);

where a2k;ii� is an element ofA
�
k = S

0
�1u;r
@
u

@�k

���
�=�r


�1u;rS: Note, since s�(�;�r)

is linear in u and s�k(�r) is a quadratic form in u, Cov[s�k(�r); s�(�;�r)] = 0

and 
u is block diagonal. So we need a matrix of correction factors with elements
1
2

PNT
i=1 a

�
k;iia

�
l;ii(�

(4)
� � 3), which can be calculated numerically. In particular,

�
(4)
� = E[

�
S�1u

�4
] can be estimated from bS�1bu using 
u = SS0 = P�P0 or

S = P�
1
2 ; since 
u is a real symmetric matrix. It follows that 
�1u = S0�1S�1;

V ar(S�1u) = S�1
uS
0�1 = S�1SS0S0�1 = I: Observe that

1
2u

0
�

�1u

@
u
@�k


�1u

�
�=�r

u = 1
2�

0

 
S�1

@
u
@�k

����
�=�r

S0�1

!
�;
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where the elements of � are iid(0; 1) so that Ak = S
�1 @
u

@�k

���
�=�r

S0�1

Cov[s�k(�r); s�l(�r)] = tr

"

�1u

@
u
@�k

����
�=�r


�1u
@
u
@�k

����
�=�r

#

+ 1
2

NTX
i=1

ak;iial;ii(�
(4)
� � 3)

De�ning the 4 � 4 matrix �� with klth element [ 12
PNT

i=1 ak;iial;ii(�
(4)
� � 3)],

R = [0; 0; 1; 0], the robust LM-test statistic following White (1982) is given by

LMB;robust = bd0�bJ�1� R0
�
R
�bJ�1� + bJ�1� b��bJ�1� �R0

��1
RbJ�1� bd0�

and asymptotically distributed as �21:

Appendix E: LM Test for the KKP Model

To derive the asymptotic distribution of the LM test for HC
0 , it proves useful

to re-parameterize the model so that �1 = �2 + � and to test HB
0 : � = 0 vs.

HB
1 : � 6= 0, Under HC

0 , B = A, 
u = (�
2
1JT + �

2
�ET )
 (A0A)�1 and 
�1u =

( 1
�21
JT +

1
�2�
ET )
 (A0A). Using the general formulas for the score and for the

information matrix given above, the LM test statistic can be derived as

LMC = D
0
�J
�1
� D� =

T
2bC(T�1)�41

G
2

C :

where bC = eC � d
2

C=N and GC = u0(JT 
 F)u� �21tr[D]:

Theorem 6 (LMC) Suppose Assumptions A1 - A6 hold and Hc
0: �1 = �2 = �

is true. Let H = (W0A + A
0
W); D = H(A

0
A)�1; L = A0�1HA�1 with

elements lij ; bC = eC � d
2

C=N , dC = tr[D] , eC = tr[D
2
], GCb = u0(JT 
 F)u;

db =

PN
i=1 l

2
ii

�
�4�T

2
�
�(4)
�
�3
�
+
1
T �

4
�(�

(4)
� �3)

�
2�41tr[D

2]
and d0w =

PN
i=1 l

2
ii

�
1
T �

4
�(�

(4)
� �3)

�
(T�1)22�4�tr[D2]

. Then,

LMC;robust =
T

2bC(T�1)�41

�
GCb � �21tr[D]

�2 � 1
1+(db+d0w)

T�1
T

�
is asymptotically

distributed as �21. Under normality, LMC =
T

2bC(T�1)�41

�
GCb � �21tr[D]

�2
and

is asymptotically distributed as �21:

Proof. We will make use of the following �rst order conditions evaluated
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under HC
0 :

@L

@�

����
HC
0

= �T�2�
2�21

tr[D] + 1
2u

0(
T�2�
�41
JT 
H)u = 0 (10)

@L

@�2

����
HC
0

= �T
2 tr[D] +

1
2u

0[( 1
�21
JT +

1
�2�
ET )
H]u = 0: (11)

From the �rst order condition (11)

@L

@�2

����
HC
0

= �T
2 tr[D] +

1
2u

0[( 1
�21
JT +

1
�2�
ET )
H]u;

we obtain

�21tr[D]=
1
T u

0(JT 
H)u+ �21
T�2�

u0(ET 
H)u:

Inserting the ML-estimates denoted by a bar in (10) gives the estimated score

as

s�(�)jHC
0
= T�1

T u0(JT 
H)u� �21
T�2�

u0(ET 
H)u:

Below we will show that (NT )�
1
2

�
s�(�)jHC

0
� s�(�)jHC

0

�
+ op(1), so we de-

rive the asymptotic distribution of s�(�)jHC
0
to establish that of the LM test.

Observe that

E[s�(�)jHC
0
] = T�1

T �21tr(D)�
�21
T�2�

(T � 1)�2�tr(D) = 0

V ar[s�(�)jHC
0
] = 2

�
T�1
T

�2
�41tr[D

2] +
�
T�1
T

�2 NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T �
4
�

�
�(4)� � 3

��
+

�41
T 2�4�

(T � 1)�4�tr[D2] +
�41
T 2�4�

(T�1)2
T �4�

NX
i=1

l2ii

�
�(4)� � 3

�
:

using


ujHC
0
= �21[JT 
 (A0A)�1] + �2� [ET 
 (A0A)�1]

and Lemma 4 under � = 0 with Q de�ned as in Lemma 4.

E[Q] = �21tr[H(A
0A)�1]

V ar[Q] = 2�41tr[(H(A
0A)�1)2] +

NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T �
4
�

�
�(4)� � 3

��
;

32



and, lastly, under � = 1

E[Q] = �2�(T � 1)tr[H(A0A)�1]

V ar[Q] = 2(T � 1)�4�tr[(H(A0A)�1)2]+ (T�1)2
T �4�

NX
i=1

l2ii

�
�(4)� � 3

�
:

Collecting terms yields

V ar[s�(�)jHC
0
] = 2�41tr[D

2]
�
(T�1)2
T 2 + T�1

T 2

�
+
�
T�1
T

�2 NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T �
4
�

�
�(4)� � 3

��
+

�41
T 2�4�

(T�1)2
T �4�

NX
i=1

l2ii

�
�(4)� � 3

�
:

= 2�41tr[D
2]T�1T +

�
T�1
T

�2
cb +

�41
T 2�4�

cw;

where we de�ne cb =
PN

i=1 l
2
ii

�
�4�T

2
�
�(4)
�
� 3
�
+ 1

T �
4
�

�
�
(4)
� � 3

��
and cw =PN

i=1 l
2
ii
(T�1)2
T �4�

�
�
(4)
� � 3

�
and use (T�1)2

T 2 + T�1
T 2 = T�1

T 2 (T � 1 + 1) =
T�1
T .

Next we derive the standardized score as

Q =
s�(�)jHC

0
� E[s�(�)jHC

0
]q

V ar[s�(�)jHC
0
]

=

T�1
T u0(JT 
H)u� �21

T�2�
u0(ET 
H)uq

2�41tr[D
2]T�1T +

�
T�1
T

�2
cb +

�41
T 2�4�

cw

:

Below we show thatQb =
u0(JT
H)u��21tr[D]p

2�41tr[D
2]+cb

d! N(0; 1) andQw =
u0(ET
H)u��2�(T�1)tr[D]p

2(T�1)�4�tr[D2]+cw

d! N(0; 1). Since the two quadratic forms are independent it follows that

Q
d! N(0; 1), where

Q =
Qb
p
(T � 1)2 + (T � 1)2db �Qw

p
T � 1 + dwp

(T � 1)T + (T � 1)2db + dw
:

and db = cb
2�41tr[D

2]
and dw = cw

2�4�tr[D
2] . Inserting the quadratic forms in the

nominator of Q yields

Qb
p
(T � 1)2 + (T � 1)2db �Qw

p
T � 1 + dw

= GCb
T � 1p
2�41tr[D

2]
�GCw

1p
2�4�tr[D

2]
;

where we de�ne GCb = u0(JT 
H)u and GCw = u0(ET 
H)u. Remember the

denominator is given by
p
(T � 1)T + (T � 1)2db + dw: The test can then be

33



based on

p
LMC;robust =

GCb(T � 1)�GCw �21
�2�p

2�41tr[D
2]
p
(T � 1)T + (T � 1)2db + dw

:

Under normality the test statistic is given by

p
LMC =

GCb(T � 1)�GCw �21
�2�p

2�41tr[D
2]
p
(T � 1)T

:

Lastly it can be shown that with the higher moments being estimated consis-

tently that LMC ;robust�LMC ;robust= op(1). 16

Appendix F: Numerical optimization

We use the constrained quasi-Newton method involving the constraints �2� >

0, �2� > 0, �1 < �1 < 1 and �1 < �2 < 1 to estimate the parameters of the four

models (the unrestricted model and the three restricted ones: random e¤ects,

Anselin, and KKP). The quasi-Newton method calculates the gradient of the log-

likelihood numerically. We use the optimization routine fmincon available from

Matlab which uses the sequential quadratic programming method. This method

guarantees super-linear convergence by accumulating second order information

regarding the Kuhn-Tucker equations using a quasi-Newton updating procedure.

