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Abstract

In 1713 Nicolas Bernoulli sent to de Montmort several mathematical problems, the fifth of which

was at odds with the then prevailing belief that the advantage of games of hazard follows from

their expected value. In spite of the infinite expected value of this game, no gambler would

venture a major stake in this game. In this year, de Montmort published this problem in his

Essay d’analyse sur les jeux de hazard. By dint of this book the problem became known to

the mathematics profession and elicited solution proposals by Gabriel Cramer, Daniel Bernoulli

(after whom it became known as the Petersburg Paradox), and Georges de Buffon. Karl Menger

was the first to discover that bounded utility is a necessary and sufficient condition to war-

rant a finite expected value of the Petersburg Paradox. It was, in particular, Menger’s article

which provided an important cue for the development of expected utility by von Neumann and

Morgenstern.

The present paper gives a concise account of the origin of the Petersburg Paradox and its

solution proposals. In its third section, it provides a rigorous analysis of the Petersburg Paradox

from the uniform methodological vantage point of d’Alembert’s ratio text. Moreover, it is shown

that appropriate mappings of the winnings or of the probabilities can solve or regain a Petersburg

Paradox, where the use of probabilities seems to have been overlooked by the profession.

∗I am indebted to Giacomo Corneo, Free University of Berlin, Germany, Lyudmila Egorova, NRU-
HSE, Moscow, Russia, Peter J. Hammond, Stanford University, U.S.A., and University of Warwick, U.K.,
and Kirill Pogorelskiy, Caltech, Pasadena, U.S.A., for most helpful comments. Remaining errors are mine.
This paper is a revised and reworked version of Discussion Paper No. 2012-04.
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1 The Origin of the Petersburg Paradox

In the French ancien régime the aristocrats disposed of large fortunes, but had lost their

political influence, in particular after the inauguration of Louis XIV. Hence, many of them

spent their time with games of hazard. The more sagacious of them, primarily a certain

Chevalier de Méré, brought the famous mathematicians Fermat and Pascal to elaborate

for him guidance for optimum gambling. Their suggestions centered around the expected

value of the winnings (cf. Samuelson (1977, pp. 37-38) and D. Bernoulli (1738, p. 175)).

Yet the distinguished mathematician Nicolas Bernoulli1 discovered a rather odd game

of hazard, which he told the mathematician Pierre Rémond de Montmort in a letter dated

9th September 1713, as the fifth of several problems: A promises to give a coin to B, if

with an ordinary die he achieves 6 points on the first throw, two coins if he achieves 6

points for the first time on the second throw, 4 coins if he achieves 6 points for the first

time on the third throw, 8 coins if he achieves 6 points for the first time on the fourth

throw, etc. What is the expected value of this game for B?

In his response of 15th November 1713, Montmort expressed opinion that these exam-

ples have easy solutions along the lines of geometric progressions, but entered Bernoulli’s

problems into the second edition of his Essay d’analyse sur les jeux de hazard [de Mont-

mort (1713, p. 402)]. It was only in his letter of 20th February 1714, that Nicolas Bernoulli

demonstrated the momentousness of his discovery, viz. that this game has an expected

value of infinity, to Montmort, who expressed skepticism, but had to admit that he was

unable to solve this problem.

Gabriel Cramer, a professor of mathematics at the University of Geneva, read Mont-

mort’s book and pondered on N. Bernoulli’s fifth problem. In a letter of 21st May 1728

from London, he addressed Bernoulli proposing first a simplification of the gamble by

replacing throwing a die by flipping a coin (whereby he reformulated the problem as it

had become known since). In addition to that he proposed two solutions of the paradox,

viz. by bounding the gambler’s perception of winnings from above, or by replacing the

winnings by their square root.

In a letter of 27th October 1728, Nicolas Bernoulli communicated the fifth problem in

Cramer’s simplified version to his cousin Daniel Bernoulli who was at that time a professor

of mathematics at the University of St. Petersburg. Subsequently, Daniel had become

interested in this paradox and had sent Nicolas a first draft of his later publication. In his

response of 5th April 1732, Nicolas thanked Daniel for a copy of his essay and remarked:

1All citations concerning the correspondence in relation with the Petersburg Paradox are to be found
in N. Bernoulli (1713-1732).
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“I have read it with pleasure, and I have found your theory most ingenious, but permit me

to say to you that it does not solve the knot of the problem in question.” Together with

this response, Nicolas sent Daniel a copy of Cramer’s letter, which Daniel appended in

the original French version to his Latin manuscript for its final publication (D. Bernoulli

(1738, pp. 190-2)).2

2 Attempts at “Solving” the Petersburg Paradox

The challenge to “solve” the Petersburg Paradox has captivated the attention of many

prominent scholars, up to the 1950’s mainly mathematicians.

