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Abstract
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The first one is described in Anselin’s (1988) book and the second one by Kapoor, Kelejian,
and Prucha (2007). Our encompassing specification allows us to test for these models as
restricted specifications. In particular, we derive three LM and LR tests that restrict our
generalized model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian, and Prucha
model, and (iii) the simple random effects model that ignores the spatial correlation in the
residuals. For two of these three tests, we obtain closed form solutions and we derive their
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1 Introduction!

The recent literature on spatial panels distinguishes between two different spa-
tial autoregressive error processes. One specification assumes that spatial cor-
relation occurs only in the remainder error term, whereas no spatial correla-
tion takes place in the individual effects (see Anselin, 1988, Baltagi, Song, and
Koh, 2003, and Anselin, Le Gallo, and Jayet, 2008; henceforth referred to as
the Anselin model). Another specification assumes that the same spatial er-
ror process applies to both the individual and remainder error components (see
Kapoor, Kelejian, and Prucha, 2007; henceforth referred to as the KKP model).>

While the two data generating processes look similar, they imply different
spatial spillover mechanisms. For example, consider the question of firm pro-
ductivity using panel data. Besides the deterministic components, firms differ
also with respect to their unobserved know-how or their managerial ability to
organize production processes efficiently. At least over a short time period, this
managerial ability may be time-invariant. Beyond that there are innovations
that vary from period to period like random firm-specific technology shocks,
capacity utilization shocks, etc. Under this scenario, it seems reasonable to as-
sume that firm productivity may be spatially correlated due to spillovers. Such
spillovers can occur, e.g., through information flows (transmission of process
technologies) embodied in worker flows between firms at local labor markets or
through input-output channels (technology requirements and interdependence

of capacity utilization). Whereas the Anselin model assumes that spillovers are

1We would like to thank Matthias Koch, Ingmar Prucha, two anonymous referees and
the editor Esfandiar Maasoumi for their helpful comments and suggestions. Prelimimary
versions of this paper were presented at the 13th International conference on panel data held
in Cambridge, England, and the 23rd annual Canadian econometric study group meeting in

Niagara Falls, Canada.
2There has been a lot of attention to cross-sectional dependence in panel data models,

modeled through factor models. A rapidly growing reasearch topic within this general field
has been the reconciliation of factor models and spatial models, with attempts to express weak
and strong cross-sectional dependence, see Chudik, Pesaran, and Tosetti (2011), Pesaran and

Tosetti (2011), and Sarafidis and Wansbeek (2011), to mention a few.



inherently time-varying, the KKP process assumes the spillovers to be time-
invariant as well as time-variant. For example, firms located in the neighbor-
hood of highly productive firms may get time-invariant permanent spillovers
affecting their productivity in addition to the time-variant spillovers as in the
Anselin model. While the Anselin model seems restrictive in that it does not al-
low permanent spillovers through the individual firm effects, the KKP approach
is restrictive in the sense that it does not allow for a differential intensity of
spillovers of the permanent and transitory shocks.

This paper introduces a generalized spatial panel model which encompasses
these two models and allows for spatial correlation in the individual and remain-
der error components that may have different spatial autoregressive parameters.
We consider a (quasi-)maximum likelihood estimator (MLE) for this more gen-
eral spatial panel model when the individual effects are assumed to be random.
This in turn allows us to test the restrictions on our generalized model to obtain
(i) the Anselin model, (ii) the Kapoor, Kelejian, and Prucha model, and (iii) a
simple random effects model that ignores the spatial correlation in the residuals.
We derive the corresponding LM and LR tests for these three hypotheses and

we compare their size and power performance using Monte Carlo experiments.

2 A Generalized Model

Econometric models for panel data with spatial error processes have been pro-
posed by Anselin (1988), Baltagi, Song, and Koh (2003), Kapoor, Kelejian, and
Prucha (2007), Anselin, Le Gallo, and Jayet (2008), Lee and Yu (2010a, 2010b)

to mention a few. A generalized spatial panel data model that encompasses



these previous specifications is given as follows:?

y: = Xtﬂ+u1+u2t7 t= 17"'7T
u = pWur+p
uy = pyWuy + vy,

where the (N x 1) vector y; includes the observations on the dependent variable
at time ¢, with N denoting the number of unique cross-sectional units. The
non-stochastic (N x K) matrix X; gives the observations at time ¢ for a set of
K exogenous variables, including the constant. 3 is the corresponding (K x 1)
parameter vector. The disturbance term follows an error component model
which involves the sum of two disturbances. The (N x 1) vector of random
variables u; captures the time-invariant unit-specific effects and therefore has
no time subscript. The (N X 1) vector of the remainder disturbances ug; varies
with time. Both u; and uy; are spatially correlated with the same spatial
weights matrix W, but with different spatial autocorrelation parameters p; and
po, respectively. The (N x N) spatial weights matrix W has zero diagonal
elements and its entries are typically declining with distance.

We further assume that the row and column sums of W are uniformly
bounded in absolute value and that p, is bounded in absolute value and in-
dependent of N. In case W is row normalized, the parameter space for p, is a
closed interval contained in (—1,1). For the case where W is not normalized,
we assume that the parameter space for p, is contained in the closed interval
—1/Amax < pp < 1/Amax for all N and r = 1,2, where Apay is the largest ab-
solute value of the eigenvalues of W. Hence, the spatial weights matrix may be
either row normalized or maximum row normalized (see Kelejian and Prucha,
2010). Further, let A = Iy — p; W and B = Iy — p,W. The matrices A and B
are non-singular for all p,., r =1, 2 in the parameter space and all N.

The elements of p are assumed to be independently and identically distrib-

3To avoid index cluttering, we suppress the subscript indicating that the elements of the
spatial weights matrix may depend on N and that the dependent variable and the disturbances

form triangular arrays.



uted as N (0, ai) across ¢. The elements of v, are assumed to be independently
and identically distributed as N(0,02) across i and t. Also, the elements of
and v; are assumed to be independent of each other. Appendix B provides a
more detailed set of assumptions.

Stacking the cross-sections over time yields

vy = XB+u (1)
u = Z,u+u

u = pWur+p

w = pp(Ir@W)us +v,

where y = [y/17 ...,y’T]/7 X = [X/17 ...,X’T]/, etc., so that the faster index is ¢ and
the slower index is . The unit-specific errors u; are repeated in all time periods
using the (NT x N) selector matrix Z,, = ¢v7 ® Iy. ¢r is a vector of ones of
dimension 7" and Iy is an identity matrix of dimension N.

This model encompasses both the KKP model, which assumes that p; = p,,
and the Anselin model, which assumes that p; = 0. If p; = py =0, i.e., there is
no spatial correlation, this model reduces to the familiar random effects (RE)
panel data model; see Baltagi (2008).

Let A = (Iy — p;W) and B = (Iy — p, W), then, under the present as-

sumptions we have

w o= A~ N(0,02(AA)7Y) (2)

(Ir @ B Hv ~ N(0,02(Ir ® (B'B) ™).

uz

Let Er = Iy — Jp, where Jp = Jr /T is the averaging matrix with Jr being
a matrix of ones of dimension T'. The variance-covariance matrix of the spatial

random effects panel data model is given by

Q, = E(uw) = E[(Zuw +up)(Z,u + )] ®)

= oo(Jr®(A'A)") +o.(Ir® (B'B)™)

(Jr © (Toy,(A'A)" +0(B'B)™")) + 0} (Er @ (B'B) ') = 0} ..

v



where ¥, is defined as ¥, = (jT®(1;L;‘(A'A)_1+(B’B)_1)) +(Ere(B'B)™1).
This uses the fact that F[ujuj] = 0 since p and v are assumed to be indepen-
dent. The last equality in (3) replaces J7 by TJr and I by Ex+Jr. Note that
2,7, = Jr ®1Iy. It is easy to show that the inverse of the (NT'x NT') matrix
Q,, can be obtained from the inverse of matrices of smaller dimension (N x N) as
follows: Q! = (jT®(Tal2L(A’A)’1+03(B’B)’1)71)+%(ET®B’B) = 0%2/2;1,

where
_ {72
0= (Tro (5 (A'A) " + (B'B) ")) + (Er © B'B).

Also, det[Q,] = det[To?(A’A)~" + 02 (B'B) | det[o;(B'B)~']"~!. We also
assume that the inverses A=, B™! and [T'07,(A’A)~" 4+ 02(B'B)~']~! have
bounded row and column sums, uniformly in N and in the parameter space
(see Assumption A2 in the Appendix for further details). Under the present

assumptions, the log-likelihood function of the general model is given by
L(B.0) = -2t — {Indet[To}(A'A)~" +02(B'B)™']

—I- Indet[o?(B'B) '] — L (y — XB)'Q, ' (y — XB), (4)

where 8 =(07, 07, py1, pg). The maximum likelihood estimates are obtained by
maximizing the log-likelihood function numerically using a constrained quasi-
Newton method.*

The hypotheses under consideration in this paper are the following:

(1) Hg': p; = py = 0, and the alternative H{* is that at least one component
is not zero. The restricted model is the standard random effects (RE) panel
data model with no spatial correlation, see Baltagi (2008).

(2) HP: p; = 0, and the alternative is HZ: p; # 0. The restricted model
is the Anselin (1988) spatial panel model with random effects. In fact, the
restricted log-likelihood function reduces to the one considered by Anselin (1988,

p.154).

4The numerical maximization procedure can be simplified, if one concentrates the likelihood
with respect to 8 and 0',2, However, our optimization for the Monte Carlo simulation using
MATLAB were quite fast using the constrained quasi-Newton method. Appendix F describes

some details on the numerical optimization procedure.



(3) HS: p; = py = p and the alternative is HC: p; # py. The restricted
model is the KKP spatial panel model with random effects.

In the next subsections, we derive the corresponding LM tests for these
hypotheses and we compare their performance with the corresponding LR tests
using Monte Carlo experiments.” Appendix A describes some general results
used to derive the score and information matrix for these alternative models;
Appendix B proves the consistency of the (quasi-)ML estimates of the general
model; while Appendices C and E provide the derivations of the large sample
distributions of the LM tests for H§' and HS'. Appendix D gives details on the
the LM test for HE.

2.1 LM and LR Tests for Hg' : p, = p, =0

The (quasi-)ML estimates under H, 64 are labeled by a tilde and the corresponding
restricted parameter vector is indexed by A. The joint LM test statistic for the
null hypothesis of no spatial correlation, H§' : p, = p, = 0, is derived in
Appendix C and it is given by

TN, — 1 2 1 172
LMa = s 76Ga+ mog—nar Ma (5)

where &7 = TG, + 5o, ba = tr[(W' + W)?], G4 = @/[Jr ® (W' + W&,
and My = W[Er ® (W' 4+ W)Ji. In this case, 1 = y — X3 denotes the
vector of the estimated residuals under Hg'. The restricted model is the simple
random effects (RE) panel data model without any spatial autocorrelation. In
fact, 5> = GI(J\];D(TT%@_I{V))G and 5] = w. Under Hg', the LM 4 statistic is
asymptotically distributed as x3 as shown in Appendix C. Note this test does
not require the assumption of normally distributed disturbances.

Under normal disturbances one can also derive the corresponding LR test
for Hg': p; = py =0 as

LRy =2(Lg — Ly),

SLM tests for spatial models are surveyed in Anselin (1988, 2001) and Anselin and Bera
(1998), to mention a few. For a joint test for the absence of spatial correlation and random

effects in a panel data model, see Baltagi, Song, and Koh (2003).



using the maximized log-likelihood of the general model denoted by Lg and the

maximized log-likelihood under Hg':

~92 52 ~ N1~
Ly = —gln%ml, - %ln ;5 - ¥oa

This test statistic is likewise asymptotically distributed as x3.

2.2 LM and LR Tests for HP : p, =0

Under HP: p, = 0, the restricted model is the spatial panel data model with
random effects described in Anselin (1988). The corresponding LM test for HZ
is a conditional test for zero spatial correlation in the individual effects, allowing
for the possibility of spatial correlation in the remainder error term, i.e., p, # 0.
In fact, under HP, the information matrix is block-diagonal with the lower
block being independent of 3. Let dg be the (4 x 1) score vector referring to
the parameter vector 6 = (ai,aﬁ,pl,pz) and denote the 4 x 4 lower block of
the information matrix by Jg. The (quasi-)ML estimates under HP are labeled
by a hat. The corresponding estimated residuals are then u = y — Xﬁ, where
B is the (quasi-)ML-estimator of 3 under H¥. The LM test for HY makes use
of the estimated score dy = [0,0, JPI,O]’ with

~ L ~ ~ o~
g, = 2Ll 11520(6,0y + 1820 (31 © €1C.C )
1 apl HOB / /

= 1732[(@Gpa) - ga),

where C; = [IG.Iy + 5.(B'B)"!]"! and C; = (W + W), Gg= (Jr ®
610261), and g = tr[ang}. Under normal disturbances an estimate of
the lower (4 x 4) block of the information matrix Jy under HP is given by®

0
140(8y?] 4 NI-D) Lo [€a T 1[Gy C1Ca] T r[CaCrCs] + Tl tr(C]
3tr|Cs 254 >t 3C1 5 tr|C3C1C2 2/7"315-"-2372//7"4
~ =~ ~ 7252 ~ 52 ~o
Ztr [€4C4] i [63] i 1 [C2C,)] I%0 4r[C3Cs)
T&ﬁ’ ~ = T28/2" o Qaﬁ ~ 5 T&ﬁ&ﬁ ~ PO
P) tT[CBClC2] 5 tT[CICQ] 5 t’f‘[(clcz)] TtT[Cl(:QClCE,]
=2 ~ o~ o~ _ ~ =2 o~ T525 ~ ~ o~ 54 ~ ~ _ —~
Zitr[C3C1Cs] + (Zagl)tr[Cd T20 4r[C23Cs) —2744r[C1C2C1Cs] 2 tr[(C1Cs)?) + T 4r[C2)

6Detailed derivations are available form the authors upon request.
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where C3 = (B'B)"'C;, C; = (W'B 4+ B'W)(B'B)~! and C;
The LM test for HP is calculated as

LMp = dyJytdy = d2 I3, (6)

P1

where jg; is the (3, 3) element of the inverse of the estimated information matrix
39_1 under HY. This test statistic has no closed form representation, but using
similar assumptions and proofs as in the Appendices, this test statistic should
be asymptotically distributed as x?. Under non-normal disturbances the LM-
test can be derived following White (1982) and in the Appendix D it is derived
as
LM oot = 3,3, R (R (3,0 43,83, ) RY) T RIG, ()
where we define the 4 x 4 matrix Xy with klth element [% Zf\g ak7iial7ii(u£74) —
3)] and R = [0,0,1,0]. The elements ay; are defined in the Appendix D,
while u5,4) = E[(Sflu)él] with €, = SS’. This robust LM-test statistic is
asymptotically distributed as x?(1).
With normal disturbances the corresponding LR test is based upon the max-

imized log-likelihood under HEP:
Lp=-YL1n2n5, - %lndet(fh) + I Indet(B'B) —

This restricted log-likelihood is the same as that given by Anselin (1988, p.
154).

