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Abstract

We analyze the identification and estimation of parameters β satisfying the incomplete
linear moment restrictions E(z>(xβ−y)) = E(z>u(z)) where z is a set of instruments and
u(z) an unknown bounded scalar function. We first provide empirically relevant examples
of such a set-up. Second, we show that these conditions set identify β where the identified
set B is bounded and convex. We provide a sharp characterization of the identified set not
only when the number of moment conditions is equal to the number of parameters of interest
but also in the case in which the number of conditions is strictly larger than the number of
parameters. We derive a necessary and sufficient condition of the validity of supernumerary
restrictions which generalizes the familiar Sargan condition. Third, we provide new results
on the asymptotics of analog estimates constructed from the identification results. When B
is a strictly convex set, we also construct a test of the null hypothesis, β0 ∈ B, whose size
is asymptotically correct and which relies on the minimization of the support function of the
set B − {β0} . Results of some Monte Carlo experiments are presented.
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1 Introduction1

Point identification is often achieved by using strong and difficult to motivate restrictions on the

parameters of interest. This paper contributes to the growing literature that uses weaker assump-

tions, under which parameters of interest are set identified only. A parameter is set identified

when the identifying restrictions impose that it lies in a set that is smaller than its potential do-

main of variation, but larger than a single point. We exhibit a class of semi-parametric models

in which set identification and estimation can be achieved at low cost and using inference tools

close to what is standard in applied work.

In our set-up, parameters of interest are defined by a set of restrictions that we call incomplete

linear moment restrictions. Specifically, we consider y, a dependent variable, x, a vector of p

variables and z a vector of m variables and assume that parameter β satisfies:

E(z>(xβ − y)) = E(z>u(z)), (1)

where u(z) is any single-dimensional measurable function that takes its values in a given bounded

interval I(z). One leading example is the familiar linear projection model y = xβ + ε, where ε

is uncorrelated with z, but where the continuous dependent variable, y, is censored by intervals.

The issue addressed in this paper is to identify and estimate the set, B, lying in Rp of all values

which satisfy equation (1) for at least one admissible u(.)

A general approach to inference when a set only is identified has recently been proposed

by Chernozukov, Hong and Tamer (2007). They define the identified set as the set of zeroes

of a functional, called the criterion, and there is no constraint on its shape. In particular, their

procedure is valid even when the identified set is neither convex nor bounded. In contrast, the

identified set B analysed in this paper is, by construction, bounded and convex. These are key

features that we exploit using the concept of a support function whose argument is any direction q

of the unit sphere in Rp. The support function sharply characterizes any convex set (Rockafellar,

1970) and Beresteanu and Molinari (2008) used them in the linear projection model in which

1This paper was developed for the invited session that one of us gave at ESEM’06 in Vienna. We thank Richard
Blundell, Andrew Chesher, Guy Laroque, Whitney Newey, Adam Rosen and particularly Francesca Molinari for
helpful discussions as well as three anonymous referees for their insightful comments that significantly improve the
paper. We also thank the participants at seminars at PUC-Rio, CEMMAP, CREST Malinvaud seminar, Mannheim,
Yale, NYU, Paris I, Cornell, MIT, Northwestern, Toulouse, Cambridge, Bristol and Carlos III as well as in work-
shops and conferences (ESRC Bristol ’07, Montréal Conference on GMM ’07, London Cemmap-Northwestern
University Conference on “Inference in Partially Identified Models” ’08, Marseille Festschrift for Russell Davidson
’08, 1st French Econometrics Conference ’10) for comments. We thank Mehtap Akguc for her excellent research
assistance. The usual disclaimer applies.
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variables x and z are identically the same. We show that in the set-up in which there are as many

instruments as explanatory variables (m = p), the support function of the identified convex set

B, is equal to the expectation of a simple random function.

Our first contribution relates to identification. When there are supernumerary instruments

(m > p), the identified set B might be empty and this would refute the exclusion restrictions

as discussed by Manski (2003, Chapter 2). We exhibit a necessary and sufficient condition, a

generalization of the usual over-identifying condition à la Sargan, under which the identified set

is not empty and the exclusion restrictions are acceptable. Set B remains bounded and convex

and we show as a second contribution that its support function results from the minimization

of the expectation of a simple random function. We also exhibit conditions under which the

existence of supernumerary instruments restores point identification.

The next contribution of the paper is to provide a simple estimator of the support function

of the identified set. This estimator is the empirical analogue of the expectation of the random

function to which the support function is equal. In their closely related contribution, Beresteanu

and Molinari (2008) provide an estimation procedure for a class of convex identified sets using

the theory of random sets. We directly use the theory of stochastic process from which the

theory of random sets is derived because the results are easier to generalize to the endogenous

case. Specifically, when the support function is not differentiable, we show that the estimate

converges in distribution at a
√
n rate to the sum of a Gaussian process and of a process that

we characterize and whose support comprises the points of non differentiability only. Given the

prevalence of discrete regressors that leads to such non differentiability issues, this generalization

is worthy of attention. Interestingly enough, our approach also reveals that the asymptotic results

of Beresteanu and Molinari (2008) actually simplify to a quite standard linear model format for

the covariance matrix in the case in which the support function is differentiable.

Furthermore and more importantly, we develop a new test procedure for null hypotheses con-

cerning parameter values such as H0 : β0 ∈ B when the support function is differentiable. This

class of hypotheses is particularly adapted to our setting since the generalized Sargan condition

developed in the supernumerary moment case can be written as an hypothesis about values. Our

test has correct asymptotic size and is very easy to adapt to hypotheses about sub-vectors of

the complete parameter. The convexity of support functions associated to convex sets is the key

feature that simplifies our test procedure. The test statistic is constructed as the minimum value

of a convex function over the compact unit sphere in a finite-dimensional space and we exploit
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this characteristic to derive the asymptotic distribution of the test statistic even in the case in

which the convex set B has kinks. The form of the test statistic is reminiscent of the test statistic

proposed by Galichon & Henry (2009) in a more general context since the space over which

the minimum of the test statistic is taken in our case is much smaller than theirs because of the

convexity assumption.

Finally, the same key feature of convexity allows us to derive asymptotic properties of the

estimates in the case in which there are supernumerary moment restrictions and the identified set

is a proper set. Estimates are uniformly almost surely consistent and when the support function

is differentiable, the inflated difference between the estimated and true functions converges to a

Gaussian process whose covariance operator can be characterized and estimated simply.

This paper belongs to the growing literature on set identification. From the very start of

structural modeling, identification meant point identification. Dispersed in the literature though,

there are examples of the weaker concept of set identification. Set identification can come from

two broad sets of causes : information might be missing or structural models might not generate

enough moment restrictions or inequality restrictions only. The oldest examples of the first case

correspond to measurement errors. They were introduced by Gini (1921), Frish (1934) and fur-

ther analyzed, decades later, by Klepper and Leamer (1984), Leamer (1987) or Bollinger (1996).

There are many other examples of missing information generating incomplete identification (see

Manski, 2003). Seminal analysis of the incomplete information case include Fréchet (1951),

Hoeffding (1940) and Manski (1989) whereas recent applications include Vazquez-Alvarez, Me-

lenberg and van Soest (2001), Blundell, Gosling, Ichimura and Meghir (2007), Honoré and

Lleras-Muney (2006) and Ciliberto and Tamer (2009). Horowitz and Manski (1995) consider

the case where the data are corrupted or contaminated while Ridder and Moffitt (2007) provide a

survey of the results relative to two-sample combination. Structural models delivering moment

inequality restrictions (instead of equalities) are the second type of models leading to set identifi-

cation (Andrews, Berry and Jia, 2002, Pakes, Porter, Ho and Ishii, 2005, Haile and Tamer, 2003,

Galichon and Henry, 2009 among others). Set identification can also be generated by discrete

exogeneous variation such as in Chesher (2005) or by structurally missing information such as in

the treatment effect literature (see Fan and Park, 2010 or Fan and Wu, 2010 for recent analyses).

In both cases, Chernozhukov, Hong and Tamer (2007) use a criterion approach for the definition

of the identified set and subsampling techniques for estimation and inference (see also Romano

and Shaikh, 2008). In the moment inequality set-up, Rosen (2008) develops simple testing pro-

4



cedures and Bugni (2010) and Canay (2010) investigate the properties of canonical bootstrap and

modifications of it. Andrews and Guggenberger (2009) studies cases that do not fall under the

assumptions of Imbens and Manski (2004) or Stoye (2009).

The class of models considered in this paper belongs to both branches of the literature. In-

complete linear conditions can be interpreted as a specific set of inequality restrictions generated

by some missing information. Yet, our framework is more restrictive than the popular moment

inequality restrictions set up since the unknown function u(z) is single dimensional. The leading

examples that we propose are derived from partial observation when outcomes are censored by

intervals (Manski & Tamer, 2002, Stoye, 2007, Beresteanu & Molinari, 2008), when the con-

tinuous regressor in a binary model is observed by intervals or is discrete (Magnac & Maurin,

2008) or when categorical data on opinions and attitudes are analyzed.

Incomplete linear moment conditions define identified sets which are convex and bounded.

The approach developed in this paper relies directly on these two properties and we expect that

the same procedure can be adapted to other contexts where the identified set is convex and

bounded. Examples of incomplete non linear conditions are offered by Beresteanu, Molchanov

and Molinari (2010). In contrast, we believe that estimation is more difficult to implement in

set-ups such as those proposed by Klepper and Leamer (1984) or Erikson (1993) because the

corresponding identified sets are not bounded and convex. Finally, while our results are given in

a global linear set-up, their adaptation to a local linear set-up seems to be achievable at low cost.

Section 2 defines the set up of Incomplete Linear Models and develops examples that are

of interest for applied econometricians. Section 3 sharply characterizes the identified set. We

analyze the case in which the number of parameters is equal to the number of restrictions as

well as the case in which the number of restrictions is larger than the number of parameters.

In the latter case, we provide the extension of the Sargan condition. For the sake of simplicity,

Section 4 specializes to the case of outcomes measured by intervals. Under general conditions,

we derive asymptotic properties of estimates in the case of no moment restrictions in surplus. We

also develop test procedures, construct confidence regions by inversion of the tests and derive

asymptotic properties of the estimates in the case in which there are supernumerary restrictions.

Section 5 is devoted to Monte Carlo experiments about estimation and testing procedures and

Section 6 concludes.
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2 The Set-up of Incomplete Linear Models

In this paper, we analyze the identification and estimation of parameters β of what we call an

incomplete linear model. In this model, the variables satisfy the incomplete linear moment con-

ditions:

E(z>(xβ − y)) = E(z>u(z)), (2)

where y is a scalar dependent variable, x a vector of p covariates, z a vector of m instruments

and u(z) a measurable function which takes values2 in an admissible set I(z) = [∆(z),∆(z)].

These two bounds ∆(z) and ∆(z) can be constructed using two observable variables y and y

such that y ≥ y, y ∈
[
y; y
]
, and

E(y − y | z) = ∆(z) > 0 > E(y − y | z) = ∆(z). (3)

The next subsections provide examples, the leading one being that a dependent variable is

observed by intervals only so that the lower, y, and upper bounds, y, of the interval are explicitly

reported in the dataset (e.g. Manski and Tamer, 2002). We assume the following regularity

conditions:

Assumption R(egularity):

R.i. (Dependent variables) y, y and y are scalar random variables.

R.ii. (Covariates & Instruments) The support of the distribution Fx,z of (x, z) is included in

Rp×Rm. Furthermore, the conditions of full rank, rank(E(z>x)) = p and rank(E(z>z)) = m

hold. Finally, Pr{z = 0} = 0.

R.iii. The random vector (y, y, x, z) belongs to the space L2 of square integrable variables.

Along with equation (2), assumptions R.i − ii defines the linear model where there are p

explanatory variables andm instrumental variables (assumptionR.ii). AssumptionR.ii, accom-

modates the standard exogenous case x = z as a particular case and the absence of a mass point

at {0} is an assumption made for notational convenience and it can be dispensed with (see note 6

further on). Assumption R.iii implies that all cross-moments and regression parameters are well

defined. As shown in the next section, it implies that the set of identified parameters is bounded.