The first were Gabriel Cramer and Daniel Bernoulli who suggested appropriate concave

transformations of the winnings, which Cramer (see D. Bernoulli (1738, p. 192)) called

valeur morale (moral value) and esperance morale (moral hope), and D. Bernoulli (1738,

p. 192) called emolumentum, which means utility or advantage. While Cramer suggested

the square root as a transformation of the winnings, Bernoulli suggested the natural

logarithm. D. Bernoulli (1738, pp. 181-2 and 184) indeed went further by adopting also

the assumption that the utility of winnings is, in addition, also inversely proportional to

the gambler’s wealth. Let w denote a gambler’s wealth and x the winnings, then his or

her utility is u(x + w) = b ln (w+x)
w

, b being a positive constant. This relationship shows,

first, that the marginal utility of a winning is the smaller the larger the gambler’s wealth

is, second, that additional constant winnings have decreasing marginal utility, and, third,

that the utility of a gain falls short of the disutility of an equivalent amount of money lost.3

These assumptions are in line with modern economics.4 Moreover, Bernoulli’s hypothesis

was later confirmed by Weber (1834) and Fechner’s (1860) experimental investigations on

psychophysics.

D. Bernoulli made good use of the dependence of the marginal utility of winnings and

losses on a person’s wealth. In particular, he was able to explain why some hazard should

be insured by less wealthy persons while richer persons should better bear the risk of the

same hazard by themselves (D. Bernoulli (1738, pp. 184-6)). He also presented a quite

2Note that D. Bernoulli was ignorant of the content of Cramer’s letter to N. Bernoulli before that
time. Instead he had concluded the main part of his manuscript before N. Bernoulli had sent him a copy
of Cramer’s letter. In this respect, Savage (1972, pp. 92-4) was under misapprehension.

3Savage (1972, p. 94) remarked: “To this day, no other function has been suggested as a better
prototype for Everyman’s utility function.”

4Hence, Daniel Bernoulli can be considered a precursor of Kahneman and Tversky’s (1979) prospect
theory. The same can be said of Buffon (1777/2010, pp. 31-33). Blavatskyy (2005) observed that the
overweighing of small probabilities in Tversky and Kahneman’s (1992) cumulative prospect theory may
well restore a Petersburg Paradox.
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modern theory of portfolio selection for risk spreading (D. Bernoulli (1738, pp. 186-7)).

Dependence of utility on the gambler’s wealth provokes a lot of consequences, e.g. that

a gambler’s willingness to pay and to accept may diverge, and that the selling price of a

gamble will exceed a gambler’s willingness to pay.

According to D. Bernoulli’ hypothesis, the expected value of a Petersburg game in

monetary terms, which was donated to a gambler, is exp{
∑∞

i=1 2−i ln[w + 2i−1]} − w.

We may consider it likewise as the selling value of this Petersburg game. If the gam-

bler had paid the stake s for this gamble, its expected value in monetary terms is

exp{
∑∞

i=1 2−i ln[w − s + 2i−1]} − w. Since s > 0, the latter value is smaller than the

former. Bernoulli argues that the latter expression approximates the former one if w is

comparatively big in relation to s.5

Menger (1934, p. 467-468) objected to the Bernoulli-Cramer solution that a trans-

formation of the winnings which is “sufficiently concave” is only a sufficient, but not a

necessary condition for “solving” the Petersburg Paradox. To demonstrate that he pro-

posed to replace (xi) = 2i by xi = exp 2i. Applying now the transformation ln(·) to

xi = exp 2i regains the Petersburg Paradox. [Replacing (xi) = 2i by (xi) = (2i)2 regains

the Petersburg Paradox in Cramer’s version for the transformation
√

(·).] Samuelson

(1977, p. 32) called this Menger’s Super-Petersburg Paradox. More generally, for each in-

creasing and unbounded utility function can an increasing transformation be defined such

that the transformed winnings converge relatively faster to infinity than the probabilities

converge to zero.