2.3 LM and LR Tests for HS : p; = p, = p

Under HS : p; = py = p, the true model is the one suggested by Kapoor,
Kelejian, and Prucha (2007). In this case, B = A and the parameter estimates
under HOC are labeled by a bar. The corresponding estimated residuals are given
by U=y — X3. The score and the information matrix needed for this test are
derived in Appendix E. With normal disturbances the joint LM test statistic

for HS is given by

— _o, =\ 2
LMo = 571 (Gey = 71tr[D]), (8)



with Go =0 (Jr @ F)u, F = WA + A'W and D = F(A'A)~!. Also, be =
tr[ﬁz] — (tr[D])?/N, 7% = w and 72 = %ﬁm. Under HY,
the LM statistic is asymptotically distributed as x? as shown in Appendix F.
If the disturbances are not normally distributed one may use the robust version

of this LM test, which is derived in Appendix E as

1

LMC,robust = LMC — — .
1+ (db + dw) (T2)

(9)

S (o7 (40 =3) + kot (40 -3))

The true correction factors are defined as d;, =

N 21 4
s ln’,f(l‘(u )*3)
(T—-1)%2tr[D2]

20%tr[D2]
and d, = , respectively (see Appendix E for details).
Under normal disturbances the LR test is based on the following maximized

log-likelihood under H§':

Lo = -2 In2re, — 5 In(

NI SN

)+ ZIndet(A'A) - 1w, w

TR

Kapoor, Kelejian, and Prucha (2007) consider a generalized method of moments
estimator, rather than (quasi-)MLE, for their spatial random effects panel data
model. L¢ is the maximized log-likelihood for the KKP model with normal

disturbances.

3 Monte Carlo Results

In the Monte Carlo analysis, we use a simple panel data model that includes

one explanatory variable and a constant (K = 2)
Yit :BO—l—ﬁlxit—i—uit, i=1,..,.Nandt=1,...,T,

where §;, = 5 and §; = 0.5. z;; is generated by z;; = (; + 2, where (; ~
i.i.d. U[=7.5,7.5] and z;; ~ d.i.d. U[—5,5] with Ula,b] denoting the uniform
distribution on the interval [a,b]. The processes (; and z;; are assumed to
be independent and held fixed in repeated samples. We conduct an extensive
analysis for the case of normally distributed disturbances as summarized in

Tables 1-3 and dispense with the assumption of normality in Table 4. In the

10



former case, the individual-specific effects are drawn from a normal distribution
so that p; ~ 4.i.d. N(0,200), while for the remainder error we assume v;; ~ i.i.d.

N(0,20(1 — 6)) with 0 < 6 < 1. 6 =

2
_
2 2
O'H-"-O'V

is the proportion of the total
variance due to the heterogeneity of the individual-specific effects. This implies
that ai + 02 = 20.

We generate the spatial weights matrix by allocating observations randomly
on a grid of 2N squares. Consequently, as the number of observations N in-
creases, the number of squares in the grid grows larger, too. The probability
that an observation is located on a particular coordinate is equal for all coor-
dinates on the grid. This results in an irregular lattice, where each observation
possesses 3 neighbors on average. The spatial weighting scheme is based on
the Queens design, where each observation (except that in the first and last
row and column) has four neighbors situated in the north, south, east and west
neighboring cells. The corresponding spatial weights matrix is normalized so
that each row sums to one.

The parameters p; and p, vary over the set {—0.8, —0.5, —0.2,0,0.2,0.5,0.8}.
The cross-sectional and time dimensions are N = 50, 100 and T" = 3, 5, 10,
respectively. Lastly, the proportion of the variance due to the random individual
effects takes the values 8 = 0.25, 0.50, 0.75. In total, this gives 882 experiments.
For each experiment, we calculate the three LM and LR tests as derived above,

using 2000 replications.”

Table 1 reports the frequency of rejections for N =50, T =5, and § = 0.5
in 2000 replications. This means that ai = 02 = 10. The size of each test is
denoted in bold figures and is not statistically different from the 5% nominal

size. The only exception where the LM test might be undersized is for the

"In a few cases, we got negative LR test statistics due to numerical imprecision. These
cases occur mainly with the Anselin model at p; = 0. However, this happened in less than
0.5 percent of the Monte Carlo experiments. We drop the corresponding experiments in the

subsequent calculations of the size and power of the tests.

11



KKP model, for high absolute values of p; and p,, both equal to 0.8. The
size adjusted power® of the LR and LM tests is reasonably high for all three
hypotheses considered. The performance of the LM test is almost the same
as that of the LR test, except for a few cases. For Hg' : p; = p, = 0, when
p1 = —0.5 and p, = 0, the size adjusted power of the LM test is 61.4% as
compared to 64.6% for LR. At p; = 0.5 and py = 0, the size adjusted power of
the LM test is 70% as compared to 66.4% for LR. Similarly, for HZ: p; = 0,
when p; = —0.5 and p, = 0, the size adjusted power of the LM test is 70.2%
as compared to 72.9% for LR. At p; = 0.5 and py = 0, the size adjusted power
of the LM test is 76.7% as compared to 74.6% for LR. For H : p; = py = p,
when p; = —0.5 and py, = 0, the size adjusted power of the LM test is 66.1% as
compared to 68.5% for LR. At p; = 0.5 and p, = 0, the size adjusted power of
the LM test is 70.6% as compared to 65% for LR.

Tables 2 and 3 repeat the same experiments but now for § = 0.25 and 0.75,
respectively. These tables show that as we increase 6, we increase the power
of these tests. In fact, the power of all three tests is higher, the higher the
variance of the individual-specific effect as a proportion of the total variance.
For example, for H§' : p; = py = 0, when p; = —0.5 and p, = 0, the size
adjusted power of the LM test increases from 61.4% for 6 = 0.5 (in Table 1)
to 68% for # = 0.75 (in Table 3), while the size adjusted power of the LR test
increases from 64.6% to 74.8%. Similarly, when p; = 0.5 and p, = 0, the size
adjusted power of the LM test increases from 70% for 6 = 0.5 to 78.4% for
6 = 0.75, while the size adjusted power of the LR test increases from 66.4% to
77.4%. For HP: p; =0, when p; = —0.5 and p, = 0, the size adjusted power of
the LM test increases from 70.2% for 8 = 0.5 to 81% for § = 0.75, while the size
adjusted power of the LR test increases from 72.9% to 83.4%. At p; = 0.5 and
po = 0, the size adjusted power of the LM test increases from 76.7% for 6 = 0.5
to 86.6% for 6 = 0.75, while the size adjusted power of the LR test increases

8The size corrected critical level for the test is inferred from the empirical distribution
of the test statistic in the Monte Carlo experiments, so that the rejection region under the

empirical distribution has the correct nominal size.

12



from 74.6% to 84.9% for LR. For H§ : p; = py, = p, when p; = —0.5 and
po = 0, the size adjusted power of the LM test increases from 66.1% for 6 = 0.5
to 73% for # = 0.75, while the size adjusted power of the LR test increases from
68.5% to 74.8%. At p; = 0.5 and p, = 0, the size adjusted power of the LM test
increases from 70.6% for 6 = 0.5 to 80.4% for 6 = 0.75, while the size adjusted
power of the LR test increases from 65% to 77.3%.

Things also improve if the number of observations increases. The increase in
power is larger when we double NV from 50 to 100 as compared to doubling 7" from
5 to 10.” We conclude that the three LM and LR tests perform reasonably well
in testing the restrictions underlying the simple random effects model without
spatial correlation, the Anselin model and the KKP model in small and medium
sized samples.

Figures 1-4 plot the size adjusted power for the various hypotheses consid-
ered. In Figure 1, the pure random effects model is true, whereas in Figure 2,
the Anselin model is true. In Figures 3 and 4, the KKP-type model is true with

different values for the common p.

Let us start with a comparison of the panels given in Figure 1, which assumes
that the random effects model is true (p; = p; = 0). On the left hand side,
we plot the size adjusted power of the LM test for deviations of p; from O,
maintaining that p, = 0. On the right hand side it is the other way around.
Observe that the power of the LM test is higher for deviations of p, from 0 as
compared to deviations of p; from 0. Keep in mind that the estimates of p, are
based on NT observations, while those of p; rely on only N observations. The
top two panels show that the power increases for deviations in p; as 6 increases.
However, for deviations in p,, the power of the test is insensitive to . The

two panels at the center of Figure 1 illustrate that both the size and the power

9We do not include the corresponding Tables for (N = 50, T = 10) and (N = 100, T = 5),
for & = 0.25,0.50, and 0.75, in order to save space. However, these tables are available upon

request from the authors.
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of the LM test improve as the sample size increases, especially as N becomes
larger. A comparison of the two panels at the center with those at the bottom
of Figure 1 provides information on the interaction of sample size (N, T') and
the relative importance of 0. It is obvious that for deviations of p; from 0 (on
the left), the power improves with N, especially as 6 increases.

Figure 2 assumes that the Anselin-type process of the error term is the true
model (p; = 0). One important difference when compared to Figure 1 is that
po is now a nuisance parameter. The qualitative effects of an increase in N, T,
and 6 are similar to those in Figure 1 on the left hand side. The right hand side
panels of Figure 2 show that the size adjusted power of the LM test is lower if

P9 is high (0.5 compared to 0), especially for low 6 (0.25 compared to 0.75).

Figures 3 and 4 assume that the KKP model is the true one. Note that an
assessment of the performance of the LM test is different here, since the KKP
model assumes that p; = p,. The null hypothesis in Figure 3 is p; = p, = 0.2
and the one in Figure 4 is p; = p, = 0.5. The major difference between the
two figures is that assuming a null that is different from p; = py = 0 shifts
the size adjusted power function and renders it skewed to the right. Otherwise,
the conclusions regarding the impact of 8, N, and T are qualitatively similar
to those of the random effects model. A major difference from the random
effects model is that for the KKP model the power is lower in the p, direction,

especially for small 6.

3.1 Robustness Checks

We also assess the performance of the proposed LM tests with respect to (i)
non-normal errors (using the derived robust vs. the non-robust LM test sta-
tistics) and (ii) the specification of the spatial weighting matrix. To compare
the simulated power functions for normal vs. non-normal errors, we generate

the remainder error term first as v;; ~ t(5) and normalize its variance to 10.
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Hence, 8§ = 0.5 holds in this case and the results are comparable to the ba-
sic Monte Carlo set-up defined above. This implies that the distribution of
the remainder error exhibits heavier tails as compared to the normal distrib-
ution but it is still symmetric. Second, we analyze a skewed error distribu-
tion assuming that v;; follows a log-normal distribution with variance 10, i.e.,
vit = V10(ef — e%5)/v/e2 — el, where € ~ N(0,1).

For N =50 and T' = 5, the Monte Carlo experiments show that on average
there are relatively small effects on the size of the (non-robust) LM tests under

either error distribution in comparison to the tests under normality.

In Table 4, we focus on the size of the LM and LR tests under alternative
distributional assumptions of the error term for N =50, T'=5 and § = 0.5. In
the first pair of columns we give the true parameters p;, py, the second pair of
columns summarizes the size of the tests under the assumption that v ~ t(5),
in the third pair of columns we assume that v;; follows a log-normal distribution
with variance 10.

It turns out that both the (non-robust) LM tests and the LR tests are fairly
insensitive to the chosen alternative assumptions about the distribution of the
disturbances at intermediate levels of p; and p,. However, the LM tests tend to
be somewhat more undersized than the LR tests, especially for p; = p, = 0.8.
With the caveat of the limited experiments we performed, this finding suggests
that the (non-robust) LM tests considered are fairly robust to deviations from
the assumption of a normally distributed error term.

Interestingly, with small samples as the ones considered and a relatively small
signal-to-noise ratio as assumed here, there is no gain from using robust LM test
statistics rather than non-robust ones. In many cells of Table 4, the robust test
size is more off the nominal size than this is the case for the non-robust test
size. The reason for this result is the following. The correction factors of the
LM statistics deflate the non-robust test statistics. Hence, with oversized LM

tests, the corresponding correction factors would adjust the test size towards the
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nominal size (see Yang, 2010, for an example with cross-section data). In our
case, there is no systematic over-rejection in the samples considered so that the
correction factors lead to even more pronouncedly undersized tests. In broader
terms, problems with such correction factors in small samples also accrue to the
use of higher moments of the disturbances which can not be estimated without
bias in small samples (see Teuscher, Herrendorfer, and Guiard, 1994).1°
Furthermore, we repeated the LM and LR tests for the same model con-
figuration as in Table 1 for an alternative model which assumes the vector of
explanatory variables, x, to be generated as a spatial moving average of the

form

x = [Ir ® (In + 0.5Wy)]X014

where x4 is the specification of x as defined above. Our original conclusions
are not sensitive to this alternative specification of x. We also investigated the
extent to which the specification of the spatial weighting scheme matters for
the size and power of the tests considered. We generated an alternative spatial
weighting matrix allowing for a more densely populated grid. In particular, we
randomly allocated the observations on the grid so that there are 5 rather than
3 neighbors per observation on average. As expected, the power of the tests is
somewhat lower in this case, but still big enough to detect relevant deviations

from the null.!!