2For ease of notation, all statements referring to any value of a random variable should be understood as this
random variable almost surely.
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2.1 Censored Dependent Variables

The first interesting set of examples corresponds to common linear regression models where the

dependent variable y is observed by interval only (see e.g. Manski and Tamer, 2002). Household

income, individual wages, hours worked or time spent at school represent continuous outcomes

that are often reported by interval in survey or administrative data.3 For example, the long stand-

ing (and still growing) literature on the long run variations in the distribution of income relies

on tax data reporting the number of tax payers for a finite number of income brackets only (see

e.g., Piketty, 2005). Researchers typically use parametric extrapolation techniques to estimate

the fractiles of the latent income distributions and to analyse variations across periods and coun-

tries. The robustness of these analyses to alternative extrapolation assumptions remains unclear,

however.

In these examples, the data are given by the distribution of a random vector w = (y, y, x)

where
[
y, y
]

represents the observed interval4 of a latent variable y∗ and x is a vector of p

covariates. The observed bounds y and y are assumed to satisfy R.iii.5 Within this framework,

we consider linear latent models :

y∗ = xβ + ε, (4)

where ε is a random variable uncorrelated with x, E(x>ε) = 0. The issue is to characterize the

set B of parameters β such that the latent model defined by equation (4) is consistent with the

observed bounds. By definition, β belongs to B if and only if there exists a random variable, ε,

uncorrelated with x and such that xβ + ε ∈
[
y, y
]
.

Assuming that all variables are in L2 so that all cross-moments exist, the following propo-

sition shows that B is defined by an incomplete linear regression of the center of the interval

measurement y =
y+y

2
on covariates x.

Proposition 1 Denote y =
y+y

2
the center and ∆(x) = E(

y−y

2
| x) the average half-length of the

observed interval
[
y, y
]
. Then β belongs to B if and only if there exists a measurable function

u(x) which takes values in I(x) = [−∆(x); ∆(x)] such that,

E(x>(xβ − y)) = E(x>u(x)). (5)
3Also, for anonymity reasons, only interval information could be made available to researchers even though the

information collected is actually continuous.
4When the interval is not closed, it is not set B itself but the closure of B which is identified (see Magnac and

Maurin, 2008 for more precise statements about closure).
5Without this condition, parameter β is not identified in the strong sense, i.e.any value of β rationalizes the data.

It stems from the well known argument that there is no robust estimator for the mean (see Magnac and Maurin,
2007, for an example).
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Proof. See Appendix A.1

2.2 Discussion of other Applications

Other interesting examples correspond to contingent valuation studies where participants are

asked whether their willingness-to-pay (w∗) for a good or resource exceeds a bid, −v, chosen

by experimental design (see e.g., McFadden, 1994). The outcome under consideration w equals

one if the respondent willingness-to-pay exceeds the experimental bid (i.e., w∗ + v > 0) and

the relationship of interest between w∗ and a set of covariates x is to be inferred from available

observations on w, x and v. Dosage response models are a related example in which w is equal to

one when a lethal dose w∗ exceeds a treatment dose, −v, chosen by experimental design. In all

these cases, the latent model is written as that w∗ = xβ+ε and the semiparametric binary model

w = 1(xβ+v+ε > 0) is estimated under three assumptions. The random term ε is uncorrelated

with regressors x and is independent of regressor v conditional on x (i.e., Fε(. | x, v) = Fε(. | x))

if only because of experimental design. Also, it is often plausible to suppose that the support

of w∗ is small relative to the support of v (i.e., Supp(xβ + ε) ⊂ Supp(−v)). Assuming that

(xβ + ε) represents the latent propensity to buy an object and, −v, is the price of this object, it

simply amounts to assume that for sufficiently high (respectively low) price no one (respectively

everyone) buys the object under consideration.

When v is continuously observed and its support is an interval, we are in the case studied by

Lewbel (2000) and β is point identified. In contrast, when the distribution of v is not continuous,

the set B of observationally equivalent parameters is a proper set defined by a moment condition

similar to equation (2) (see Magnac and Maurin, 2008).

Categorical data on individual opinions or attitudes provide another potential field of appli-

cations. Surveys on job satisfaction or happiness typically contain categorical data on subjective

outcomes such as ”Taking all things together, how would you say things are these days - would

you say you are very happy, fairly happy or not too happy these days?”. It is assumed that these

responses are function of a continuous intensity measure y∗ = xβ + ε where ε has a parametric

distribution (ordered probit or logit). Alternatively, if the distribution of ε is unspecified, the

identified set of parameters is defined by moment conditions similar to equation (2).
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3 The Identified Set of Structural Parameters

This section provides a detailed description of B, the set of observationally equivalent parame-

ters, β, that are compatible with the incomplete linear model above. We first focus on the case

in which the number of instruments z is equal to the number of variables x (the exogenous case

z = x being a particular example). Second we show how the results can be extended to the case

in which the number of instruments z is larger than the number of explanatory variables, x.

3.1 No Moment Conditions in Surplus

When the number of instruments is equal to the number of variables, the assumption (R.ii) that

E(z>x) is full rank implies that equation (2) has one and only one solution in β for any function

u(z) varying in the admissible set. The set of identified parameters, B, is the collection of such

parameters:

B = {β : β =
(
E(z>x)

)−1
E
(
z> (y + u(z))

)
, u(z) ∈ [∆(z),∆(z)]}. (6)

The identified set B is therefore non empty (set e.g. u(z) = 0), convex and closed since the

admissible set is convex and closed.

The key object that we exploit is the support function of a convex set defined as:

∀q ∈ Rp, δ∗(q | B) = sup{q>β | β ∈ B}.

Given that support functions are positive homogenous in q, it is sufficient to define them over the

unit sphere of Rp i.e.Sp = {q ∈ Rp; ‖q‖ = 1}. Furthermore, following Rockafellar (1970), set

B can be unambiguously characterized as:

β ∈ B ⇔ ∀q ∈ Sp, q
>β ≤ δ∗(q | B),

and identification ofB is therefore equivalent to the identification of its support function δ∗(. | B).

Beresteanu and Molinari (2008) also use this function in order to apply the theory of random set

variables.

We now show that the support function of B can be written as a population moment of two

simple random variables. Let β a point which belongs to set B. From (6), there exists some

function u(z) ∈ [∆(z),∆(z)] such that

β =
(
E(z>x)

)−1
E
(
z> (y + u(z))

)
.
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We can multiply this equation by vector q to express:

q>β = q>
(
E(z>x)

)−1
E
(
z> (y + u(z))

)
= E (zq (y + u(z))) , (7)

where zq = q>Σ>z> and Σ =
(
E(x>z)

)−1. As the support function in the direction q is the

supremum of q>β when β ∈ B, it is the supremum of (7) over the set of admissible u(z) ∈

[∆(z),∆(z)]. It reduces to a simple single-dimensional optimization problem whose solution is

given by:

Proposition 2 Let wq = y + 1{zq > 0}(y − y). The support function of B is equal to:

δ∗(q | B) = E(zqwq).

The interior of B is not empty and βq =
(
E(z>x)

)−1
E(z>wq) is a frontier point of B such that

δ∗(q | B) = q>βq.

Proof. See Appendix B.1

This proposition sharply characterizes set B. The support function is well defined because

assumption (R.iii) ensures that all cross-moments are well defined. In particular, the support

function is bounded and therefore setB is bounded. Furthermore, as a convex function, δ∗(q | B)

is differentiable except at a countable number of points in a set Df . The following lemma

provides geometric properties of set B and an explicit characterisation of Df .

Lemma 3 The support function δ∗(q | B) is differentiable on Sp except on a set Df which is

composed of directions q ∈ Sp such that Pr(zq = 0) is positive. The directions in Df are

orthogonal to exposed faces of the identified set.

Proof. See Appendix B.2

Exposed faces of the identification set B are intersections of B and supporting hyperplanes

that are not reduced to singletons (see Rockafellar, 1970, pp.162-163) and set Df is not empty

for instance when some variables z have mass points.6 Defining this set turns out to be impor-

tant for asymptotic properties derived in the next section. One Monte Carlo experiment in the

Supplementary Appendices analyzes the common case in which one explanatory variable is a

dummy variable.

6If z has a mass point at 0, the support function would not be differentiable at points such that Pr(zq = 0 | z 6=
0) > 0 as can be seen from the proof of the Lemma. For notational convenience, we choose to exclude this case.

10



3.2 Supernumerary Moment Conditions

We consider now that the dimension, m, of the random vector z is larger than the dimen-

sion, p, of covariates x and we denote x(z) the linear projection of x onto instruments z, i.e.,

x(z) = zE(z>z)−1E(z>x). Without loss of generality, we assume that the m − p supernumer-

ary instruments zs = (zp+1, ..., zm) provide supernumerary moment conditions in the sense that

no linear combination of these additional instruments is linearly dependent of x(z). These in-

struments always exist because of the rank condition R.iii. Formally, if ζs denotes the vector

of residuals of the linear projection of these m − p instruments onto x(z), we assume that rank(
E(ζs>ζs)

)
= m− p. It may very well be the case that other subsets of m− p instruments than

zs satisfy this condition, but, as discussed in Appendix B.3, our results do not depend on the

choice of a specific subset.

The parameters of interest β satisfy the incomplete linear moment conditions (2):

E(z>x)β = E
(
z>(y + u(z))

)
, (8)

and the identified set B is again closed, convex and bounded. The first two properties hold as

before because the moment conditions are linear and the admissible set I(z) containing u(z) is

closed and convex. To show that B is bounded, we can always restrict equation (8) to a subset of

p instruments, say x(z), and construct the identified region as in the previous section. The true

identified set is included in this identified region.

Yet in contrast to the case in which (m = p), the identified set B could be empty. In the

next sub-section, we derive a necessary and sufficient condition which generalizes the usual

over-identifying condition à la Sargan. To do that, we need new notations. Define first zF the

ortho-normalization of the linear projection x(z) defined above

zF = x(z)E(x(z)>x(z))−1/2.

Define also zH the ortho-normalization of the residuals ζs of the projection of the supernumerary

instruments zs onto zF . Analytically, zH = ζsE(ζs>ζs)−1/2 where,

ζs = zs − zFE(z>F z
s) = zs − x(z)E(x(z)>x(z))−1E(x(z)>zs).

After some algebraic manipulations, we have E(ζs>x) = 0 (as a matrix) and, consequently,

E(z>Hx) = 0.
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3.2.1 The Validity of Supernumerary Moment Conditions

Both vectors zF , of dimension p, and zH , of dimension m− p, are linear combinations of the m

instruments z, so that equation (8) implies,

E(z>F x)β = E
(
z>F (y + u(z))

)
and E(z>Hx)β = E

(
z>H(y + u(z))

)
.

As E(z>Hx) = 0, the second set writes E
(
z>H(y + u(z))

)
= 0. Not only these two sets of

restrictions are necessary, but they can be proven to be sufficient:

Lemma 4 Parameter β belongs to B if and only if there exists u(z) in [∆(z),∆(z)] such that:

E(z>F x)β = E
(
z>F (y + u(z))

)
(9)

E
(
z>H(y + u(z))

)
= 0 (10)

Proof. See Appendix B.3

Interestingly enough, the second set of restrictions does not depend on β whereas the first set

provides a one-to-one relationship between admissible u(z) and admissible β. It follows that B

is non empty if and only if there is u(z) in [∆(z),∆(z)] such that

E
(
z>H(y + u(z))

)
= 0. (11)

Denote BSargan the identified set of parameters of the incomplete regression of y on the supernu-

merary instruments zH , i.e.:

BSargan =
{
γ : E

(
z>H(zHγ − y)

)
= E(z>Hu(z)), u(z) ∈ [∆(z),∆(z)]

}
=
{
γ : γ = E(z>H(y + u(z))), u(z) ∈ [∆(z),∆(z)]

}
⊂ Rm−p.

(12)

The adapted Sargan condition given by equation (11) means thatBSargan contains the point γ = 0,

that is Om−p, the origin point of Rm−p. 7

Proposition 5 The two following conditions are equivalent:

i. B is not empty,

ii. BSargan 3 Om−p.

Proof. Using the previous developments

7As discussed at the end of the proof of Lemma 4, the adapted Sargan condition imposes restrictions on the set
of admissible u(z) which do not depend on the choice of supernumerary instruments, zs, among instrumentsz.
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This extends the usual overidentification restrictions. When moment conditions are com-

plete, the set of admissible u(z) is reduced to {0} and the set BSargan is reduced to the point

E(z>Hy). The Sargan or J-test consists in testing Om−p ∈ BSargan = {E(z>Hy)} or equivalently

that E(z>Hy) = 0. In section 4, we will construct a general test for the assumption H0 : β0 ∈ B,

when B is the identified region of an incomplete linear moment model. It will provide us with

a direct way for testing the Sargan condition given in Proposition 5. Before, the next subsection

provides a characterization of the identified set when there are supernumerary moment condi-

tions.