Menger (1934) was the first to show that boundedness of the utility function is a nec-

essary and sufficient condition for preventing the occurrence of a Petersburg Paradox. He

proved that in a a somewhat circumstantial way. In his article, he proved sufficiency in

Section 6 (pp. 469-471), and necessity with the help of his Super-Petersburg game in Sec-

tion 5 (pp. 468-469). In the necessity part of his proof he argued that for each unbounded

function u(xi) there exists a related Petersburg game whose expected transformed win-

nings amount to infinity. The principal contribution by Menger (1934) was his necessary

condition, i.e., to have shown that a Petersburg gamble has a finite solution only if the

utility of winnings is bounded. Before its 1967 English translation in the Morgenstern-

Festschrift, Menger’s result was widely unknown in the Anglo-Saxon literature, except

by Arrow in 1951 and 1965 (reprinted as Essays 1 and 2 in Arrow (1970)). Samuelson

frankly acknowledged that Menger’s breakthrough was a quantum jump in the analysis

of the Petersburg Paradox (Samuelson (1977, pp. 32 and 37)). Menger’s achievement was

5D. Bernoulli (1738, pp. 188-9). For the Cramer proposal, the logarithm should be replaced by the
square root, and the exponential function by taking the square.
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also acclaimed by other Nobel laureates such as Arrow (1970, pp. 23 and 64-69) and Au-

mann (1977). In a painstaking analysis, Arrow (1970, pp. 64-69) has shown that a utility

function for risky prospects has to be bounded from above and from below when instances

of the Petersburg Paradox should be avoided.6 This implies that a utility function for

risky prospects must have at least one Friedman-Savage inflexion point (Samuelson (1977,

p. 50, Footnote 14)) which forms also the central constituent of Kahneman and Tversky’s

prospect theory.

In view of two centuries’ discussions on such a provocative subject like the Petersburg

Paradox, it takes wonder why its solution had to wait until Menger’s (1934) discovery.

This seems to be due to the comprehension of utility as it developed in the course of

several centuries. After early contemplations by Thomas Hobbes, Francis Hutcheson,

and David Hume, it was, in particular, Bentham (1781/2000) who elevated utility to the

central driving power of human actions. Bentham’s influential disciple John Stuart Mill

engrossed Bentham’s ideas and propagated them further. Other early advocates of utility

were Auguste Walras and Juvénal Dupuit. These beginnings of utility theory spawned

later on the edifice of marginal utility propagated by Heinrich Hermann Gossen, William

Stanley Jevons (mainly influenced by Bentham), Léon Walras, Carl Menger, Friedrich

von Wieser, Eugen von Böhm-Bawerk, and John Bates Clark.7 For all those scholars

utility was something palpable and immutable. It was only Pareto who was the first

to aver interpersonal noncomparability of utility and it was the Hicks and Allen (1934)

ordinal revolution after which the profession had understood that uniqueness of the utility

function up to a strictly increasing transformation is sufficient to analyze and rationalize

economic decision-making.

Menger had written the first draft of his paper in 1923 and had presented it in 1927 to

the Economic Society of Vienna. However, it was not particularly understood, let alone,

acclaimed, by the audience. It was only in 1934, that Oskar Morgenstern, in his capac-

ity as the managing editor of the Zeitschrift für Nationalökonomie, accepted Manger’s

manuscript for publication in the Zeitschrift. Although Menger had not provided an

axiomatization of expected utility, his contribution became a crucial step in the devel-

opment of expected utility in the second edition of Neumann and Morgenstern (1947).

Morgenstern (1976, p. 809) remembered in his article on the co-operation with John von

6Fishburn (1970, pp. 206-207) was the first to prove that the utility function of Savage’s theory is
bounded.

7For comprehensive surveys on the development of utility theory cf. Viner (1925a,b) and Stigler
(1950a,b). Whereas Viner did not mention Bernoulli at all, Stigler (1950b, pp. 373-7) devoted slightly
over four pages to Bernoulli’s utility function. However, amidst only theories of utility under certainty,
this part looks rather alien in the Stigler survey.
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Neumann:

...we decided that we would settle on thinking about numerical utility. It did

not take us long to construct the axioms on which the present theory is based

that gave us a firm utility concept, that of an expected utility, numerical up to

a linear transformation. ... Regarding risk, Karl Menger’s important paper of

1934 on the St. Petersburg Paradox ... played a great role. ... the construction

of axioms of our expected utility came quite naturally. I recall vividly how

Johnny rose from our table when we had set down the axioms and called out

in astonishment: “Ja hat denn das niemand gesehen?” (“But didn’t anyone

see that”) ... It was largely my doing that this utility theory was developed ...

Hence, Menger’s 1934 article marked a decisive step in the development of expected

utility theory [see also Kuhn and Tucker (1958, p. 108, Footnote 2)].