An estimate of the Hessian of the Lagrangian is updated at each iteration using

the BFGS formula. All tests are based on the analytically derived formulas for

both the gradient and the information matrix, using the estimated parameters.

16The proofs of this last claim is skipped to save space. Details are given in the long version

of the Appendix which is available form the authors.
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(N=50, T=5, σ σ σ σ
2

µµµµ=10, σσσσ
2

νννν=10)

H0
A
: ρ1=0, ρ2=0

ρ1 ρ2 LMA LRA LMB LRB LMC LRC

-0.80 -0.80 1.000 1.000 0.938 0.964 0.039 0.041

-0.80 -0.50 1.000 1.000 0.985 0.992 0.590 0.565

-0.80 -0.20 0.997 0.998 0.989 0.991 0.919 0.922

-0.80 0.00 0.979 0.982 0.989 0.991 0.982 0.985

-0.80 0.20 0.997 0.997 0.989 0.993 0.999 0.999

-0.80 0.50 1.000 1.000 0.972 0.977 1.000 1.000

-0.80 0.80 1.000 1.000 0.925 0.938 1.000 1.000

-0.50 -0.80 1.000 1.000 0.562 0.595 0.172 0.307

-0.50 -0.50 1.000 1.000 0.692 0.711 0.046 0.046

-0.50 -0.20 0.913 0.925 0.727 0.742 0.318 0.324

-0.50 0.00 0.614 0.646 0.702 0.729 0.661 0.685

-0.50 0.20 0.888 0.886 0.690 0.724 0.868 0.894

-0.50 0.50 1.000 1.000 0.613 0.632 0.985 0.992

-0.50 0.80 1.000 1.000 0.430 0.450 0.999 1.000

-0.20 -0.80 1.000 1.000 0.144 0.153 0.643 0.755

-0.20 -0.50 1.000 1.000 0.175 0.183 0.209 0.231

-0.20 -0.20 0.663 0.669 0.164 0.167 0.042 0.045

-0.20 0.00 0.130 0.139 0.158 0.169 0.157 0.171

-0.20 0.20 0.696 0.660 0.186 0.203 0.453 0.499

-0.20 0.50 1.000 1.000 0.131 0.142 0.863 0.910

-0.20 0.80 1.000 1.000 0.095 0.097 0.976 0.996

0.00 -0.80 1.000 1.000 0.043 0.058 0.822 0.899

0.00 -0.50 1.000 1.000 0.043 0.055 0.501 0.509

0.00 -0.20 0.582 0.574 0.045 0.059 0.106 0.099

0.00 0.00 0.043 0.053 0.049 0.058 0.054 0.059

0.00 0.20 0.646 0.602 0.042 0.047 0.133 0.154

0.00 0.50 1.000 1.000 0.049 0.051 0.595 0.672

0.00 0.80 1.000 1.000 0.050 0.053 0.898 0.962

0.20 -0.80 1.000 1.000 0.117 0.092 0.962 0.983

0.20 -0.50 1.000 1.000 0.147 0.126 0.818 0.827

0.20 -0.20 0.605 0.593 0.174 0.142 0.402 0.382

0.20 0.00 0.130 0.110 0.148 0.125 0.131 0.111

0.20 0.20 0.686 0.649 0.171 0.140 0.048 0.053

0.20 0.50 1.000 1.000 0.134 0.116 0.283 0.348

0.20 0.80 1.000 1.000 0.093 0.082 0.798 0.909

0.50 -0.80 1.000 1.000 0.667 0.632 0.999 0.999

0.50 -0.50 1.000 1.000 0.761 0.728 0.989 0.988

0.50 -0.20 0.901 0.889 0.781 0.739 0.903 0.886

0.50 0.00 0.700 0.664 0.767 0.746 0.706 0.650

0.50 0.20 0.934 0.923 0.771 0.750 0.372 0.302

0.50 0.50 1.000 1.000 0.683 0.662 0.044 0.054

0.50 0.80 1.000 1.000 0.397 0.402 0.434 0.590

0.80 -0.80 1.000 1.000 0.994 0.995 1.000 1.000

0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000

0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000

0.80 0.00 0.999 0.998 0.999 0.999 0.997 0.996

0.80 0.20 1.000 1.000 1.000 1.000 0.988 0.977

0.80 0.50 1.000 1.000 0.990 0.997 0.781 0.699

0.80 0.80 1.000 1.000 0.847 0.947 0.033 0.062

Table 1: Monte Carlo simulations for size and power of LM and LR tests of the random effects, the 

Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Random effects model Anselin model Kelejian-Prucha model

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 

adjusted power of the tests.

H0
B
: ρ1=0 H0

C
: ρ1=ρ2



(N=50, T=5, σ σ σ σ
2

µµµµ=5, σσσσ
2

νννν=15)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.660 0.757 0.039 0.033

-0.80 -0.50 1.000 1.000 0.824 0.896 0.443 0.401

-0.80 -0.20 0.987 0.991 0.935 0.952 0.804 0.812

-0.80 0.00 0.896 0.923 0.950 0.963 0.940 0.953

-0.80 0.20 0.956 0.961 0.935 0.947 0.974 0.981

-0.80 0.50 1.000 1.000 0.875 0.902 0.993 0.999

-0.80 0.80 1.000 1.000 0.804 0.838 0.993 0.999

-0.50 -0.80 1.000 1.000 0.301 0.320 0.093 0.175

-0.50 -0.50 1.000 1.000 0.422 0.431 0.047 0.038

-0.50 -0.20 0.853 0.878 0.496 0.532 0.248 0.262

-0.50 0.00 0.389 0.425 0.489 0.502 0.448 0.484

-0.50 0.20 0.767 0.756 0.504 0.548 0.684 0.743

-0.50 0.50 1.000 1.000 0.378 0.419 0.865 0.920

-0.50 0.80 1.000 1.000 0.306 0.328 0.923 0.989

-0.20 -0.80 1.000 1.000 0.097 0.098 0.316 0.455

-0.20 -0.50 1.000 1.000 0.119 0.112 0.120 0.131

-0.20 -0.20 0.641 0.668 0.108 0.123 0.044 0.042

-0.20 0.00 0.100 0.111 0.126 0.129 0.123 0.125

-0.20 0.20 0.638 0.605 0.129 0.148 0.291 0.324

-0.20 0.50 1.000 1.000 0.084 0.097 0.588 0.674

-0.20 0.80 1.000 1.000 0.066 0.080 0.733 0.909

0.00 -0.80 1.000 1.000 0.049 0.057 0.457 0.659

0.00 -0.50 1.000 1.000 0.046 0.058 0.265 0.304

0.00 -0.20 0.570 0.586 0.050 0.053 0.076 0.071

0.00 0.00 0.050 0.055 0.048 0.052 0.053 0.049

0.00 0.20 0.627 0.596 0.039 0.039 0.096 0.119

0.00 0.50 1.000 1.000 0.050 0.047 0.310 0.413

0.00 0.80 1.000 1.000 0.050 0.045 0.521 0.753

0.20 -0.80 1.000 1.000 0.073 0.069 0.755 0.866

0.20 -0.50 1.000 1.000 0.104 0.081 0.585 0.613

0.20 -0.20 0.552 0.564 0.091 0.083 0.269 0.257

0.20 0.00 0.084 0.070 0.108 0.082 0.107 0.091

0.20 0.20 0.691 0.660 0.109 0.097 0.041 0.045

0.20 0.50 1.000 1.000 0.075 0.068 0.199 0.245

0.20 0.80 1.000 1.000 0.071 0.072 0.435 0.629

0.50 -0.80 1.000 1.000 0.468 0.438 0.971 0.989

0.50 -0.50 1.000 1.000 0.565 0.520 0.929 0.936

0.50 -0.20 0.772 0.765 0.586 0.571 0.790 0.754

0.50 0.00 0.505 0.482 0.579 0.557 0.535 0.492

0.50 0.20 0.886 0.873 0.541 0.524 0.252 0.197

0.50 0.50 1.000 1.000 0.325 0.351 0.039 0.053

0.50 0.80 1.000 1.000 0.182 0.193 0.236 0.322

0.80 -0.80 1.000 1.000 0.984 0.987 1.000 1.000

0.80 -0.50 1.000 1.000 0.993 0.993 1.000 1.000

0.80 -0.20 0.993 0.993 0.992 0.991 0.998 0.997

0.80 0.00 0.988 0.987 0.993 0.993 0.989 0.984

0.80 0.20 0.999 0.999 0.990 0.993 0.959 0.930

0.80 0.50 1.000 1.000 0.846 0.960 0.630 0.525

0.80 0.80 1.000 1.000 0.430 0.644 0.034 0.059

Table 2: Monte Carlo simulations for size and power of LM and LR tests of the random effects, the 

Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Random effects model Anselin model Kelejian-Prucha model

H0
A
: ρ1=0, ρ2=0 H0

B
: ρ1=0 H0

C
: ρ1=ρ2

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 

adjusted power of the tests.