4 Conclusions

The recent literature on first-order spatially autocorrelated residuals (SAR(1))
with panel data distinguishes between two data generating processes of the er-

ror term. One process described in Anselin (1988) and Anselin, Le Gallo and

10With robust LM tests, we estimate the kurtosis from the realized (true) disturbances for
every draw. In applications, one would have to rely on the estimated kurtosis which can be

biased substantially in small samples.
1T All results on the mentioned sensitivity checks are available from the authors upon request.

They are suppressed here for the sake of brevity.
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Jayet (2008) assumes that only the remainder error component is spatially cor-
related. In an alternative process put forward by Kapoor, Kelejian, and Prucha
(2007) both the individual and remainder components of the disturbances are
characterized by the same spatial autocorrelation pattern. This paper formu-
lates a SAR(1) process of the residuals with panel data that encompasses these
two processes. In particular, this paper derives three LM tests based upon the
more general model, testing its restricted counterparts: the Anselin model, the
Kapoor, Kelejian, and Prucha model, and the random effects model without
spatial correlation. For the latter two tests, closed-form expressions for the LM
statistics can be obtained. In addition, we derive robust LM tests that do not
rely on the assumption of normally distributed disturbances.

Our Monte Carlo study assesses the small sample performance of the derived
tests. We find that under normal disturbances the LM tests are properly sized
and powerful even in relatively small samples. Interestingly, with small samples
and a relatively small signal-to-noise ratio as considered in the Monte Carlo
study, there is no gain from using robust LM test statistics rather than non-
robust ones. The LM tests are easy to calculate and their power is reasonably
high for all three tests considered. Under normal disturbances the power of
these LM tests matches that of the corresponding LR tests except in few cases.
In general, the power of the tests increases with the relative importance of the
individual effects’ variance as a proportion of the total variance, as well as with
increasing N and 7. They are robust to non-normality of the error term and
sensitive to the specification of the weight matrix. Hence, these LM and LR tests
are recommended for the applied researcher to test the restrictions imposed by
the RE model with no spatial correlation, the Anselin model, and the Kapoor,

Kelejian, and Prucha model.
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Appendix A: Score and Information Matrix

Below we make use of the following derivatives to obtain the score and the

relevant part of the information matrix:!?2

‘Z?; =Jr®(BB)'+Er®(BB) '=1Ir® (B'B)"!
o, =
L = Jr@T(A’A)™!

d0?, T @1 )
LT Jr@Tol(A'A) " (W + W —2p, WW)(A'A) !
Iy
%ﬂ“ =Ir ®02(B'B) "' (W' + W — 2p, W W)(B'B) .

P2

Appendix B: Identification and Consistency

In the sequel, we use subscript 0 to indicate true parameter values where
necessary. First, we state the full set of Assumptions.
Assumptions'3
A1l (random effects model): The model comprises unit-specific random ef-
fects denoted by the (N x 1) vector p. The elements of p are i.i.d. (0,07) with
0 < UZ < b, < 00. v is the vector of remainder errors and its elements are
ii.d. (0,02) with 0 < 02 < b, < oo. The elements of g and v are indepen-

dent of each other. Furthermore E[|p,|*""]

< oo and for some 7, > 0, and
El[lvit]*"] < 00 and for some 7, > 0.

A2 (spatial correlation):

(i) Both u; and uy; are spatially correlated with the same (N x N) non-

stochastic spatial weighting matrix W whose elements may depend on N.

2Hartley and Rao (1971) and Hemmerle and Hartley (1973) give a general useful for-

mula that helps in obtaining the score of 6 = (ag,ai,pl,@)’: gTL, = —%tr <ﬂ;1 %‘Z:‘) +

%u’ (Q;laﬂu Q;l) u, r = 1,...,4. To derive the relevant part of the information ma-

30,
%L ] _

trix, we use the general differentiation result given in Harville (1977): Jrs = FE [—m

1 —10Qy o—10Qy
Str [Qu 50" Q. 56 ] .

13To avoid index cluttering, we suppress the subscript indicating that the elements of the

spatial weights matrix may depend on N and that the dependent variable and the disturbances
form triangular arrays. For a similar set of assumptions and a discussion of them see Lee

(2004a) and Lee and Yu (2010a and 2010b).
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The elements of W are non-negative and w;; = 0.
(i) The row and column sums of W are uniformly bounded in absolute value.

(iii) The parameter space for p,. is a closed interval contained in —1/Apax <
0, < 1/Amax for all N and r = 1,2, where Apnax is the largest absolute
eigenvalue of W. A\, is assumed to be bounded away from zero by some

fixed positive constant.

(iv) Let A =1Iy — p;W and B =1y — p,W. The non-stochastic matrices A,
B are non-singular for all p, in the parameter space and have bounded
row and column sums, uniformly in N. Also, its inverses have bounded
row and column sums, uniformly in N and uniformly in the parameter
space of p; and p, .

i

(v) The inverse X! (02,02, p1,p5) = (J7 © (I;ig(A’A)_1 +(B'B)"H=1) +
(Er ® B'B) has bounded row and column sum uniformly in N and uni-

formly in the parameter space of (Ui, o2, py, p2) e

A3 (compactness of the parameter space): The parameter space ® with
elements (8,0%,0%, p1,py) is compact. The true parameter vector (indexed by
0) lies in the interior of ©.

We note that Assumptions Al and A2 imply that E = {(¢, py, po)|(03, 07, p1,
py) € ®} with ¢ = 02 /o2 is also compact. In the following, the elements of &
are denoted by the vector 9.

A4 (identification of ¥): For every 9€E, ¢ # 9, and any € > 0 :
lim sup y_, o, Maxy 5, (00)(75 In(Jptr[2y (90) 2w (9)71]) — 5 57 In[det T, (9)/

det X,(9¢)]) < 0, where N.(9) is the complement of an open neighborhood of

Jo of diameter ¢.

_ 2
YUnder H§ we have =t (Ui,ag,pl,pz) =Jr® (%(A’A)_1 +A'A) Y)Y Y+ (Ere
_ 2
A'A) = (JT®(TU“+U” IN)+(Er®In) (I7 ® A’A). Hence, in this case a sufficient condition

o
for Assumption A2 (v) is A2 (iv). Note Lemma 1 shows that this inverse exists for all

(Ui, a,%, P1s p2) in the parameter space.
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A5 (identification of 3 under H{'): The non-random matrix X has full col-
umn rank K < N and its elements are uniformly bounded by some finite con-
stant. Further, let Qy = E7 ® Iy and Q; = Jr ® Iy and define X*(p) =
Ir ® A. The non-random matrices limy oo (57 X*(0)Q;X*(p)), @ = 0,1 are
finite. The nonrandom matrices 1imNHm(ﬁX’X), limNHm(ﬁX* (p)X*(p))
and limy oo (57 X' 2, (9) ' X) are finite and non-singular.

A6 (positive variance of LM tests): NT'2(a?0f + (1 — a)?(T — 1)o?)-
tr[(H(A’A)"1)2]— (NT) ' 32N 2 <a2T2 +T((1-a)+ %)2) > bg for
some bg > 0, 0% = Tai + 0,2, and 0 < o < 1. H and l;; are defined in Lemma 4

below.

Consistency of the (quasi-)ML estimates under the general model.
In proving the consistency of (quasi-)MLE, we make use of the following

Lemmata.!®

Lemma 1 Under the maintained assumptions A1-A3, (i) the row and column
sums of (A’A)~1 and (B'B)~! are bounded in absolute value, uniformly in N
and in 9 € B. (ii) the row and column sums of X,,(9¥) are bounded in absolute

value, uniformly in N and in 9 € B. (i) X,(9)" exists.

Lemma 2 Under assumptions A1-A3, the matrices X, (9) and X,(9)~1 are

positive definite.

The proof of consistency of the maximum likelihood estimates is based on

the concentrated log-likelihood which is
Le(9) = — ML (In27 + 1) — ¥ InGo(9) — L Indet =, (9).
As non-stochastic counterpart of L¢(1) we use

Q) = mazE[L(0)] = — 2L (In27 + 1) — 2L Ino}?(9) — 1 Indet T, (9).

2.8

15The proofs of these Lemmas are skipped to save space. However, they are included in the

long version of the Appendix which is available form the authors.
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Theorem 3 Let Assumptions A1-A5 hold: Then (i) the mazimum likelihood
estimates of ¥ are unique and consistent. (ii) Assume in addition that H§

holds: (,/8\(’5) - ,5'0> 2,0, where 9 is a consistent estimator of 9.

Proof. To prove consistency, we have to show that = (L¢(9) — Q(8)) con-
verges uniformly to 0 in probability. Note that 5 (Lc(ﬁ) QW) =—1(n o2 (9)—
In 072(9)) and that 5% (9) = Fzu <B<ﬂ>>'zu<ﬂ>*1u<f3<ﬂ>> = 57u(By) Zu(¥) " u(By)
—u(By)'Zu (?9)_11\/1(19) (Bo) = & t?‘[z (9) " (Inr—M(9))u(By)u(By)’], where
M(9) = X (X! X)X )~L. Hence, In52(9) — In 0*2(9) =
rtr[E,(9) 7! ( ) (Bo)u(By)’ ] Observe, that

rtr[Z,(9) T M(9)u(By)u(By)']
= St [(X'D,0)71X) T XE(9) M u(B)u(By) Eu(9) ' X]
St (X 2u0) %) tr [y (X2(0) u(By)u(8,)'Su(9) X))

< %0 eyt [ (XS,(0) " u(By)u(By) Su(9)1X)] .

IN

The third line follows since (X'Zu(ﬁ)*IX)f1 and X'E,,(9) " 1u(By)u(B,)
3. (9)71X are positive definite matrices (see Abadir and Magnus, 2005, p. 216
and 329) for all 9 € E and the elements of (ﬁX’Eu(ﬁ)AX)_l are uniformly
bounded by some positive constant, say c;, uniformly in the parameter space of
¥ by Assumptions A2 (v) and A5 (see also Kapoor, Kelejian and Prucha (2007,
p. 118f.). This implies

sup (032(9) = 73(9)) < FopKertr [ (X'B(0) " u(Bo)u(Bo) Zu0) X))

Now.

lim =F [tr |57 (X'3,(9) u(By)u(By) Eu(9) ' X)]]

N—oco
= lim gztr [gr (X'Su(9) 13,(90)2,(9)'X)] < Jim N;KCQ =0.

This follows from Assumptions A2 and A5 and the observations made in Kapoor,
Kelejian and Prucha (2007, p. 118f.). In particular, 3, (9) 13, (9¢) X, (9) "

possesses bounded row and column sums, uniformly in N and uniformly in the
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parameter space of ¥ using Assumption A2 (v), and the elements of X are uni-
formly bounded by Assumption A5. Then the elements of =X, (9) 1%, () *
3. (9)71X are bounded, uniformly in N and uniformly in the parameter space

of 19, say by some constant c;. Next observe that

Var[ﬁ (X,Eu(ﬁ)ilu(ﬁo)u(ﬁo)/zu(ﬂ)ilx)]

0'4 _ _ 0_4
= 2str (R (X'S(0) ' 2u(00)8.(9)'X))°] < 26 K2

By Chebyshev’s inequality, we conclude that plimy oo 5z (X', (9) " u(By)*
u(By)'E.(¥9)71X) = 0 and, hence,

sup (0;2(19) - 5%(19)) = 0,(1).

VEE

Using the mean value theorem it follows that In 52 (1) = In 07*2(9)+ W
with the 72 (¥9) lying in between o*2(8). Since 72 (9) — 0:2(9)=0,(1) uniformly
in 2, 52 () will be bounded away from zero uniformly in probability if o*2(«9) is
bounded away from zero. Below we show that lim supy_, . maxycx_(s,) 7 (Q(Y)

— Q(VY9)) < 0 under the present assumptions so that

QM) — Qo))

Ino?(9) + 2 no}? (o) — 5p In (det Ty, (9)/ det £, (F0))

rolm 5‘H

—2Ino}?(9) + 2 no}?(9o) + 57 In (det By, (9) '/ det £, (99) ™) < 0
or

Ino}?(¥) > Inoi? (o) + w7 In (det 3y, (9) 7/ det 2y, (90) ")

uniformly in 9 €N, (9),where N, () is the complement of an open neighbor-
hood of 9¢ of diameter £. 6%2(199) > 0 by Assumption Al. By Lemmata 1 and
2 det X,(9)71/det £,,(9) ! > 0, uniformly in N and uniformly in the para-
meter space of ¥ and we conclude that ¢%(¢9) is bounded away from zero and
&2(89) = Op(1) uniformly in 9. Therefore, we obtain 31;}2% |L¢(9) — Q(I)| =
sug\ Ing2(9)—Ino*2(9)| = svégﬁ%(ﬁ) G2(9) — 0:2(9)| = 0,(1) uniformly in .

v
VEE
Secondly, we have to prove the following uniqueness identification condi-

tion (see Lee, 2004a). For any € > 0, limsupy_, o maxycxg_ (o) w7 (Q(9) —
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Q(¥9)) < 0, where N.(9) is the complement of an open neighborhood of
Yo of diameter c. Note, Q(9) — Q(¥y) = —LL[Ino* (W) — Ino}?(Yg)] —
1 In[det £, (9)/ det 2,,(9)]. Now, Ino}2(9)—Ino;?(9g) = Intr 1= [y (90) S (9) ]
—In grtr(Inr] = Intr =[5, (90) S, (9) 7] and lim sup y_ MaXg [ (9,) 7 (Q(Y)
= Q%)) = limsupy_, maxﬁeﬁg(ﬂo)<_% In yptr[Bu(90)Su(9) " ']—
1L In(det £, (9)/ det 2,,(99))) < 0 by Assumption A4. Accordingly, we con-
clude that the maximum likelihood estimator 9 of Yy under the general model
is unique and consistent, since Q(¥) is continuous and the parameter space is
compact.