Two other proposals at “solving” the Petersburg Paradox is truncation of either the

probabilities or the winnings. Among several other solutions, Buffon (1777/2010, pp. 23,

38, and 46) proposed to set all probabilities smaller than 1
10.000

equal to zero. In this rea-

soning, Buffon was followed by Fontaine, Poisson, d’Alembert, and Condorcet (Samuelson

(1977, pp. 39-40)). Interestingly enough, even Menger (1934, pp. 473 and 476) believed

that small probabilities are undervalued by subjects.8

As to truncating the winnings, Cramer, in his letter to Nicolas Bernoulli of 21st May

1728, suggested bounding the winnings at 224 coins, because larger sums do not make for

more pleasure of the gambler or because the gambler is never able to receive more than this

sum (N. Bernoulli (1713-1732)). In one of his proposals to solve the Petersburg Paradox,

Buffon (1777/2010, p. 39) had argued in analogy to Cramer. Several other authors justified

boundedness of the winnings by referring to the finiteness of the bookmaker’s wealth or

that the time of playing a Petersburg game cannot be infinitely long. A bouquet of such

authors includes Buffon (1777/2010, pp. 39-44), Pringsheim (D. Bernoulli (1896, pp. 46-

52)), Fry (1928, pp. 198-199), Shapley (1977a, p. 440) and, although considerably more

cautious, Shapley (1977b, pp. 448-449). A similar argument was put forward by Brito

8Menger (1934) was unable to adduce empirical evidence for this assumption. Backed by ample empir-
ical research, Kahneman and Tversky (1979) and Tversky and Kahneman (1992) observed overvaluation
of small probabilities. Their prospect theory became famous for its accurate forecasts of human behav-
ior. Recently, several experiments were conducted to investigate subjects’ behavior in Petersburg-game
situations. For details see Neugebauer (2010, pp. 22-31). Neugebauer, too, conducted extensive experi-
ments. His results confirmed Daniel Bernoulli’s hypothesis that the willingness to pay for participation in
a Petersburg game is an increasing function of wealth, and Nicholas Bernoulli’s and Buffon’s conjecture
that small probabilities are set equal to zero.

6



(1975) and Cowen and High (1988), viz. that the utility of winnings is finite because a

gambler has not enough time to consume that much money involved by extremely high

winnings, or because the marginal utility of money becomes zero as the gambler disposes

of extremely high sums of money.9

Even 300 years after the discovery of the Petersburg Paradox it seems that only half

of the story was given attention. All expected values depend on two components, viz. a

value component and a probability component, which has ever been the daily routine in

statistics (see, e.g., DeGroot (1970, pp. 89-91)). The literature on the Petersburg Paradox

has exclusively paid attention to the value component and its transformations and has

largely neglected the role of the probabilities.

However, in many cases a Petersburg Paradox can be “solved” by re-defining the prob-

abilities rather than the winnings. As the winnings or the utilities of the winnings go

to infinity, we can define other probabilities which shrink relatively faster to zero than

the winnings or their utilities grow to infinity. This instrument can also be used in the

opposite direction. When the winnings or their utilities grow to infinity, but have a finite

expected value, then the probabilities can be replaced by other probabilities which shrink

relatively slower to zero so that a Petersburg Paradox emerges or re-emerges.

The next section provides a rigorous analysis of the Petersburg Paradox and its solu-

tions in terms of a uniform treatment using d’Alembert’s ratio test. This device allows us

to cover both all traditional solutions of the Petersburg Paradox as well as appropriate

transformations of the probabilities.

3 Rigorous Analysis of the Petersburg Paradox

Theorem 1: Let N denote the set of natural numbers and let x : N → X ⊂ R+ denote

a strictly increasing mapping, i.e., xj > xi ∀j > i, i, j ∈ N. Let u : X → R+ denote a

nondecreasing function such that u(xi) <∞ ∀ i <∞, and p : X → [0, 1], a nonincreasing

function such that
∑∞

i=1 p(xi) = 1, i.e., a probability distribution. Then the following

holds:

Case 1:
∑∞

i=1 u(xi)p(xi) <∞ if ∃i∗ <∞ such that p(xi) = 0 ∀ i ≥ i∗.

9Note that Petersburg games with infinite expected value cannot be compared even if one dominates
another one for finitely many values. Hence, modern varieties of truncation were developed to come to
grips with unbounded winnings and utility functions; see, e.g., DeGroot (1970, p. 112, Assumption U6),
Toulet (1986), Wakker (1993).
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Case 2:
∑∞

i=1 u(xi)p(xi) <∞ if ∃i∗ <∞ such that supi≥i∗
u(xi+1)p(xi+1)

u(xi)p(xi)
< 1.

Case 3:
∑∞

i=1 u(xi)p(xi) =∞ if ∃i∗ <∞ such that infi≥i∗
u(xi+1)p(xi+1)

u(xi)p(xi)
≥ 1.

Case 4:
∑∞

i=1 u(xi)p(xi) may converge or diverge if limi→∞
u(xi+1)p(xi+1)

u(xi)p(xi)
= 1.