3.2.2 Geometric and Analytic Characterization of the Identified Set

Assuming that the Sargan condition holds true, the identified set B is defined by the incomplete

moment conditions:

E
(
z>(xβ − y)

)
= E

(
z>u(z)

)
subject to u(z) ∈ [∆(z),∆(z)].

This set of restrictions can be rewritten by introducing auxiliary parameters, γ, as:{
E(z>(xβ + zHγ − y)) = E(z>u(z))
γ = 0

under the same constraint for u(z). Let BU (U for unconstrained) be the set of m parameters

(β, γ) satisfying the relaxed program,

E(z>(xβ + zHγ − y)) = E(z>u(z)), subject to u(z) ∈ [∆(z),∆(z)].

An interesting feature of this relaxed program is that the number of explanatory variables m

is equal to the number of moment conditions, and no moments are in surplus. Consequently,

the support function of BU can be characterized using Proposition 2. The second interesting

feature of this construction is that the identified set B is equal to the intersection of BU and the

hyperplane defined by γ = 0. General results for the support function of intersections of convex

sets (Rockafellar, 1970) can be used to characterize set B and this yields:

Proposition 6 Let q a vector of Rp and (q, λ) a vector of Rm. We have:

δ∗(q | B) = inf
λ
δ∗((q, λ) | BU). (13)

Proof. Rockafellar (1970) and Appendix B.4
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The geometric intuition is the following. For any point βf ∈ ∂B, the frontier of B, there

always exists one projection direction such that the projection of BU onto γ = 0 into this direc-

tion, admits βf as a frontier point. It corresponds to a tangent space (not necessarily unique) of

BU at βf .

Note also that the orthogonal projection of BU onto γ = 0,{
β ∈ Rp, ∃ u(z) ∈ [∆(z),∆(z)], β =

(
E(z>F x)

)−1
E(z>F (y + u(z)))

}
,

is equal to the set of unconstrained solutions to equation (9). This projection contains set B

since parameters in set B are generated by functions u(z) satisfying in addition condition (10).

Supernumerary restrictions therefore reduce the size of the identified set and generically they

strictly do so. Appendix B.5 shows that the resulting set B does not depend on which version of

zH was chosen and thus on which version of unconstrained BU was selected.

3.2.3 Supernumerary Moment Conditions as a Way to Restore Point Identification

The adapted Sargan condition (Om−p ∈ BSargan) imposes restrictions on the size of the set of

admissible functions u(z) and, consequently, on the size of the identified set B. This section

explores whether B can eventually be reduced to a singleton and point identification be restored.

When the point Om−p belongs to the interior of BSargan, functions which satisfy the Sargan

condition (11) are not unique and set B is a proper set. More interesting cases arise when Om−p

belongs to the frontier of BSargan. In such cases, using the proof of Proposition 2, we know that

there exists qO in Sm−p such that Om−p is generated by functions uSargan
qO

(z) defined as,

uSargan
qO

(z) = ∆(z) + (∆(z)−∆(z))1{zHqO
> 0}+ ∆∗(z)1{zHqO

= 0}

where ∆∗(z) can be any function taking values in [∆(z),∆(z)]. Hence, if zH have no mass

points, uSargan
qO

(z)is unique and the identified set B is reduced to a point defined as:(
E(z>F x)

)−1
E
(
z>F (y + uSargan

qO
(z))

)
.

We summarize this result by,

Proposition 7 If Om−p belongs to the frontier ∂BSargan and if instruments zH have no mass

points then parameter β is point-identified.

More generally, the restoration of point identification only requires that Pr{zHqO
= 0} = 0,

that is when m− p > 1, Om−p is not on an exposed face of BSargan.
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4 Estimation and Inference

This section describes how we estimate the support function of B and how we test hypotheses of

interest. We will deal only with random samples i = 1, ., n, in which variables (yi, yi
, yi, xi, zi)

are independently and identically distributed.8 We start by analysing the case where there is no

supernumerary moment conditions.

4.1 Asymptotic Properties: No Supernumerary Moment Conditions

In this section, we provide an estimate of the support function of the identified set B as charac-

terized in Proposition 2 :

δ∗(q | B) = E(zqwq). (14)

To apply the analogy principle, we first define Σ̂n a bounded estimate of
(
E(x>z)

)−1 (see Ap-

pendix C) and for any i the variables:

zn,qi = ziΣ̂nq,

wn,qi = 1{zn,qi > 0}(yi − y
i
) + y

i
.

We define the estimate of δ∗(q | B) as:

δ̂∗n(q | B) =
1

n

n∑
i=1

zn,qiwn,qi = q>Σ̂>
n

(
1

n

n∑
i=1

z>i wn,qi

)
.

Under usual conditions (White, 1999, p. 35), the estimate δ̂∗n(q | B) is uniformly consistent.

Proposition 8 Assume that there exist M > 0 and γ > 0, such that ‖Σ‖1+γ , E(
∥∥x>z∥∥1+γ

),

E(
∥∥z>y∥∥1+γ

) and E(
∥∥z>y∥∥1+γ

) are bounded by M . Then, δ̂∗n(q | B) is, uniformly over Sp,

strongly consistent:

δ̂∗n(q | B)
a.s.u.→ δ∗(q | B).

Proof. See Beresteanu and Molinari, 2008 and Supplementary Appendix D.3

The proof builds on the fact that the expression zqwq within the expectation defining δ∗(q |

B) can be written as a random function f(q,Σ)(zi, yi,yi
) indexed by parameter (q,Σ) ∈ Θ =

Sp × {‖Σ‖ ≤ M}. Under the conditions of Proposition 8, the parametric class of functions

f(q,Σ) is Glivenko-Cantelli. If Σ is known, the empirical expectation of f(q,Σ) converges almost

8Note that it precludes pre-estimation of the bounds as in Magnac and Maurin (2008). We leave this extension
for future work.
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surely to δ∗(q | B) uniformly over Θ under the conditions stated above. Using results for

parametric classes (van der Vaart, 1998), we can replace Σ by a bounded consistent estimate

Σ̂n ∈ {‖Σ‖ ≤M} and the same result holds true.

We use similar reasoning to derive the asymptotic distribution of the estimate by considering

the stochastic process defined on Sp :

τn(q) =
√
n
(
δ̂∗n(q | B)− δ∗(q | B)

)
=
√
n

(
1

n

n∑
i=1

zn,qiwn,qi − E(zqwq)

)
,

whose asymptotic behavior is characterized under usual conditions (White, 1999, p. 118) in the

following.

Proposition 9 Assume that there exist M > 0 and γ > 0 such that ‖Σ‖2+γ , E(
∥∥x>z∥∥2+γ

),

E(
∥∥z>y∥∥2+γ

) and E(
∥∥z>y∥∥2+γ

) are bounded by M . Assume also that the number of mass

points in the probability distribution of zi is finite. The process, τn(q) uniformly converges in

distribution when n tends to ∞ to the sum of a Gaussian stochastic process centered at zero and

of a point process which is asymptotically equivalent to the following random process:

E(y,y,z)(
∣∣η>W 1/2(Ip ⊗ q)z>i

∣∣ (ȳi − y
i
)(1{ziΣq = 0}))/2,

where W is the asymptotic variance of vec(Σ̂>
n ) and where η is a normally distributed random

vector of dimension p2, independent of (y, y, z). Vectors q at which this process are non zero are

orthogonal to the exposed faces of B (see Lemma 3).

When there are no mass points in the probability distribution of zi so that set B has no

exposed faces, τn(q) uniformly converges in distribution when n tends to ∞ to a Gaussian sto-

chastic process centered at zero. The covariance function of this process for vectors (q, r) ∈ Sp

is,

E(zqiεqiεrizri),

where εq = wq − x
(
E(z>x)

)−1
E(z>wq) are the residuals of the IV regression of wq on x using

instruments z.

Proof. See Appendix C.1

When there are no exposed faces, Beresteanu and Molinari (2008) already derived the as-

ymptotic distribution of τn(q) using the formalism of set valued random variables. Proposition

9 provides an alternative characterization of the covariance function of the Gaussian process in
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terms of residuals εq that are easy to compute. When there are exposed faces, this Proposition

provides the original result that the limit in distribution is the sum of a Gaussian process and a

countable point process which takes non negative values at directions q orthogonal to exposed

faces of set B.

4.2 Tests

This section provides testing procedures for null hypothesis such as H0 : β0 ∈ B, where β0

represents a potential parameter value. The proposed tests have the correct asymptotic size.

Similar approaches could be used for testing assumption about sets, such as H0 : B0 = B,

where B0 represents a potential value of the identified set. We will focus on the case where the

identified set B has no exposed faces (see Lemma 3 for deep conditions on the support of z) so

that the estimate of the support function is asymptotically Gaussian (see Proposition 9).9

Assumption D: The support function δ∗(q | B) is differentiable everywhere.

One of the hypothesis we have in mind is the generalized Sargan condition. In this case,

Assumption D holds if zH has no mass points. As this variable is constructed by a projection of

the original z variables on a subspace of dimension m − p, zH would have generically no mass

points if z has more than m − p absolutely continuous components. The result is generic only

since the projection could cancel the mixing characteristic of some of these components.

Assumption D does not exclude cases where the derivative of the support function has the

same value at different points of the unit sphere. Put differently, it does not exclude that some

points of the surface of B may have several different tangent spaces (kinks). In such a case,

the relationship between directions of the unit sphere q and points of the surface of B is not

one-to-one anymore, which complicates the testing procedure. Set-ups where B has kinks are

characterized at the end of the proof of Lemma 3, one leading example being when the density

function of some instruments is not positive over the whole real line (for instance an intercept

combined with a random variable whose support is bounded).

9The difficulty with dealing with the additional point process in the limit is that it is not asymptotically equicon-
tinuous. Some papers derive properties of minimizers of convex functions under more general assumptions than
asymptotic equicontinuity (Hjort and Pollard, 1993). We thank Adam Rosen for attracting our attention to this paper
but leave the adaptation of these arguments to this subject for future research.
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Within this framework, an alternative characterization of H0 : β0 ∈ B is:

β0 ∈ B ⇐⇒ ∀q ∈ Sp, T∞(q; β0) = δ∗(q | B)− q>β0 ≥ 0

⇐⇒ min
q∈Sp

T∞(q; β0) ≥ 0,

as Sp is compact. If we knew a minimizer q0 of T∞(q; β0), we could consider the empirical

analog of T∞(q0; β0):

Tn(q0; β0) = δ̂∗n(q0 | B)− q>0 β0,

and use that
√
n(Tn(q0; β0) − T∞(q0; β0)) is asymptotically normally distributed and have vari-

ance Vq0 = V (z>q0
εq0). Observe that, when the point β0 belongs to the frontier of the set,

T∞(q0; β0) = 0 and
√
nTn(q0; β0)/

√
Vq0 qualifies as a test statistic for H0.

The two issues that we have to deal with are (i) q0 is not known (ii) it needs not be unique if

set B has kinks. We thus have to select one admissible q0 and replace it by an estimate. The next

Proposition shows how to address the second issue by perturbing function T∞(q; β0) and the first

issue by minimizing the empirical analogue of such a function.

Proposition 10 Under Assumption D and conditions given in Proposition 9, there exist two

sequences v0,n ∈ Sp and an ∈ R+ characterized in the proof, such that any sequence qn of local

minimizers of the perturbed program :

Ψ̂n,an(q; β0) = Tn(q; β0)− anq
>v0,n,

converges, when n tends to ∞, to a single minimizer q∗0 of T∞(q; β0). Then,
√
nTn(qn; β0)/

√
V̂n

d−→
n→∞

N (0, 1), if β0 ∈ ∂B,
√
nTn(qn; β0)/

√
V̂n

a.s.−→
n→∞

+∞, if β0 ∈ int(B),
√
nTn(qn; β0)/

√
V̂n

a.s−→
n→∞

−∞, if β0 /∈ B,

where V̂n = V̂ (zn,qnεn,qn) is a consistent estimator of Vq∗0
.

Proof. See Appendix C.2

Two special cases in which there is no need to actually perturb the program and an can be

set to zero are worth noticing. First, when set B has no kink, for instance when the density of

z is positive everywhere, T∞(q; β0) is strictly convex and any sequence of local minimizers of

Tn(q; β0) tends to the unique minimizer of T∞(q; β0). Second, we can set an to zero when we
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test a single component of β0, or a single linear combination of components since there is no

kink in the single dimensional case.