Lastly, the consistency of B(;?) under H§' or HS is established by observ-
ing that our assumptions imply those made in Theorem 4, part b, given in
Kapoor, Kelejian and Prucha (2007). Hence, we conclude that under H§' or
HS (NT)l/2 (ﬁ(ﬁ) - ,@(19)) L, 0, since ¥ is a consistent estimator of ¥ as
shown above. Note, B(ﬁ) is a (NT)l/Q—consistent estimator of B, and the

consistency of B(@) follows. See Lee and Yu (2010b) for a similar proof. m

Appendix C: LM Test for random effects

The following Lemma is useful in proving Theorems 6 and 7 that derive the
asymptotic distribution of the LM tests for the random effects model and the
KKP model.

Lemma 4 Assume that Assumptions A1, A2 and A6 hold and that p; = py = p.
Consider the quadratic form Q = (Z, A"  p+(Ir@A ")) ((aJ7 + (1 — 2)Er) @ H) -
(Z, A7 'p + (Ir ® A=), where H is a conformable symmetric matriz and

0 <a <1 is a real number. Then,

B[Q] = (a0} + (1 - a)oy(T — 1))tr[H(A’A) ]

VarlQ] = 2(a’o7 + (1 —a)? (T = 1) o, )tr[(H(A'A)™1)?]
NT+N

+a2T2Zl” u( ) ((1—a)+ 221)? Z o l,( 3)

1=N-+1

with L = A'ilHAfl, u£4) = E£ﬁ4], and u(4) [4 I, l;; and c;; denote the iith
) "

v
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elements of L and C, respectively, where the latter is defined below and

QBG4 gy,
Var[Q] ’

Proof. Inserting Z,, = (vp ® Iy) yields

oTL aL . aL
Q - £/C£ _ £/ oL L((l - O‘) + %) o L(M%l) 6
aL (2"‘T1) - L((1 =) + 257
T T T
=aolp Lu—&—?az v,Lp+(1 — « ZVtLVt +(2a—-1)% (Z ut> L (Z I/t> ,
t=1 t=1 t=1

where L = A" "HA ™! tr(L) = tr[H(A’A) ). € =/, v}, ..., vl) with E[€] =
0 and

UiIN 0 . 0
0 21 0
Varg] .= Q¢ = v
0 2In
Let ¢ =SS’ with
oy 0 0
G 0 oIy 0
0 .. .. O'VIN

1 (4) _ % (4) 2% :
and define n = S™1¢ so that pu, ' = E[(E> ] and ' = E[(;’—U) |. Ciiyx is the

7ith element of

aiaTL ouoyali .. ouoyol
o 0,00l o2L((1 — o) 4+ 251 oZL(2%1)
UVU;LQL UEL(%) - O'EL((]. - a) + %)
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It can easily be verified that

B[Q] = (a0t + (1 -a)o (T 1)tr[H(A'A)™']

NT+N
Var[Q] = 2tr (CQe:C) +Zc”*( ) _ ) Z % ( 3)
=1 i=N+1

= 2(a20‘1‘+(1—0¢)2(T—1) )tr[(H(AA) ™))

+a2T22l” M( (4) —3>+T((1—o¢)+2"‘T1 Zz” ,,( <)—3).

1=1

For o« = 1 one obtains
E[Q] = oitr[H(A'A)™"]

Var|Q] = 20itr[(H(A Jer (J T2 ( Y 3) + Lo (u,(,4) - 3))

and for a =0
E[Q] = o(T — 1)tr[H(A’A) 7]

Var(Q] = 2(T — 1)o’tr[(H(A'A) 1)) + T Zl” ,,( )

The present assumptions imply that Var[Q] is uniformly bounded away from
zero by some positive constant under and that the row and column sums of
A, (A’A)7! and H are uniformly bounded and so are those of L. Since the
elements of £ are independently distributed by Assumption A1, the assumptions
of the central limit theorem for linear quadratic forms given as Theorem 1 in
Kelejian and Prucha (2001, p. 227) are fulfilled and the claim of the Lemma
follows. m

Under H[f‘ :pp = py =0, B =A = 1Iy. Using the general formulas
for the score and the information matrix given above one can show that the

corresponding LM test statistic is given by
LM A= ~4 G? a4t WM As

where G4 = U [Jr@ (W +W)|ua, My =0 [E;r® (W + W)l and by =
tr (W + W)?].

28



Theorem 5 (LM}y) Suppose Assumptions A1 - A5 hold and Hi': p; = py =0

1s true. Then, LMA = ~4 G2 MA s asymptotically distributed

W
as x3.

Proof. First, use the residuals of the true model u =y — X3, and define
Ga =G u and My = uMyu, where G4 = Jr ® (W' + W), and My =
Er @ (W +W).

(i) We can apply Lemma 4 by setting « = 1 and A = Iy so that H =(W/+W)
with ¢tr[H] = 0, because tr[W] = 0. Also observe that [;; = 0 under Hg'. Hence,
E[G 4] =0 and Var[Ga] = 201ba with bs = tr[H?]. By Assumption A2 the row

and column sums of H are uniformly bounded. 021/2b4 is bounded away from

s . Ga d
zero by some positive constant as shown in Lemma 4, so e N(0,1).

- . A . s Ma d
(ii) Setting o = 0 in Lemma 4 implies that gy T Ty N(0,1).

(iii) Inspection of the proof in Lemma 4 establishes the independence of G4

WMA with

=1 is also asymptotlcally normal and, hence, the vec-

and M,. From Lemma 4 it follows that G A+

O‘1

2\/2(T 1b

tor of quadratic forms

!

Ga Ma
o3V2ba’ 62,/2(T—1)ba
dard normal by the Cramér-Wold device. Consequently, LM = ﬁGi +

1

converges to a bivariate stan-

WM 2 is asymptotically distributed as x3.
(iv) Notice that ﬁu ‘G u— mu 'Gau = ZWGAXVNT(B-8,)+ (NT)"2 -
VN (ﬁ = By) X' GaXVN (,8 — By). Given a v/N-consistent estimator of Bo

under Hg', say ﬁ andu=y — XB, we have \/J{TTG’GAG— ﬁu’GAu = 0,(1),

since X and G4 are non-stochastic matrices (see Lemma 1 in Kelejian and
Prucha, 2001, p. 229). Similarly, \/7 uMyu— \/T u'Mju = o0,(1). Further,
(NT)=120(ba > ¢; > 0 for some constant ¢; and (NT)"120% - (T — 1)ba >
¢, > 0 for some constant c¢,,, since 03 > 0 and 02 > 0 by Assumption Al and
0 < ¢, < ba by Assumption A2. As shown in Appendix B, 57 = 03 + 0,(1)
and 52 = 02 + op(l). Then, Theorem 2 of Kelejian and Prucha (2001, p. 230)
implies that — G4 —o,(1)and My - Ma = o0,(1).

\/2a4b2 V20103 V2L (T—1)ba  \/205(T—1)ba
Hence, LMA — LMs=o0,(1). m
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Appendix D: LM Test for the Anselin Model

Remember that under H(’)B
Q=7 ®To Iy +0,(B'B)") +0,(Er ® (BB)™).

We diagonalize Q,, = SS’ so that Q! = §’~!S~!. In the following the index r
stands for restricted estimation so that Hy: p; = 0 is true. Following Kelejian
Prucha (2010), let n = S™lu and E[n},] = ,ugf’) and E[n}] = ,u574)and let 0y, refers

to O’i, o2, py or py. In general, one obtains

g—g : =35(8,0,) =X'Q,'u
oL o0 o
—_— : =sp, (0, =—1¢ Q;l u] + i {Q;l “Q;l} u
o0, oo, 0 ( ) 2 [ 90, o=, 2 00, 90,

o,
Else, (0,)] = —itr [Q;l 89k] + 5tr
6=6

Covlso,(0,),54(8.,0,)] = 0

o2
C 0. 0,) =tr|(Q! Q! Q. (1 =ta! Q.
OU[SQk ( )7 S0, ( )] T [( u 89k: u > o—6. ( u aek U ) o—o,

<ﬂ;1m“ ﬂ;1> Q,
90y, 0=0,

NT
+ 3 Z 1107 i (M7(74) -3),
i=1

where aj, ;;, is an element of A} = S'Q; ] %?;"

oo, Q;,1.S. Note, since s5(3,0,)
is linear in u and sy, (0,) is a quadratic form in u, Covl[sy, (6,),s3(83,60,)] =0
and €Q,, is block diagonal. So we need a matrix of correction factors with elements
%ZZ\LTI a};,iiaiii(ugfg — 3), which can be calculated numerically. In particular,
pit) = E[(S’lu)4] can be estimated from S~'4 using 2, = SS’ = PAP’ or
S = PA%7 since €2, is a real symmetric matrix. It follows that Q! = §’~1S~1
Var(S~'u) = S71Q,87! = S71SS'S’~! = 1. Observe that

oN o
1.,/ Qfl u Qfl I -1 u 1—1
2u |: “ aek “ :|0—0r " 27’ (S 80k 0=0,. S ) "
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where the elements of ) are 7id(0, 1) so that A, =S~! % oo, S—1
o o
C 0, 0,)] = tr |Q,' —" 1=
O’U[Sek( )7 591( )} r u 80k 00, 99;|

2 E A iG] n 3)

Defining the 4 x 4 matrix Xy with klth element [% ZfVTl ak,;iQ “(un - 3)],
R =10,0,1,0], the robust LM-test statistic following White (1982) is given by

~ A~ ~ PPN -1 < L~
LMB,robust = d;ngR/ (R (Jal + ngze‘];l) RI) Rngdle

and asymptotically distributed as x3.

Appendix E: LM Test for the KKP Model

To derive the asymptotic distribution of the LM test for H{, it proves useful

to re-parameterize the model so that p; = py + A and to test HP : A = 0 vs.
B.A 75 0, Under HY, B=A, Q, = (037 + 02E7) ® (A’A)~! and Q! =

(2 2J 7+ -zE7) ® (A’A). Using the general formulas for the score and for the

mformatlon matrix given above, the LM test statistic can be derived as

—_— ——1— —=2
LMC == D0J9 Dg - mGC

where bc = ec — Ezc/N and G¢ = W (Jr @ F)u — a2 tr[D].

Theorem 6 (LM¢) Suppose Assumptions A1 - A6 hold and H: p; = py = p
is true. Let H = (WA +A'W), D = HAA)"!, L = A~'HA" with
elements l;;, bc = ec —EZ/N dc =trD] , ec = tr[D ] Gep =0 (Jr @ F)u,

dp = R 1@(0 Tz(uw 3)+7U (i?- 3)) and d;,, = Efvllfl(i oA 3)) Then,

207tr[D2] w (T—-1)?204tr[D2]
S 2 . .
LM robust = W (GCb —altr[D]) (m) is asymptotically

distributed as x3. Under normality, LM ¢ = W (Gew — E?tr[ﬁ])Q and
91

is asymptotically distributed as x3.

Proof. We will make use of the following first order conditions evaluated
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under HS :

oL T5> L
3a| = —mrtrD]+ 3w (FFIr e Hu =0 (10)
HE
oL — - T
500 = —5trD]+ 5u(FIr + HEr) 9 Hu=0. (11)
P2 |go ! ’

From the first order condition (11)

oL
3p2 HC

= —5tr[D] + 3u'[(5zIr + 7z Er) @ H]u,

we obtain

7itr[D]=+u'(Jr @ H)u+ T@i ' (Er @ H)u
Inserting the ML-estimates denoted by a bar in (10) gives the estimated score

as

§A<6)|HOC_L u(Jr@H)u— = 2u(ET@H)

Below we will show that (NT)_% (EA(0)|HOC — SA(0)|H6;) + 0,(1), so we de-
rive the asymptotic distribution of sa (0)|HOC to establish that of the LM test.
Observe that

E[sa(0)|ye] = Trto3tr(D) — £ (T — 1)o2tr(D) = 0

Var[sa(0)|ge] = 2 (L=1)% ottr[D?) + (L52)° ili i(Tz( ) _ 3) + Lo 3(@4) 3>)

=1

N
12
—I—T204 (T — 1)ottr[D?] + TQO_4 Tl) ol Zl?i (,ul(,‘l) - 3) .

using

Qul e = 0ilJr @ (A'A) 7 + o} [Er ® (A’A) 7]
and Lemma 4 under a = 0 with @ defined as in Lemma 4.
E[Q] = oitr[H(A'A)™']

Var|Q] = 20itr[(H(A ]+ 212 . (T2 ( Y- 3) o, (/11()4) - 3)) )
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and, lastly, under a =1

E[Q] = o%(T — )tr[H(A'A) ]

Var[Q) = 2(T - Dojtr{(H(A'A) )2+ T7lo) i@- (19 ~3).
i=1
Collecting terms yields
Var[sa(0)|ye] = 204 tr[D?] ((quzl)2 + TT—21)
+ (%)2 iv: l?ﬂi (T2 (M£4) - 3) + %Uﬁ (ul(,4) — 3))
i=1

N
4 2
+Tg¢17§ (TiTl) 7, Z I (#5/4) - 3) .
i=1

4
= 203tr[D? T + (TL)°
where we define ¢, Efil 1%

(UﬁT2 (u(f) — 3) + %0;4, (u(f) — 3)) and ¢, =
PO l%ii(T}l)z ok (u,(,4) — 3) and use (T;;)Z + S =T -1+1) =L,
Next we derive the standardized score as

03
Cy + 727 C,
v

— 2
0 sa(0)ge — Elsa(0)]ye] ' (Jr @ Hu — 7fﬂlgu’(ET(EQH)u
= = 7y .
Var[sa(0)l ] V20ttrD2 T 4 (T 0 4 e,
_ W @[@r®H)u—0o3tr[D] d _ W(Er®H)u—0o2(T-1)tr[D]
Below we show that Q = St N(0,1) and @, = NCEVT
N(0,1).

