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Abstract. We analyze the e�ect of environmental uncertainties on optimal �sh-

ery management in a bio-economic �shery model. Unlike most of the literature

on resource economics, but in line with ecological models, we allow the di�erent

biological processes of survival and recruitment to be a�ected di�erently by en-

vironmental uncertainties. We show that the overall e�ect of uncertainty on the

optimal size of a �sh stock is ambiguous, depending on the prudence of the value

function. For the case of a risk-neutral �shery manager, the overall e�ect depends

on the relative magnitude of two opposing e�ects, the `convex-cost e�ect' and the

`gambling e�ect'. We apply the analysis to the Baltic cod and the North Sea her-

ring �sheries, concluding that for risk neutral agents the net e�ect of environmental

uncertainties on the optimal size of these �sh stocks is negative, albeit small in

absolute value. Under risk aversion, the e�ect on optimal stock size is positive for

su�ciently high coe�cients of constant relative risk aversion.
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Introduction

Environmental uncertainties have important e�ects on the development of �sh

stocks (Hilborn and Walters 1992). Accordingly, stochastic �uctuations in envi-

ronmental variables such as temperature, salinity, or oxygen concentration, have

to be taken into account when discussing optimal �shery management. For risk-

neutral agents, Reed (1979) shows that optimal management of a �sh stock is

characterized by a constant escapement policy, i.e. it ensures that a constant pro-

portion of the stock remains in the sea after �shing.1 Reed (1979) also shows that

the optimal constant escapement level in a stochastic environment is equal to,

or larger than, the optimal escapement level in a deterministic setting where the

unit harvesting cost function ful�lls a number of regularity assumptions. Various

articles have re�ned Reed's seminal work by adding multiple uncertainties (Clark

and Kirkwood 1986, Sethi et al. 2005), costly capital adjustments (Singh et al.

2006), choice of regulatory instrument (Weitzman 2002), spatial structure of the

resource, (Costello and Polasky 2008) and management with environmental predic-

tion (Costello et al. 2001). All these studies assume risk-neutral decision-makers.2

One thing that most of these models have in common is that environmental

stochasticity is modeled by an i.i.d. random variable zt multiplied by the average

stock-growth function f(xt) of the resource stock xt at time t, i.e. xt+1 = zt ·f(xt).3

The stock-growth function combines the di�erent biological processes of re-
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cruitment (young �sh entering the harvested stock), survival, and growth in terms

of weight. Multiplying the average stock-growth function by one random variable

implies that all biological processes are equally a�ected by environmental �uctua-

tions. From a biological point of view, however, it seems more plausible to assume

that the respective processes would be in�uenced di�erently by �uctuations in the

environmental conditions. In most ecological stock-assessment models of marine

�sh populations the reproduction process is considered to be more sensitive to en-

vironmental �uctuations than the survival of adult �sh, which is usually assumed

to be constant.4 Accordingly, we split the stock-growth function into two func-

tions describing the processes of recruitment and growth on the one hand and of

adults surviving natural mortality on the other. The recruitment and growth are

assumed to be stochastic, whereas natural mortality is assumed to be �xed.

We examine the e�ect of uncertainty on the optimal size of a �sh stock un-

der both risk neutrality and risk aversion. Whether or not optimal escapement

increases with uncertainty is connected with the prudence (Kimball 1990) of the

value function. If the value function of the �shery considered exhibits positive

prudence, the optimal policy will involve precautionary savings in the natural cap-

ital stock and hence higher stock size under uncertainty than in the deterministic

case. If the value function exhibits negative prudence, the optimal stock size under

uncertainty will be lower than in the deterministic setting. As the value function

depends on (i) the biomass growth function, (ii) the pro�t function, and (iii) the

representative �sherman's utility function, all three have an in�uence on whether
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optimal escapement increases or decreases with environmental uncertainty.

Considering risk-neutral stakeholders �rst, we show that the overall e�ect of

uncertainty on the optimal size of a �sh stock is ambiguous, depending on the rel-

ative magnitude of two opposing e�ects, the `convex-cost e�ect' and the `gambling

e�ect'. The `convex-cost e�ect' reduces optimal escapement under uncertainty over

and against the deterministic case. Because harvesting costs are convex in the �sh

stock, expected harvesting costs are larger when �sh stock growth is uncertain

than they are at an expected stock level. The `gambling e�ect', on the other hand,

increases optimal escapement under uncertainty. It comes about because uncer-

tainty is multiplicatively connected to stock growth, so the distribution of the

next period's resource rents is positively skewed. This e�ect induces a risk-neutral

�shery manager to `bet' on favorable environmental conditions.

For the case of a risk-averse representative �sherman, we show for a special case

that optimal escapement increases with uncertainty if the coe�cient of relative risk

aversion is large enough.

In quantitative terms, we apply the model to Eastern Baltic cod and North

Sea herring �sheries and conclude that under risk neutrality the net e�ect of envi-

ronmental uncertainties on the optimal size of these �sh stocks is negative, albeit

small in absolute value. Under risk aversion we observe a positive e�ect of uncer-

tainty on optimal stock size for su�ciently high coe�cients of constant relative

risk aversion.

The paper is structured as follows: In the next section we set up the model
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and solve the corresponding optimization problem. In Section 2 we consider op-

timal harvesting under risk neutrality, identifying the convex-cost e�ect and the

gambling e�ect. The case of a risk-averse representative �sherman is discussed

analytically in Section 3. We then apply our model to �sheries for Baltic cod (Sec-

tion 4) and North Sea herring (Section 5), considering both risk neutrality and

risk aversion. Section 6 summarizes and discusses the results.

1 A Fishery Model with Environmental Uncertainty

We consider a simple biomass model with stochastic recruitment in discrete time.

The growth of biomass xt from time step t to t+ 1 is described by the equation

xt+1 = g(st) + zt r(st), (1)

where st denotes the escapement, i.e. the biomass that remains in the ecosystem

after harvest ht so that st = xt−ht. The period between t and t+1 is divided into

two parts. Harvesting takes place in the �rst part. In the second, the remaining

�sh biomass, i.e. the escapement, reproduces and grows in weight. A fraction of

the �sh dies by natural causes. The term g(s) represents the survival of adult

�sh. The reproduction and growth process is represented as the stock-recruitment

relationship r(s).