Critical regions with asymptotical level α for two interesting null hypotheses can be con-

structed:

• Test 1: H0 : β0 ∈ B against Ha : β0 /∈ B. The critical region W 1
n(α) is defined by:

W 1
n(α) = {β0 ∈ Rp,

√
nTn(qn; β0)/

√
V̂n < Nα}

• Test 2: H0 : β0 ∈ ∂B against Ha : β0 /∈ ∂B. The critical region W 2
n(α) is:

W 2
n(α) = {β0 ∈ Rp, |

√
nTn(qn; β0)/

√
V̂n)| > N1−α

2
}

where Nα denotes the α-quantile of the standard normal distribution and where qn is defined by

Proposition 10. In addition, the test statistic is asymptotically pivotal so that we could enhance

its finite sample properties by bootstrapping it.

We are specifically interested by the first test. The second one is also of practical interest for

instance when testing whether supernumerary instruments help in recovering point identification

(i.e., for testing Om−p ∈ ∂BSargan as in Proposition 7).

4.3 Confidence Regions

By inverting the first test developed previously with a level of significance equal to α, we can

construct confidence regions of nominal size asymptotically equal to 100− 100α %. Following

Lehmann & Romano (2005), the confidence region CIn
α is the collection of parameters β ∈ Rd

for which the null hypothesis is not rejected i.e. which does not belong to W 1
n(α). The following

proposition expresses this statement and Appendix D.4 provides a simple way of constructing

the confidence region.

Proposition 11 Let α be a significance level, and let CIn
α be the set of points of Rp such that

ξn(β) > Nα, where

ξn(β) =

√
nTn(qn; β)√

V̂n

,

where qn and V̂n are defined in Proposition 10. Under the conditions of Proposition 10,

lim
n→+∞

inf
β∈B

Pr (β ∈ CIn
α) = 1− α.
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The limit expressed in the proposition is valid for a fixed data generating process leading to

the identification of a proper set B. It is not uniformly valid for all data generating processes

even if they satisfy the condition under which we work that the corresponding identified set B

has a non-empty interior (see Appendix B.1). As a consequence, the confidence region is not

uniformly asymptotically of nominal size equal to (1− α). Uniformity is important however as

we might never know in practice how close we are to the point identified case.

For simplicity, assume for the remaining part of the section that set B is strictly convex and

smooth i.e. the support function is differentiable and strictly convex. Let us consider the limit

case in which set B = {β0}. If we construct a confidence region for the parameters using

the last Proposition the coverage probability will tend to 1 − 2α (see Supplementary Appendix

D.5). Indeed, the statistic developed above is discontinuous with respect to the diameter of the

identified set at the boundary i.e. when the diameter is equal to zero.10

The construction of Imbens and Manski (2004) is uniformly valid in a context of single

dimensional sets and more recently, Stoye (2009) clarified the conditions under which this result

can be obtained. We can adapt Lemma 4 in Imbens and Manski (2004) to our set-up where the

length of the interval is replaced by the diameter of the set and construct a uniform confidence

region (see Supplementary Appendix D.6).

4.4 Asymptotic Properties: The Supernumerary Case

We use the characterization given in equation (13) in Proposition 6. If q is a vector of Rp and

(q, λ) a vector of Rm, we have:

δ∗(q | B) = inf
λ
δ∗((q, λ) | BU)).

On top of assumption D, we assume that:

Condition S: The infimum is attained at values, λm(q), which belong to a compact set

Λ ⊂ Rm−p.

The last part of the proof of Proposition 6 exhibits the necessary and sufficient condition

under which Condition S is obtained and which, combined with assumption D of differentia-

bility, implies that set B is a proper set. This excludes the case in which point identification is

recovered.
10The diameter of set B is the maximum of δ(q | B) + δ(−q | B) on the compact unit sphere. In our case, the

diameter of B is positive, see Appendix B.1.
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Let δ̂∗n((q, λ) | BU) the estimate of δ∗((q, λ) | BU) as derived in Section 4.1 and such that,

by Proposition 8:

δ̂∗n((q, λ) | BU)
a.s.u.→ δ∗((q, λ) | BU),

and, by Proposition 9, under assumption D:

τU
n ((q, λ)) =

√
n(δ̂∗n((q, λ) | BU)− δ∗((q, λ) | BU))

uniformly converges to a Gaussian process when n tends to infinity.

For any q, define:

λ̂n(q) ∈ arg min
λ∈Λ

[δ̂∗n((q, λ) | BU) + anλ
>λ]

where an is a sequence converging to zero with n, defined in the proof below. The estimate

λ̂n(q) is a solution to a perturbed objective function as in Section 4.2. Define the estimate of the

support function of the identified set as:

δ̂∗n(q | B) = δ̂∗n((q, λ̂n(q)) | BU).

The same kind of proof as in Sections 4.1 and 4.2 then applies. Estimating λ̂n(q) does not affect

the consistency and asymptotic normality of the support function estimates.

Proposition 12 Under the conditions stated in Proposition 9 and conditions D and S, we have:

δ̂∗n(q | B)
a.s.u.→ δ∗(q | B),

and:

τn(q) =
√
n(δ̂∗n(q | B)− δ∗(q | B))

converges uniformly to a Gaussian process when n tends to infinity. The Gaussian process has

expectation equal to zero and its covariance operator for two directions (q, r) ∈ Sp is given by:

E(z(q,λ̂n(q))ε(q,λ̂n(q))ε(r,λ̂n(r))z(r,λ̂n(r)))

Proof. See appendix C.3

An additional general point is in order about small sample biases arising when minimizing

an estimated function as discussed by Manski and Pepper (2009) for instance. A correction

approach was recently proposed by Chernozhukov, Lee and Rosen (2009) where they use con-

fidence interval estimates. These are computed as the sum of a minimizer of δ̂∗n((q, λ) | BU)
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over a compact set and its estimated standard error times a critical value so that these confidence

intervals are exact or conservative at level p. In the Monte Carlo experiments reported below, we

did not find in practice sizeable small sample downward biases. Our set-up is arguably different

since the variable λ with respect to which the minimum is taken is not random and can take any

value. Moreover, the standard errors of estimates varies slowly with λ.

5 Monte-Carlo Experiments

In this section, we develop two simple experiments to assess the performance of our inference

and test procedures. In these experiments, the dependent variable is bounded and censored by

intervals and the explanatory variable is single dimensional. In the first experiment, the explana-

tory variable is its own instrument whereas we use a single supernumerary restriction in the

second experiment. The frontier of the identified set has no kinks and no exposed faces. Addi-

tional experiments in dimension two are provided in the Supplementary Appendices D.1. In one

of them, the identified set is neither smooth nor strictly convex.

5.1 Smooth and Strictly Convex Set

Consider the model:

y∗ = β0x+ ε,

where x is uniformly distributed on [−
√

3; +
√

3] (and has unit variance), ε is independent of

x and uniformly distributed on [−1/2; 1/2]. The true value of β0 is 2. We assume that y∗ is

interval censored and that the econometrician only observes the lower and upper bounds y =

y∗ + v1{v < 0} and y = y∗ + v1{v ≥ 0}, where v is a standard normal variable independent

of x. This censoring scheme is in line with the example of Section 2.1 and can be viewed as

a process implemented by the statistician who conducts the survey to warrant some anonymity.

Using the notations of Proposition 1, we have y = y∗+v/2 and ∆(x) = E(|v|/2|x) = E(|v|)/2.

The identified interval B can be written as:

B = [β−1; β1] = [β0 − 1

2
E(|xv|); β0 +

1

2
E(|xv|)].

We draw 1000 simulations in four different sample size experiments : n =100, 500, 1000 and

2500. The three quartiles as well as the mean of the estimated extreme points β−1 and β1 are

displayed in Table 1. Even for small sample sizes, the identified set is well estimated and unsur-

prisingly, the interquartile interval decreases when the sample size increases.
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Regarding the performance of test procedures, let βr a point such that the algebraic distance

between β0 and βr is equal to r times the value of the half length of B (positive values refer to

points on the side of β1 and negative values on the side of β−1). Point βr belongs to B if and

only if |r| ≤ 1. For r varying stepwise from -2 to 2, we computed the rejection frequencies at a

5% level for the interior test H0 : βr ∈ B developed in Section 4.2 (labeled Test 1). Results are

displayed in Table 2 and show that the size of the test is very accurate and remains close to 5%

even for n = 100 and that its power is very good even in small samples. The frontier test yields

similar qualitative results and is not reported here.

5.2 Smooth Set and a single Supernumerary Restriction

The simulated model is the same as before. We now assume that the econometrician is given

some additional information on the censoring process. The corresponding supernumerary in-

strument z is equal, with probability 1 − π0, to a standard normal variable w independent of v

and x and is equal, with probability π0, to v . Using notations of Section 3.2, we have zF = x

and zH = z and

Bsargan = [
−π0E(|v|)E(|w|))

2
; 1− π0 +

π0E(|v|)E(|w|))
2

],

which implies that Bsargan always contains the value zero. Furthermore, the smaller probability

π0 is, the closer to the frontier of Bsargan the value zero is. Hence, set B is never empty and

shrinks down to the point {β0} when π0 tends to 0. When π0 is equal to 0, the knowledge of z is

implicitly equivalent to that of y∗ and point identification is mechanically restored. Finally, the

support function of the unconstrained set BU satisfies,

δ((1, λ) | BU) = β0 +
1− π0

2
λ+ E(|v|(x+ λz)1(x+ λz > 0)).

Minimizing δ((1, λ) | BU) (respectively δ((−1, λ) | BU)) with respect to λ, yields δ(1 | B)

the upper (resp. the opposite of the lower) bound of interval B. Note that the supernumerary

restriction unambiguously reduces the size of the identified set since, for instance, the upper

bound in the first experiment, δ((1, 0) | BU), is smaller than δ((1, λ) | BU).

As before, we draw 1000 simulations in four sample size experiments: n =100, 500, 1000

and 2500 with different values of π0 (from 0.5 to 0). Table 3 displays the rejection frequencies

for the Sargan Test proposed in Proposition 5. They are very low when Om−p is inside set BSargan

but converge to the nominal level when Om−p gets closer to the frontier of BSargan, i.e. when π0

tends to 0.
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Table 4 displays the rejection frequencies for the interior test for different points in the same

format as in Table 2, for two different values of π0, 0.5 and 0.1. We only display results for pos-

itive r as they are almost symmetric. As Bsargan always contains zero, the intersection between

set BU and the hyperplane γ = 0 is not empty. However, it may happen that for some specific

draws the estimate of set BU has an empty intersection with the hyperplane. We therefore con-

strain λ in the minimization process to be in a large compact set, |λ| ≤ M (we set M = 500 in

the simulations). Asymptotically it does not have any impact on the results.

As expected, the estimated set shrinks down to a point. The rejection frequency tends to the

nominal one at the frontier point. However, the interior test can be altered by the fact that the

constraint |λ| ≤M is binding for some draws when π0 is very small and the sample size is small.

Consequently the estimated variance of the support function is large and points are less likely to

be rejected when there are outside the estimated set.

6 Conclusion

We develop in this paper a class of models defined by incomplete linear moment conditions and

we provide examples of how this set up can be applied to economic data. In the most prominent

one, the dependent variable in a linear model is censored by intervals. We present simple ways

that lead to a sharp characterization of the identified sets. We generalize previous results about

estimating such sets and we construct asymptotic tests for null hypotheses concerning the true

value of the parameter of interest. These procedures are easy to implement and we can invert

them and derive confidence regions for the parameter of interest. We also generalize the sim-

ple setting of linear prediction using explanatory variables to the case in which supernumerary

moment conditions are available. Specifically, we provide an extension to the usual Sargan test

that can be performed using the asymptotic tests that we develop. Asymptotic properties of these

generalized estimates are derived.

There remains many pending questions. Adapting our test procedure to the case in which the

set has exposed faces is high on the agenda because exposed faces are a very common occurrence.

Various other extensions were also out of the scope of this paper. First, some examples that we

developed require more work in terms of estimation and asymptotic theory even if our set-up

provides a building block to study the asymptotic properties of these estimates. For instance, for

binary data with discrete or interval-valued regressors, the asymptotic properties of estimation
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would be the result of marrying the results of this paper with those of Lewbel (2000). Second,

other examples about categorical data or two-sample combination need also some adaptation of

the identification analysis.

Econometric assumptions can be questioned and extended. For simplicity, we focus on the

case in which instruments and errors are not correlated. In structural settings, we would rather im-

pose a stronger condition of mean independence between instruments and errors or even stronger

of independence between instruments and errors. As is well known, mean independence (respec-

tively independence) generates an infinite number of moment conditions given by the absence of

correlation between any function of instruments and errors (respectively any function of errors).