<, Since the two quadratic forms are independent it follows that
Q 4, N(0,1), where

0- Qu/ (T =12+ (T —1)2dy — QuvVT — 1+ d,,
V(T =T +(T = 1)2dy + d,, '
= sty and do =

nominator of @ yields

and dp

W. Inserting the quadratic forms in the

QuV/ (T —1)2+ (T —1)2dy — Qu\/T —1+d,
T-1

a 1
< 20ttr[D?] o 204tr[D?]’

where we define G, = w/(J7 ® H)u and Gy, = W/ (E7 ® H)u. Remember the
denominator is given by /(T — 1)T + (T — 1)2dy, + d,,. The test can then be
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based on

Gop(T —1) = Gow

0.1/

V20 Ttr[DA\/(T — )T + (T — 1)2dy, + dyy

\V LMC,V'obust =
Under normality the test statistic is given by

Geo(T —1) — Gow =%

~ 20D /(T - 1”)VT'

Lastly it can be shown that with the higher moments being estimated consis-

LMc

tently that LMCarobust _LMC7robust = OP(1>‘ 16 u

Appendix F: Numerical optimization

We use the constrained quasi-Newton method involving the constraints aﬁ >
0,02>0,-1<p; <land —1< p, <1 to estimate the parameters of the four
models (the unrestricted model and the three restricted ones: random effects,
Anselin, and KKP). The quasi-Newton method calculates the gradient of the log-
likelihood numerically. We use the optimization routine fmincon available from
Matlab which uses the sequential quadratic programming method. This method
guarantees super-linear convergence by accumulating second order information
regarding the Kuhn-Tucker equations using a quasi-Newton updating procedure.
An estimate of the Hessian of the Lagrangian is updated at each iteration using
the BFGS formula. All tests are based on the analytically derived formulas for

both the gradient and the information matrix, using the estimated parameters.

16The proofs of this last claim is skipped to save space. Details are given in the long version

of the Appendix which is available form the authors.
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Table 1: Monte Carlo simulations for size and power of LM and LR tests of the random effects, the
Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

(N=50, T=5, 6" =10, o",=10)

Random effects model Anselin model Kelejian-Prucha model
H0A1 p1=0, p,=0 H0B1 p1=0 H0C1 P1=P2
s p, LM, LR, LM, LR; LM. LR
-0.80 -0.80 1.000 1.000 0.938 0.964 0.039 0.041
-0.80 -0.50 1.000 1.000 0.985 0.992 0.590 0.565
-0.80 -0.20 0.997 0.998 0.989 0.991 0.919 0.922
-0.80 0.00 0.979 0.982 0.989 0.991 0.982 0.985
-0.80 0.20 0.997 0.997 0.989 0.993 0.999 0.999
-0.80 0.50 1.000 1.000 0.972 0.977 1.000 1.000
-0.80 0.80 1.000 1.000 0.925 0.938 1.000 1.000
-0.50 -0.80 1.000 1.000 0.562 0.595 0.172 0.307
-0.50 -0.50 1.000 1.000 0.692 0.711 0.046 0.046
-0.50 -0.20 0.913 0.925 0.727 0.742 0318 0.324
-0.50 0.00 0.614 0.646 0.702 0.729 0.661 0.685
-0.50 0.20 0.888 0.886 0.690 0.724 0.868 0.894
-0.50 0.50 1.000 1.000 0.613 0.632 0.985 0.992
-0.50 0.80 1.000 1.000 0.430 0.450 0.999 1.000
-0.20 -0.80 1.000 1.000 0.144 0.153 0.643 0.755
-0.20 -0.50 1.000 1.000 0.175 0.183 0.209 0.231
-0.20 -0.20 0.663 0.669 0.164 0.167 0.042 0.045
-0.20 0.00 0.130 0.139 0.158 0.169 0.157 0.171
-0.20 0.20 0.696 0.660 0.186 0.203 0.453 0.499
-0.20 0.50 1.000 1.000 0.131 0.142 0.863 0.910
-0.20 0.80 1.000 1.000 0.095 0.097 0.976 0.996
0.00 -0.80 1.000 1.000 0.043 0.058 0.822 0.899
0.00 -0.50 1.000 1.000 0.043 0.055 0.501 0.509
0.00 -0.20 0.582 0.574 0.045 0.059 0.106 0.099
0.00 0.00 0.043 0.053 0.049 0.058 0.054 0.059
0.00 0.20 0.646 0.602 0.042 0.047 0.133 0.154
0.00 0.50 1.000 1.000 0.049 0.051 0.595 0.672
0.00 0.80 1.000 1.000 0.050 0.053 0.898 0.962
0.20 -0.80 1.000 1.000 0.117 0.092 0.962 0.983
0.20 -0.50 1.000 1.000 0.147 0.126 0.818 0.827
0.20 -0.20 0.605 0.593 0.174 0.142 0.402 0.382
0.20 0.00 0.130 0.110 0.148 0.125 0.131 0.111
0.20 0.20 0.686 0.649 0.171 0.140 0.048 0.053
0.20 0.50 1.000 1.000 0.134 0.116 0.283 0.348
0.20 0.80 1.000 1.000 0.093 0.082 0.798 0.909
0.50 -0.80 1.000 1.000 0.667 0.632 0.999 0.999
0.50 -0.50 1.000 1.000 0.761 0.728 0.989 0.988
0.50 -0.20 0.901 0.889 0.781 0.739 0.903 0.886
0.50 0.00 0.700 0.664 0.767 0.746 0.706 0.650
0.50 0.20 0.934 0.923 0.771 0.750 0.372 0.302
0.50 0.50 1.000 1.000 0.683 0.662 0.044 0.054
0.50 0.80 1.000 1.000 0.397 0.402 0.434 0.590
0.80 -0.80 1.000 1.000 0.994 0.995 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 0.998 0.999 0.999 0.997 0.996
0.80 0.20 1.000 1.000 1.000 1.000 0.988 0.977
0.80 0.50 1.000 1.000 0.990 0.997 0.781 0.699
0.80 0.80 1.000 1.000 0.847 0.947 0.033 0.062

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size
adjusted power of the tests.



Table 2: Monte Carlo simulations for size and power of LM and LR tests of the random effects, the
Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

(N=50, T=5, 6 =5, 6", =15)

Random effects model Anselin model Kelejian-Prucha model
HoAi p1=0, p=0 HoBi pi=0 Hoci P1=P2
P Ps LM LR LM LR LM LR
-0.80 -0.80 1.000 1.000 0.660 0.757 0.039 0.033
-0.80 -0.50 1.000 1.000 0.824 0.896 0.443 0.401
-0.80 -0.20 0.987 0.991 0.935 0.952 0.804 0.812
-0.80 0.00 0.896 0.923 0.950 0.963 0.940 0.953
-0.80 0.20 0.956 0.961 0.935 0.947 0.974 0.981
-0.80 0.50 1.000 1.000 0.875 0.902 0.993 0.999
-0.80 0.80 1.000 1.000 0.804 0.838 0.993 0.999
-0.50 -0.80 1.000 1.000 0.301 0.320 0.093 0.175
-0.50 -0.50 1.000 1.000 0.422 0.431 0.047 0.038
-0.50 -0.20 0.853 0.878 0.496 0.532 0.248 0.262
-0.50 0.00 0.389 0.425 0.489 0.502 0.448 0.484
-0.50 0.20 0.767 0.756 0.504 0.548 0.684 0.743
-0.50 0.50 1.000 1.000 0.378 0.419 0.865 0.920
-0.50 0.80 1.000 1.000 0.306 0.328 0.923 0.989
-0.20 -0.80 1.000 1.000 0.097 0.098 0.316 0.455
-0.20 -0.50 1.000 1.000 0.119 0.112 0.120 0.131
-0.20 -0.20 0.641 0.668 0.108 0.123 0.044 0.042
-0.20 0.00 0.100 0.111 0.126 0.129 0.123 0.125
-0.20 0.20 0.638 0.605 0.129 0.148 0.291 0.324
-0.20 0.50 1.000 1.000 0.084 0.097 0.588 0.674
-0.20 0.80 1.000 1.000 0.066 0.080 0.733 0.909
0.00 -0.80 1.000 1.000 0.049 0.057 0.457 0.659
0.00 -0.50 1.000 1.000 0.046 0.058 0.265 0.304
0.00 -0.20 0.570 0.586 0.050 0.053 0.076 0.071
0.00 0.00 0.050 0.055 0.048 0.052 0.053 0.049
0.00 0.20 0.627 0.596 0.039 0.039 0.096 0.119
0.00 0.50 1.000 1.000 0.050 0.047 0.310 0.413
0.00 0.80 1.000 1.000 0.050 0.045 0.521 0.753
0.20 -0.80 1.000 1.000 0.073 0.069 0.755 0.866
0.20 -0.50 1.000 1.000 0.104 0.081 0.585 0.613
0.20 -0.20 0.552 0.564 0.091 0.083 0.269 0.257
0.20 0.00 0.084 0.070 0.108 0.082 0.107 0.091
0.20 0.20 0.691 0.660 0.109 0.097 0.041 0.045
0.20 0.50 1.000 1.000 0.075 0.068 0.199 0.245
0.20 0.80 1.000 1.000 0.071 0.072 0.435 0.629
0.50 -0.80 1.000 1.000 0.468 0.438 0.971 0.989
0.50 -0.50 1.000 1.000 0.565 0.520 0.929 0.936
0.50 -0.20 0.772 0.765 0.586 0.571 0.790 0.754
0.50 0.00 0.505 0.482 0.579 0.557 0.535 0.492
0.50 0.20 0.886 0.873 0.541 0.524 0.252 0.197
0.50 0.50 1.000 1.000 0.325 0.351 0.039 0.053
0.50 0.80 1.000 1.000 0.182 0.193 0.236 0.322
0.80 -0.80 1.000 1.000 0.984 0.987 1.000 1.000
0.80 -0.50 1.000 1.000 0.993 0.993 1.000 1.000
0.80 -0.20 0.993 0.993 0.992 0.991 0.998 0.997
0.80 0.00 0.988 0.987 0.993 0.993 0.989 0.984
0.80 0.20 0.999 0.999 0.990 0.993 0.959 0.930
0.80 0.50 1.000 1.000 0.846 0.960 0.630 0.525
0.80 0.80 1.000 1.000 0.430 0.644 0.034 0.059

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size
adjusted power of the tests.



Table 3: Monte Carlo simulations for size and power of LM and LR tests of the random effects, the
Anselin and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

(N=50, T=5, ¢’ =15, 6",=5)

Random effects model Anselin model Kelejian-Prucha model
H0A3 p1=0, p=0 H0B1 p1=0 H0C3 P1=P2
P1 P> LM LR LM LR LM LR
-0.80 -0.80 1.000 1.000 0.985 0.994 0.039 0.032
-0.80 -0.50 1.000 1.000 0.997 0.999 0.642 0.610
-0.80 -0.20 0.999 1.000 0.998 0.999 0.964 0.965
-0.80 0.00 0.986 0.995 0.997 0.998 0.995 0.996
-0.80 0.20 0.998 1.000 0.996 0.998 1.000 1.000
-0.80 0.50 1.000 1.000 0.993 0.997 1.000 1.000
-0.80 0.80 1.000 1.000 0.969 0.975 1.000 1.000
-0.50 -0.80 1.000 1.000 0.727 0.769 0.271 0.408
-0.50 -0.50 1.000 1.000 0.815 0.836 0.046 0.046
-0.50 -0.20 0.927 0.945 0.814 0.831 0.384 0.370
-0.50 0.00 0.680 0.748 0.810 0.834 0.730 0.748
-0.50 0.20 0.935 0.942 0.811 0.820 0.937 0.952
-0.50 0.50 1.000 1.000 0.755 0.777 0.999 1.000
-0.50 0.80 1.000 1.000 0.589 0.619 1.000 1.000
-0.20 -0.80 1.000 1.000 0.174 0.198 0.788 0.885
-0.20 -0.50 1.000 1.000 0.210 0.235 0.241 0.267
-0.20 -0.20 0.671 0.704 0.231 0.249 0.049 0.051
-0.20 0.00 0.163 0.189 0.236 0.256 0.176 0.192
-0.20 0.20 0.735 0.732 0.230 0.237 0.509 0.555
-0.20 0.50 1.000 1.000 0.178 0.188 0.934 0.965
-0.20 0.80 1.000 1.000 0.136 0.142 1.000 1.000
0.00 -0.80 1.000 1.000 0.042 0.053 0.951 0.978
0.00 -0.50 1.000 1.000 0.035 0.042 0.632 0.652
0.00 -0.20 0.579 0.594 0.039 0.050 0.129 0.117
0.00 0.00 0.040 0.047 0.036 0.045 0.041 0.049
0.00 0.20 0.645 0.625 0.039 0.048 0.193 0.222
0.00 0.50 1.000 1.000 0.048 0.053 0.751 0.804
0.00 0.80 1.000 1.000 0.049 0.053 0.992 0.998
0.20 -0.80 1.000 1.000 0.178 0.153 0.995 0.998
0.20 -0.50 1.000 1.000 0.182 0.170 0.915 0.921
0.20 -0.20 0.644 0.655 0.196 0.166 0.514 0.480
0.20 0.00 0.153 0.136 0.214 0.189 0.176 0.142
0.20 0.20 0.699 0.673 0.206 0.165 0.038 0.045
0.20 0.50 1.000 1.000 0.178 0.148 0.414 0.476
0.20 0.80 1.000 1.000 0.120 0.102 0.969 0.990
0.50 -0.80 1.000 1.000 0.794 0.775 1.000 1.000
0.50 -0.50 1.000 1.000 0.850 0.832 0.997 0.997
0.50 -0.20 0.938 0.937 0.860 0.845 0.950 0.944
0.50 0.00 0.784 0.774 0.866 0.849 0.804 0.773
0.50 0.20 0.955 0.950 0.860 0.839 0.452 0.386
0.50 0.50 1.000 1.000 0.828 0.811 0.040 0.056
0.50 0.80 1.000 1.000 0.635 0.639 0.660 0.786
0.80 -0.80 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 1.000 1.000 1.000 0.999 0.999
0.80 0.20 1.000 1.000 1.000 1.000 0.991 0.981
0.80 0.50 1.000 1.000 0.999 0.999 0.805 0.728
0.80 0.80 1.000 1.000 0.988 0.994 0.032 0.063