Both functions are di�erentiable and non-decreasing. The expected recruitment

at stock size st is described by the strictly concave function r(st). Furthermore,

the recruitment process is sensitive to environmental uncertainty, represented by

the random variable zt, which is independent and identically distributed over time
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with an expected value equal to one, E[zt] = 1. The survival of adult �sh g(st),

by contrast, is deterministic. It can be concave or linear in s. In the latter case

the natural mortality rate of adult �sh is �xed. The assumtion of deterministic

mortality at a constant rate is common in biological stock assessment models

(Hilborn andWalters 1992, ICES 2011a,b). We brie�y discuss the case of stochastic

mortality in Appendix D.

The price per unit of �sh p is constant, i.e. the �shery is small compared to

the overall market. We assume a generalized Schaefer production function for

the instantaneous harvest rate h̃ in the �shing season, h̃ = q(x̃)Kt. We use q(x̃)

to denote the catch per unit of e�ort, Kt to denote the e�ort of harvesting �sh

(which is assumed to be constant throughout the �shing season), and x̃ to denote

the current stock size. Accordingly, x̃ = xt at the beginning of year t's �shing

season and x̃ = st at the end (Reed 1979, Clark 1990). Harvesting costs Ct are

proportional to e�ort Kt, with ζ as the costs per unit e�ort Ct = ζ Kt. Thus we

obtain a unit cost function for harvesting �sh, c(x̃) = ζ/q(x̃). We assume that,

in general, unit harvesting costs are weakly decreasing and weakly convex in the

stock size, i.e. c′(x̃) ≤ 0 and c′′(x̃) ≥ 0. This means that the catch per unit of

e�ort q(x) is non-decreasing with population abundance. Convexity also implies

that the increase of the unit harvesting costs induced by a one-unit decrease in

stock is greater for lower stock abundance than for higher stock abundance. A

common speci�cation of the harvesting cost function is c(x̃) = c x̃−χ with χ > 0.

In that special case x̃ c(x̃) is strictly concave (for 0 < χ < 1), constant (for χ = 1),
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or strictly convex (for χ > 1). For χ = 0, catch per unit e�ort is independent of

stock abundance, the unit harvesting cost is constant with C = ζ, and x̃ c(x̃) is

linear in stock. In empirical terms the most relevant case is χ ∈ (0, 1). In a study

of 297 �sheries, Harley et al. (2001) �nd typical values of χ to be between 0.64

and 0.75.

During the harvesting season, each ton of �sh caught reduces the stock by one

ton. Therefore the aggregate annual pro�t Πt is obtained by integrating the �ow of

pro�ts over the whole �shing season Πt =
∫ xt
st

(p− c(x̃)) dx̃. The �shery manager

aims to maximize the well-being of the representative �sherman earning his income

from �shing pro�ts:5

max
st

E
[ ∞∑
t=1

ρt−1u (Πt) dx̃
]

subject to (1). (2)

Here the operator E denotes the expectation over the probability distribution of the

random process {zt} and ρ ∈ (0, 1) is the discount factor. Fishermen are typically

averse to �uctuations in income. We �nd this re�ected in the management plans

for Baltic cod which contain rules to limit �uctuations in total allowable catches

from year to year.6 We take this e�ect into account by assuming that instantaneous

utility u(Πt) derived from �shing income is increasing and weakly concave, u′(Πt) >

0 and u′′(Πt) ≤ 0.7 For a risk-neutral �sherman, the instantaneous utility function

is linear, u(Πt) ≡ Πt. For a risk-averse �sherman, the instantaneous utility function

is strictly concave, u′′(Πt) < 0.

Using J(x) to denote the value function associated with the stochastic opti-
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mization problem (2), the Bellman equation reads8

J(x) = max
s

{
u

(∫ x

s

(p− c(x̃)) dx̃

)
+ ρE

[
J
(
g(s) + z r(s)

)]}
(3)

In the following, we use S∗(x) to denote the optimal feedback policy obtained as

a solution of (3) for the stochastic case and S̄∗(x) to denote the optimal feedback

policy for the corresponding deterministic model, where zt ≡ 1 for all t. The

question we are asking in this paper is whether, for a given stock size x, the

solution S∗(x) for the stochastic problem is larger than, equal to, or smaller than

the solution S̄(x) for the deterministic model.

To adress this question, we consider the �rst-order condition for optimal es-

capement

u′
(∫ x

s

(p− c(x̃)) dx̃

) (
p− c(s)

)
= ρE

[
d

ds
J
(
g(s) + z r(s)

)]
. (4)

This condition states that for the optimal escapement level s∗ at a given stock

size x the current marginal pro�ts of the last unit of �sh harvested (left-hand side,

LHS) equal the discounted expected marginal pro�ts of an additional unit of �sh

that escapes �shing (right-hand side, RHS). Uncertainty only makes a di�erence to

the RHS of this equation. As the LHS is monotonically increasing in s, the optimal

escapement level at a given stock size x will increase with the RHS of (4). Thus,

the optimal escapement level will be higher (lower) under uncertainty than with

the deterministic setting if the RHS of (4) is higher (lower) when z is stochastic

than in the deterministic case z ≡ 1. This, in turn, depends on the curvature of the

derivative of the value function with respect to the escapement level, dJ
(
g(s) +

9



z r(s)
)
/ds, in z. So the question whether or not optimal escapement increases

with uncertainty is connected to the prudence (Kimball 1990) of the value function

J(g(s) + z r(s)).

Prudence describes �the propensity to prepare and forearm oneself in the face

of uncertainty, in contrast to `risk aversion', which is how much one dislikes un-

certainty and would turn away from uncertainty if possible� (Kimball 1990:54).