We presumably could use our framework by using only a finite number of moment conditions

although the extension to the general case is worth pursuing. It also begs the question of the

optimality of inference in the supernumerary restriction case and how it differs from the usual

point-identified case.

Along a different vein, our setting remains global and semi-parametric. For non parametric

estimation, it would be interesting to adapt our set-up to local approaches such as local linear

regression. Other questions are open and seem worth pursuing. The gain of the direct approach

that we used with respect to the approach followed by Chernozhukov et al. (2007) using a

criterion is an interesting question. It is easy to write a criterion function using support functions

(see Magnac and Maurin, 2008). Our results might help out with selecting the best criterion in

the latter framework.

Finally and more ambitiously, the deep foundation of our approach is a convexity argument.

It indeed allows to replace the problem of identifying a set in a very general space of sets by a

problem which is finite dimensional since it requires to identify and estimate a function using

finitely many parameters, the vectors of the unit sphere of Rp. This approach can presumably

be extended to any set identified problem when the set is convex (see Beresteanu, Molchanov

and Molinari, 2010 for a general framework). The problem of identifying the frontier of this

set might be highly non linear although the real issue is to construct the support function, or the

limits of the projection of the identified set in any direction q. Estimation and inference would

likely follow from our arguments under adapted conditions.
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Appendices

A Proofs in Section 2

A.1 Proof of Proposition 1

(Necessity) Consider β in RK and assume that there is a latent random variable ε uncorrelated

with x such that the latent variable y∗ ≡ xβ + ε lies within the observed bounds, i.e., xβ + ε ∈[
y; y
]
. Denoting y = (y + y)/2 and using that ε is uncorrelated with x, we have,

E(x>(xβ − y)) = E(x>(y∗ − y)) = E(x>E(y∗ − y | x))

We also have :

−
(y − y)

2
≤ y∗ − y ≤

(y − y)

2

which yields bounds on u(x) ≡ E(y∗ − y | x) ,

−E(
(y − y)

2
| x) ≤ u(x) ≤ E(

(y − y)

2
| x)

Setting ∆(x) = E(
y−y

2
| x), there thus exists a measurable u(x) ∈ [−∆(x),∆(x)] such that

E(x>(xβ − y)) = E(x>u(x)).

(Sufficiency) Conversely, let us assume that there exists u(x) in [−∆(x),∆(x)] such that

E(x>(xβ − y)) = E(x>u(x)). (A.1)

We are going to construct a random variable ε which is uncorrelated with x and which is such

that y∗ ≡ xβ + ε lies within the observed bounds.

First, consider λ a random variable whose support is [0, 1] , which is independent of y and y

and whose conditional mean given x is:

E(λ | x) =
1

2

u(x)

∆(x)
+

1

2
.

Second, define ε as :

ε = −xβ + (1− λ)y + λy
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By construction, y∗ ≡ xβ + ε is consistent with the observed censoring mechanism i.e. y∗ ∈[
y; y
]
. Let us prove that ε is also uncorrelated with x. Consider, for almost any x,

E(y | x)− E(xβ + ε | x) = E(
(y + y)

2
| x)− E((1− λ)y + λy | x)

= E((1− 2λ)
(y − y)

2
| x) = E((1− 2λ) | x)E(

(y − y)

2
| x)

= E(− u(x)

∆(x)
∆(x) | x) = −u(x).

where we used that λ is independent of y and y. Therefore, we have E(ε | x) = E(y − xβ |

x) + u(x), which implies:

E(x>ε) = E(x>(y − xβ)) + E(x>u(x)) = −E(x>u(x)) + E(x>u(x)) = 0.

using the moment condition (A.1) involving y, β and u(x).

B Proofs in Section 3

B.1 Proof of Proposition 2

The support function in direction q ∈ Sp is obtained as the supremum of the expression

q>β = E (zq (y + u(z))) , (B.2)

where u(z) varies in [∆(z),∆(z)]. The supremum of the scalar E(zqu(z)) is obtained by setting

u(z) to its maximum (resp. minimum) value when zq is positive (resp. negative) and by setting

u(z) to any value when zq is equal to 0. It yields a set of ”supremum” functions:

uq(z) = ∆(z) + (∆(z)−∆(z))1{zq > 0}+ ∆∗(z)1{zq = 0} (B.3)

where ∆∗(z) ∈ [∆(z),∆(z)]. Note that uq(z) is unique (a.e. Pz) if Pr(zq = 0) = 0. From now

on, the uniqueness of uq(z) should always be understood as ”almost everywhere Pz”.

Recall that by equation (3), E(y − y | z) = ∆(z), E(y − y | z) = ∆(z), so that the support

function or the supremum of (B.2) is equal to:

δ∗(q | B) = E(zqwq),

where:

wq = y + 1{zq > 0}(y − y).
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Note that the term ∆∗(z) in uq(z) disappears because it is multiplied within the second expec-

tation by zq which is equal to 0 at these values. It implies, as expected, that δ∗(q | B) is unique

even though uq(z) is not.

Furthermore, when Pr(zq = 0) > 0, since ∆∗(z) varies in [∆(z),∆(z)], the functions uq(z)

defined by equation (B.3) generate all the points β =
(
E(z>x)

)−1
E
(
z>(y + uq(z))

)
which

belong to the tangent space to B whose outer-pointing normal vector is q (an exposed face in the

vocabulary used in the next Proposition).

If we select the specific value of uq(z) that corresponds to ∆∗(z) = 0, we get the particular

value of β:

βq =
(
E(z>x)

)−1
E(z>wq),

and, by definition:

δ∗(q | B) = q>βq.

Finally, the interior of B is not empty, if we can prove that, for any q ∈ Sp,

sup
β∈B

q>β > inf
β∈B

q>β

or equivalently that:

δ∗(q | B) > −δ∗(−q | B).

Start from consequences of definitions:

zq = q>
(
E(z>x)

)−1
z> = −z−q, wq − w−q = (ȳ − y)(1{zq > 0}−1{zq < 0}),

so that:

δ∗(q | B) + δ∗(−q | B) = E
(
|zq| (ȳ − y)

)
= E

(
|zq|E((ȳ − y) | z)

)
= E

(
|zq| (∆(z)−∆(z))

)
> 0

because of equation (3) and |zq| > 0 with positive probability because of the full rank assumption

in R.ii.

This quantity δ∗(q | B) + δ∗(−q | B) is the width of B in direction q, and by using the same

argument:

min
q∈Sp

(δ∗(q | B) + δ∗(−q | B)) > 0

since Sp is compact.
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B.2 Proof of Lemma 3

We use the expression derived in Proposition 2:

δ∗(q | B) = E(zqwq) = E(zqy) + E(zq1{zq > 0}(y − y)). (B.4)

First of all, the support function of a convex set is convex and therefore is differentiable except at

a countable number of directions q denotedDf . In this proof, we characterizeDf . It corresponds

to the set of directions that are orthogonal to the exposed faces of B. We also characterize kink

points of set B.

Characterization of Df The first term on the RHS of equation (B.4) is linear in q since (see

the previous proof) :

zq = z(E(x>z))−1q.

and thus is continuously differentiable on Sp. The second term can be written as:

ψ(q) = E(z∗q1{z∗q > 0})

where z∗ = z(E(x>z))−1(y − y). The set of points Df is the set of points where ψ(q) is not

differentiable.

Fix q ∈ Sp. For any t ∈ Sp:

ψ(t)− ψ(q) = E(z∗(t− q)1{z∗q > 0}) + E(z∗t(1{z∗t > 0} − 1{z∗q > 0})),

so that:

ψ(t)− ψ(q)− E(z∗1{z∗q > 0})(t− q) = E(z∗t(1{z∗t > 0} − 1{z∗q > 0})). (B.5)

Points of non differentiability depends on the expression in the RHS. It is the sum of three terms:

A1 = E(z∗t1{z∗t > 0, z∗q < 0}),

A2 = −E(z∗t1{z∗q > 0, z∗t ≤ 0})

A3 = E(z∗t1{z∗q = 0, z∗t > 0})

Regarding A1 and A2, when z∗t > 0 and z∗q < 0, we have,

0 < z∗t = z∗(t− q) + z∗q < z∗(t− q),
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whereas when z∗q > 0 and z∗t ≤ 0, we have,

z∗(t− q) < z∗t ≤ 0.

Hence, we get,

0 ≤ |A1| ≤ E(‖z∗‖) ‖t− q‖Pr(z∗t > 0, z∗q < 0),

0 ≤ |A2| ≤ E(‖z∗‖) ‖t− q‖Pr(z∗q > 0, z∗t ≤ 0).

As Pr(z∗t > 0, z∗q < 0) = Pr(z∗(t− q) > −z∗q > 0) we have limt→q Pr(z∗t > 0, z∗q < 0) =

0. Similarly, limt→q Pr(z∗q > 0, z∗t ≤ 0) = 0, so that these inequalities imply:

A1 = o(‖t− q‖) and A2 = o(‖t− q‖),

since R.iii implies that E(‖z∗‖) is bounded.

Regarding the last term A3, note that in the case in which Pr(z∗q = 0) = 0, we have A3 = 0

and thus ψ(q) is differentiable at q. Its gradient is given by equation (B.5):

∇qψ(q) = E(z∗1{z∗q > 0}),

and is continuous in q.

Consider now the case in which Pr(z∗q = 0) > 0. When t→ q, both in Sp, define:

t− q = hs+ o(h),

where h = ‖t− q‖ and s ∈ Sp, sT q = 0. We have

A3 = E(z∗t1{z∗q = 0, z∗t > 0})

= E(z∗(t− q)1{z∗q = 0, z∗(t− q) > 0})

= Pr(z∗q = 0)E(z∗s1{z∗s ≥ 0} | z∗q = 0)h+ o(h)

It follows that ψ has different gradients in different directions s, which depend on the term,

E(z∗1{z∗s ≥ 0} | z∗q = 0).

This vector is constant for any s if and only if (using s and −s):

E(|z∗s| | z∗q = 0) = 0.

The support of z∗ conditional on (z∗q = 0) boils down to {0}, that is, if and only if the condi-

tional support of z itself is {0}. This case is excluded by condition (R.ii) and therefore, function

ψ(q) is not differentiable.

Overall, the points of non differentiability of the support function are directions q such that

Pr(z∗q = 0) = Pr(zq = 0) > 0. There can be no more than a countable number of such points.
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Exposed faces Using Lemma 3 we obtain for any q which does not belong to Df :

∂δ∗(q | B)

∂q>
=
(
E(z>x)

)−1
E(z>wq) = βq.

As δ∗(q | B) = q>βq, and βq ∈ arg max
β∈B

(q>β), this result is a disguise of the envelope theorem.

Assume now that B has an exposed face Bf . By definition, Bf is the intersection of B with

one of its supporting hyperplane Hf which is not reduced to a singleton. If qf denotes the vector

orthogonal to H
f
, we have for any βf in Bf :

δ∗(qf | B) = q>f βf ,

which means (see equation (B.3)) that there exists ∆∗
f (z) in [∆(z),∆(z)] such that (recall that

βqf
=
(
E(z>x)

)−1
E(z>wqf

)):

βf = βqf
+
(
E(z>x)

)−1
E(z>∆∗

f (z)1{zqf
= 0}),

= βqf
+
(
E(z>x)

)−1
E(z>∆∗

f (z) | zqf
= 0) Pr(zqf

= 0).

For the set of all βf not to be reduced to the singleton
{
βqf

}
, we clearly need that Pr(zq =

0) > 0 and that the conditional support of z is not reduced to {0}.

Conversely, suppose that there exists a direction q such that Pr(zq = 0) > 0 and suppose that

the conditional support of z is not reduced to {0}. Denote βq =
(
E(z>x)

)−1
E(z>wq) and Hq

the supporting hyperplane at βq orthogonal to q. Consider the set Bf of all βf such that there

exists ∆∗
f (z) in [∆(z),∆(z)] such that:

βf = βq +
(
E(z>x)

)−1
E(z>∆∗

f (z)1{zq = 0})

= βq +
(
E(z>x)

)−1
E(z>∆∗

f (z) | zq = 0) Pr(zq = 0).

Bf is clearly included in B ∩Hq. Also, as Pr(zq = 0) is positive and the conditional support of

z is not reduced to {0}, the second term in the RHS is itself non zero for at least some ∆∗
f (z),

which implies that Bf is not reduced to the singleton {βq} and that B has an exposed face.