Proof: Case 1 is immediate. Cases 2, 3, and 4 follow from d’Alembert’s ratio test (see,

e.g., Stephenson (1973, pp. 75-76)). �

Corollary 2: [Petersburg Case] For each probability distribution p(xi) > 0,
∑∞

i=1 p(xi) =

1, which is strictly decreasing for all i ≥ i∗, i∗ <∞, there exist functions u(xi) which are

strictly increasing for all i ≥ i∗, i∗ <∞, such that
∑∞

i=1 u(xi)p(xi) =∞.

Proof: Applying Case 3 of Theorem 1, we consider functions u(xi) such that

u(xi+1)

u(xi)
>

p(xi)

p(xi+1)
> 1 ∀ i ≥ i∗,

that is, the growth rate of utility exceeds the shrinkage rate of probability10 for infinitely

many items. If the equality sign holds instead of the inequality sign in the above relation,

then Case 4 of Theorem 1 holds. �

Remark 3: The original Petersburg Paradox assumes xi = i, u(xi) = 2i−1, p(xi) =

1
6

(
5
6

)i−1
, which implies

∑∞
i=1 u(xi)p(xi) =

∑∞
i=1

1
6

(
10
6

)i−1
= ∞. Since

u(xi+1)p(xi+1)

u(xi)p(xi)
=

10
6
> 1 for all i ≥ 2, the original Petersburg Paradox comes up to Case 3 of Theorem 1

for which
∑∞

i=1 u(xi)p(xi) =∞.

The “classical” Petersburg Paradox (in Cramer’s version) assumes xi = i, u(xi) =

2i−1, p(xi) = 2−i, which implies
∑∞

i=1 u(xi)p(xi) = 2−1 ×∞ = ∞. Note that
u(xi+1)

u(xi)
=

2,
p(xi)

p(xi+1)
= 2, and

u(xi+1)p(xi+1)

u(xi)p(xi)
= 1 for all i ≥ 2. That is, the “classical” Petersburg

Paradox comes up to Case 4 of Theorem 1 for which
∑∞

i=1 u(xi)p(xi) = ∞. Hence, the

Petersburg Case may hold for some instances of Case 4 and holds quite generally for Case

3 of Theorem 1.

10 p(xi)
p(xi+1)

denotes the shrinkage rate of probabilities. If it is, for instance, equal to 2, this means that

p(xi) is double as high as p(xi+1). A shrinkage rate of 4 would indicate that p(xi) is four times as high
as p(xi+1).
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Corollary 4 (Arrow (1974)): Assume a probability distribution for which E(x) < ∞.

Then for all concave functions u(·) such that u(xi) <∞ ∀ i <∞, we have E[u(x)] <∞.

Proof: By Jensen’s inequality we have E[u(x)] ≤ u[E(x)] for concave functions. Since

E(x) <∞ and u(xi) <∞ for xi <∞, we have u[E(x)] <∞ and, hence, E[u(x)] <∞. �

Remark 5: In his proof, Arrow (1974) did not make use of Jensen’s inequality. Obviously,

this theorem carries over to cases such that E[u(x)] <∞ and all concave functions ψ[u(x)]

such that ψ[u(xi)] < ∞ ∀ i < ∞. Note that the condition E(x) < ∞ or E[u(x)] < ∞
depend, inter alia, both on the probability distribution and on the function u(·)

Corollary 6 (Bernoulli-Cramer Case): For any nondecreasing function 0 < u(xi) <

∞, ∀ i < ∞, and a strictly decreasing probability distribution p(xi) > 0 ∀ i < ∞, such

that
∑∞

i=1 u(xi)p(xi) = ∞ and infi∈N
p(xi)

p(xi+1)
> 1, there exists an increasing transforma-

tion of u(xi), viz. ψ[u(xi)], such that
∑∞

i=1 ψ[u(xi)]p(xi) <∞.

Proof: By assumption infi∈N
p(xi)

p(xi+1)
= β > 1. Since

∑∞
i=1 u(xi)p(xi) = ∞ we have for

all i > i∗

(1)
u(xi+1)

u(xi)
>

p(xi)

p(xi+1)
> β,

because otherwise the initial series would converge. We construct ψ(·) so that for any u(·)
with property (1)

(2)
ψ[u(xi+1)]

ψ[u(xi)]
< β.

To show that note that for any number
u(xi+1

u(xi)
≥ β > 1 there exists a real number 0 <

γ(xi, xi+1) < 1 so that 1 <

(
u(xi+1)

u(xi),

)γ(xi,xi+1)

< β. Take γ∗ = infi>i∗ γ(xi, xi+1), then we

can choose ψ[u(xi)] = [u(xi)]
γ∗ for ψ(·) in (2). This implies

ψ[u(xi+1)]p(xi+1)

ψ[u(xi)]p(xi)
< 1 ∀ i > i∗.