(N=50, T=5, σ σ σ σ
2

µµµµ=15, σσσσ
2

νννν=5)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.985 0.994 0.039 0.032

-0.80 -0.50 1.000 1.000 0.997 0.999 0.642 0.610

-0.80 -0.20 0.999 1.000 0.998 0.999 0.964 0.965

-0.80 0.00 0.986 0.995 0.997 0.998 0.995 0.996

-0.80 0.20 0.998 1.000 0.996 0.998 1.000 1.000

-0.80 0.50 1.000 1.000 0.993 0.997 1.000 1.000

-0.80 0.80 1.000 1.000 0.969 0.975 1.000 1.000

-0.50 -0.80 1.000 1.000 0.727 0.769 0.271 0.408

-0.50 -0.50 1.000 1.000 0.815 0.836 0.046 0.046

-0.50 -0.20 0.927 0.945 0.814 0.831 0.384 0.370

-0.50 0.00 0.680 0.748 0.810 0.834 0.730 0.748

-0.50 0.20 0.935 0.942 0.811 0.820 0.937 0.952

-0.50 0.50 1.000 1.000 0.755 0.777 0.999 1.000

-0.50 0.80 1.000 1.000 0.589 0.619 1.000 1.000

-0.20 -0.80 1.000 1.000 0.174 0.198 0.788 0.885

-0.20 -0.50 1.000 1.000 0.210 0.235 0.241 0.267

-0.20 -0.20 0.671 0.704 0.231 0.249 0.049 0.051

-0.20 0.00 0.163 0.189 0.236 0.256 0.176 0.192

-0.20 0.20 0.735 0.732 0.230 0.237 0.509 0.555

-0.20 0.50 1.000 1.000 0.178 0.188 0.934 0.965

-0.20 0.80 1.000 1.000 0.136 0.142 1.000 1.000

0.00 -0.80 1.000 1.000 0.042 0.053 0.951 0.978

0.00 -0.50 1.000 1.000 0.035 0.042 0.632 0.652

0.00 -0.20 0.579 0.594 0.039 0.050 0.129 0.117

0.00 0.00 0.040 0.047 0.036 0.045 0.041 0.049

0.00 0.20 0.645 0.625 0.039 0.048 0.193 0.222

0.00 0.50 1.000 1.000 0.048 0.053 0.751 0.804

0.00 0.80 1.000 1.000 0.049 0.053 0.992 0.998

0.20 -0.80 1.000 1.000 0.178 0.153 0.995 0.998

0.20 -0.50 1.000 1.000 0.182 0.170 0.915 0.921

0.20 -0.20 0.644 0.655 0.196 0.166 0.514 0.480

0.20 0.00 0.153 0.136 0.214 0.189 0.176 0.142

0.20 0.20 0.699 0.673 0.206 0.165 0.038 0.045

0.20 0.50 1.000 1.000 0.178 0.148 0.414 0.476

0.20 0.80 1.000 1.000 0.120 0.102 0.969 0.990

0.50 -0.80 1.000 1.000 0.794 0.775 1.000 1.000

0.50 -0.50 1.000 1.000 0.850 0.832 0.997 0.997

0.50 -0.20 0.938 0.937 0.860 0.845 0.950 0.944

0.50 0.00 0.784 0.774 0.866 0.849 0.804 0.773

0.50 0.20 0.955 0.950 0.860 0.839 0.452 0.386

0.50 0.50 1.000 1.000 0.828 0.811 0.040 0.056

0.50 0.80 1.000 1.000 0.635 0.639 0.660 0.786

0.80 -0.80 1.000 1.000 1.000 1.000 1.000 1.000

0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000

0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000

0.80 0.00 0.999 1.000 1.000 1.000 0.999 0.999

0.80 0.20 1.000 1.000 1.000 1.000 0.991 0.981

0.80 0.50 1.000 1.000 0.999 0.999 0.805 0.728

0.80 0.80 1.000 1.000 0.988 0.994 0.032 0.063

Table 3: Monte Carlo simulations for size and power of LM and LR tests of the random effects, the 

Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Random effects model Anselin model Kelejian-Prucha model

H0
A
: ρ1=0, ρ2=0 H0

B
: ρ1=0 H0

C
: ρ1=ρ2

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 

adjusted power of the tests.
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Figure 1: The power of the LM test, random effects model
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Figure 2: The power of the LM test, Anselin model
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Figure 3: The power of the LM test, KKP model - part I
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Figure 4: The power of the LM test,  KKP model - part II
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Appendix A: Score and Information Matrix

For convenience, we reproduce the variance-covariance matrix of the gen-

eral model given in (3):


u = JT 
 [T�2�(A0A)�1 + �2�(B
0B)�1] + �2� [ET 
 (B0B)�1]


�1u = JT 
 [T�2�(A0A)�1 + �2�(B
0B)�1]�1 + 1

�2�
(ET 
B0B);

��1u = (JT 
 (
T�2�
�2�
(A0A)�1 + (B0B)�1)�1) + (ET 
B0B)

where A = (IN � �1W) and B = (IN � �2W).

Denote the vector of parameters of interest by � = (�2� ; �
2
�; �1; �2)

0. Below,

we can focus on the part of the information matrix corresponding to �. The
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P.O.-Box 91, A-1103 Vienna, Austria; Michael.Pfa¤ermayr@uibk.ac.at.

1



part of the information matrix corresponding to � can be ignored in com-

puting the LM test statistics, since the information matrix is block-diagonal

between � and �, and the �rst derivative with respect to � evaluated at the

restricted (quasi-)MLE is zero.

First, we drive the score and the relevant information submatrix of the

general model. These results are then used to test the three hypotheses of

interest below. Hartley and Rao (1971) and Hemmerle and Hartley (1973)

give a general useful formula that helps in obtaining the score:

@L

@�r
= �1

2
tr

�

�1
u

@
u
@�r

�
+ 1

2
u0
�

�1u

@
u

@�r

�1u

�
u; r = 1; :::; 4: (1)

Observe, that

@
u
@�2�

= JT 
 (B0B)�1 + ET 
 (B0B)�1= IT 
 (B0B)�1

@
u
@�2�

= JT 
 T (A0A)�1

@
u
@�1

= JT 
 T�2�(A0A)�1(W0 +W � 2�1W0W)(A0A)�1

@
u
@�2

= IT 
 �2�(B0B)�1(W0 +W � 2�2W0W)(B0B)�1:

To derive the information submatrix we use the general di¤erentiation result

given in Harville (1977):

Jrs = E

�
� @2L

@�r�s

�
=
1

2
tr

�

�1u

@
u
@�r


�1u
@
u
@�s

�
r; s = 1; :::; 4:

Here, @L
@�r

and Jrs are evaluated at the (quasi-)MLE estimates.

Appendix B: Identi�cation and Consistency

In the sequel, we use subscript 0 to indicate true parameter values where

necessary. First, we state the full set of Assumptions.
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Assumptions1

A1 (random e¤ects model): The model comprises unit-speci�c random

e¤ects denoted by the (N � 1) vector �. The elements of � are i:i:d: (0; �2�)

with 0 < �2� < b� <1. � is the vector of remainder errors and its elements

are i:i:d: (0; �2�) with 0 < �2� < b� < 1. The elements of � and � are

independent of each other. Furthermore E[j�ij
4+�� ] <1 and for some �� >

0; and E[j�itj4+�� ] <1 and for some �� > 0:

A2 (spatial correlation):

(i) Both u1 and u2t are spatially correlated with the same (N � N) non-

stochastic spatial weighting matrixW whose elements may depend on

N . The elements ofW are non-negative and wii = 0:

(ii) The row and column sums of W are uniformly bounded in absolute

value.

(iii) The parameter space for �r is a closed interval contained in �1=�max <

�r < 1=�max for all N and r = 1; 2, where �max is the largest absolute

eigenvalue of W. �max is assumed to be bounded away from zero by

some �xed positive constant.

(iv) LetA = IN��1W and B = IN��2W. The non-stochastic matricesA,

B are non-singular for all �r in the parameter space and have bounded

row and column sums, uniformly in N . Also, its inverses have bounded

1To avoid index cluttering, we suppress the subscript indicating that the elements of

the spatial weights matrix may depend on N and that the dependent variable and the

disturbances form triangular arrays. For a similar set of assumptions and a discussion of

them see Lee (2004a) and Lee and Yu (2010).
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row and column sums, uniformly in N and uniformly in the parameter

space of �1 and �2 .

(v) The inverse ��1
u

�
�2�; �

2
� ; �1; �2

�
= (JT 
 (

T�2�
�2�
(A0A)�1 + (B0B)�1)�1) +

(ET 
 B0B) has bounded row and column sum uniformly in N and

uniformly in the parameter space of
�
�2�; �

2
� ; �1; �2

�
:2

A3 (compactness of the parameter space): The parameter space� with

elements (�;�2�; �
2
� ; �1; �2) is compact. The true parameter vector (indexed

by 0) lies in the interior of �.

We note that Assumptions A1 and A2 imply that� = f(�; �1; �2)j(�2�; �2� ; �1;

�2) 2 �g with � = �2�=�2� is also compact. In the following, the elements of

� are denoted by the vector #.