Kinks Assume that Pr(zq = 0) = 0 so that the support function is differentiable and B is

strictly convex. Even in this case, it is still possible to observe points βk ∈ ∂B where the tangent

space is not unique (kinks), i.e., points of the surface such that there exist at least two distinct

vectors q and r (r 6= q) satisfying βk = βq = βr. When there exist such points, the relationship

between directions of the unit sphere and points of the frontier of B is not one-to-one anymore. It
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complicates the construction of testing procedures (as shown in Section 4) and this is the reason

why it is useful to characterize set-ups where B has kinks. We have,

βq = βr,

⇔ E(z>wq) = E(z>wr)

⇔ E(z>(ȳ − y)(1{zq > 0} − 1{zr > 0})) = 0

⇔ E(z>(ȳ − y) (1{zq > 0, zr < 0} − 1{zq < 0, zr > 0})) = 0,

the last equation holding because we have assumed that Pr(zq = 0) = 0.

Premultiplying last equation by q>
(
E(z>x)

)−1
, we get,

βq = βr ⇒ E(zq(ȳ − y) (1{zq > 0, zr < 0} − 1{zq < 0, zr > 0})) = 0.

Given that the term within the expectation is necessarily non negative, the fact that the ex-

pectation is zero implies necessarily

Pr{zq > 0, zr < 0} = Pr{zq < 0, zr > 0} = 0

It follows that the existence of q and r (r 6= q) satisfying the latter condition is not only

sufficient, but also necessary for the existence of kinks.

B.3 Proof of Lemma 4

We have already proven that conditions (9) and (10) are necessary, we want to prove that they are

sufficient. Specifically, we suppose that conditions (9) and (10) hold true and we want to prove

that

E
(
z> (xβ − (y + u(z)))

)
= 0

To prove this, we are going to show that z can be written as a linear combination of zF and zH .

Note first that :

zF = z
(
E(z>z)

)−1
E(z>x)

[
E(x>z)

(
E(z>z)

)−1
E(z>x)

]−1/2

= z
(
E(z>z)

)−1/2
QF ,

where QF is a [m, p] matrix of rank p satisfying Q>
FQF = Ip (where Ip is the identity matrix of

dimension p). Second, denoting A =

(
0

Im−p

)
the [m,m − p] selection matrix, the definition

of zs implies,

zs = zA = z
(
E(z>z)

)−1/2
As,

36



where As =
(
E(z>z)

)1/2
A.

Denoting PF = QFQ
>
F and PH = Im − PF , PF and PH are two orthogonal projections and

we have,

ζs = zs − zFE(z>F z
s) = z

(
E(z>z)

)−1/2
(Im − PF )As = z

(
E(z>z)

)−1/2
PHA

s,

which implies,

zH = ζs(ζs>ζs)−1/2 = z
(
E(z>z)

)−1/2
PHA

s(As>PHA
s)−1/2 = z

(
E(z>z)

)−1/2
QH ,

whereQH = PHA
s(As>PHA

s)−1/2 is a matrix of dimension [m,m−p] of rank (m−p) satisfying

Q>
HQH = Im−p and Q>

FQH = 0 (as a matrix).

Overall, the relationship between (zF , zH) and z boils down to,

(zF , zH) = z
(
E(z>z)

)−1/2
(QF , QH) = z

(
E(z>z)

)−1/2
Q,

where the [m,m] matrix Q = (QF , QH) satisfies Q>Q = Im and hence has full rank. Hence z

may be written (zF , zH)Q−1
(
E(z>z)

)1/2 i.e., a linear combination of zF and zH . In such a case,

conditions (9) and (10) implies

E
(
z>(xβ − (y + u(z)))

)
= 0,

which finishes the proof.

We can now show that the choice of zs among z is without loss of generality. Suppose

that zH associated with a given subset of supernumerary instruments zs satisfies condition (10).

Then, B is non empty because condition (10) is sufficient. Yet, if B is non empty and since

condition (10) is necessary, condition (10) is necessarily satisfied by any other subset of (m− p)

instruments (say z∗H) constructed from an alternative z∗s satisfying the same condition as zs.

Overall, because condition (10) is both necessary and sufficient for the condition that B is not

empty, when it is satisfied by a given subset of supernumerary instruments, it is necessarily

satisfied by any alternative subsets.

There is another interesting way to see why restrictions involved by condition (10) are in-

variant to the choice of the specific subset of supernumerary instruments. As discussed above

zH can be written as z
(
E(z>z)

)−1/2
QH where the m − p columns of matrix QH are an ortho-

normal basis of the kernel of the orthogonal projection onto x(z). Changing one specific subset
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of supernumerary instruments zH into an alternative subset z∗H boils down to moving from one

orthonormal basis QH to an alternative basis Q∗
H (i.e., to Q∗

H = QHR, where R is an orthogonal

matrix). In other words, for any z∗H satisfying the same conditions as zH , there exists necessarily

an orthogonal matrix R (with R = Q>
HQ

∗
H) such that z∗H = zHR. This basic linear relationship

between all possible subsets of supernumerary instruments implies that when linear moment

condition (10) is satisfied by a given subset it is necessarily satisfied by any alternative one.

B.4 Proof of Proposition 6

We assume that the Sargan condition (as given by Proposition 5) is satisfied so that the inter-
section of the set BU and the hyperplane, γ = 0, is not empty. Both sets {γ = 0} and BU are
convex. The support function of BU is δ∗(x∗1 | BU) where x∗1 = (q1, λ1). The support function of
{γ = 0} is as follows if x∗2 = (q2, λ2):

δ∗(x∗2 | {γ = 0}) = sup
(β,γ)∈{γ=0}

β>q2 + γ>λ2 = sup
β∈Rp

β>q2 =

{
0 if q2 = 0

+∞ if q2 6= 0

Corollary 16.4.1 page 146 of Rockafellar (1970) states that the support function δ∗(x∗),
where x∗ = (q, λ), of the intersection of two convex sets such that their relative interiors11

have one point in common, can be written:

δ∗(x∗ | BU ∩ {γ = 0}) = inf
(x∗1,x∗2): x∗1+x∗2=x∗

(δ∗(x∗1 | BU) + δ∗(x∗2 | {γ = 0})) (B.6)

and the infimum is attained.
Therefore, when the hyperplane {γ = 0} is not tangent to BU and their intersection is not

empty, their relative interiors have all the points of the relative interior of their intersection in
common, and we have:

δ∗((q, λ) | B) = inf
(λ1,λ2):λ1+λ2=λ

δ∗((q, λ1) | BU)) = inf
λ1

δ∗((q, λ1) | BU))

as the RHS is independent of λ2 and λ. Furthermore, the infimum in λ1 is attained.
On the other hand, when the hyperplane {γ = 0} is tangent to BU , the relative interiors

have no points in common since all intersection points belong to the closure of BU . The same
corollary 16.4.1 of Rockafellar (1970) nonetheless states that we should replace equation (B.6)
by its closure although the infimum is not necessarily attained.

Specifically, the condition under which the hyperplane {γ = 0} is tangent to BU , is obtained
when the origin point belongs to the frontier of BSargan (see Section 3.2.3). Without loss of

11Let the smallest affine set containing C, be aff(C). Let B(x, ε) be the ball centered at x and of diameter ε/2.
The relative interior of a set C is defined as:

ri(C) = {x ∈ aff(C);∃ε > 0, B(x, ε) ∩ aff(C) ⊂ C}
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generality, suppose that BU is included in the half-space γ ≥ 0 (i.e. γ is a completely positive
vector) by changing signs of sub-parameters of γ if necessary. We consider now two cases.

In the first case in which the support function is differentiable, there are no exposed faces
and the tangency of the hyperplane {γ = 0} to BU results in a single intersection point. Set B
is reduced to a point and is not a proper set any longer. Let (βI , 0) be the intersection point and
consider one hyperplane which is tangent to set BU at this point. If there is a kink of set BU at
this point, there exist many hyperplanes tangent to set BU . In any case, choose one and denote
(qI , λI) its normal vector oriented outward set BU and where λI could be infinite (recall that
qI ∈ Sp). For any value λ ≤ λI we have ∀(β, γ) ∈ BU :

qIβ + λγ ≤ qIβ + λIγ (as γ ≥ 0),

≤ qIβ + λI0 as δ(qI , λI) = (qI , λI)(βI , 0)>,

= qIβ + λ0.

The support function for (qI , λ) is also equal to δ((qI , λI) | BU).If λI is finite, the minimum
is attained for any λ ≤ λI .

If set BU is smooth at (βI , 0), there is only one tangent space at (βI , 0) and this is only
possible if λI = −∞. Consequently, the infimum of δ∗((qI , λ) | BU) is not attained. Else if set
BU is not smooth, the infimum can be attained at a finite λI .

In the second case in which the support function is not differentiable, there are exposed faces
and set B is a proper set. Depending on the smoothness of BU at the frontier points of the
intersection with the hyperplane γ = 0, the previous discussion can be extended to see whether
the infimum of δ∗((qI , λ) | BU) is attained.

B.5 The Construction of BU

Let s = (q, λ) be the direction used for estimating BU , λ being the components relative to the
variables zH . By definition of BU , we have that:[

β
γ

]
=
[
E(z>x) : E(z>zH)

]−1
E
[
z>(y + u(z))

]
.

The support function of BU is as in Proposition 2

δ∗(s | BU) = E(zsws),

where zs = s>Ω>z>, ws = y + (y − y)1{zs > 0} and

Ω =
[
E(z>x) : E(z>zH)

]−1
.

The last matrix is well defined because of the rank conditions R.ii and Appendix B.3.
The invariance of this construction to the specific choice of zH follows the same argument as

before. Write:
zHγ = zHQQ

>γ, λ>γ = λ>QQ>γ
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for any arbitrary orthogonal matrix Q. The solution is thus invariant to the choice of Q pro-
vided that (zH , γ, λ) is changed into (zHQ,Q

>γ,Q>λ). Minimizing with respect to λ or Q>λ is
equivalent.

C Proofs in Section 4

We denote M a generic majorizing constant.

C.1 Proof of Proposition 9

We use that:

δ∗(q | B) = E(zqwq) = q>
(
E(z>x)

)−1
E(z>wq) = q>Σ>E(z>wq).

where Σ = E(x>z)−1. The estimator that we consider is:

δ̂∗n(q | B) =
1

n

n∑
i=1

zn,qiwn,qi,

where:
zn,qi = q>Σ̂>

n z
>
i ,

wn,qi = y
i
+ 1{zn,qi > 0}(yi − y

i
),

where Σ̂n is an estimate of Σ.

Define ‖Σ‖ = Tr(Σ) and choose M arbitrarily such that M > Tr(Σ). We now show that
we can construct an estimate of Σ satisfying

∥∥∥Σ̂n

∥∥∥ ≤M. Define Σ̂u
n the sample analog of Σ:

Σ̂u
n =

(
1

n

n∑
i=1

x>i zi

)−1

, (C.7)

and define Σ̂n, the estimate of Σ, as: Σ̂n = Σ̂u
n if

∥∥∥Σ̂u
n

∥∥∥ ≤M,

Σ̂n = Σ̂u
n( M

‖Σ̂u
n‖) if not.

(C.8)

The element (q, Σ̂n) always belongs to the bounded set Θ = Sp × {‖Σ‖ ≤ M}. Under the
conditions of Proposition 8 , Σ̂n is almost surely consistent to Σ:

lim
n→∞

Pr(sup
n>N

∥∥∥Σ̂n − Σ
∥∥∥ ≥ ε) = 0.

Under the conditions of Proposition 9, Σ̂u
n and Σ̂n are asymptotically equivalent:

√
n
(
Σ̂n − Σ̂u

n

)
P→

n→∞
0, (C.9)

and the estimate is asymptotically normal:
√
n
(
vec(Σ̂>

n − Σ>)
)

=⇒ N(0,W ). (C.10)

We proceed in two steps. As the first step is simple, we give the proof consistency and
asymptotic normality at the same time.
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C.1.1 Consistency and Asymptotic Normality: Σ is known

Suppose that Σ is known and denote:

zqi = ziΣq, wqi = y
i
+ 1{zqi > 0}(yi − y

i
).

Consider function fθ indexed by θ = (q,Σ) ∈ Θ from the support of (zi, yi
, yi) to R such that:

fθ(zi, yi
, yi) = zqiwqi = q>Σ>z>i (y

i
+ 1{q>Σ>z>i > 0}(yi − y

i
)).

Note that F = {fθ; θ ∈ Θ} is a parametric class and is indexed by a parameter θ lying in a
bounded set Θ.