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size
adjusted power of the tests.
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Figure 1: The power of the LM test, random effects model
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Figure 2: The power of the LM test, Anselin model
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Figure 3: The power of the LM test, KKP model - part |
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Figure 4: The power of the LM test, KKP model - part Il
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Appendix A: Score and Information Matrix
For convenience, we reproduce the variance-covariance matrix of the gen-

eral model given in (3):

Q, = Jr®[To.(A'A)" +02(B'B) '] +0.[Er ® (B'B) ']

Q' = Jre[Toy(A'A)" +0}(B'B)7']7' + L (Er © B'B),

2

To“
2
o-l/

> = Jr(CEA'A)TT+ (BB Y+ (Er @ BB)

where A = (Iy — pyW) and B = (Iy — p,W).
Denote the vector of parameters of interest by 8 = (02,073, p1, p,)’. Below,

we can focus on the part of the information matrix corresponding to 6. The

*Badi H. Baltagi, Department of Economics and Center for Policy Research, Syracuse
University, Syracuse, NY 13244-1020 U.S.A.; bbaltagi@maxwell.syr.edu;

“*Peter Egger: ETH Zurich and CEPR, WEH E6, Weinbergstrasse 35, 8092 Zurich,
Switzerland, E-mail: egger@kof.ethz.ch;

***Michael Pfaffermayr: Department of Economics, University of Innsbruck, Universi-
taetsstrasse 15, 6020 Innsbruck, Austria and Austrian Institute of Economic Research,
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part of the information matrix corresponding to B can be ignored in com-
puting the LM test statistics, since the information matrix is block-diagonal
between @ and 3, and the first derivative with respect to B evaluated at the
restricted (quasi-)MLE is zero.

First, we drive the score and the relevant information submatrix of the
general model. These results are then used to test the three hypotheses of
interest below. Hartley and Rao (1971) and Hemmerle and Hartley (1973)

give a general useful formula that helps in obtaining the score:

oL (nul‘m )+ (n 1% 1) W r=1..4 (1)

00, 00 a0,
Observe, that

ot _ Jr®(BB) ' +Er®(BB)'=I;® (BB)!

902 T T =lr®

oN =
L= 7 T(A’A)!

do?, r®T( )

aQu i ! / -1

o = JT®T0' (A'A)” (W + W —2p,WW)(A'A)
1

aﬂu ! ! !/ -1

3 = IT®0 (B'B)~ (W + W —2p,W'W)(B'B)

P2

To derive the information submatrix we use the general differentiation result

given in Harville (1977):

PLY 1 [0 0% 00,
Jrs = E [_ae g } =3l {Q 26, - a0,

r,s=1,..,4.

Here, 57 and J,s are evaluated at the (quasi-)MLE estimates.

Appendix B: Identification and Consistency
In the sequel, we use subscript 0 to indicate true parameter values where

necessary. First, we state the full set of Assumptions.

2



Assumptions!

A1l (random effects model): The model comprises unit-specific random
effects denoted by the (N x 1) vector p. The elements of p are i.i.d. (0,07)
with 0 < ai < b, < o0o. v is the vector of remainder errors and its elements

are i.i.d. (0,02) with 0 < 02 < b, < co. The elements of p and v are

v

independent of each other. Furthermore E[|z;|*t"]

< oo and for some 7, >
0, and E[|vy|*™] < 0o and for some 7, > 0.

A2 (spatial correlation):

(i) Both u; and uy, are spatially correlated with the same (N x N) non-
stochastic spatial weighting matrix W whose elements may depend on

N. The elements of W are non-negative and w;; = 0.

(ii)) The row and column sums of W are uniformly bounded in absolute

value.

(iii) The parameter space for p, is a closed interval contained in —1/Apax <
pp < 1/Amax for all N and r = 1,2, where Ay is the largest absolute
eigenvalue of W. A, is assumed to be bounded away from zero by

some fixed positive constant.

(iv) Let A = Iy —p; W and B = Iy —p,W. The non-stochastic matrices A,
B are non-singular for all p, in the parameter space and have bounded

row and column sums, uniformly in N. Also, its inverses have bounded

'To avoid index cluttering, we suppress the subscript indicating that the elements of
the spatial weights matrix may depend on N and that the dependent variable and the
disturbances form triangular arrays. For a similar set of assumptions and a discussion of

them see Lee (2004a) and Lee and Yu (2010).



row and column sums, uniformly in N and uniformly in the parameter

space of p; and p, .

(v) The inverse 3,1 (02,02, py,pp) = (J7 ® (

(E7 ® B'B) has bounded row and column sum uniformly in N and

(A’A) +(B'B)™)7) +

uniformly in the parameter space of (oi, o2, p1,py) 2

A3 (compactness of the parameter space): The parameter space ® with
elements (8,0%,02, py, py) is compact. The true parameter vector (indexed
by 0) lies in the interior of ©.

We note that Assumptions Al and A2 imply that 2 = {(¢, p1, p3) \( o2, 01,
py) € ®} with ¢ = o7, /07 is also compact. In the following, the elements of
= are denoted by the vector 1.

A4 (identification of ¥): For every 9€E, 9 # ¢, and any € > 0 :

lim SUp y_, o0 MAX9eR, () (— s In(57tr[2u(90)2,(9) 1Y) — 357 In[det X, (9)/
det 3, (90)]) < 0, where N_ (1) is the complement of an open neighborhood
of ¥y of diameter «.

A5 (identification of 3 under HY): The non-random matrix X has full
column rank K < N and its elements are uniformly bounded by some finite
constant. Further, let Qo = Er ® Iy and Q; = Jr @ Iy and define X* (p) =
I ® A. The non-random matrices limN_,oo(NT *(p)QiX*(p)), i = 0,1 are
finite. The nonrandom matrices limNHoo(ﬁX’X), limNHoo(ﬁX* (p)X*(p))
and limy o0 (57 X'2, () ' X) are finite and non-singular.

?Under Hf we have % (02,02, py,py) = (JT®( (A’A) +(A'A)H) H+(Ere
A'A) = Jr @ (T" wtov

In) + (Er @In)(Ir® A’A). Hence, in this case a sufficient
condition for Assumptlon A2 (v) is A2 (iv). Note Lemma 1 shows that this inverse exists

for all (02,02, p1,py) in the parameter space.
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A6 (positive variance of LM tests): NT'2(a201+(1—a)?(T—1)c)tr[(H(A'A)~1)2]—
(NT)_l 321-]\;1 12 (a2T2 +7T ((1 —a)+ %)ﬁ > bg for some bg > 0, 03 =

Tai + 0,2, and 0 < o < 1. H and [;; are defined in Lemma 4 below.

Consistency of the (quasi-)ML estimates under the general model.
In proving the consistency of (quasi-)MLE, we make use of the following

lemmas.

Lemma 1 Under the maintained assumptions A1-A3, (i) the row and col-
umn sums of (A’A)~! and (B'B)~! are bounded in absolute value, uniformly
in N and in 9 € B. (ii) the row and column sums of 3,(9) are bounded in

absolute value, uniformly in N and in 9 € B. (i) X,(9)" exists.

Proof. By Assumption A2 the row and column sums of the matrices W,
A, B, A" and B! are bounded in absolute value, uniformly in N and in
¥ € E. Since this property is preserved when multiplying matrices of proper
dimension (see Kelejian and Prucha, 2001, p. 241f.), one can conclude that
the row and column sums of (A’A)™! and (B'B)~! are also bounded in
absolute value uniformly in N and in ¥ € E, say, by constants c4 and cp,
respectively.
(ii) The row and column sums of 3,(¥) are uniformly bounded in absolute
value by Assumptions A2 and A3. To see this, denote the typical ele-
ment of 3,(9) by o;(89). Then, maz; } ;0 (9) < Tdea + cp < oo and
max;y ;0 (9) < Toca + cp < 0.
(iii) Since 3, = (Jr@(TH(A’A)1+(B'B) 1)) +(Er®(B'B)!) and (B'B)~*
exists by Assumption A2, it remains to be shown that (T'¢(A’A)~1+(B'B) ™)



is invertible. Using the updating formula we have (T'¢p(A’A)~'+ (B'B)~!)~!
=B'B - B'B (ﬁA’A + B’B> - B'B. The inverse will exist if det(T%ﬁA’A—l—
B'B) # 0. Observe that T%zﬁ > 0, A and B have full rank by Assumption A2
(iv), and that A’A and B’B are positive definite. We have det(TLd)A’ A+B'B)
> det(ﬁA’A) + det(B'B) > 0 for all ¥ € E (see Abadir and Magnus, 2005,
p. 215 and p. 325) and the claim follows. m

Lemma 2 Under assumptions A1-A3, the matrices ¥,(9) and X, (9)! are

positive definite.

Proof. Observe that det[X,(19)] = det[T'¢(A’A)~1+(B'B)~!] det[(B'B)~!]7~!
and that det[T'p(A’A)~1 + (B'B)~1] > det[T¢(A’A)~!] + det[(B'B)~!] > 0,
since ¢ > 0 and (A’A)~! as well as (B'B) ! are positive definite by Assump-
tion A2 (see Abadir and Magnus, 2005, p. 215 and p. 325) as shown above.
Therefore, 3,,(9) and X,(9) ! are positive definite. m

The proof of consistency of the maximum likelihood estimates is based
on the concentrated log-likelihood. Recall that the unconcentrated log-

likelihood is given by

L(8,0) = —2In2r — Lindet[To’(A’A)! +02(B'B) |

~ I Indet[o}(BB) '] — 5k (v - XB)'S, ' (y — XB).

In the following, we use a hat to indicate the maximum likelihood estimates



of parameters. The first order conditions for 3 and o2 are given by

OO~ LX'E, )y~ X'D,(9) 'XB @
= B) = (X'=,0)'X) ' X', @)y

EEL = 10+ Hu(B()E.(d) u(B(9))
S 52(9) = u(B(ﬁ))'z%w;)*lu(E(ﬂ)).

The concentrated log-likelihood function then reads
Le(9) = =2 (In27 + 1) — 2L In 52 (9) — § Indet =, (09).

To obtain the non-stochastic counterpart of L¢(1), we use

E[L(By,0)] = —2In27 — 2l 1Ino? — LIn[det ,(9)] — Uzgtr[ﬁ(’ﬂ)_lﬁu(ﬂo)]

20
and
_ -1 _
aE[Légo’ﬂ)] — (X/Eu(,ﬁ) lx) X/Eu(’l?) 1E[y] :ﬁo
A = —im A E0) B0 = 0

= 2(9) = T [E,(9) LS. (D).

v NT

The non-stochastic counterpart to the concentrated likelihood is given by

Q) = mazE|L(0)]

v

= —% (In27 +1) — %1110;2(’(9) — %lndet 3. ().

Theorem 3 Let Assumptions A1-A5 hold: Then (i) the mazimum likelihood
estimates of ¥ are unique and consistent. (ii) Assume in addition that HS

holds: (B(@) - 60> L, 0, where O is a consistent estimator of 9.

7



Proof. To prove consistency, we have to show that +=(L¢(9) — Q(9))
converges uniformly to 0 in probability. Note that = (L¢(9) — Q(9)) =
—5(In5;(9) — Inoy*(9)) and that ,(9) = %u(ﬁ(ﬁ)) J(9) u(B(9)) =
7 u(Bo) Zu(9) T Mu(By) — u(By) B ()" M(9)u(By) = wptr[Zu(9) " Inr—

( ))u(By)u(B,)], where M(9) = X (X'E,(9)'X) ™" X'E,(9)~". Hence,

52(9) — Inop2(¥9) = tr[S,(9) T M(9)*
0)

u(B,)u(B8,)’]. Observe, that

Frtr[Zu(9) " M(9)u(By)u(B,)'
= St [(X'S(9)1X) T XE,(9)  u(By)u(B,) S (9) X
Tt [ (5 Xu(9)7X) | tr [ (X'Bu(8) " u(8,)u(B,)' S(9) 1X)
< ”OKcltr[ (XS, (9) 'u(By)u(By) =.(9)7'X)] .

The third line follows since (X'2,(9)7'X)™" and X', (9) u(8,)u(8,)

IN

3,(9)7'1X are positive definite matrices (see Abadir and Magnus, 2005, p
216 and 329) for all ¥ € = and the elements of (ﬁX’Zu(ﬁ)_lX)fl are
uniformly bounded by some positive constant, say c;, uniformly in the para-
meter space of ¥ by Assumptions A2 (v) and A5 (see also Kapoor, Kelejian

and Prucha (2007, p. 118f.). This implies

sup( 2(9) — 83(19)) ”OKcltr [ (X 3. (0 )’1u(60)u(,80)’2u(19)’1X)] )

veE

Now.