A positive prudence of the value function thus implies precautionary savings in

the natural capital stock and hence higher stock size under uncertainty. Positive

prudence is given if dJ
(
g(s) + z r(s)

)
/ds is convex in the random variable z. The

index of absolute prudence is de�ned by d2

dz2

(
dJ
(
g(s) + z r(s)

)
/ds
)
. If this index is

positive (negative), we speak of positive (negative) prudence of the value function.

Under positive (negative) prudence the optimal stock size under uncertainty will

be higher (lower) than in the deterministic setting.

As the value function depends on (i) the biomass growth function, (ii) the

pro�t function, and (iii) the representative �sherman's utility function, all three

have an in�uence on whether optimal escapement increases or decreases with envi-

ronmental uncertainty. For the detailed analysis of the combined e�ect we proceed

in three stages. In Section 2 we study how optimal harvesting is a�ected by risk

when �shermen are risk-neutral. Section 3 derives analytical results for risk-averse

�shermen, but it requires relatively restrictive assumptions on biomass growth

function, harvesting technology, and preferences to derive a closed-form expres-

sion for the value function. In section 4 and 5 we apply our analysis to the Baltic
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cod and North Sea herring �sheries.

2 Optimal Harvesting under Risk Neutrality

For the risk-neutral case u(Πt) ≡ Πt, both the LHS and the RHS of (4) are indepen-

dent of the current stock size x. Thus, the solution of this stochastic optimization

problem is state-independent (see Appendix A). Optimal feedback policy S∗(x) is

the most rapid approach to the constant optimal escapement level s∗,

S∗(x) = s∗ if x > s∗ and S∗(x) = x otherwise. (5)

The optimal escapement level s∗ is determined by the following condition (see

Appendix B):

p− c(s∗) = ρ g′(s∗)
[
p− Ez

[
c
(
g(s∗) + zt r(s

∗)
)]]

+ ρ r′(s∗)
[
p− Ez

[
zt c
(
g(s∗) + z r(s∗)

)]]
(6)

This condition states that for the optimal escapement level s∗ current marginal

pro�ts from the last unit of �sh harvested equal the discounted expected marginal

pro�ts from an additional unit that escapes �shing. The expected marginal pro�t

on the RHS of (6) can be divided into two e�ects. The �rst term on the RHS

represents the expected marginal pro�ts from the additional surviving adults. The

second term on the RHS stands for the expected marginal pro�ts from additional

recruits.

In the risk-neutral case, the curvature properties of the marginal cost function

are essential to determine the prudence of the value function. To compare the op-
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timal escapement level in the stochastic case with the optimal escapement level s̄∗

in the deterministic case (i.e., for zt ≡ 1 in Equation (1)), we consider the following

equivalent to condition (6) in the deterministic setting:

p− c(s̄∗) = ρ g′(s̄∗)
[
p− c

[
g(s̄∗) + r(s̄∗)

]]
+ ρ r′(s̄∗)

[
p− c

[
g(s̄∗) + r(s̄∗)

]]
. (7)

We obtain a higher (lower) optimal escapement level when the next period's ex-

pected marginal costs are lower (higher) than the marginal costs at the expected

next period's stock level (which coincides with the deterministic case as we have

Ez[z] = 1). We consider the e�ects for additional surviving adults and for ad-

ditional recruitment separately. The �rst term on the RHS of condition (6) in

the stochastic case is smaller than the �rst term on the RHS of condition (7) in

the deterministic case. This is due to the convexity of the marginal harvesting

cost function. We refer to this e�ect as the `convex-cost e�ect'. The second term

on the RHS of condition (6) will be larger than the second term on the RHS of

condition (7) if function x̃ c(x̃) is concave. We refer to this e�ect as the `gambling

e�ect'.

2.1 Convex-cost e�ect

If marginal harvesting costs are convex in the �sh stock, they will also be convex in

the random variable. Expectation E
[
c
(
g(s∗) + zt r(s

∗)
)]

is over a convex function

of the random variable, so expected marginal harvesting costs are greater than

the marginal costs at expected stock growth c
(
g(s∗) + r(s∗)

)
as E[z] = 1. The

convex marginal cost function implies that the increase in marginal harvesting
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costs for a stock growth below the mean is greater than the decrease in marginal

harvesting costs for a stock growth above the mean. Accordingly, the expected

marginal harvesting costs are greater under uncertainty than in the deterministic

case. We refer to this e�ect, which tends to reduce the optimal escapement level,

as the convex-cost e�ect.

Intuitively, the e�ect of convex marginal harvesting costs is similar to the e�ect

of risk aversion, so it is optimal to invest less if the asset is risky. Accordingly, it

is also intuitive that under uncertainty the convex-cost e�ect will reduce optimal

escapement over and against the deterministic model. More precisely, the con-

vexity of marginal harvesting costs reduces the prudence of the value function. If

the convex-cost e�ect were the only e�ect present, the prudence of the value func-

tion would be unambiguously negative, and the optimal escapement level would

decrease with environmental uncertainty.

2.2 Gambling e�ect

If the function x̃ c(x̃) is convex, the second term on the RHS of condition (6) will

be lower than the second term on the RHS of (7). The prudence of the value

function would be unambiguously negative, so the optimal escapement level under

uncertainty would be unambiguously lower than in the deterministic setting.

As set out earlier, the more relevant case in empirical terms is where x̃ c(x̃) is

concave in x̃. Here the expression zt c
(
g(s∗) + zt r(s

∗)
)
is a concave function in the

random variable zt. The expected marginal costs E
[
zt c
(
g(s∗)+zt r(s

∗)
)]

will then
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be smaller than the marginal costs at expected stock growth c
(
g(s∗) +E[z] r(s∗)

)
(which coincides with the deterministic case).

The economic intuition for this e�ect is as follows: As uncertainty is multi-

plicatively connected with stock growth, the distribution of next period's resource

rents is positively skewed and has a fat tail at high rents. Under favorable en-

vironmental conditions, a marginal increase in current escapement will result in

a strong marginal increase in the �sh stock, producing both a large harvest and

low marginal harvesting costs in the next period. Under adverse environmental

conditions, marginal harvesting costs in the next period will be high because of

the low �sh stock, but this e�ect is dampened by the fact that the harvest is small.