Hence, by Case 2 of Theorem 1 we have
∑∞

i=i∗ ψ[u(xi)]p(xi) <∞. �

Remark 7: Note that Bernoulli proposed11 ψ[u(xi)] = ln[u(xi)] = ln 2i−1, and Cramer

11In addition to the gambler’s winnings, recall that Bernoulli took also the gambler’s wealth into
consideration which we neglect in this analysis.
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proposed ψ[u(xi)] =
√
u(xi) =

√
2i−1. Since these functions were proposed for p(xi) =

2−i, we have

for the Bernoulli proposal:
ψ[u(xi+1)]p(xi+1)

ψ[u(xi)]p(xi)
=

i

2(i− 1)
< 1 for i > 2.

for the Cramer proposal:
ψ[u(xi+1)]p(xi+1)

ψ[u(xi)]p(xi)
=

√
2

2
< 1 for i ∈ N.

Remark 8: Note that a Petersburg Paradox is brought about by the winnings and the

probability distribution.12 Suppose we replace the probabilities of the Cramer solution

by p̃(xi) =
1

K
√

2i
, where K =

∑∞
i=1 2−

i
2 =

1√
2− 1

denotes a calibrating constant.

Obviously,

∞∑
i=1

p̃(xi) =
∞∑
i=1

1

K
√

2i
=
∞∑
i=1

1

2
i
2

2
1
2−1

= (2
1
2 − 1)

∞∑
i=1

2−
i
2 = 1, and

∞∑
i=1

ψ[u(xi)]p̃(xi) =
∞∑
i=1

√
2i−1

√
2i√

2−1

=
∞∑
i=1

(
1− 1√

2

)
=∞,

which re-establishes the Petersburg Paradox.13 Hence, a concave transformation of the

winnings does not necessarily “solve” the Petersburg Paradox. It is regained if the shrink-

age rate of the probabilities is adequately slowed down.

Re-establishing a Petersburg Paradox is somewhat more tricky for the Bernoulli solu-

tion.14 We look for probabilities p̂(xi) such that
∑∞

i=1 ln 2i−1p̂(xi) = ∞. Since
ln 2i

ln 2i−1
=

i

i− 1
, we have to look for probabilities such that limi→∞

ln 2ip̂(xi+1)

ln 2i−1p̂(xi)
= 1. Consider

p̂(xi+1)

p̂(xi)
=

i2

(i+ 1)2
, which gives us

lim
i→∞

u(xi+1)p̂(xi+1)

u(xi)p̂(xi)
= lim

i→∞

i3

(i+ 1)2(i− 1)
= lim

i→∞

(
1 +

1

i− 1

)
1

(1 + 1
i
)2

= 1.

12The equivalent roles of the winnings or their utilities on the one hand an the probability distribution
on the other for expected values has ever been daily routine in statistics; see, e.g., DeGroot (1970, pp. 89-
91). In the literature on the Petersburg Paradox, the role of the probabilities seems to have been largely
neglected.

13It is easily checked that ψ[u(xi+1)]
ψ[u(xi)]

=
√

2i√
2i−1 =

√
2 and p̃(xi+1)

p̃(xi)
=

1

π
√

2i+1
1

π
√

2i

= 1√
2
. Hence,

ψ[u(xi+1)]p̃(xi+1)
ψ[u(xi)]p̃(xi)

= 1. Recall from Theorem 1, Cases 3 and 4, that infi≥i∗
u(xi+1)p(xi+1)
u(xi)p(xi)

> 1 or

limi→∞
u(xi+1)p(xi+1)
u(xi)p(xi)

= 1, respectively, may imply a Petersburg Paradox.
14I owe this example to Lyudmila Egorova.

10



Hence, the probabilities we look for are K̃
i2

, where K̃ denotes a calibrating constant. K̃

is computed by setting K̃
∑∞

i=1
1
i2

equal to 1. By the Basel problem, solved by Leonhard

Euler in 1735, we have
∑∞

i=1
1
i2

= π2

6
= 1

K̃
,15 which gives us

p̂(xi) =
6

π2

1

i2
, 0 < p̂(xi) < 1,

∞∑
i=1

p̂(xi) = 1.

Finally,

∞∑
i=1

ln 2i−1p̂(xi) =
6 ln 2

π2

∞∑
i=1

i− 1

i2
=

6 ln 2

π2

[
∞∑
i=1

1

i
−
∞∑
i=1

1

i2

]
=∞,

because the first term in the square brackets is the sum of a harmonic series, which is

infinity, and the second term is −2 < −π2

6
< ∞. Hence,

∑∞
i=1 ln 2i−1p̂(xi) = ∞, which

re-establishes a Petersburg Paradox for the Bernoulli solution.