Tim LB [t [ (X/S4(9) M u(8y)u(8y) Su(9) X))
= lim st [ (X/B,(0) 18 (90)2(9) 'X)] < lim T2 Ke, =0,

This follows from Assumptions A2 and A5 and the observations made in

Kapoor, Kelejian and Prucha (2007, p. 118f.). In particular, we have that

8



3 (9) 71X, (99) X, (¥) ! possesses bounded row and column sums, uniformly
in N and uniformly in the parameter space of ¥ using Assumption A2 (v),
and the elements of X are uniformly bounded by Assumption A5. Then
the elements of X', (9) 1%, ()X, (8¥) ' X are bounded, uniformly in
N and umformly in the parameter space of 1, say by some constant c;. Next
observe that

Varlr (X'Z,(0) " u(By)u(By) .(9) X))

- (jV_T) r [(L (X'2.(9) 7' Z0(90)8u(0) X))’

1/ 0 2
< (NT)2 Kc

By Chebyshev’s inequality, we conclude that plim ..o 57 (X2, (9) " u(B,)*
u(B,)'X.(9)'X) = 0 and, hence,

sup (0,2(9) = 7,(9)) = o,(1).

veE

G (9)—0*(9)

Using the mean value theorem it follows that In 52 (19) = In o72(19)+ 2 209
with the 72(¢9) lying in between ¢*2(19). Since 52(9) — 03%(19)=0,(1) uni-

formly in Z, 52(19) will be bounded away from zero uniformly in probability
if 0¥%(19) is bounded away from zero.
Below we show that lim supy_, o, maxycx. g,) 77 (Q(9) — Q(¥)) < 0 under

the present assumptions so that

v7 (Q(9) — Q)
Ino}?(¥9) + 1 In 0% (9) — 52— In (det T, (9)/ det X, ()

2NT
= —% Ino*?*(9) + %ln o2 (9g) +

2NT

or

Ino?(¥) > Ino*(do) + = In (det X, (9) !/ det B, (99) ")

9

In (det X, (9) 7"/ det 2, (9) ™)

<0



uniformly in 19 €N.(),where N_(1d) is the complement of an open neigh-
borhood of ¥y of diameter e. 0**(9¥) > 0 by Assumption Al. By Lem-
mata 1 and 2 det X, (9)"!/det X,(9)"' > 0, uniformly in N and uni-
formly in the parameter space of ¥ and we conclude that ¢*?(¢) is bounded
away from zero and 2(19) = Op(1) uniformly in 9. Therefore, we obtain
supyy |L°(9) = Q(8)| = sup|In g, (0)— o2 (9)] = Supzigy 7, (0) — a2 (V)]
= 0p(1) uniformly in =.

Secondly, we have to prove the following uniqueness identification condi-
tion (see Lee, 2004a). For any ¢ > 0, limsupy_, o, MaXycw, (9, 7 (Q(9) —
Q%)) < 0, where N.(J) is the complement of an open neighborhood
of ¥y of diameter . Note, Q(9) — Q(9y) = —2L[Ino*(Y¥) — Ino}?(do)] —
1 In[det 3, (9)/ det £,(9)]. Now, Ino}2(9)—Ino}3(Fo) = Intr<= [y (F) Eu(9) !
—In gztr[Inr] = Intr 53, (90)2u(9) 7] and lim sup o, maxyow. 9,) w7 (Q(F)
— Q1)) = limsupy_, ., maXﬂeﬁs(ﬂo)(_% In 5172, (99) 2, (9) -
1 5= In(det ,(9)/ det ,(9))) < 0 by Assumption A4. Accordingly, we
conclude that the maximum likelihood estimator ¥ of 1Yy under the general
model is unique and consistent, since Q(1) is continuous and the parameter
space is compact.

Lastly, the consistency of B(@) under H{' or HY is established by observ-
ing that our assumptions imply those made in Theorem 4, part b, given in
Kapoor, Kelejian and Prucha (2006). Hence, we conclude that under Hg' or
HSY (NT)? (B(@) - B(ﬁ)) 2, 0, since ¥ is a consistent estimator of ¥ as
shown above. Note, B(ﬁ) is a (NT)"*-consistent estimator of 3, and the
consistency of B(@) follows. See Lee and Yu (2010b) for a similar proof. =

Appendix C: LM Test for random effects
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Below, Theorems 6 and 7 derive the asymptotic distribution of the LM
tests for the random effects model and the KKP model. The following lemma

is useful in proving these theorems.

Lemma 4 Assume that Assumptions A1, A2 and A6 hold and that p; =
(ZMA_I[VI;—F(IT@A_I)V), ((ijT + (1 — CY)ET) ® H) .
(Z, A7+ (Ir @ A~YYv), where where H is a conformable symmetric matriz

py = p. Consider the quadratic form Q) =

and 0 < a <1 s a real number. Then,

E[Q] = (a0t + (1 — a)o(T — 1))tr[H(A'A) Y.

VarlQ] = 2(a’o] + (1 —a)*(T — 1) op)tr[(H(A'A) )]
NT+N
+a2T22l“ u( ) (1—a)+ 202 3 2ot (ulh) - 3)
i=N+1
withL = A"THA ™, ,ul(f) = E{L’f}], and u,(,4) = %24] l;; and c; denote the iith

elements of L and C, respectively, where the latter is defined below.

Then

Proof. Inserting Z,, = (1r ® Iy) yields

aTL aLL aL
_ 2a—1 200—1
0 . —eCe—¢ oL L((1-a)+ %) L(%%) ¢
| oL L(22) L((1—a)+ %) |
T

T T
- an,’L,u—i-QaZ viLp+(1 — «) ZV;LVt + (2a—1)% (

t=1

t=1

11

ZV

t=1

/
t

Jr(z)



where L = A" '"HA™', tr(L) = tr[(H(A’A)Y. &=/, v}, ...,v}) with
E[¢] =0 and

O'iIN 0 .. 0
0 O,%IN .. 0
Var[€] == Qe =
0 oy
Let
Qf - SS/
O-,uIN 0 . 0
S — 0 UVIN . 0
0 .. .- O'VIN

1
and define n = S~1¢ so that plY = E[((‘;—M)]‘l and plY = E[(”—) ]. Ciiye 18

Ov

the 7ith element of

aiozTL ou0,0L . ou0,0L
—— o,0,0L o2L((1 —a) + %‘T_l) . ogL(Qa—T_l)
0,0,0L o2L(3%1) . o2L((1 - ) + 221)

It can easily be verified that

E[Q] = (a0? + (1 — a)o*(T — 1))tr[H(A’A) ]

14
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and that
NT+N

VarlQ] = 2tr (C.C0) —l—Zcu*( —3)+ > L () -3)

=1 i=N+1

= A%l + (- aP (T = Dol rl(HAA)

+a2TQZl“ u( )+T((1—a 4 2a1) Zl“ oy (n?
For o — 1 one obtains
E[Q] = ojtr[H(A'A)™]
VarlQ] = 20%r|(H +Zl ( 4T2( 3) + Lot (4 <4>—3))
and for o = 0
EQ] = o)(T - tr[H(A’A)™]
VarlQ] = 2(T —1)o*tr[(H(A'A)™! Tl Zzu (e —3).

Observe that Var[Q)] is uniformly bounded away from zero by some positive
constant under the present assumptions. Also, the assumptions imply that
the row and column sums of A, (A’A)~! and H are uniformly bounded and
so are those of L. Since the elements of & are independently distributed
by Assumption A1, the assumptions of the central limit theorem for linear
quadratic forms given as Theorem 1 in Kelejian and Prucha (2001, p. 227)
are fulfilled and the claim of the lemma follows. =

Next, this Appendix derives the LM test for the null hypothesis Hg' :
p1 = py = 0, i.e., that there is no spatial correlation in the error term. The
joint LM test for the null hypothesis of no spatial correlation in model (1)
tests Hg' : p; = p, = 0. The LM statistic is given by

LM, =D}J;'Dy, (3)

13



where Dy = (9L/08)(8) is a 4 x 1 vector of partial derivatives of the log-
likelihood function with respect to the elements of 8, evaluated at the re-
stricted (quasi-)MLE, 8. J, = E[—92L/0008')(8) is the part of the informa-

tion matrix corresponding to €, also evaluated at the restricted (quasi-)MLE,

0.
Under Hg' : p; = py, = 0, B = A = Iy. Using the general formulas given

above, the relevant elements of the score under H{' are determined as

oL o2 ,
— = ;4u [Jr® (W' +W)u
p HE !
oL o2 =
= = W [(%Tr+ LE)© (W +W)|u
dp, HE ! v
and
7 i S 0
5 o %; 0 0
Olgp — 2,4 2 o2 )
0 O 0 ,1;0_4# bA T2g4 z bA
TUQZ'Q ol ET—l)
0 A L

where by = tr [(W' + W)?]. Note the determinant of the submatrix jpppz is

determined as

det lJpl P2

2 ~4
— (b_A)2 il
HY 2 1

and its inverse is

-1
P1-P2

~4 | ~4 ~22
) . (I'-1)o,+0, —To,0,

A baAT2(T-1)52 o -
Hg (T=13, —Taialz, TQO'i

Defining

Ga=U[Ir @ (W +W)a, My=u[Ere (W + W),

14



we have

TN DT, 1 2
LMy =Dy Dy = 2bA5‘11GA 264 (T Dos MA

Theorem 5 (LM ) Suppose Assumptions Al - A5 hold and H{' - =

py = 0 s true. Then, LM, = ~4GZ + 5

o M2 4 1s asymptotzcally

( Do,
distributed as x3.

Proof. First, use the residuals of the true model u =y — X3, and define
G4 =uG uand My = WMu, where G4 = J;r ® (W + W), and My =
Er @ (W +W).

(i) We can apply Lemma 5 by setting « = 1 and A = Iy so that H =(W'4+W)
with tr[H] = 0, because tr[W] = 0. Also observe that l;; = 0 under Hg'.
Hence, E[G4] = 0 and Var[G4] = 20(ba with by = tr[H?]. By Assump-
tion A2 the row and column sums of H are uniformly bounded. o2/2b, is

bounded away from zero by some positive constant as shown in Lemma 5, so

_Ga
O'% 2ba

(ii) Setting a = 0 in Lemma 5 implies that —224 <, N(0,1).

024/2(T—1)bs

(iii) Inspection of the proof in Lemma 5 establishes the independence of

converges in distribution to the standard normal.

% )
02+/2(T—1)ba A

= 1 is also asymptotically normal and, hence,

G4 and M,. From Lemma 5 it follows that ﬁG A+
1
o

- 2
with 02+/2b4 T 024/2(T—1)b4

/
Ga Ma
o1V24’ o2\ /2AT—1)ba

ate standard normal by the Cramér-Wold device. Consequently, LMy =
T Ch + wrme
(iv) Notice that Fu 'Ga u—\/Tu 'Gau=ZuGAXVN T(B—B8,)+ (NT)~
VNT(B — B,)X'G4XV/NT(B — 3,). Given a v/N-consistent estimator of

B,, say 3 and U = y — X3, we have \/%ﬁ’GAﬁ — \/%u’GAu = 0,(1),

the vector of quadratic forms converges to a bivari-

M? is asymptotically distributed as x3.

3
2

15



since X and G4 are non-stochastic matrices (see Lemma 1 in Kelejian and
Prucha, 2001, p. 229). Similarly, F uM u — \/T u'Myu = 0,(1). Fur-
ther, (NT)"'201ba > ¢; > 0 for some constant ¢; and (NT')'20%-(T—1)bs >
¢, > 0 for some constant c,, since ai > 0 and 62 > 0 by Assumption Al and
0 < ¢, < by by Assumption A2. As shown in Appendix B, 5> = o2 + 0p(1)
and 72 = o2 —|—op(1). Then, Theorem 2 of Kelejian and Prucha (2001, p. 230)

—op(1)and ——a_ —__Ms__ _ (7).

implies that V2 (T—1)ba  \/20M(T—1)ba

Ga
\/ ~41)2 \/20‘1%2,4
Hence, LM 4 — LMy = op(1l). m

Appendix D: LM Test for the Anselin Model

First, we drive the score and the relevant information submatrix of the general
model. These results are than used for the special cases to test the three
hypotheses of interest below. Hartley and Rao (1971) and Hemmerle and
Hartley (1973) give a general useful formula that helps in obtaining the score:

Ly(B,0, 07, p1,p5) = —FIn2m — Indet[To;,(A'A)™ + 0} (B'B)~{}4)
~ =1 Indet(c?(B'B) ) — Lu'Q, tu,

Q, = FEu)= E((Z,uy +uy)(Z,u; + u)’]
= o2T(Jr @ (A'A)™) +02((Jr + Er) @ (B'B)™)
= Jr®o T(A'A)" +0.(BB)™") +0.(Er @ (BB)™)

We diagonalize 2, = SS’ so that Q,' = S'7'S~!. In the following the index
r stands for restricted estimation so that Hy: p; = 0 is true. Following

Kelejian Prucha (2010), let n = S~'u and E[n] = ,u7(73) and E[ni] = /L7(74) and

16



let ), refers to o2, o2, p; or p,y. In general, one obtains

oL B 1
% _Sﬁ(ﬁaer)_XQu u
oL B _ 1 109,
aek 0:074 - Sek<0 ) t |: u 0]4; :|0 + u |:Qu 89
_, 08,
0=0,
Cov[sg,(0:),83(8,6,)] = 0

Corta @) m(o) = o[ (0220, ) (oo Gear) ol

NT
+ % Z GZ,iiaiii(Mff) - 3),
i=1

where aj ;;, is an element of A} = S'Q; | %‘;

oo, Q,1S. Note, since sg(3, 6,)
is linear in u and sy, (,) is a quadratic form in u, Cov[sy, (0,),s3(3,0,)] =0
and €2, is block diagonal. So we need a matrix of correction factors with el-
ements ZZ L Ok 30 “(u,(74) — 3), which can be calculated numerically. In
particular, u{" = E[(S~'u)"] can be estimated from S~'1 using 2, = SS’ =

PAP or S = PA%, since €2, is a real symmetric matrix. It follows that

Q' =8"1S"! Var(S7'u) =S7'Q,S"! = S71SS'S'"! = 1. Observe that

1 ’{Q 1 082, O3 - 1} u
00, 9—0.