So the expected marginal increase in harvesting costs with a marginal increase in

escapement is lower than the marginal increase in harvesting costs under expected

stock growth. In other words, a risk-neutral �shery manager will tend to bet on

favorable environmental conditions. This is why we call this e�ect the gambling

e�ect.

The gambling e�ect tends to increase the prudence of the value function, i.e.

to increase the optimal escapement level under environmental uncertainty.9

Since the convex-cost e�ect and the gambling e�ect work in opposite directions,

the overall result is ambiguous. The optimal escapement level could be either

higher or lower than in the deterministic case.10
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2.3 A special case: when survival is proportional to recruit-

ment

In our model, a special case arises if survival is proportional to recruitment, i.e. if

there exists some κ ∈ [0, 1) such that (1 − κ) g(s) = κ r(s). In this case, biomass

growth (equation 1) can be written as

xt+1 = z̃t f(st), (8)

where z̃ = κ+ (1− κ) z is a random variable with mean 1 and f(s) ≡ r(s)/(1− κ)

is the expected biomass growth function. This special case deserves attention, as

the model for it is equivalent to the model studied by Reed (1979). In the latter

case the optimality condition (6) simpli�es to

p− c(s∗) = ρf ′(s∗)
(
p− Ez̃

[
z c
(
z̃ f(s∗)

)])
. (9)

If the function x̃ c(x̃) is concave in x̃, the optimal escapement level in the stochastic

model will be unambiguously higher than in the deterministic case.11 In other

words the gambling e�ect will outweighs the convex-cost e�ect.

If we further specify the unit cost function c(x) = c x−χ with χ ∈ (0, 1)

and assume a log-normal distribution of environmental stochasticity z̃ with mean

µz̃ = 1 and standard deviation σz̃, condition (9) can be written as follows (see

Appendix C):

p− c(s∗) = ρf ′(s∗)

(
p− c f(s∗)−χ

(1 + σ2
z̃)

χ (1−χ)
2

)
, (10)

The left hand-side of this equation increases with the degree of uncertainty, as

measured by the variance σ2
z̃ . Accordingly, the optimal escapement level increases
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monotonically with uncertainty. In quantitative terms, the in�uence of uncertainty

on the optimal escapement level will typically be small. It is maximal for χ = 1/2,

as then the exponent of the factor (1 + σ2
z̃)
χ (1−χ)/2 on the RHS of (10) reaches its

maximum for all values of χ ∈ (0, 1). But even in this case and for an unrealistically

high degree of uncertainty σ2
z̃ = 1, this factor changes the RHS of (10) by less than

ten percent, as (1 + σ2
z̃)
χ (1−χ)/2 = 21/8 < 1.10.

3 Optimal Harvesting under Risk Aversion

In the case of risk aversion, it is in general not possible to solve the Bellman equa-

tion (3) analytically. For special cases an analytical solution is however feasible.12

To study the case of a risk-averse representative �sherman analytically, we thus

have to further specify the model.

First, we neglect harvesting costs in this section, i.e. we assume c(x̃) ≡ 0. This

not only simpli�es the analysis, it also enables us to better isolate the e�ect of risk

aversion. The point is that in the absence of harvesting costs, both the convex-cost

e�ect and the gambling e�ect vanish, and optimal escapement for the risk-neutral

case would be independent of uncertainty.

Second, we focus on the case where survival is proportional to recruitment and

the biomass growth function is given by (8). We furthermore assume that the

biomass growth function f(s) has the functional form

f(s) =
(
α s1−φ + αβ1−φ) 1

1−φ (11)

with positive constants α, β, and φ. A special case of this biomass growth function
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is the Beverton-Holt function f(s) = (s/α)/(1 + (s/β)) obtained by setting φ = 2.

Third, we assume an instantaneous utility function with constant relative risk

aversion ϑ > 0,

u(Π(x, s)) =
ν

1− ϑ
(x− s)1−ϑ , (12)

with ν > 0. This model is analytically solvable for the special case φ = ϑ. In

Appendix E we show that the value function is

J(x) =
ψ1

1− ϑ
x1−ϑ + ψ2 (13)

with some constants ψ1 > 0 and ψ2, and that the optimal escapement rule is

s∗ =
(
ραE[z1−ϑ]

) 1
ϑ x. (14)

It is obvious that if ϑ < 1 (ϑ > 1), optimal escapement will be lower (higher), the

higher the uncertainty is. ϑ < 1 means not only that risk aversion is relatively low

but also that the curvature of the biomass growth function is relatively high.13

We can again connect this result to the prudence of the value function J(z̃ f(s)).

In this case, the function inside the expectation operator on the RHS of (4) is

dJ(z̃ f(s))/ds = ψ1 z
1−ϑ α s1−ϑ. It is concave (convex) in ϑ if ϑ < 1 (ϑ > 1). Thus,

a value function that exhibits negative (positive) prudence will give rise to a lower

(higher) optimal escapement for ϑ < 1 (ϑ > 1).

4 Quantitative Example I: Baltic Cod Fishery

Our �rst quantitative example is the Baltic cod �shery. The water in the Baltic

Sea is brackish, making it a marginal area for cod. The �sh population depends
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on �uctuating fresh water in�ows from the North Sea to increase the salinity level

to a degree where their eggs can hatch (Rockmann et al. 2007). Accordingly,

the recruitment process for Baltic cod is highly uncertain and represents a useful

example for the stochastic recruitment model.

To estimate the biological growth function we use stock assessment data (years

1966-2009) from the International Council of the Exploration of the Sea (ICES

2011). We combine the data for total stock biomass in year t, Xt, total harvest Ht

(as the sum of o�cial landings and discards) and natural mortality (assumed to

be �xed at M = 0.2, as in the ICES stock assessments) to obtain the escapement

St and the recruitment biomass Rt as follows

St = Xt −Ht,

Rt = Xt+1 − e−0.2St.