Remark 9: As a further illustration of Remark 8 suppose we have a Petersburg game with

winnings 2i−1 at the i-th toss, but the game is somewhat re-defined. Two coins are flipped

at the same time. The gambler gets the winning 2i−1 if some other result than two heads

comes up for the first time at the i-th toss. The respective probabilities are
(

1
4

)i−1 (3
4

)
and(

3
4

)∑∞
i=1

(
1
4

)i−1
= 1. This implies

(
3
4

)∑∞
i=1

(
1
4

)i−1
2i−1 = 3

2
. This example demonstrates

that the Petersburg Paradox cannot exclusively be “solved” by a transformations of the

winnings. Shrinkage rates of probabilities which exceed the growth rates of winnings

perform the same job. This other source of solving the Petersburg Paradox was ignored

by the literature.

Corollary 10: Case 2 of Theorem 1 obtains if the shrinkage rate of probability exceeds

the growth rate of utility for infinitely many winnings.

Case 3 of Theorem 1 obtains if the growth rate of utility exceeds the shrinkage rate of

probability for infinitely many winnings.

Case 2 can be transformed into Case 3 by an appropriate increasing convex mapping

to utility or by an appropriate decreasing convex mapping to probability.

15π
2

6
is approximately equal to 1.6449341. . . A simple demonstration of the boundedness of

∑∞
i=1

1
i2 is

N∑
i=1

1
i2
< 1 +

N∑
i=2

1
i(i− 1)

= 1 +
N∑
i=2

(
1

i− 1
− 1
i

)
= 1 + 1− 1

N
,

which converges to 2 as N →∞.
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Case 3 can be transformed into Case 2 by an appropriate increasing concave mapping

to utility or by an appropriate decreasing concave mapping to probability.

Proof: By Theorem 1 we have for Case 2

1 <
u(xi+1)

u(xi)
<

p(xi)

p(xi+1)
∀i > i∗, i∗ <∞

and for Case 3
u(xi+1)

u(xi)
>

p(xi)

p(xi+1)
> 1 ∀i > i∗, i∗ <∞.

Case 2 can be transformed into Case 3 either by applying an appropriate increasing

convex mapping ψ(·) to utility [an example being Menger’s Super-Petersburg Paradox],

or by applying an appropriate decreasing convex mapping φ(·) to probability [cf. the

examples shown in Remark 8]:

ψ[u(xi+1)]

ψ[u(xi)]
>

p(xi)

p(xi+1)
> 1;

u(xi+1)

u(xi)
>

φ[p(xi)]

φ[p(xi+1)]
> 1 ∀i > i∗, i∗ <∞.

Case 3 can be transformed into Case 2 either by an appropriate increasing concave map-

ping ψ(·) to utility [examples being the Cramer and Bernoulli solutions to the Petersburg

Paradox], or by applying an appropriate decreasing concave mapping to probability [an

example being Remark 9]:

1 <
ψ[u(xi+1)]

ψ[u(xi)]
<

p(xi)

p(xi+1)
; 1 <

u(xi+1)

u(xi)
<

φ[p(xi)]

φ[p(xi+1)]
∀i > i∗, i∗ <∞.

�

Remark 11: Corollary 10 demonstrates the equivalent role of appropriate mappings of

utility and probability for “solving” a Petersburg Paradox or for regaining a Petersburg

Paradox.

Corollary 12 (Buffon Case): For all nondecreasing functions u(xi) < ∞, i < ∞, we

have
∑∞

i=1 u(xi)p(xi) < ∞ for all probability distributions with p(xi) = 0 ∀ i > i∗, i∗ <

∞.

Proof: Case 1 of Theorem 1. �

Corollary 13 (Menger Case): For all strictly increasing functions u(xi) <∞, ∀ i <∞,

12



and all probability distributions p(xi) ≥ 0,
∑∞

i=1 p(xi) = 1,
∑∞

i=1 u(xi)p(xi) <∞ holds if

and only if ∃B <∞ such that u(xi) ≤ B ∀ i ∈ N.

Proof: Obviously u(xi) ≤ B < ∞ ∀ i ∈ N implies
∑∞

i=1 u(xi)p(xi) ≤
∑∞

i=1Bp(xi) =

B <∞.