A4 (identi�cation of #): For every #2�, # 6= #0, and any " > 0 :

lim supN!1max#2N"(#0)
(�1

2
ln( 1

NT
tr[�u(#0)�u(#)

�1])� 1
2
1
NT
ln[det�u(#)=

det�u(#0)]) < 0, where N"(#0) is the complement of an open neighborhood

of #0 of diameter ".

A5 (identi�cation of � under HC
0 ): The non-random matrix X has full

column rank K < N and its elements are uniformly bounded by some �nite

constant. Further, let Q0 = ET 
 IN and Q1 = JT 
 IN and de�ne X�(�) =

IT 
A. The non-random matrices limN!1(
1
NT
X�(�)QiX

�(�)); i = 0; 1 are

�nite. The nonrandommatrices limN!1(
1
NT
X0X); limN!1(

1
NT
X�(�)0X�(�))

and limN!1(
1
NT
X0�u(#)

�1X) are �nite and non-singular.

2Under HC
0 we have �

�1
u

�
�2�; �

2
� ; �1; �2

�
= (JT 
(

T�2�
�2�
(A0A)�1+(A0A)�1)�1)+(ET 


A0A) = (JT 
 (
T�2�+��

�2�
IN ) + (ET 
 IN ) (IT 
A0A) : Hence, in this case a su¢ cient

condition for Assumption A2 (v) is A2 (iv). Note Lemma 1 shows that this inverse exists

for all
�
�2�; �

2
� ; �1; �2

�
in the parameter space.
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A6 (positive variance of LM tests): NT�12(�2�41+(1��)2(T�1)�4�)tr[(H(A0A)�1)2]�

(NT )�1 3
PN

i=1 l
2
ii

�
�2T 2 + T

�
(1� �) + 2��1

T

�2�
> bQ for some bQ > 0; �21 =

T�2� + �
2
� and 0 � � � 1: H and lii are de�ned in Lemma 4 below.

Consistency of the (quasi-)ML estimates under the general model.

In proving the consistency of (quasi-)MLE, we make use of the following

lemmas.

Lemma 1 Under the maintained assumptions A1-A3, (i) the row and col-

umn sums of (A0A)�1 and (B0B)�1 are bounded in absolute value, uniformly

in N and in # 2 �. (ii) the row and column sums of �u(#) are bounded in

absolute value, uniformly in N and in # 2 �. (iii) �u(#)�1 exists.

Proof. By Assumption A2 the row and column sums of the matricesW,

A, B, A
�1
and B�1 are bounded in absolute value, uniformly in N and in

# 2 �. Since this property is preserved when multiplying matrices of proper

dimension (see Kelejian and Prucha, 2001, p. 241f.), one can conclude that

the row and column sums of (A0A)�1 and (B0B)�1 are also bounded in

absolute value uniformly in N and in # 2 �, say, by constants cA and cB,

respectively.

(ii) The row and column sums of �u(#) are uniformly bounded in absolute

value by Assumptions A2 and A3. To see this, denote the typical ele-

ment of �u(#) by �ij(#). Then, maxi
P

j �ij (#) � T�cA + cB < 1 and

maxj
P

i �ij (#) � T�cA + cB <1.

(iii) Since�u = (JT
(T�(A0A)�1+(B0B)�1)) +(ET
(B0B)�1) and (B0B)�1

exists by Assumption A2, it remains to be shown that (T�(A0A)�1+(B0B)�1)
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is invertible. Using the updating formula we have (T�(A0A)�1+ (B0B)�1)�1

= B0B�B0B
�
1
T�
A0A+B0B

��1
B0B: The inverse will exist if det( 1

T�
A0A+

B0B) 6= 0: Observe that 1
T�
> 0; A and B have full rank by Assumption A2

(iv), and thatA0A andB0B are positive de�nite. We have det( 1
T�
A0A+B0B)

� det( 1
T�
A0A) + det(B0B) > 0 for all # 2 � (see Abadir and Magnus, 2005,

p. 215 and p. 325) and the claim follows.

Lemma 2 Under assumptions A1-A3, the matrices �u(#) and �u(#)�1 are

positive de�nite.

Proof. Observe that det[�u(#)] = det[T�(A0A)�1+(B0B)�1] det[(B0B)�1]T�1

and that det[T�(A0A)�1 + (B0B)�1] � det[T�(A0A)�1] + det[(B0B)�1] > 0,

since � > 0 and (A0A)�1 as well as (B0B)�1 are positive de�nite by Assump-

tion A2 (see Abadir and Magnus, 2005, p. 215 and p. 325) as shown above.

Therefore, �u(#) and �u(#)
�1 are positive de�nite.

The proof of consistency of the maximum likelihood estimates is based

on the concentrated log-likelihood. Recall that the unconcentrated log-

likelihood is given by

L(�;�) = �NT
2
ln 2� � 1

2
ln det[T�2�(A

0A)�1 + �2�(B
0B)�1]

�T�1
2
ln det[�2�(B

0B)�1]� 1
2�2�
(y �X�)0��1u (y �X�):

In the following, we use a hat to indicate the maximum likelihood estimates
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of parameters. The �rst order conditions for � and �2� are given by

@L(�;�)
@�

= 1
�2�
X0�u(#)

�1y �X0�u(#)
�1X� (2)

) b�(#) = �X0�u(#)
�1X

��1
X0�u(#)

�1y

@L(�;�)
@�2�

= �NT
2�2�
+ 1

2�4�
u(b�(#))0�u(#)

�1u(b�(#))
) b�2�(#) = u(b�(#))0�u(#)�1u(b�(#))

NT
:

The concentrated log-likelihood function then reads

Lc(#) = �NT
2
(ln 2� + 1)� NT

2
ln b�2�(#)� 1

2
ln det�u(#):

To obtain the non-stochastic counterpart of Lc(#), we use

E[L(�0;�)] = �n
2
ln 2� � NT

2
ln�2� � 1

2
ln [det�u(#)]� �2v0

2�2�
tr[�(#)�1�u(#0)]

and

@E[L(�0;#)]
@�

=
�
X0�u(#)

�1X
��1

X0�u(#)
�1E[y] = �0

@E[L(�0;�)]
@�2v

= � NT
2��2�

+
�2�;0
2��4�

tr[�u(#)
�1�u(#0)] = 0

) ��2� (#) =
�2�;0
NT
tr[�u(#)

�1�u(#0)]:

The non-stochastic counterpart to the concentrated likelihood is given by

Q(#) = max
�2� ;�

E[L(�)]

= �NT
2
(ln 2� + 1)� NT

2
ln��2� (#)� 1

2
ln det�u(#):

Theorem 3 Let Assumptions A1-A5 hold: Then (i) the maximum likelihood

estimates of # are unique and consistent. (ii) Assume in addition that HC
0

holds:
�b�(b#)� �0� p! 0; where b# is a consistent estimator of #.
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Proof. To prove consistency, we have to show that 1
NT
(Lc(#) � Q(#))

converges uniformly to 0 in probability. Note that 1
NT
(Lc(#)�Q(#)) =

�1
2
(ln b�2�(#) � ln��2� (#)) and that b�2�(#) = 1

NT
u(b�(#))0�u(#)�1u(b�(#)) =

1
NT
u(�0)

0�u(#)
�1u(�0)� u(�0)0�u(#)

�1M(#)u(�0) =
1
NT
tr[�u(#)

�1(INT�

M(#))u(�0)u(�0)
0], where M(#) � X (X0�u(#)

�1X)
�1
X0�u(#)

�1. Hence,

ln b�2�(#)� ln��2� (#) = 1
NT
tr[�u(#)

�1M(#)�

u(�0)u(�0)
0]: Observe, that

1
NT
tr[�u(#)

�1M(#)u(�0)u(�0)
0]

=
�2�;0
NT
tr
h�
X0�u(#)

�1X
��1

X0�u(#)
�1u(�0)u(�0)

0�u(#)
�1X

i
� �2�;0

NT
tr
h�

1
NT
X0�u(#)

�1X
��1i

tr
�
1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
��

� �2�;0
NT
Kc1tr

�
1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
��
:

The third line follows since (X0�u(#)
�1X)

�1 and X0�u(#)
�1u(�0)u(�0)

0�

�u(#)
�1X are positive de�nite matrices (see Abadir and Magnus, 2005, p.