As the proof of Lemma 3 shows, this function is convex in Σq and therefore Lipschitzian:

∣∣∣fθ1(zi, yi
, yi)− fθ2(zi, yi

, yi)
∣∣∣ ≤ max(

∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥)∥∥q>1 Σ>
1 − q>2 Σ>

2

∥∥ ,
≤ M max(

∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥) ‖θ1 − θ2‖ . (C.11)

where the last equality (and the constant M <∞) is derived from the bounds on Θ.
Under conditions R.iii, we have:

E
(
max(

∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥)) <∞

so that F = {fθ; θ ∈ Θ} is a Glivenko-Cantelli class (see for instance, van der Vaart, 1998, page
271). By the definition of such a class, we have, uniformly over Θ:

1

n

n∑
i=1

fθ(zi, yi
, yi) =

1

n

n∑
i=1

zqiwqi
a.s→

n→∞
E(zqiwqi).

Also, under the conditions of Proposition 9, we have:

E
(
max(

∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥)2
)
<∞

so that F = {fθ; θ ∈ Θ} is a Donsker class (for instance, van der Vaart, 1998, page 271). By the
definition of such a class, the empirical process,

√
nτn(q) =

√
n(

1

n

n∑
i=1

zqiwqi − E(zqiwqi)),

converges in distribution, uniformly in Θ, to a Gaussian process with zero mean and covariance
function:

E(zqiwqizriwri)− E(zqiwqi)E(zriwri).

The second step of the proof of Proposition 9 consists in replacing Σ by the almost sure limit Σ̂n

defined above. Consistency is proved in the Supplementary Appendix since this result is already
shown in Beresteanu and Molinari (2008). We will rely heavily on Section 19.4 of van der Vaart
(1998) where relevant properties are proposed.
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C.1.2 Asymptotic distribution when Σ is estimated

We analyze the asymptotic behavior of τn(q) defined as

τn(q) =
√
n

(
1

n

n∑
i=1

zn,qiwn,qi − E(zqiwqi)

)
Denote τn(q) ≡ An(q) +Bn(q) where,

An(q) =
√
n

(
1

n

n∑
i=1

zn,qiwn,qi − E(zn,qiwn,qi)

)
, Bn(q) =

√
n(E(zn,qiwn,qi)− E(zqiwqi)),

where E(zn,qiwn,qi) is evaluated along a specific sequence {Σ̂n}n≥1 and the expectation operator
is taken with respect to the probability measure of zi, yi

and yi (see Section 19.4 of van der Vaart,
1998).

To begin with An(q), let θ = (q,Σ) the true value and θ̂n = (q, Σ̂n) its estimate. Let us prove
that if θ̂n

P→
n→∞

θ uniformly in q:

E(zn,qiwn,qi − zqiwqi)
2 = E(fθ̂n

(zi, yi
, yi)− fθ(zi, yi

, yi))
2 P→

n→∞
0. (C.12)

Using equation (C.11), we have:∣∣∣fθ̂n
(zi, yi

, yi)− fθ(zi, yi
, yi)

∣∣∣ ≤M max(
∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥)∥∥∥θ̂n − θ
∥∥∥ .

so that:

E(fθ̂n
(zi, yi

, yi)− fθ(zi, yi
, yi))

2 ≤M2E
(
max(

∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥)2
)∥∥∥θ̂n − θ

∥∥∥2

Under the conditions of Proposition 9, E
(
max(

∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi

∥∥)2
)
<∞ and is independent of

q. As
∥∥∥θ̂n − θ

∥∥∥2

tends in distribution to 0 uniformly in q ∈ Sp (equation (C.9)), it tends also in
probability to 0, uniformly in q ∈ Sp, which finishes the proof. Hence, we can apply Lemma
19.24 of van der Vaart (1998), so that An(q) has the same distribution as:

Cn(q) =
√
n

(
1

n

n∑
i=1

zqiwqi − E(zqiwqi)

)
. (C.13)

uniformly in q ∈ S. Therefore the problem boils down to compute the limit of processes Bn(q)

and Cn(q) as given in the following lemma:

Lemma 13 We have, uniformly in q ∈ Sp :

(i)
Bn(q)−

√
nE(

∣∣q>(Σ>
n − Σ>)z>i

∣∣ (ȳi − y
i
)(1{ziΣq = 0}))/2

−
√
nq>(Σ̂>

n (Σ>)−1 − I)β∗q
P→

n→∞
0,

(ii) Cn(q)−
√
n

(
1
n

n∑
i=1

zqiε
∗
qi

)
−
√
nq>(I − Σ̂>

n (Σ>)−1)β∗q
P→

n→∞
0,

where β∗q = Σ>E(z>i w
∗
qi), ε

∗
qi = wqi − xiβ

∗
q , and w∗qi = wqi + 1

2
(ȳi − y

i
)1{zqi = 0}.
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Proof. For convenience sake, we first rewrite w∗qi:

w∗qi = y
i
+

1

2
(ȳi − y

i
)(1{zqi > 0}+ 1{zqi ≥ 0}).

and note that E(zqiwqi) = E(zqiw
∗
qi).

We first prove (i). Write:

Bn(q) =
√
n(E(zn,qiwn,qi)− E(zqiw

∗
qi))

=
√
nE(zn,qi(wn,qi − w∗qi)) + E((zn,qi − zqi)w

∗
qi)

≡ B1
n(q) +B2

n(q).

By definition of zn,qi = q>Σ̂>
n z

>
i and zqi = q>Σ>z>i and as we are evaluating these expressions

along a specific sequence {Σ̂n}n≥1, the second term on the RHS is equal to:

B2
n(q) =

√
n
(
q>(Σ̂n − Σ)>E(z>i w

∗
qi)
)

=
√
nq>(Σ̂n − Σ)>(Σ>)−1β∗q ,

=
√
nq>(Σ̂>

n (Σ>)−1 − I)β∗q .

using the definition of β∗q .
The first term on the RHS is equal by replacement of wn,qi and w∗qi to:

B1
n(q) =

√
nE

(
zn,qi(ȳi − y

i
)

(
1{zn,qi > 0}−1

2
(1{zqi > 0}+ 1{zqi ≥ 0})

))
,

=
√
nE

(
(zn,qi − zqi)(ȳi − y

i
)

(
1{zn,qi > 0}−1

2
(1{zqi > 0}+ 1{zqi ≥ 0})

))
+
√
nE

(
zqi(ȳi − y

i
)

(
1{zn,qi > 0}−1

2
(1{zqi > 0}+ 1{zqi ≥ 0})

))
.

The first line is the sum of two terms:

B11
n (q) =

√
nE

(
(zn,qi − zqi)(ȳi − y

i
)

(
1{zn,qi > 0}−1

2

)
1{zqi = 0}

)
,

B12
n (q) =

√
nE
(
(zn,qi − zqi)(ȳi − y

i
) (1{zn,qi > 0} − 1{zqi > 0})1{zqi 6= 0}

)
.

and the second line is equal to:

B13
n (q) =

√
nE
(
zqi(ȳi − y

i
)(1{zn,qi > 0} − 1{zqi > 0})

)
.

We shall prove that B12
n (q) and B13

n (q) are bounded from above by oP (1) terms.
Considering B13

n (q) first, use the Cauchy-Schwartz inequality and write:∣∣B13
n (q)

∣∣ ≤ √
n
[
E(ȳi − y

i
)2
]1/2 [

E
(
z2

qi |1{zn,qi > 0} − 1{zqi > 0}|
)]1/2

,

since squares of dummy variables are equal to themselves. Denote genericM =
[
E(ȳi − y

i
)2
]1/2

and write: ∣∣B13
n (q)

∣∣ ≤
√
nM

[
E
(
z2

qi |1{zn,qi > 0} − 1{zqi > 0}|
)]1/2

,

≤
√
nM

[
E
(
z2

qiE(|1{zn,qi > 0} − 1{zqi > 0}| | zqi

)]
≤

√
nM

[
E
(
z2

qi Pr(
∣∣√n(zn,qi − zqi)

∣∣ ≥ ∣∣√nzqi | zqi

∣∣)]1/2
,
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since the alternation in signs between zn,qi and zqi means that
√
n(zn,qi − zqi) is bounded further

away from zero when n increases.
As the number of mass points is finite, there exists a finite α > 0 such that there is no mass

point between zq = 0 (excluded) and (zq)
2 = α and such that the density function of (zq)

2

between these two values is bounded. Write the upper bound on (B13
n (q))

2 as the sum of two
terms:

nM2E
(
z2

qi Pr(
∣∣√n(zn,qi − zqi)

∣∣ > ∣∣√nzqi

∣∣ | zqi) | z2
qi ≤ α)

)
Pr(z2

qi ≤ α), (C.14)

nM2E
(
z2

qi Pr(
∣∣√n(zn,qi − zqi)

∣∣ > ∣∣√nzqi

∣∣ | zqi) | z2
qi > α)

)
Pr(z2

qi > α).

Using the conditions in Proposition 9, consider 0 < µ < min(2, γ) so that E(
∥∥x>z∥∥2+µ

) <

∞. We also have, ∥∥∥√n(Σ̂n − Σ)
∥∥∥2+µ

= OP (1).

Using: ∣∣√n(zn,qi − zqi)
∣∣2+µ ≤

∥∥∥√n(Σ̂n − Σ)
∥∥∥2+µ

‖zi‖2+µ ,

and the same conditions in Proposition 9, there exists Mn = OP (1) such that:

sup
z2
qi≤α

E(
∣∣√n(zn,qi − zqi)

∣∣2+µ | zqi) ≤Mn and E(
∣∣√n(zn,qi − zqi)

∣∣2+µ
) ≤Mn.

Use Markov inequality with exponent 2 + µ to write:

Pr(
∣∣√n(zn,qi − zqi)

∣∣ > ∣∣√nzqi

∣∣ | zqi) ≤
E(|

√
n(zn,qi − zqi)|

2+µ | zqi)

|
√
nzqi|

2+µ

so that the first line of equation (C.14) is bounded by:

(
√
n)−µM2

∫ α

0

E(
∣∣√n(zn,qi − zqi)

∣∣2+µ | zqi) |zqi|−µ Pr(d (zqi)
2)

≤(
√
n)−µM2 sup

(zqi)
2≤α

E(
∣∣√n(zn,qi − zqi)

∣∣2+µ | zqi)

∫ α

0

|zqi|−µ d (zqi)
2 ,

as the density of (zqi)
2 is bounded on (0, α]. The last term can then be written as:

(
√
n)−µM2Mn

[
(zqi)

2−µ

1− µ/2

]α

0

= (
√
n)−µM2Mn

α1−µ/2

1− µ/2
,

which is oP (1).
Moreover, using the same Markov inequality, the second line is bounded by:

(
√
n)−µM2

∫ +∞

α

E(
∣∣√n(zn,qi − zqi)

∣∣2+µ | zqi) |zqi|−µ Pr(d (zqi)
2)

≤ (
√
n)−µ M

2

αµ/2
E(
∣∣√n(zn,qi − zqi)

∣∣2+µ | z2
qi > α)

which is oP (1). This proves that (B13
n (q))

2 is bounded by a oP (1) term.
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As for B12
n (q) first we can use the Cauchy-Schwartz inequality to show that:

∣∣B12
n (q)

∣∣ < (E [√n(zn,qi − zqi)(ȳi − y
i
)
]2)1/2

(E(|1{zn,qi > 0} − 1{zqi > 0}|1{zqi 6= 0})1/2 .

Since zn,qi − zqi = qT (ΣT
n − ΣT )zT

i , the first term in the product is bounded by:

∥∥√n(ΣT
n − ΣT )

∥∥(E [zT
i (ȳi − y

i
)
]2)1/2

= OP (1),

because all variables are in L2. The second term is bounded by:

Pr(
∣∣√n(zn,qi − zqi)

∣∣ ≥ ∣∣√nzqi

∣∣ , zqi 6= 0) = oP (1)

using a similar proof as in the above proof for B13
n (q). We thus have B12

n (q) = oP (1).
Therefore:

B1
n(q) = B11

n (q) + oP (1)

=
√
nE

(
|zn,qi − zqi|

2
(ȳi − y

i
)1{zqi = 0}

)
+ oP (1)

=
√
nE
(∣∣q>(Σ>

n − Σ>)z>i
∣∣ (ȳi − y

i
)1{zqi = 0}

)
/2 + oP (1).

Adding B2
n(q) and B1

n(q) finishes the proof of (i).
To prove (ii), use zq = q>Σ>z>i to write :

Cn(q) =
√
n

(
1

n

n∑
i=1

zqiwqi − E(q>Σ>z>i w
∗
qi)

)
.