The recruitment variable Rt thus encompasses both the reproduction process and

growth in weight. It is calculated as the total stock biomass at the beginning

of period t + 1 minus the fraction of period t's escapement that survives natural

mortality. We assume that recruitment follows a stochastic Beverton-Holt (1957)

stock-recruitment function r(st) = zt α1 st/(1 + α2st).14 Using the Levenberg-

Marquardt algorithm for nonlinear least squares, we estimated the equation

ln(Rt) = ln

(
α1 St

1 + α2 St

)
+ εt, (15)

assuming that εt is an independent and identically normally distributed random

variable with zero mean.15 We obtain estimates α̂1 = 1.189 with a standard error
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of 0.111, α̂2 = 1.525 million tons with a standard error of 0.496 million tons, and

an estimate σ̂2 = 0.083 million tons for the standard deviation of zt = exp(εt).

Because of the logarithmic speci�cation of (15), estimate α̂1 is biased. For our

numerical computations, we use the adjusted value α1 = α̂1 exp(−0.5 σ̂2) = 1.140.

To estimate the parameters of the harvesting function, we specify the cost

function C = ζKt and q(x̃) = q0 x
χ. With this speci�cation, total �shing e�ort in

year t is Kt =
∫ xt
st
q(x̃)−1d(x̃) = 1

q0 (1−χ) [x
1−χ − s1−χ] (Clark 1990). We use data

on e�ort as days at sea for the Danish �eet from (Fiskeriregnskabsstatistik 2007,

Fiskeridirektoratet 2007) and (ICES 2009) data for total biomass and escapement.

Using the Levenberg-Marquardt algorithm for nonlinear least squares we obtain

q0 = 5.162 tons per days at sea (standard error 2.173), and χ = 0.953 (standard

error 0.213). For prices and unit e�ort cost ζ, we use the estimate from Kronbak

(2002; 2005) and Quaas et al. (2010). Normalizing the price of a million tons of

harvest to unity, we obtain a unit e�ort cost parameter of ζ = 0.554, measured in

billions of Euros at million days at sea. For the unit harvesting cost parameter we

thus have ζ/q0 = 0.107 Euros/kg.
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In sum, the functional speci�cations we use are

g(st) = e−0.2 st

r(st) =
1.140 st

1 + 1.525 st

zt ∝ LOGN(1, 0.083)

p− c(x̃) = 1− 0.107 x̃−0.953

ρ =
1

1 + 0.05

Our �rst step in the quantitative analysis for Baltic cod is to consider the opti-

mal escapement levels for a risk-neural representative �sherman. To determine the

optimal escapement levels in the deterministic and stochastic recruitment models,

we solve conditions (6) and (7) using these speci�cations numerically. For our sen-

sitivity analysis, we use random samples of 1000 sets of parameter values for α1,

α2, q0 and ζ, assuming that the parameter values are independently normally dis-

tributed with means and standard deviations as obtained from the estimations (or

variance-covariance matrix from the estimation for α1 and α2). For each parameter

set, we compute the optimal escapement and determine the standard deviation of

the sample of optimal escapement levels thus obtained.

The optimal escapement level for the deterministic model (where z ≡ 1) is

s̄∗ = 0.904 million tons, with a standard deviation of 0.257 million tons. For the

stochastic model we obtain s∗ = 0.902 million tons as the optimal escapement, with

a standard deviation of 0.255 million tons. Thus we have a slightly lower optimal

escapement level in the stochastic model than its deterministic counterpart, but

the di�erence of 1 619 tons (with a standard deviation of 657 tons) is small. This
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indicates that while model uncertainty is substantial, it is not so large as to make

the quantitative results completely unreliable.

Next, we analyze how risk aversion in�uences the results. For this purpose,

we assume an instantaneous utility function with constant relative risk aversion

u(Πt) = Π1−ϑ
t /(1 − ϑ) and use the same biomass growth function, marginal cost

function, and discount rate as before. We solve the stochastic optimization prob-

lem (2) numerically for di�erent risk-aversion coe�cients ϑ by numerically com-

puting the value function J(x). To do so, we use the collocation method (Miranda

and Fackler 2002), where the value function J(x) is approximated by a �nite linear

combination of Chebychev polynomials.16

The results are shown in Figure 1.

Figure 1 about here

The upper panel shows the optimal feedback policies S∗(x) under uncertainty

(σ2
z = 0.0834) and S̄∗(x) in the deterministic case for three di�erent coe�cients

of risk aversion: the risk-neural case ϑ = 0, slight risk aversion ϑ = 0.1, and

stronger risk aversion ϑ = 0.5. For the risk-neutral case, the optimal policy is the

most rapid approach to constant escapement (cf. section 2). The higher the risk

aversion, the smoother the optimal policy becomes: escapement is relatively lower

(harvest is higher) at relatively low stock sizes, and relatively higher (harvest is

lower) at higher stock sizes.

For all three coe�cients of risk aversion, there is hardly any di�erence between

the optimal policies under uncertainty and in the deterministic setting. The lower
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panel in Figure 1 shows the di�erence S∗(x)− S̄∗(x) for three di�erent stock levels,

x ∈ {0.15, 0.50, 1.8} million tons. Note that the scale of the y axis in the lower

panel is in thousands of tons, while in the upper panel it is in millions of tons.

This shows that the di�erence is well below 1 percent of the optimal escapement.

Although the overall e�ect is small, the e�ect of increasing risk aversion is unam-

biguous. The higher the coe�cient of risk aversion is, the higher is the di�erence

in optimal escapement under uncertainty and in the deterministic case. The two

lower stock sizes considered (x = 0.15 and x = 0.50 million tons) are smaller

than the optimal escapement s∗ in the risk-neutral case. For these stock sizes, the

optimal escapement for ϑ → 0 is the same with and without uncertainty, as it

simply equals the current stock size. The higher stock size x = 1.8 million tons

is above s∗. In this case, the optimal escapement for a risk-neutral representative

�sherman is lower under uncertainty than in the deterministic case (see above).