= 1 [s’—ls—1 oL, S’—ls—l} u

00y,

6=0,
8Qu —1 —1
a—ek ) S ) S u

S/l) n
0=0,

|

— 1ulsl—1 (S—l

o2
1 Y8y
<S s

l\DIH

17
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—1

where the elements of 1 are id(0,1) so that A, = S™* %‘0}:

0=0,

NT
COU[S@k (97‘)7 391(07‘>] = tr [AkAl] + % Z ak,iial,z‘i(ﬂ#) - 3)

i=1

= tr|Q," - Q! - 3 11 Qi “_3
T |: U aek ezer u aek BZOT:| + 2 ; ak‘, al, (lun )

Defining the 4 x 4 matrix Xy with klth element [% le\g amial,ii(u#) - 3)],
R = [0,0,1,0], the robust LM-test statistic following White (1982) is given
by
LM e = 3, R (R (3,0 + 3,553, ) R RI,d,

and asymptotically distributed as x*(1).
Appendix E: LM Test for the KKP Model
To derive the asymptotic distribution of the LM test for HY, it proves useful
to re-parameterize the model so that p; = p, + A and to test HY : A =0 vs.
HEP : A #0, i.e., that the spatial panel correlation follows the specification
proposed by KKP.

Under HS, B= A, Q, = (027 +02Er) ® (A’/A)~' and Q! = (Oi%jT +
U%ET) ® (A’A). Using the general formulas for the score and for the infor-

18



mation matrix given above, we get

oL _ =
5oz —% — N(27;31) + %u/[(g%tJT + 5 Er) © A’AJu

v HOC
oL
@ _%_‘_% [%(JT(@AA)]

wlH§
oL - To?, 1../To%=
9a, = ~BHrDl+ (T e P
oL To? To? <
Opy| . = TaA DI U (GEIr @ Flu

0
—4[% + (T - V]tr[D] + $u/[(%T7r + SEr) @ Flu
= —5trD] + 3w((HTr + 5Er) @ Flu,

where F = W/A + A’'W and D = F(A’A)™!

part of the information matrix are

R H 0 sl (G5l
Jole = ot i ) T_umn]
vin]  SZeD] L%emy  “dtwpy
(4 D) o) Toe) T (24 ) i

. The elements of the relevant

The restricted (quasi-)MLE estimates under H§ are labeled by a bar. In fact,
this gives the (quasi-)MLE version of the KKP model and @ = y — X3. The

score with respect to each element of @ evaluated at the restricted (quasi-

)MLE 8 is given by

T52
267

t—z2r[D] +u'(Jr @ F)u)

0
0

0

19




Using d¢ = tr[D] and éc = tr[ﬁQ], the lower (4 x 4) block of the estimated

information matrix evaluated at the restricted (quasi-)MLE @ is given by

[ (T-Vo{+oy 4 52 (T-Dai+oiod l
—4_ — - =2
NT To, Tdc’ M To;
- 1 T To> o2
J 1 I
T 2 2 4
_ o] To Tot o252
Iz Iz — I Iz
Tdc 4, 22 Tec
(r-loj+o,0¢ —2 =22 =4
L Tay, 1 1 p 1 J

To derive the lower right block of the inverse J, 1, we employ the formula for

the partitioned inverse to obtain

—4 —2-—-2
3;1 5 07 —010,
P2 T(T-1)bcot . - ’
(T=1bca 0’%02 | Uﬁ

where bo = é¢ — Eé /N. Defining Gy, = W(Jr ® F)u the resulting LM

statistic for HS is given by

- = =—1= (éc})—gzt'l‘[ﬁ])2

LMe =Dy Do = =5 iy
Theorem 6 (LMc) Suppose Assumptions A1 - A6 hold and H§: p; = py =
pis true. Let H= (W'A+A'W), D=HARA", L=A"THA" with
elements l;;, bo = ec — 320/]\/ de = tr[D] , ec = tr[D ] Gopy =0 (Jr@F)u,

_ 1= llzzz( f‘TQ( - 3)+ o ( & 3)) r 1= 1lz21(TU ( E/ ) 3))
db o 201tr[D2] and dw o (T—- 1) 204trD?] : Then,
N —\ 2 . .
LM ¢ robust = m (Gey — 7itr[D)) <m) is asymptotically
distributed as x?. Under normality, LMo = % (GCb — E%tr[ﬁ])z and

is asymptotically distributed as 3.

Proof. We will make use of the following first order conditions evaluated

20



under HY :

L fog oL I
% = DD+ w(FI e Hu =0 )
OA | e 7
oL — _
— = —Ztr[D] 4+ ju'[(HJr + ZEr) @ Hlu =0 (6)
dp, HY ! v

From the first order condition (6)

oL
dpy

= —3tr[D] + 3w [(zJr + 5Er) @ Hju
0

we obtain
FHr[D]=41 (I @ H)+ 2@ (Br @ H)m
Inserting in (5) gives the estimated score as
5a(0)|ge = WIre@H)u - ;0 (Jr @ H)u
2

= Fa(JreHu- Zu(EroHu

' (Er ® H)u

=2
_ 91
T52

Ul/

Below we will show that (NT)_% (EA(0)|HOC - SA(0)|HOC> +0,(1), so we de-
rive the asymptotic distribution of s (0)] ug to establish that of the LM test.
Observe that

Elsa®)lyg) = E[%0(Tr @ Hju - 7' (Br © H)u)
1

= T=l524(D) — 2 (T — 1)o*tr(D) = 0

2
To?

N
Varlsa(0)lyg] = 2(%7)" oltrD? + (%7)" Y o (72 (1) = 3) + fol ("~ 3))

i=1

N
ey (T = Doftr[D?] 4 gty 0l 3008 () - 3).
i=1

using

Qe = oi[Jr @ (A'A)7] + o} [Er @ (A'A) 7]

21



and Lemma 4 under o = 0 with @) as in Lemma 4
ElQ] = obr[H(A'A)™]
VarlQ] = 207tr[(H(A’A)™1)?] + XN:lfiai <T2 <M£ 3) + TUu (M(u4) 3)) :
i=1
and under o =1
E[Q] = oI —1)tr[H(AA)7]

VarlQ] = 2(T — )otr[(H(A'A) 1)+ T0 1 421
Collecting terms yields

N
Varlsa(0)lye] = 2(L2) ottr[D?] + (%)2Zz§ia,§ (72 (ufj” —3) + ot (

g 421
= 201tr[D*] 2L + (%)2 Cp + Tg_igcm
where we define ¢, = SN 12 ( ohT? (u(4) — 3> + 705 </L£4) 3)) and ¢, =

Zz 1 U TTl) (,uz(/4) —3) and use (T 1) + Lt = TT—2 (T—1+1) = %

Next we derive the standardized score as

5a(0)| g — Elsa®)lyg]  Fu/(Ir @ Hju — ghu/(Br © Hju

\/VGT[SA(0)|HOC] \/20‘11tr[D2]% + (%)2 cp + Tg—iécw

Q=

)

22



with
Eu'(Jr @ Hyu] = ojtr[D]

Varju'(Jr @ Hyu] = 207trD? + ¢

EW(Er @ H)u] = o}(T — 1)tr[D]
Var[u(Er @ Hu] = 2(T — 1)oitr[D?] + c,.

Below we show that @, = * 2l % N(0, 1) and Q,, = * G 0Dl 2

N(0,1). Since the two quadratic forms are independent it follows that
Q KR N(0,1), where

%Qb\/Qa‘ftr[DQ] +cp — 7 2Qw\/2 — 1)odtr[D?| + ¢,
4
\/QU%tT[DQ]% + (%) Cp + Tg—gfj w

Q=

. g e .
For convenience we define dj, = 5T DY and d, = 510D and rewrite () as

Qo2 (552)* 04tr[D2) + ¢, — Qu 1y /20T — D)ottr (D + ¢,
\/20‘11157“ DL+ (%)2 o+ Ti—igcw
Qb\/Q TT oitr[D?] + ¢, — Qw\/Z Tz oitr[D?] + %cw
\/20‘1%7" D2 + (%) cp+ Tg—;cw
Qv 02/2tr D1+ dy — Quoiy/2tr[D?] \/TT21 + W\c/"m
o24/2tr|D?] \/% + % 2031;:@2] + Tgiﬁ 20‘1*;1"”[D2]

Quy/(T = 1> + (T — 1%, — QuV/T =1+ d,
VT =DT + (T - 1)%d, + d,, '
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Inserting the quadratic forms in the nominator of () yields

Qu/ (T — 12+ (T — 1)2d, — Qu/T — 1+ d,
_ u(Jr®H)u - oitr[D] — —
B \/204757" [D2] + ¢ \/(T D+ (T = 1,

(ET X H)u — 0 (T — 1)tT[D] m

V2(T — 1)oitr[D?] + ¢,

Gey Geow
= T—12+ (T —1)%d, — VT —1+d,
V205tr[D?] + ¢ v i iy V2(T — 1)oltr[D?] + ¢,
2 2 _
Dl e e - I = VD) T—1+d,
V/204tr[D?] + ¢y V2(T — 1)oltr[D?] + ¢,
_ VI D2 (T -y VI —1+d,
20%trD2V1 + d, */205r[D2]\/(T — 1) + d
o2r[D|(T — 1) o2(T — 1)tr[D]
V1+dy+ v T —1+d,
204 tr[D?VI + dy " 20D /(T — 1) + do
T-1 1
= GCb4— — U  —
2071tr(D?] 204tr[D?]

where we define G, = v/ (J7r ® H)u and Gg,, = v/ (Er @ H)u.

Remember the denominator is given by

V(T = DT + (T — 1)2dy + d,.

The test can then be based on

Goy—im=s = Gow s
\/m _ 20‘1t’l"[D } 2O'Vt7‘[D ]
| VT DT+ (T~ 1%+ dy
B Goo(T — 1) — Gew
V20itr[D? /(T — )T + (T — 1>2db +dy,
Under normality the test statistic is given by
T Ge(T — 1) = Gew _5
Y VoD (T -)T
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Observe that @ —u = —X (8 — 3), where u = (¢7 ® A p+(Ir ® Ay

and
(NT)fl/zﬁl(jT@’ﬁ)ﬁ = (NT)fl/Qﬁ/(jT@)(W + W' =2pW'W))T := Qyo1—20Qsc2-
Following Kelejian and Prucha (2001, Lemma 1), one obtains

Qs = (NT)0'(J7r @ (W + W))u+to,(1)
Ques = (NT)"V/'(Jp @ WW)uto,(1).

Notice that
20Qpc2 — 2pQuc2 = 2(p — p) Qpea — 20(Qpea — Quez) = 0p(1).

The last equality follows since p is a consistent estimator and Q¢ = O,(1)

by Lemma 4, after setting H = W'W and a = 1. Therefore,
Quor — Qoer + 20Qyco — 2pQuca = 0p(1).

Defining Qvc = Qpc1—2pQp01, We obtain @bC_QbC = 0p(1).and (NT)—1/2ﬁ/(jT®
H)yu— (NT)"V?u/'(Jr @ H)u = 0,(1). Now,

E[ (Jr @ H)u]=c7tr (H(A’A)’l) = oitr (H(A'A)’l)

using tr (H(A’A)™) = tr (A"Y(W'A + A’W)A™) = tr(A""W'+ WA 1) Similarly,
(NT)™V/*u'(Er ® Hju — (NT)"V?u'(Er @ H)u =0,(1). Defining Q¢ =
Yly/'(Er @ H)u, we also have Q. — Que = 0,(1). Also, the two quadratic

forms Q¢ and Q¢ are independent by Lemma 4. As a result we obtain
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254 D)/ (T — 1) T

T (GCb — E%tr[ ])
25D (T - )T\ 1 + <C_Zb +3;,) (7%

- vk \/1+ (dy+ ) (Z=2)

using 75 tr[D]=1u'(Jr ® H)u+ L ' (Er ® H)u.

r2u

f— T—1)24+(T—-1)2dy+T —1+d,
LMC’n“obust - \/( ) ( )_b — *{

VT =12 (T = 1%, + T — 144,
(NT)~V252,/2tr[D?]
(NT)~1/2521/2tr[D"]
(NT) M2 Gy + 0,(1) 1)
(NT)=1202,/2trD2\/(T — 12+ (T — 1)%dy + T — 1 + d,,
(NT)=1/252 2tr[D?]
(NT)~1/2527/2tr[D"]

\/mi (= 1)Gey — Z—;fécw 1
C,robust — 1+ (db + d )(T—l)

B (NT) "G top ()
(NT)=1/2624/2tr[D2]/(T—1)2+(T—1)2dy+T—1+du

Notice that o5 = 07 + 0,(1), 72 = 02 + 0,(1) and 0% > 0 and 2 > 0 by

Assumption Al. Using H=F = (WA +A'W) = W + W-2)W'W) in
Lemma 4, we conclude that (NT)'o? (2tr[D?]) and (NT) " 'ol2(tr[D?]) are

bounded away from zero by some positive constants. Furthermore, since p —

1/2 2 r . -1/2,2 r
()P BDR] _ o iy D0 /BDT
(NT)~1/252+/2tr[D’] (NT)~1/252+/2tr[D°]

1. Assumptions Al and A6 imply that /(T — 1)2 + (T — 1)2d, + T — 1 + d,,

p = 0,(1) we have plimy_,

is bounded way from zero by some positive constant. With the higher mo-
\/ (T=1)2+(T—1)2dp+T—1+du
V (T=1)2-(T—1)2dp+T—1+d,
it follows that Wc,mbust _LMC;robust = Op(l). |

ments being estimated consistently, plimy_.o =1,
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Appendix F: Numerical optimization

We use the constrained quasi-Newton method involving the constraints
ai > 0,02 >0, —-1<p <1land -1 < p, < 1 to estimate the para-
meters of the four models (the unrestricted model and the three restricted
ones: random effects, Anselin, and KKP). The quasi-Newton method calcu-
lates the gradient of the log-likelihood numerically. We use the optimization
routine fmincon available from Matlab which uses the sequential quadratic
programming method. This method guarantees super-linear convergence by
accumulating second order information regarding the Kuhn-Tucker equations
using a quasi-Newton updating procedure. An estimate of the Hessian of the
Lagrangian is updated at each iteration using the BFGS formula. All tests

are based on the analytically derived formulas for both the gradient and the

information matrix, using the estimated parameters.
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