216 and 329) for all # 2 � and the elements of
�
1
NT
X0�u(#)

�1X
��1

are

uniformly bounded by some positive constant, say c1, uniformly in the para-

meter space of # by Assumptions A2 (v) and A5 (see also Kapoor, Kelejian

and Prucha (2007, p. 118f.). This implies

sup
#2�

�
��2� (#)� b�2�(#)� � �2�;0

NT
Kc1tr

�
1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
��
:

Now.

lim
N!1

1
NT
E
�
tr
�
1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
���

= lim
N!1

1
NT
tr
�
1
NT

�
X0�u(#)

�1�u(#0)�u(#)
�1X

��
� lim

N!1

�2�;0
NT
Kc2 = 0:

This follows from Assumptions A2 and A5 and the observations made in

Kapoor, Kelejian and Prucha (2007, p. 118f.). In particular, we have that

8



�u(#)
�1�u(#0)�u(#)

�1 possesses bounded row and column sums, uniformly

in N and uniformly in the parameter space of # using Assumption A2 (v),

and the elements of X are uniformly bounded by Assumption A5. Then

the elements of 1
NT
X0�u(#)

�1�u(#0)�u(#)
�1X are bounded, uniformly in

N and uniformly in the parameter space of #; say by some constant c2. Next

observe that

V ar[ 1
NT

�
X0�u(#)

�1u(�0)u(�0)
0�u(#)

�1X
�
]

=
2�4�;0

(NT )2
tr
h�

1
NT

�
X0�u(#)

�1�u(#0)�u(#)
�1X

��2i
� 2�4�;0

(NT )2
K2c22:

By Chebyshev�s inequality, we conclude that plimN!1
1
NT
(X0�u(#)

�1u(�0)�

u(�0)
0�u(#)

�1X) = 0 and, hence,

sup
#2�

�
��2� (#)� b�2�(#)� = op(1):

Using the mean value theorem it follows that ln b�2�(#) = ln��2� (#)+b�2�(#)���2� (#)
�2�(#)

with the �2�(#) lying in between �
�2
� (#). Since b�2�(#) � ��2� (#)=op(1) uni-

formly in �, b�2�(#) will be bounded away from zero uniformly in probability

if ��2� (#) is bounded away from zero.

Below we show that lim supN!1max#2N"(#0)
1
NT
(Q(#) � Q(#0)) < 0 under

the present assumptions so that

1
NT
(Q(#)�Q(#0))

= �1
2
ln��2� (#) +

1
2
ln��2� (#0)� 1

2NT
ln (det�u(#)= det�u(#0))

= �1
2
ln��2� (#) +

1
2
ln��2� (#0) +

1
2NT

ln
�
det�u(#)

�1= det�u(#0)
�1� < 0

or

ln��2� (#) > ln��2� (#0) +
1
NT
ln
�
det�u(#)

�1= det�u(#0)
�1�
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uniformly in # 2N"(#0);where N"(#0) is the complement of an open neigh-

borhood of #0 of diameter ": ��2� (#0) > 0 by Assumption A1. By Lem-

mata 1 and 2 det�u(#)�1= det�u(#0)�1 > 0, uniformly in N and uni-

formly in the parameter space of # and we conclude that ��2� (#) is bounded

away from zero and �2�(#) = OP (1) uniformly in #. Therefore, we obtain

sup
#2�

2
NT
jLc(#)�Q(#)j= sup

#2�
j ln b�2�(#)� ln��2� (#)j= sup

#2�

1
�2�(#)

��b�2�(#)� ��2� (#)��
= op(1) uniformly in �.

Secondly, we have to prove the following uniqueness identi�cation condi-

tion (see Lee, 2004a). For any " > 0, lim supN!1max#2N"(#0)
1
NT
(Q(#) �

Q(#0)) < 0, where N"(#0) is the complement of an open neighborhood

of #0 of diameter ". Note, Q(#) � Q(#0) = �NT
2
[ln��2� (#) � ln��2� (#0)] �

1
2
ln[det�u(#)= det�u(#0)]. Now, ln��2� (#)�ln��2� (#0) = ln tr 1

NT
[�u(#0)�u(#)

�1]

� ln 1
NT
tr[INT ] = ln tr

1
NT
[�u(#0)�u(#)

�1] and lim supN!1max#2N"(#0)
1
NT
(Q(#)

� Q(#0)) = lim supN!1max#2N"(#0)
(�1

2
ln 1

NT
tr[�u(#0)�u(#)

�1]�
1
2
1
NT
ln(det�u(#)= det�u(#0))) < 0 by Assumption A4. Accordingly, we

conclude that the maximum likelihood estimator b# of #0 under the general
model is unique and consistent, since Q(#) is continuous and the parameter

space is compact.

Lastly, the consistency of b�(b#) under HA
0 or H

C
0 is established by observ-

ing that our assumptions imply those made in Theorem 4, part b, given in

Kapoor, Kelejian and Prucha (2006). Hence, we conclude that under HA
0 or

HC
0 (NT )

1=2
�b�(b#)� b�(#)� p! 0; since b# is a consistent estimator of # as

shown above. Note, b�(#) is a (NT )1=2-consistent estimator of �0 and the
consistency of b�(b#) follows. See Lee and Yu (2010b) for a similar proof.
Appendix C: LM Test for random e¤ects
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Below, Theorems 6 and 7 derive the asymptotic distribution of the LM

tests for the random e¤ects model and the KKP model. The following lemma

is useful in proving these theorems.

Lemma 4 Assume that Assumptions A1, A2 and A6 hold and that �1 =

�2 = �: Consider the quadratic formQ = (Z�A
�1�+(IT
A�1)�)0

�
(�JT + (1� �)ET )
H

�
�

(Z�A
�1�+(IT 
A�1)�); where where H is a conformable symmetric matrix

and 0 � � � 1 is a real number. Then,

E[Q] = (��21 + (1� �)�2�(T � 1))tr[H(A0A)�1]:

V ar[Q] = 2(�2�41 + (1� �)2 (T � 1)�4�)tr[(H(A0A)�1)2]

+�2T 2
NX
i=1

l2ii�
4
�

�
�(4)
�
� 3
�
+ ((1� �) + 2��1

T
)2
NT+NX
i=N+1

c2ii�
4
�

�
�(4)� � 3

�
with L = A0�1HA�1; �(4)

�
= E[�4]

�4�
; and �(4)� = E[�4]

�4�
. lii and cii denote the iith

elements of L and C, respectively, where the latter is de�ned below.

Then
Q� E[Q]p
V ar[Q]

d! N(0; 1):

Proof. Inserting Z� = (�T 
 IN) yields

Q : = �0C� = �0

26666664
�TL �L :: �L

�L L((1� �) + 2��1
T
) :: L(2��1

T
)

:: :: :: ::

�L L(2��1
T
) :: L((1� �) + 2��1

T
)

37777775 �

= �T�0L�+2�
TX
t=1

� 0tL�+(1� �)
TX
t=1

� 0tL�t + (2�� 1) 1T

 
TX
t=1

� 0t

!
L

 
TX
t=1

�t

!
;

11



where L = A0�1HA�1; tr(L) = tr[(H(A0A)�1]. � =(�0;� 01; :::;�
0
T )
0 with

E[�] = 0 and

V ar[�] := 
� =

26666664
�2�IN 0 :: 0

0 �2�IN :: 0

:: :: :: ::

0 :: :: �2�IN

37777775 :

Let


� = SS0

S =

26666664
��IN 0 :: 0

0 ��IN :: 0

:: :: :: ::

0 :: :: ��IN

37777775
and de�ne � = S�1� so that �(4)� = E[

�
�i
��

�
]4 and �(4)� = E[

�
�i
��

�4
]. cii;� is

the iith element of

S0CS =

26666664
�2��TL �����L :: �����L

�����L �2�L((1� �) + 2��1
T
) :: �2�L(

2��1
T
)

:: :: :: ::

�����L �2�L(
2��1
T
) :: �2�L((1� �) + 2��1

T
)

37777775 :

It can easily be veri�ed that

E[Q] = (��21 + (1� �)�2�(T � 1))tr[H(A0A)�1]

12



and that

V ar[Q] = 2tr (C
�C
�) +

NX
i=1

c2ii;�

�
�(4)
�
� 3
�
+
NT+NX
i=N+1

c2ii;�
�
�(4)� � 3

�
= 2(�2�41 + (1� �)2(T � 1)�4�)tr[(H(A0A)�1)2]

+�2T 2
NX
i=1

l2ii�
4
�

�
�(4)
�
� 3
�
+ T

�
(1� �) + 2��1

T

�2 NX
i=1

l2ii�
4
�

�
�(4)� � 3

�
:

For � = 1 one obtains

E[Q] = �21tr[H(A
0A)�1]

V ar[Q] = 2�41tr[(H(A
0A)�1)2] +

NX
i=1

l2ii

�
�4�T

2
�
�(4)
�
� 3
�
+ 1

T
�4�
�
�(4)� � 3

��
and for � = 0

E[Q] = �2�(T � 1)tr[H(A0A)�1]

V ar[Q] = 2(T � 1)�4�tr[(H(A0A)�1)2] + (T�1)2
T

NX
i=1

l2ii�
4
�

�
�(4)� � 3

�
:

Observe that V ar[Q] is uniformly bounded away from zero by some positive

constant under the present assumptions. Also, the assumptions imply that

the row and column sums of A, (A0A)�1 and H are uniformly bounded and

so are those of L. Since the elements of � are independently distributed

by Assumption A1, the assumptions of the central limit theorem for linear

quadratic forms given as Theorem 1 in Kelejian and Prucha (2001, p. 227)

are ful�lled and the claim of the lemma follows.