With increasing risk aversion, the di�erence also becomes positive for this stock

size .

5 North Sea Herring Fishery

Our second case study is the North Sea herring �shery. Here we use the same

functional speci�cations as for the Baltic cod �shery. For North Sea herring,

we use the price and cost function from Nostbakken (2008), where p = 2.465

NOK/ kg, ζ = 1, 189, 565 NOK/per vessel-year and a catchability per vessel-year

of q0 = 0.0011. We again normalize the price to unity and obtain ζ/(p∗q0) = 0.439
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Euros/kg and χ = 1 as parameters of the cost function.

To estimate the parameters of the biological growth function, we use ICES

(1998; 2007) data for the period 1947-2005 to calculate the escapement St as the

product of the total biomassXt and e−F , where F is the mean �shing mortality rate

for age classes from 2 to 6. We again assume a deterministic natural mortality with

a rate of M = 0.16 (as in the ICES stock assessments for herring) and a Beverton-

Holt function for the stock-recruitment relationship. Using the same model (15)

and regression method as for cod, we obtain estimates α̂1 = 2.048 (standard error

0.266), α̂2 = 0.956 million tons (standard error 0.204 million tons), and σ̂2 = 0.104

million tons for the standard deviation of zt = exp(εt). Again, we use the adjusted

value α1 = α̂1 exp(−0.5 σ̂2) = 1.9445 for our numerical analysis.17

For the risk-neutral case we compute an optimal escapement level s∗ = 2.769

million tons (with a standard deviation of 0.302 million tons) in the stochastic

model. In the deterministic model the optimal escapement level is s̄∗ = 2.780

million tons.Thus we again observe a slightly lower optimal escapement level in

the stochastic case. The di�erence is larger than with the Baltic cod �shery but

at 10 356 tons (with a standard deviation of 4 784 tons) still quite small.

In Figure 2 we show the optimal policies for risk-averse �shermen.

Figure 2 about here

The results are similar to those obtained for Baltic cod. The di�erences in optimal

escapements between the stochastic and deterministic cases are small in absolute

value. The unambiguous e�ect of risk aversion is that di�erence increases and,
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for su�ciently high degrees of risk aversion, optimal escapement is higher under

uncertainty than in the deterministic case.

6 Discussion and Conclusion

In this paper we studied the e�ects of environmental uncertainties on optimal �sh-

ery management for both risk-neutral and risk-averse �shermen. To account for

natural mortality and recruitment, we split the stock growth function of the �sh

stock into two processes. Following the biological approach taken in stock assess-

ment models, we assume that natural mortality is �xed at a given value. The

recruitment process, by contrast, depends on stochastically �uctuating environ-

mental conditions.

We have demonstrated that the optimal escapement level can be higher or lower

than in the deterministic setting, depending on the prudence of the value function.

This in turn depends on (i) the biomass growth function, (ii) the pro�t function

and (iii) the representative �sherman's utility function. Positive prudence gives

rise to higher optimal escapement, whereas negative prudence results in a lower

optimal escapement level.

For risk-neutral �sherman we showed that the question whether or not the

optimal escapement increases with uncertainty is in�uenced by two counteracting

cost e�ects: the convex-cost e�ect and the gambling e�ect. The convex-cost e�ect

results from higher expected marginal costs due to the convexity of the cost func-

tion and tends to reduce optimal escapement. Intuitively, the convex-cost e�ect
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means that optimal investment is smaller when the asset is risky. The gambling

e�ect results from lower expected marginal costs under uncertainty because the

harvestable biomass increases more strongly under favorable environmental condi-

tions than under adverse environmental conditions. The gambling e�ect thus tends

to increase optimal escapement. The �nding that the e�ect of uncertainty on the

optimal size of the �sh stock is ambiguous under risk neutrality is in contrast to

Reed's (1979) unambiguous result that that the optimal constant escapement level

in a stochastic environment is equal to, or larger than, the optimal escapement

level in a deterministic setting. This is because we have allowed that the processes

of recruitment and adult survival are a�ected di�erently by environmental uncer-

tainties. In the paper we have considered the case where recruitment is uncertain,

but survival is deterministic. In Appendix D we show that the e�ect of uncertainty

is ambiguous also in the case of stochastic survival. Under risk aversion, the e�ect

of uncertainty on optimal escapement is still ambiguous, depending on the stock

growth function parameter and the coe�cient of constant relative risk aversion.

To quantify the e�ect of uncertainty both under risk neutrality and risk aver-

sion, we applied the model to the Baltic cod and the North Sea herring �sheries.

Under risk neutrality we observed in both �sheries lower optimal escapement in

the stochastic environment than in the deterministic setting, but the di�erence is

small in absolute value. In the setting with risk-averse �shermen we found higher

optimal escapement levels for su�ciently high coe�cients of constant relative risk

aversion. Again, the di�erence is very small, and well below one percent of optimal
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escapement.

This �nding is in line with previous results of Sethi et al. (2005) who analyze the

e�ect of multiple uncertainties on optimal �shery management. Their simulations

show that stock growth uncertainty has only minor e�ects on the optimal �shery

management. Our paper completes their �ndings: By introducing the two cost-

e�ects and refering to the notion of prudence, we provide a deeper understanding

and an intuitive explanation of the in�uence of environmental uncertainties on the

optimal �shery management. We extend the analysis to the case of risk aversion,

both analytically and numerically. Furthermore by applying our model to two real

�sheries, incorporating the estimated variance in stock growth and the estimated

cost function, we provide valid results for �shery management.

Our quantiative results show that the optimal feedback policy is not very

strongly a�ected by environmental uncertainties. Our results suggest that even

if �uctuations in environmental conditions would increase, for example due to cli-

mate change, there is little need to adapt �shery management recommendations.

One should keep in mind, however, that other forms of uncertainty may have a

much stronger e�ect, including measurement uncertainty with regard to the size of

the �sh stock (Sethi et al. 2005), or the possibility of regime shifts (Polasky et al.