Conversely, assume u(xi) → ∞ as xi → ∞. We rule out p(xi) = 0 ∀ i ≥ i∗, since

this would lead trivially to Case 1. Because of
∑∞

i=1 p(xi) = 1 all feasible probability

distributions have to be strictly decreasing for infinitely many xi’s. Hence, p(xi) > 0 is

strictly decreasing for all i > i∗, i∗ < ∞. This implies
p(xi)

p(xi+1)
> 1 ∀ i > i∗, i∗ < ∞.∑∞

i=1 p(xi) = 1 implies supi>i∗
p(xi)

p(xi+1)
< ∞. If infi>i∗

u(xi+1)

u(xi)
> supi>i∗

p(xi)

p(xi+1)
, we

can proceed along this way. If not, we choose a strictly increasing transformation ψ(·)

such that infi>i∗
ψ[u(xi+1)]

ψ[u(xi)]
> supi>i∗

p(xi)

p(xi+1)
. Note that such transformation ψ(·) always

exists: a trivial case is ψ[u(xi)] = [u(xi)]
α, α > 1. Since

u(xi+1)

u(xi)
> 1, α > 1 can be chosen

such that infi>i∗

[
u(xi+1)

u(xi)

]α
> supi>i∗

p(xi)

p(xi+1)
. Then we have

ψ[u(xi+1)]

ψ[u(xi)]
>

p(xi)

p(xi+1)
⇔ ψ[u(xi+1)]p(xi+1)

ψ[u(xi)]p(xi)
> 1 ∀ i ≥ i∗, i∗ <∞,

which comes up to Case 3 of Theorem 1 for i ≥ i∗. Hence, boundedness of u(·) is a

necessary and sufficient condition for
∑∞

i=1 u(xi)p(xi) <∞. �

Remark 14: Although the Menger (1934) article decisively influenced the design of von

Neumann-Morgenstern expected utility, there are major differences between both con-

cepts. Whereas for the Menger conception all ordinal transformations of a feasible utility

function are admissible utility functions to be screened, a utility function according to the

von Neumann-Morgenstern conception is cardinal, i.e., unique only up to an increasing

linear transformation. Hence, whenever von Neumann-Morgenstern expected utility is fi-

nite, then it is finite for all feasible (i.e., increasing linear) transformations. Note that the

von Neumann-Morgenstern axioms envisage some calibration of results, so that the best

result is usually assigned the utility value of 1, and the worst result the utility value of 0.

The utility values of all other results follow from considering them as certainty equivalents

of binary lotteries with the best and worst results as the prizes. The equivalent proba-

bility of these lotteries of receiving the best prize is then set equal to the utility of the

respective intermediate results (cf., e.g., Luce and Raiffa (1957, pp. 21-3)). Since ordinal
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transformations of this setting would paralyze the utility function, only increasing linear

transformations are allowable under von Neumann-Morgenstern expected utility. Menger

(1934) had something different in mind, viz. to state a condition utility functions have

to satisfy to rule out the occurrence of a Petersburg Paradox. Neither did he provide an

axiomatization of expected utility, nor did he consider the role of probabilities to “solve”

a Petersburg Paradox.

4 Conclusion

In the French ancien régime, many aristocrats spent their time with games of hazard. For

judging the advantage of games of hazard, contemporary mathematicians proposed the

expected value of the winnings less the stake of the game. Nicolas Bernoulli formulated

a game of hazard with infinite expected value, but no gambler would stake more than a

moderate amount for participation in this gamble. Bernoulli’s gamble became known by

dint of de Montmort’s book Essay d’analyse sur les jeux de hazard. The challenge of this

gamble soon provoked attempts at its “solution”. Cramer and Daniel Bernoulli suggested

appropriate concave transformations of the winnings, Buffon and others suggested trunca-

tion of the probabilities or of the winnings, by setting small probabilities equal to zero or

by realizing that no bookmaker can guarantee extremely high winnings. Menger was the

first to show that boundedness of utility functions is a necessary and sufficient condition

to warrant a finite expected value of a Petersburg gamble. His seminal article paved the

way for von Neumann and Morgenstern’s development of expected utility theory.

In third section it is shown that all four possible cases of a Petersburg Paradox can be

uniformly treated using d’Alembert’s ratio test. This test compares the growth rates of

utility and the shrinkage rates of probability. If the first exceeds the second, we encounter

infinite expected utility, if the second exceeds the first, we encounter finite expected utility.

If the limit of the ratio of their product is equal to one, we can have either infinite or finite

expected utility. A finite expected value can be transformed into an infinite expected value

either by applying an appropriate increasing convex mapping to utility, or by applying

an appropriate decreasing convex mapping to probability. An infinite expected value

can be transformed into a finite expected value by applying an appropriate increasing

concave mapping to utility, or by applying an appropriate decreasing concave mapping to

probability. Employing probability mappings for transforming Petersburg Paradoxa is a

novel feature of analysis.
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