Next, this Appendix derives the LM test for the null hypothesis HA
0 :

�1 = �2 = 0, i.e., that there is no spatial correlation in the error term. The

joint LM test for the null hypothesis of no spatial correlation in model (1)

tests HA
0 : �1 = �2 = 0. The LM statistic is given by

gLMA = eD0
�
eJ�1� eD�; (3)

13



where eD� = (@L=@�)(e�) is a 4 � 1 vector of partial derivatives of the log-
likelihood function with respect to the elements of �, evaluated at the re-

stricted (quasi-)MLE, e�. eJ� = E[�@2L=@�@�0](e�) is the part of the informa-
tion matrix corresponding to �, also evaluated at the restricted (quasi-)MLE,e�.
Under HA

0 : �1 = �2 = 0, B = A = IN . Using the general formulas given

above, the relevant elements of the score under HA
0 are determined as

@L

@�1

����
HA
0

=
�2�
2�41
u0 [JT 
 (W0 +W)]u

@L

@�2

����
HA
0

= 1
2
u0
h
(�

2
�

�41
JT +

1
�2�
ET )
 (W0 +W)

i
u

and

J�jHA
0
=

26666664

N
2�41
+ N(T�1)

2�4�

NT
2�41

0 0

NT
2�41

NT 2

2�41
0 0

0 0
T 2�4�
2�41

bA
T�2��

2
�

2�41
bA

0 0
T�2��

2
�

2�41
bA

�
�4�
2�41
+ (T�1)

2

�
bA

37777775 ;

where bA = tr [(W0 +W)2]. Note the determinant of the submatrix eJ�1;�2 is
determined as

det

�eJ�1;�2���
HA
0

�
=
�
bA
2

�2 T 2(T�1)e�4�e�41
and its inverse is

eJ�1�1;�2���HA
0

= 2
bA

1
T 2(T�1)e�4�

24 (T � 1)e�41 + e�4� �Te�2�e�2�
�Te�2�e�2� T 2e�4�

35 :
De�ning

eGA = eu0 �JT 
 (W0 +W)
� eu; fMA = eu0 [ET 
 (W0 +W)] eu,

14



we have gLMA = eD0
�
eJ0�1� eD� =

1
2bAe�41 eG2A + 1

2bA(T�1)e�4�fM2
A:

Theorem 5 (LMA) Suppose Assumptions A1 - A5 hold and HA
0 : �1 =

�2 = 0 is true. Then, gLMA =
1

2bAe�41 eG2A + 1
2bA(T�1)e�4�fM2

A is asymptotically

distributed as �22.

Proof. First, use the residuals of the true model u = y �X�0 and de�ne

GA = u
0GAu and MA = u

0MAu, where GA = JT 
 (W0 +W); and MA =

ET 
 (W0 +W):

(i) We can apply Lemma 5 by setting � = 1 andA = IN so thatH =(W0+W)

with tr[H] = 0; because tr[W] = 0: Also observe that lii = 0 under HA
0 :

Hence, E[GA] = 0 and V ar[GA] = 2�41bA with bA = tr[H2]. By Assump-

tion A2 the row and column sums of H are uniformly bounded. �21
p
2bA is

bounded away from zero by some positive constant as shown in Lemma 5, so
GA

�21
p
2bA

converges in distribution to the standard normal.

(ii) Setting � = 0 in Lemma 5 implies that MA

�2�
p
2(T�1)bA

d! N(0; 1).

(iii) Inspection of the proof in Lemma 5 establishes the independence of

GA and MA. From Lemma 5 it follows that �01
�21
p
2bA
GA +

�02
�2�
p
2(T�1)bA

MA

with �01
�21
p
2bA

+
�02

�2�
p
2(T�1)bA

= 1 is also asymptotically normal and, hence,

the vector of quadratic forms
�

GA
�21
p
2bA
; MA

�2�
p
2(T�1)bA

�0
converges to a bivari-

ate standard normal by the Cramér-Wold device. Consequently, LMA =

1
2bA�

4
1
G2A +

1
2bA(T�1)�4�

M2
A is asymptotically distributed as �

2
2.

(iv) Notice that 1p
NT
eu0GAeu� 1p

NT
u0GAu =

2
NT
u0GAX

p
NT (e���0)+ (NT )� 3

2 �
p
NT (e� � �0)0X0GAX

p
NT (e� � �0). Given a pN -consistent estimator of

�0, say e� and eu = y �Xe�, we have 1p
NT
eu0GAeu � 1p

NT
u0GAu = op(1),

15



since X and GA are non-stochastic matrices (see Lemma 1 in Kelejian and

Prucha, 2001, p. 229). Similarly, 1p
NT
eu0MAeu � 1p

NT
u0MAu = op(1). Fur-

ther, (NT )�12�41bA > c1 > 0 for some constant c1 and (NT )
�12�4� �(T�1)bA >

c� > 0 for some constant c� , since �2� > 0 and �
2
� > 0 by Assumption A1 and

0 < cbA � bA by Assumption A2. As shown in Appendix B, e�21 = �21 + op(1)
and e�2� = �2�+op(1). Then, Theorem 2 of Kelejian and Prucha (2001, p. 230)
implies that

eGAp
2e�41b2A� GAp

2�41b
2
A

= op(1) and
fMAp

2e�4�(T�1)bA � MAp
2�4�(T�1)bA

= op(1).

Hence, gLMA � LMA = op(1).

Appendix D: LM Test for the Anselin Model

First, we drive the score and the relevant information submatrix of the general

model. These results are than used for the special cases to test the three

hypotheses of interest below. Hartley and Rao (1971) and Hemmerle and

Hartley (1973) give a general useful formula that helps in obtaining the score:

LU(�; �
2
� ; �

2
�; �1; �2) = �NT

2
ln 2� � 1

2
ln det[T�2�(A

0A)�1 + �2�(B
0B)�1](4)

�T�1
2
ln det(�2�(B

0B)�1)� 1
2
u0
�1

u u,


u = E(uu0) = E[(Z�u1 + u2)(Z�u1 + u2)
0]

= �2�T (JT 
 (A0A)�1) + �2�(
�
JT + ET

�

 (B0B)�1)

= (JT 
 �2�T (A0A)�1 + �2�(B
0B)�1) + �2�(ET 
 (B0B)�1)

We diagonalize 
u = SS
0 so that 
�1

u = S0�1S�1: In the following the index

r stands for restricted estimation so that H0: �1 = 0 is true. Following

Kelejian Prucha (2010), let � = S�1u and E[�3it] = �
(3)
� and E[�4it] = �

(4)
� and

16



let �k refers to �2�, �
2
� ; �1 or �2: In general, one obtains

@L

@�
: = s�(�;�r) = X

0
�1
u u

@L

@�k

����
�=�r

: = s�k(�r) = �1
2
tr

�

�1
u

@
u
@�k

�
�=�r

+ 1
2
u0
�

�1
u

@
u
@�k


�1
u

�
�=�r

u

E[s�k(�r)] = �1
2
tr

�

�1
u

@
u

@�k

�
�=�r

+ 1
2
tr

��

�1
u

@
u

@�k

�1
u

�
�=�r


u

�
Cov[s�k(�r); s�(�;�r)] = 0

Cov[s�k(�r); s�l(�r)] = tr

��

�1
u

@
u
@�k


�1
u

�
�=�r


u

�

�1u

@
u
@�k


�1u

�
�=�r


u

�
+ 1

2

NTX
i=1

a�k;iia
�
l;ii(�

(4)
� � 3);

where a2k;ii� is an element ofA
�
k = S

0
�1
u;r

@
u
@�k

���
�=�r


�1
u;rS:Note, since s�(�;�r)

is linear in u and s�k(�r) is a quadratic form in u, Cov[s�k(�r); s�(�;�r)] = 0

and 
u is block diagonal. So we need a matrix of correction factors with el-

ements 1
2

PNT
i=1 a

�
k;iia

�
l;ii(�

(4)
� � 3), which can be calculated numerically. In

particular, �(4)� = E[(S�1u)
4
] can be estimated from bS�1bu using 
u = SS0 =

P�P0 or S = P�
1
2 ; since 
u is a real symmetric matrix. It follows that


�1
u = S0�1S�1; V ar(S�1u) = S�1
uS

0�1 = S�1SS0S0�1 = I: Observe that

1
2
u0
�

�1
u

@
u

@�k

�1
u

�
�=�r

u

= 1
2
u0
�
S0�1S�1

@
u

@�k

����
�=�r

S0�1S�1
�
u

= 1
2
u0S0�1

�
S�1

@
u
@�k

����
r

S0�1
�
S�1u

= 1
2
�0
�
S�1

@
u

@�k

����
�=�r

S0�1
�
�
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where the elements of � are iid(0; 1) so that Ak = S
�1 @
u

@�k

���
�=�r

S0�1

Cov[s�k(�r); s�l(�r)] = tr [AkAl] +
1
2

NTX
i=1

ak;iial;ii(�
(4)
� � 3)

= tr

�

�1u

@
u
@�k

����
�=�r


�1
u

@
u

@�k

����
�=�r

�
+ 1

2

NTX
i=1

ak;iial;ii(�
(4)
� � 3)

De�ning the 4 � 4 matrix �� with klth element [12
PNT

i=1 ak;iial;ii(�
(4)
� � 3)],

R = [0; 0; 1; 0], the robust LM-test statistic following White (1982) is given

by

LMB;robust = bd0�bJ�1� R0
�
R
�bJ�1� + bJ�1� b��bJ�1� �R0

��1
RbJ�1� bd0�

and asymptotically distributed as �2(1):

Appendix E: LM Test for the KKP Model

To derive the asymptotic distribution of the LM test for HC
0 , it proves useful

to re-parameterize the model so that �1 = �2+� and to test H
B
0 : � = 0 vs.