2011, de Zeeuw and Zemel 2012).
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Notes

1Reed assumes an objective function that is linear in harvest, which implies that neither the

consumer nor the �shermen show risk aversion

2Pindyck (1984) studies the management of renewable resources under uncertainty in con-

tinuous time by adding a stochastic di�erential equation of the Ito type, assuming a downward

sloping demand function. This can be interpreted as re�ecting risk-aversion of consumers.

3Costello et al. (2001) do not restrict the disturbance to be multiplicative to the stock growth,

but still assume that zt is i.i.d with mean one, which implies that zt is somehow multiplicatively

connected.

4The in�uence of environmental conditions di�er for di�erent species. For Baltic cod and

North Sea herring see ICES Advice 2010a, 2010b, Books 6 (herring) and 8 (cod).

5We follow the convention of the previous literature and chose the escapement as the control

variable.

6Council Regulation (EC) No 1098/2007 of 18. September 2007.

7The assumption of a strictly concave utility function is sensible if �shermen have imperfect

access to capital markets. Experimental evidence suggests that a typical value for the coe�cient

of relative risk aversion is about 0.74 (Andersen et al. 2008).

8Because the optimization problem (2) is autonomous, the value function J(x) does not

depend on time.

9It may appear contradictory that the `gambling e�ect' leads to a higher degree of prudence.

However, the term prudence has been coined because of its e�ect � a higher degree of prudence

induces higher precautionary savings � and not because of a particular motivation why an agent

saves more under uncertainty.

10Under constant unit harvesting costs both the gambling and the convex-cost e�ect vanish

and the optimal escapement level in the stochastic and deterministic model are the same.

11Reed's (1979) intuitive explanation for a higher optimal escapement level is that �the marginal

average annual harvesting cost in the stochastic model resulting from an increase in the escape-
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ment level [...] is, because of the averaging process, less than the corresponding marginal cost in

the deterministic model.�

12To our knowledge, no analytically solvable model has been available for the discrete-time

model so far. For a similar problem in continuous time, Pindyck (1984) provides three examples

of analytically solvable models.

13If we again assume that z is log-normally distributed with variance σ2
z , we obtain (E[z1−ϑ])1/ϑ =

(1 + σ2
z)(1−ϑ)/2 (see appendix C).

14We also estimated the more general growth function of r(st) =
(
α s1−φt + αβ1−φ

) 1
1−φ

, but

found the parameters to be not signi�cant.

15A Durbin-Watson test shows no autocorrelation in the error terms (DW = 1.718, p = 0.312).

16For cod (herring), we use 101 (212) collocation nodes on the interval x ∈ [0.1, 5] million tons

(x ∈ [0.1, 8] million tons). The optimization routines were implemented in Matlab. All program

codes will be made available as online supporting material.

17 The Durbin-Watson test revealed autocorrelation in the error term (DW = 1.014, p =

3.647 ∗ 10−5). As Nostbakken (2008) states, �[s]ome problems of autocorrelation are [...] in-

evitable when using a simple surplus growth model to explain the complex dynamics of the �sh

stock�. Considering an autoregressive model for the error term means that another stock variable

has to be included in the model. This would greatly increase the complexity of the stochastic

optimization problem, which is becond the scope of the present paper.
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Appendix

A Dynamic Programming and Constant Escapement Policy

We consider the problem for a �nite time horizon T . The result for an in�nite

time horizon is then obtained by letting T →∞. The risk neutral �shery manager

faces the following maximization problem:

max
st

E
[ T∑
t=1

ρt−1
∫ xt

xt−ht
p− c(x̃) dx̃

]
(16)

s.t. xt+1 = g(st) + zt r(st). (17)

By letting Π(xt, st) = π(xt) − π(st) =
∫ xt
st
π′(v) dv and π′(v) = p − c(v) equation

(16) can be also expressed as

max
st

E
[ T∑
t=1

ρt−1
(
π(xt)− π(st)

)]
.

To demonstrate that the optimal management approach is of the constant es-

capement type analogous to Reed (1979) we solve the Bellman equation by back-

ward induction:

Jn(xT−(n−1)) = max
sT−(n−1)

{(
π(xT−(n−1)) − π(sT−(n−1))

)
+ ρE

[
Jn−1

(
xT−n

)]}
, (18)

where the operator E denotes the expectation over the probability distribution of

the random variable zt. First we solve the problem for the last period T :

J1(xT ) = max
sT

[π(xT )− π(s∞)],

where sT is assumed to be the escapement level corresponding to the open-access
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�shery s∞. Now we consider the problem for the penultimate period:

J2(xT−1) = max
ST−1

{(
π(xT−1)− π(sT−1)

)
+ ρE

[
π(xT )− π(s∞)

]}
,

where s∞ is a constant and xT = g(sT−1) + ztr(sT−1), such that the previous

equation can be written as

J2(xT−1) = max
ST−1

{(
π(xT−1)− π(sT−1)

)
+ ρE

[
π
(
g(sT−1) + ztr(sT−1)

)]}
+ const. (19)

Under the assumptions on the curvature properties of g(·), r(·) and c(·), this

problem has a unique maximum at an escapement level which we denote by s∗.

This escapement level is optimal if the stock at the beginning of the period (xt)

is greater than s∗. The optimal policy is a most rapid approach strategy to s∗.

This can be validated by inserting s∗ in J2(xT−1) and substituting the result in

J3(xT−2):

J2(xT−1) =
(
π(xT−1)− π(s∗)

)
+ ρE

[
π
(
g(s∗) + ztr(s

∗)
)]

+ const.

Since s∗ is constant, in particular note, that s∗ is independent of stock, xt, the

function can be rewritten as

J2(xT−1) = π(xT−1) + const.

Now we consider J3(xT−2):

J3(xT−2) = max
ST−2

{(
π(xT−2)− π(sT−2)

)
+ ρE

[
J2(xT−1)

]}
. (20)
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Inserting J2(xT−1) = π(xT−1) + const yields

J3(xT−2) = max
ST−2

{(
π(xT−2)− π(sT−2)

)
+ ρE

[
π
(
g(sT−2) + ztr(sT−2)

)]}
+ const. (21)

Since J3(xT−2) is equivalent to J2(xT−1) in (19) except for the constant the constant

escapement strategy s∗ is also valid for the period T − 2. By complete induction

the same holds for all periods.