HB
1 : � 6= 0, i.e., that the spatial panel correlation follows the speci�cation

proposed by KKP.

Under HC
0 , B = A, 
u = (�

2
1JT + �

2
�ET )
 (A0A)�1 and 
�1

u = ( 1
�21
JT +

1
�2�
ET ) 
 (A0A). Using the general formulas for the score and for the infor-
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mation matrix given above, we get

@L

@�2�

����
HC
0

= � N
2�21
� N(T�1)

2�2�
+ 1

2
u0[( 1

�41
JT +

1
�4�
ET )
A0A]u

@L

@�2�

����
HC
0

= �NT
2�21
+ 1

2
u0[ T

�41
(JT 
A0A)]u

@L

@�

����
HC
0

= �T�2�
2�21
tr[D] + 1

2
u0(

T�2�
�41
JT 
 F)u

@L

@�2

����
HC
0

= �T�2�
2�21
tr[D] + 1

2
u0(

T�2�
�41
JT 
 F)u

�1
2
[�

2
�

�21
+ (T � 1)]tr[D] + 1

2
u0[(�

2
�

�41
JT +

1
�2�
ET )
 F]u

= �T
2
tr[D] + 1

2
u0[( 1

�21
JT +

1
�2�
ET )
 F]u;

where F =W0A +A0W and D = F(A0A)�1. The elements of the relevant

part of the information matrix are

J�jHC
0
=

26666664

N
2�41
+ N(T�1)

2�4�

NT
2�41

T�2�
2�41
tr[D]

�
�2�
2�41
+ (T�1)

2�2�

�
tr[D]

NT
2�41

NT 2

2�41

T 2�2�
2�41

tr[D] T�2�
2�41
tr[D]

T�2�
2�41
tr[D]

T 2�2�
2�41

tr[D]
T 2�4�
2�41

tr[D2]
T�2��

2
�

2�41
tr[D2]�

�2�
2�41
+ (T�1)

2�2�

�
tr[D] T�2�

2�41
tr[D]

T�2��
2
�

2�41
tr[D2]

�
�4�
2�41
+ (T�1)

2

�
tr[D2]

37777775 :

The restricted (quasi-)MLE estimates underHC
0 are labeled by a bar. In fact,

this gives the (quasi-)MLE version of the KKP model and u = y�X�. The

score with respect to each element of � evaluated at the restricted (quasi-

)MLE � is given by

D� =

26666664
0

0
T�2�
2�41
[��21tr[D] + u0(JT 
 F)u]

0

37777775 :
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Using dC = tr[D] and eC = tr[D
2
], the lower (4� 4) block of the estimated

information matrix evaluated at the restricted (quasi-)MLE � is given by

J� =
1
2�41

26666664
NT

24 (T�1)�41+�4�
T�4�

1

1 T

35 TdC

24 �2�
(T�1)�41+�2��21

T�2�

T�2� �21

35
TdC

24 �2� T�2�
(T�1)�41+�2��21

T�2�
�21

35 TeC

24 T�4� �21�
2
�

�21�
2
� �41

35

37777775 :

To derive the lower right block of the inverse J
�1
� , we employ the formula for

the partitioned inverse to obtain

J
�1
�;�2

= 2
T (T�1)bC�4�

24 �41 ��21�2�
��21�2� T�4�

35 ;
where bC = eC � d

2

C=N . De�ning GCb = u0(JT 
 F)u the resulting LM

statistic for HC
0 is given by

LMC = D
0
�J
�1
� D� =

T(GCb��21tr[D])
2

2bC(T�1)�41
:

Theorem 6 (LMC) Suppose Assumptions A1 - A6 hold and Hc
0: �1 = �2 =

� is true. Let H = (W0A + A
0
W); D = H(A

0
A)�1; L = A0�1HA�1 with

elements lij; bC = eC�d
2

C=N , dC = tr[D] , eC = tr[D
2
], GCb = u0(JT 
F)u;

db =
PN
i=1 l

2
ii

�
�4�T

2(�(4)� �3)+ 1T �
4
�

�
�
(4)
� �3

��
2�41tr[D

2]
and d0w =

PN
i=1 l

2
ii

�
1
T
�4�

�
�
(4)
� �3

��
(T�1)22�4�tr[D2]

. Then,

LMC;robust =
T

2bC(T�1)�41

�
GCb � �21tr[D]

�2 � 1
1+(db+d0w)

T�1
T

�
is asymptotically

distributed as �21. Under normality, LMC =
T

2bC(T�1)�41

�
GCb � �21tr[D]

�2
and

is asymptotically distributed as �21:

Proof. We will make use of the following �rst order conditions evaluated
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under HC
0 :

@L

@�

����
HC
0

= �T�2�
2�21
tr[D] + 1

2
u0(

T�2�
�41
JT 
H)u = 0 (5)

@L

@�2

����
HC
0

= �T
2
tr[D] + 1

2
u0[( 1

�21
JT +

1
�2�
ET )
H]u = 0: (6)

From the �rst order condition (6)

@L

@�2

����
HC
0

= �T
2
tr[D] + 1

2
u0[( 1

�21
JT +

1
�2�
ET )
H]u

we obtain

�21tr[D]=
1
T
u0(JT 
H)u+ �21

T�2�
u0(ET 
H)u

Inserting in (5) gives the estimated score as

s�(�)jHC
0
= u0(JT 
H)u� 1

T
u0(JT 
H)u� �21

T�2�
u0(ET 
H)u

= T�1
T
u0(JT 
H)u� �21

T�2�
u0(ET 
H)u:

Below we will show that (NT )�
1
2

�
s�(�)jHC

0
� s�(�)jHC

0

�
+ op(1), so we de-

rive the asymptotic distribution of s�(�)jHC
0
to establish that of the LM test.

Observe that

E[s�(�)jHC
0
] = E

h
T�1
T
u0(JT 
H)u� �21

T�2�
u0(ET 
H)u

i
= T�1

T
�21tr(D)�

�21
T�2�
(T � 1)�2�tr(D) = 0

V ar[s�(�)jHC
0
] = 2

�
T�1
T

�2
�41tr[D

2] +
�
T�1
T

�2 NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T
�4�
�
�(4)� � 3

��
+

�41
T 2�4�

(T � 1)�4�tr[D2] +
�41
T 2�4�

(T�1)2
T

�4�

NX
i=1

l2ii
�
�(4)� � 3

�
:

using


ujHC
0
= �21[JT 
 (A0A)�1] + �2� [ET 
 (A0A)�1]
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and Lemma 4 under � = 0 with Q as in Lemma 4

E[Q] = �21tr[H(A
0A)�1]

V ar[Q] = 2�41tr[(H(A
0A)�1)2] +

NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T
�4�
�
�(4)� � 3

��
;

and under � = 1

E[Q] = �2�(T � 1)tr[H(A0A)�1]

V ar[Q] = 2(T � 1)�4�tr[(H(A0A)�1)2]+ (T�1)2
T

�4�

NX
i=1

l2ii
�
�(4)� � 3

�
:

Collecting terms yields

V ar[s�(�)jHC
0
] = 2

�
T�1
T

�2
�41tr[D

2] +
�
T�1
T

�2 NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T
�4�
�
�(4)� � 3

��
+2

�41
T 2�4�

(T � 1)�4�tr[D2] +
�41
T 2�4�

(T�1)2
T

�4�

NX
i=1

l2ii
�
�(4)� � 3

�
= 2�41tr[D

2]
�
(T�1)2
T 2

+ T�1
T 2

�
+
�
T�1
T

�2 NX
i=1

l2ii�
4
�

�
T 2
�
�(4)
�
� 3
�
+ 1

T
�4�
�
�(4)� � 3

��
+

�41
T 2�4�

(T�1)2
T

�4�

NX
i=1

l2ii
�
�(4)� � 3

�
:

= 2�41tr[D
2]T�1

T
+
�
T�1
T

�2
cb +

�41
T 2�4�

cw;

where we de�ne cb =
PN

i=1 l
2
ii

�
�4�T

2
�
�(4)
�
� 3
�
+ 1

T
�4�

�
�
(4)
� � 3

��
and cw =PN

i=1 l
2
ii
(T�1)2
T

�4�

�
�
(4)
� � 3

�
and use (T�1)2

T 2
+ T�1

T 2
= T�1

T 2
(T � 1 + 1) = T�1

T
.