B Optimal Escapement Level

We now consider the optimal escapement level in the stochastic growth model. By

di�erentiating equation (18) with respect to sT−(n−1) we get the following condition:

π′(s∗) = ρE
[
π′
(
g(s∗) + zt r(s

∗)
)(
g′(s∗) + zt r

′(s∗)
)]
.

Substituting p− c(v) for π′(v) and rearranging we get

p− c(s∗) = ρ g′(s∗)

(
p− E

[
c
(
g(s∗) + zt r(s

∗)
)])

+ ρ r′(s∗)

(
p− E

[
zt c
(
g(s∗) + z r(s∗)

)])
. (22)

C Increasing uncertainty when survival is proportional to

recruitment

Inserting the cost function c(x̃) = ζ x̃−χ in equation (9) and rearranging we get

p− c(s∗) = ρf ′(s∗)
(
p− ζ

f(s∗)χ
Ez̃[z̃

1−χ]
)
.

31



With z̃ as a lognormally-distributed random variable the expectation can be cal-

culated as

Ez̃[z̃
1−χ] =

∫ ∞
0

z̃1−χ
1

z̃
√

2πs2t
exp
(
−(ln z −mz̃)

2

2s2t

)
dz.

With µz̃ = 1, the parameters are mz̃ = −1
2

ln
(
1 + σ2

z̃

)
and s2z̃ = ln

(
1 + σ2

z̃

)
.

Substituting ln(z) = q we get

Ez̃[z̃
1−χ] =

∫ ∞
0

exp
(
(1− χ)q

) 1√
2πs2t

exp
(
−(q −mz̃)

2

2s2t

)
dq,

which yields

Ez̃[z̃
1−χ] =

(
1 + σ2

z̃

)χ(1−χ)
2

.

For χ ∈ (0, 1) the expectation decreases with increasing variance σ2. This results

in lower expected costs and higher expected pro�ts and gives thus an incentive to

choose a higher escapement level.

D Optimal escapement with both mortality and recruit-

ment stochastic

In this appendix we brie�y consider the case where both processes, survival and

recruitment, are stochastic, i.e. we replace (1) by

xt+1 = wt g(st) + zt r(st), (23)
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with two i.i.d. random variables wt and zt. The condition for the optimal escape-

ment level (6) under risk-neutrality then generalizes to

p− c(s∗) = ρ g′(s∗)
[
p− Ew,z

[
wt c

(
wt g(s∗) + zt r(s

∗)
)]]

+ ρ r′(s∗)
[
p− Ew,z

[
zt c
(
wtg(s∗) + z r(s∗)

)]]
. (24)

If wt and zt are perfectly correlated, this model is equivalent to Reed's (1979)

model, and the optimal escapement level under uncertainty is unambiguously

larger than in the deterministic case. If wt and zt are not perfectly correlated, the

e�ect of uncertainty on the optimal escapement level is ambiguous. This holds in

particular for the case where wt and zt are independent. To show this, we consider

the example of the Baltic Cod �shery considered in Section 4. The only modi�-

cation is that we assume that the two random variables zt ∝ LOGN(1, σ2
z) and

wt ∝ LOGN(1, σ2
w) are independently distributed with σ2

w ≥ 0. For σ2
z = σ2

w = 0,

we obtain s̄∗ = 0.904 million tons (see Section 4). For the example considered

here, we set σ2
z = 0.5, slightly higher than the empirical value. For σw = 0.1, we

get s∗ = 0.901 < s̄∗. For σw = 0.5, we get s∗ = 0.911 > s̄∗. Thus, the e�ect of

uncertainty is ambiguous.

E Optimal escapement with risk aversion

Using c(x̃) ≡ 0, the biomass growth equation (8) with the speci�cation (11),

u(Π) = ν Π1−ϑ/(1 − ϑ), and φ = ϑ in (4), the �rst-order condition for optimal
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escapement becomes

ν p1−ϑ

(x− s)ϑ
= ρE

[
d

ds
J
(
z
(
α s1−ϑ + αβ1−ϑ) 1

1−ϑ
)]

(25)

Guessing s = δ x with some δ > 0 and (13) for the value function, condition (25)

becomes

ν p1−ϑ

((1− δ)x)ϑ
= ρψ1E

[
z1−ϑ

]
α (δ x)−ϑ (26)

⇔ ν p1−ϑ
(

δ

1− δ

)ϑ
= ραE

[
z1−ϑ

]
ψ1 (27)

The Bellman-equation reads

J(x) =
ν p1−ϑ

1− ϑ
((1− δ)x)1−ϑ + ρE [J(z f(δ x))]

Using the guess (13) again, we obtain

ψ1

1− ϑ
x1−ϑ+ψ2 =

ν p1−ϑ

1− ϑ
((1− δ)x)1−ϑ+ρE

[
ψ1

1− ϑ
z1−ϑ

(
α (δ x)1−ϑ + αβ1−ϑ)+ ψ2

]

ψ1 = ν p1−ϑ (1− δ)1−ϑ + ρE[z1−ϑ]α δ1−ϑ ψ1 (28)

ψ2 =
ρ

1− ρ
E[z1−ϑ]αβ1−ϑ ψ1 (29)

Using (28) in (27), we obtain (14).
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Figure 1: Optimal escapement for Eastern Baltic cod as a function of the rep-

resentative �sherman's coe�cient of risk aversion ϑ. Note that the scale on the

y-axis in the upper panel is in millions of tons, while it is in thousands of tons in

the lower panel.
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Figure 2: Optimal escapement for North Sea herring as a function of the represen-

tative �sherman's coe�cient of risk aversion ϑ. Note that the scale on the y-axis

in the upper panel is in millions of tons, while it is in thousands of tons in the

lower panel.
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