Next we derive the standardized score as

Q =
s�(�)jHC

0
� E[s�(�)jHC

0
]q

V ar[s�(�)jHC
0
]

=

T�1
T
u0(JT 
H)u� �21

T�2�
u0(ET 
H)uq

2�41tr[D
2]T�1

T
+
�
T�1
T

�2
cb +

�41
T 2�4�

cw

;
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with

E[u0(JT 
H)u] = �21tr[D]

V ar[u0(JT 
H)u] = 2�41tr[D
2] + cb

E[u0(ET 
H)u] = �21(T � 1)tr[D]

V ar[u0(ET 
H)u] = 2(T � 1)�4vtr[D2] + cw:

Below we show thatQb =
u0(JT
H)u��21tr[D]p

2�41tr[D
2]+cb

d! N(0; 1) andQw =
u0(ET
H)u��2�(T�1)tr[D]p

2(T�1)�4�tr[D2]+cw

d!

N(0; 1). Since the two quadratic forms are independent it follows that

Q
d! N(0; 1), where

Q =

T�1
T
Qb
p
2�41tr[D

2] + cb � �21
T�2�
Qw
p
2(T � 1)�4�tr[D2] + cwq

2�41tr[D
2]T�1

T
+
�
T�1
T

�2
cb +

�41
T 2�4�

cw

:

For convenience we de�ne db =
cb

2�41tr[D
2]
and dw = cw

2�4�tr[D
2]
and rewrite Q as

Q =
Qb

q
2
�
T�1
T

�2
�41tr[D

2] + cb �Qw �21
T�2�

p
2(T � 1)�4�tr[D2] + cwq

2�41tr[D
2]T�1

T
+
�
T�1
T

�2
cb +

�41
T 2�4�

cw

=
Qb

q
2
�
T�1
T

�2
�41tr[D

2] + cb �Qw
q
2T�1
T 2
�41tr[D

2] +
�41
T 2�4�

cwq
2�41tr[D

2]T�1
T
+
�
T�1
T

�2
cb +

�41
T 2�4�

cw

=

Qb
T�1
T
�21
p
2tr[D2]

p
1 + db �Qw�21

p
2tr[D2]

r
T�1
T 2
+

�41cw

T 2�4��
4
1

p
2tr[D2]

�21
p
2tr[D2]

q
T�1
T
+
�
T�1
T

�2 cb
2�41tr[D

2]
+

�41
T 2�4�

cw
2�41tr[D

2]

=
Qb
p
(T � 1)2 + (T � 1)2db �Qw

p
T � 1 + dwp

(T � 1)T + (T � 1)2db + dw
:
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Inserting the quadratic forms in the nominator of Q yields

Qb
p
(T � 1)2 + (T � 1)2db �Qw

p
T � 1 + dw

=
u0(JT 
H)u� �21tr[D]p

2�41tr[D
2] + cb

p
(T � 1)2 + (T � 1)2db

�u
0(ET 
H)u� �2�(T � 1)tr[D]p

2(T � 1)�4�tr[D2] + cw

p
T � 1 + dw

=
GCbp

2�41tr[D
2] + cb

p
(T � 1)2 + (T � 1)2db �

GCwp
2(T � 1)�4�tr[D2] + cw

p
T � 1 + dw

� �21tr[D]p
2�41tr[D

2] + cb

p
(T � 1)2 + (T � 1)2db �

�2�(T � 1)tr[D]p
2(T � 1)�4�tr[D2] + cw

p
T � 1 + dw

= GCb

p
(T � 1)2 + (T � 1)2dbp
2�41tr[D

2]
p
1 + db

�GCw
p
T � 1 + dwp

2�4�tr[D
2]
p
(T � 1) + dw

� �21tr[D](T � 1)p
2�41tr[D

2]
p
1 + db

p
1 + db +

�2�(T � 1)tr[D]p
2�4�tr[D

2]
p
(T � 1) + dw

p
T � 1 + dw

= GCb
T � 1p
2�41tr[D

2]
�GCb

1p
2�4�tr[D

2]
;

where we de�ne GCb = u0(JT 
H)u and GCw = u0(ET 
H)u:

Remember the denominator is given byp
(T � 1)T + (T � 1)2db + dw:

The test can then be based on

p
LMC;robust =

GCb
T�1p
2�41tr[D

2]
�GCw 1p

2�4�tr[D
2]p

(T � 1)T + (T � 1)2db + dw

=
GCb(T � 1)�GCw �

2
1

�2�p
2�41tr[D

2]
p
(T � 1)T + (T � 1)2db + dw

:

Under normality the test statistic is given by

p
LMC =

GCb(T � 1)�GCw �
2
1

�2�p
2�41tr[D

2]
p
(T � 1)T

:
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Observe that u � u = �X
�
�� � �

�
, where u = (�T 
A�1)�+(IT 
A�1)�

and

(NT )�1=2u0(JT
H)u = (NT )�1=2u0(JT
(W +W0�2��W0W))u := QbC1�2�QbC2:

Following Kelejian and Prucha (2001, Lemma 1), one obtains

QbC1 = (NT )�1=2u0(JT 
 (W +W0))u+op(1)

QbC2 = (NT )�1=2u0(JT 
W0W)u+op(1):

Notice that

2��QbC2 � 2�QbC2 = 2 (��� �)QbC2 � 2�(QbC2 �QbC2) = op(1):

The last equality follows since �� is a consistent estimator and QbC2 = Op(1)

by Lemma 4, after setting H =W0W and � = 1. Therefore,

QbC1 �QbC1 + 2�QbC2 � 2�QbC2 = op(1):

De�ningQbC = QbC1�2�QbC1, we obtainQbC�QbC = op(1):and (NT )�1=2u0(JT


H)u� (NT )�1=2u0(JT 
H)u = op(1). Now,

E[u0(JT 
H)u]=�21tr
�
H(A0A)�1

�
= �21tr

�
H(A0A)�1

�
using tr (H(A0A)�1) = tr (A0�1(W0A+A0W)A�1) = tr(A0�1W0+WA�1):Similarly,

(NT )�1=2u0(ET 
 H)u � (NT )�1=2u0(ET 
 H)u =op(1). De�ning QwC =
p
T�1
T
u0(ET 
H)u, we also have QwC�QwC = op(1). Also, the two quadratic

forms QbC and QwC are independent by Lemma 4. As a result we obtain
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q
LMC;robust =

(T � 1)GCb � �21
�2�
GCwq

2�41tr[D
2
]
p
(T � 1)T

s
1

1 + (db + d0w) (
T�1
T
)

=
T
�
GCb � �21tr[D]

�q
2�41tr[D

2
]
p
(T � 1)T

vuut 1

1 +
�
db + d

0
w

�
(T�1
T
)

=

q
LMC

s
1

1 + (db + d0w) (
T�1
T
)

using �21tr[D]=
1
T
u0(JT 
H)u+ �21

T�2�
u0(ET 
H)u:q

LMC ;robust =

p
(T � 1)2 + (T � 1)2db + T � 1 + dwq
(T � 1)2 + (T � 1)2db + T � 1 + dw

� f

(NT )�1=2�21
p
2tr[D2]

(NT )�1=2�21

p
2tr[D

2
]
� 
(NT )�1=2GCb + op(1)

(NT )�1=2�21
p
2tr[D2]

p
(T � 1)2 + (T � 1)2db + T � 1 + dw

!
(T � 1)

�

(NT )�1=2�2�
p
2tr[D2]

(NT )�1=2�2�

p
2tr[D

2
]
��

(NT )�1=2GCw+op(1)

(NT )�1=2�2�
p
2tr[D2]

p
(T�1)2+(T�1)2db+T�1+dw

�
9>=>; :

Notice that �21 = �21 + op(1), �
2
� = �2� + op(1) and �

2
1 > 0 and �2� > 0 by

Assumption A1. Using H = F = (W0A +A0W) = W0 +W�2�W0W) in

Lemma 4, we conclude that (NT )�1�21 (2tr[D
2]) and (NT )�1�4�2(tr[D

2]) are

bounded away from zero by some positive constants. Furthermore, since ��

� = op(1) we have plimN!1
(NT )�1=2�21

p
2tr[D2]

(NT )�1=2�21

p
2tr[D

2
]
= 1 and plimN!1

(NT )�1=2�2�
p
2tr[D2]

(NT )�1=2�2�

p
2tr[D

2
]
=

1: Assumptions A1 and A6 imply that
p
(T � 1)2 + (T � 1)2db + T � 1 + dw

is bounded way from zero by some positive constant. With the higher mo-

ments being estimated consistently, plimN!1

p
(T�1)2+(T�1)2db+T�1+dwp
(T�1)2+(T�1)2db+T�1+dw

= 1,

it follows that LMC ;robust�LMC ;robust= op(1).
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Appendix F: Numerical optimization

We use the constrained quasi-Newton method involving the constraints

�2� > 0, �2� > 0, �1 < �1 < 1 and �1 < �2 < 1 to estimate the para-

meters of the four models (the unrestricted model and the three restricted

ones: random e¤ects, Anselin, and KKP). The quasi-Newton method calcu-

lates the gradient of the log-likelihood numerically. We use the optimization

routine fmincon available from Matlab which uses the sequential quadratic

programming method. This method guarantees super-linear convergence by

accumulating second order information regarding the Kuhn-Tucker equations

using a quasi-Newton updating procedure. An estimate of the Hessian of the

Lagrangian is updated at each iteration using the BFGS formula. All tests

are based on the analytically derived formulas for both the gradient and the

information matrix, using the estimated parameters.
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