Using wqi = xiβ
∗
q + ε∗qi , we have:

Cn(q) =
√
n

(
1

n

n∑
i=1

zqiε
∗
qi

)
+
√
n

(
1

n

n∑
i=1

q>Σ>z>i xiβ
∗
q − E(q>Σ>z>i w

∗
qi)

)
Using E(zqiw

∗
qi) = E(zqiwqi) = E(zqixiβ

∗
q ), the second term on the right hand side is equal to:

√
nq>Σ>

(
1

n

n∑
i=1

z>i xi

)
β∗q −

√
nq>β∗q

=
√
nq>(Σ>(Σ̂u>

n )−1 − I)β∗q

=
√
nq>(Σ>(Σ̂>

n )−1 − I)β∗q + op(1)

=
√
nq>Σ>(Σ̂>

n )−1(I − Σ̂>
n (Σ>)−1)β∗q + op(1)

The third line uses that
√
n(Σ̂u

n − Σ̂n)
P→

n→∞
0 by equation (C.9) and uniform bounds on q,Σ

and β∗q . Moreover, as Σ̂n is bounded and its inverse exists, Σ>(Σ̂>
n )−1 a.s→

n→∞
I, and we have,

uniformly in q:

Cn(q) =
√
n

(
1

n

n∑
i=1

q>Σ>z>i ε
∗
qi

)
+
√
nq>(I − Σ−1Σ̂n)>β∗q + op(1).
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Summing the different terms in the Lemma implies that τn(q) is asymptotically equivalent
to:

√
n

(
1

n

n∑
i=1

zqiε
∗
qi

)
+
√
nE
(∣∣q>(Σ>

n − Σ>)z>i
∣∣ (ȳi − y

i
)1{zqi = 0}

)
/2

If there are no exposed faces (i.e., Pr(ziΣq = 0) = 0), the second term is identically equal to
zero whereas ε∗qi boils down to the residual of the IV regression of wq on to x using instruments
z so that τn(q) converges in distribution, uniformly in q, to a Gaussian process centered at zero
and of covariance function:

E(zqiεqiεrizri),

with εqi = wqi − xiβq.
Suppose that there exist exposed faces (Pr(zqi = 0) > 0). Write:

Σq = (Ip ⊗ q>)vec(Σ>)

so that, using the asymptotic normality of the estimate of vec(Σ>) in equation (C.10) we have:
√
nq>(Σ>

n −Σ>)z>i =
√
n(vec(Σ>

n )>−vec(Σ>)>)(Ip⊗q)z>i =
√
nη>W 1/2(Ip⊗q)z>i +oP (1),

where η is a multivariate standard normal random variable of dimension p2 independent of zi.

C.2 Proof of Proposition 10

When β0 is outside (resp. inside) setB but not on the frontier, we know that infq T∞(q) is strictly
negative (resp. positive). As Tn(q) converges uniformly in q to T∞(q), minq Tn(q) is negative
(resp. positive) and bounded away from zero for n sufficiently large.

√
nTn(qn) tends therefore

to −∞ (resp. +∞).
Consider now the case β0 ∈ ∂B and let Q(β0) the set of all q0 ∈ Sp which minimize

T∞(q; β0), i.e., the set of all q0 ∈ Sp satisfying δ∗(q0 | B) = q>0 β0. Q(β0) is a non-empty
compact subset of Sp. We first consider the case in which Q(β0) is a singleton. In the second
part, the proof is extended to the case in which Q(β0) may contain more than one element of Sp.

C.2.1 Q(β0) is a singleton: Q(β0) = {q0}

As δ∗(q | B) is differentiable (assumption D), the empirical stochastic process defined for q ∈ Sp

as, √
n (Tn(q; β0)− T∞(q; β0)) =

√
n(δ̂∗n(q | B)− δ∗(q | B)) = τn(q),

converges to a Gaussian process (Proposition 9) whose sample paths are uniformly continuous
on the unit sphere Sp endowed with the usual Euclidean norm. Hence τn(.) is stochastically
equicontinuous (for instance, p. 2251 of Andrews, 1994).

Let qn ∈ Sp be any sequence of directions defined as near minimizers of the empirical coun-
terpart Tn(q; β0) defined as,

Tn(qn; β0) ≤ min
q
Tn(q; β0) + oP (1).
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Standard arguments employed for Z-estimators (e.g. van der Vaart, 1998) when the objective
function has a unique well separated minimum, imply that:

plimn→∞qn = q0.

Because (i) τn(.) is stochastically equicontinuous (ii) qn ∈ Sp (iii) plimn→∞qn = q0 , Andrews
(1994, equation (3.36), p. 2265) shows that:

√
n (Tn(qn; β0)− Tn(q0; β0))

P→
n→∞

0.

The proof finishes by using the asymptotic distribution of
√
nTn(q0; β0) as stated in the text.

C.2.2 Q(β0) is not a singleton

The proof proceeds in various steps:

1. We select and characterize a unique q∗0 from Q(β0).

2. We construct a sequence of well separated minima of minimization programs which tends
to q∗0 .

3. We show that any sequence of minimizers of the empirical programs converge to q∗0 .

1. The selection of a single q∗0 ∈ Q(β0) For this, we select a vector oriented outwards B and
consider its projection on the smallest convex cone which includes Q(β0):

C(β0) = {λq0; q0 ∈ Q(β0), λ ≥ 0} = {v; δ∗(v | B)− v>β0 ≤ 0}.

The vector oriented outward set B can be constructed as the difference between β0 which is a
frontier point of B and any interior point β∗ of B. For instance the ”center” of B obtained by
setting u(z) = ∆(z)+∆(z)

2
) is interior and

β∗ = E(Σ>z>
ȳ + y

2
).

Denote v0 = β0 − β∗ 6= 0 and note that, as β∗ ∈ int(B), we have for all q0 in Q(β0) :

δ∗(q0 | B)− q>0 β
∗ > 0 =⇒ q>0 v0 > 0. (C.15)

The projection of v0 on the convex cone C(β0) is given by:

min
v,δ∗(v|B)−v>β0≤0

(v0 − v)>(v0 − v)

2
(C.16)

This projection is unique and defined by v∗0 = λ∗q∗0 where (λ∗, q∗0) is the argument of the mini-
mum:

min
(λ≥0,q∈Q(β0))

(v0 − λq)>(v0 − λq) ∝ min
(λ≥0,q∈Q(β0))

{−2λq>v0 + λ2}

which yields λ∗ = q∗>0 v0 > 0 (see equation C.15) whereas q∗0 is the argument of:

max
q∈Q(β0)

q>v0.

Vector q∗0 is unique because it is a (normalized) projection. Furthermore, when v0

‖v0‖ ∈ Q(β0) (or
equivalently v0 ∈ C(β0)), we have q∗0 = v0

‖v0‖ whereas in other cases q∗0 belongs to the frontier of
Q(β0).
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2. Minimization programs whose well separated solutions converges to q∗0 The estimation
of q∗0 cannot proceed directly from program (C.16) since we do not know the set of constraints,
Q(β0). Consider the generalization of (C.16) for any α ≥ 0:

b(α) ≡ min
v,δ∗(v|B)−v>β0≤α

(v0 − v)>(v0 − v)

2
(C.17)

where b(α) is continuous and non increasing in α because the constraint is continuous. The
unique solution of this program, denoted v∗α, is the projection of v0 = β0 − β∗ on the convex
cone {v ∈ Rp, δ∗(v | B)− v>β0 ≤ α}.

We state a sequence of Lemmas that are proved below in Section C.2.3.
It turns out that the following equivalent characterization to this program will be more amenable

to estimation.

Lemma 14 For any α > 0, the strictly convex program (C.17) is equivalent to the minimization
of:

Ψa(q) = δ∗(q | B)− q>β0 − aq>v0,

where a is an increasing function of α.

This equivalence covers the case where a > 0. We need to complete this result by showing
how the minimizer qa of Ψa(q) converges to q∗0 when a→ 0.

Lemma 15 The limit of the sequence {qa}a>0 exists when a → 0 and is equal to q∗0. Further-
more:

Ψa(q
∗
0)−Ψa(qa) = o(a).

Moreover, we have the following uniform result:

Lemma 16

∀ε > 0,∃a0 > 0, ∃η > 0 such that inf
0<a≤a0,‖q−q∗0‖≥ε

Ψa(q)−Ψa(qa)

a
> η. (C.18)

3. Estimation of qa and convergence to q∗0 Finally, we construct the estimate of qa. Fix a > 0.

Define the perturbed estimated convex program as:

Ψn,a(q; β0) = δ̂∗n(q | B)− q>β0 − aq>v0,n

where v0,n = β0 − β̂∗n and β̂∗n =
1

n

n∑
i=1

Σ̂>
n zi

ȳi + y
i

2
.

Define qn,a as a near minimizer of Ψn,a:

Ψn,a(qn,a) ≤ inf
q

Ψn,a(q) +OP (n−1/2).

We have
Ψn,a(qn,a) ≤ Ψn,a(qa) +OP (n−1/2).
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whereas the square-root uniform convergence of Ψn,a to Ψa ensures that:

Ψn,a(qn,a) = Ψa(qn,a) +OP (n−1/2).

Using successively the last equality and the previous inequality, we canwrite,

0 ≤ Ψa(qn,a)−Ψa(qa) = Ψn,a(qn,a)−Ψa(qa) +OP (n−1/2),

≤ Ψn,a(qa)−Ψa(qa) +OP (n−1/2),

≤ sup
q
|Ψa(q)−Ψn,a(q)|+OP (n−1/2).

We thus have:

Ψa(qn,a)−Ψa(qa)

a
≤

supq |Ψa(q)−Ψn,a(q)|+OP (n−1/2)

a
.

Let an = O(n−α) a sequence such that α < 1/2. Because of equicontinuity and n1/2 convergence
of δ̂∗n(q | B) to δ∗(q | B) and of v0,n to v0, we have that:

nα sup
q
|Ψan(q)−Ψn,an(q)| P→

n→∞
0.

Then:
Ψan(qn,an)−Ψan(qan)

an

≤ oP (1).

and therefore:

∀η > 0, lim
n→∞

Pr(
Ψan(qn,an)−Ψan(qan)

an

> η) = 0

By condition (C.18), for any ε > 0, there exist n0 and η > 0 such that, for n ≥ n0 the event:

{d(qn,an , q
∗
0) ≥ ε} ⊂ {Ψan(qn,an)−Ψan(qan)

an

> η}.

Therefore:
∀ε > 0, lim

n→∞
Pr(d(qn,an , q

∗
0) ≥ ε) = 0 =⇒ qn,an − q∗0

P→
n→∞

0.

To finish the proof of Proposition 10 we can now use the same argument than in Section C.2.1
so that: √

n (Tn(qn,an ; β0)− Tn(q∗0; β0))
P→

n→∞
0.

The variance of Tn(q∗0; β0) is estimated as the variance of Tn(qn,an ; β0).

C.2.3 Proofs of Lemma 14 to 16

Proof of Lemma 14: Let α0 = δ∗(v0 | B)−v>0 β0, we have v∗α = v0 for any α ≥ α0 whereas in
other cases the optimal solution v∗α is such that the constraint is binding, δ∗(v∗α | B)−v∗>α β0 = α.
If v0

‖v0‖ ∈ Q(β0), we have that α0 = 0 and

q∗0 =
v∗α
‖v∗α‖

=
v0

‖v0‖
, ∀α ≥ 0.
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When v0

‖v0‖ /∈ Q(β0) and α runs from 0 to α0, v∗α describes a trajectory between v∗0 and v0. We
now characterize this trajectory.

It is easier to work with the equivalent dual program (Rockafellar, 1970):

α = min
v,

(v0−v)>(v0−v)
2

≤b(α)

(δ∗(v | B)− v>β0), (C.19)

where b(α) runs from (v0−v∗0)>(v0−v∗0)

2
to 0 to generate the same trajectory {v∗α}α≥0. Writing the

program (C.19) as the Lagrangian where a > 0:

L(v, a) = δ∗(v | B)− v>β0 + a(
(v0 − v)>(v0 − v)

2
− b(α)) (C.20)

we obtain the first order condition (by assumption D, δ∗(v | B) is differentiable):

βqα − β0 − a(α)(v0 − v∗α) = 0,

where qα = v∗α
‖v∗α‖

∈ Sp and βqα = ∂δ∗(v|B)
∂v

∣∣∣
v∗α

. To obtain a, multiply the equation by (v0 − v∗α)>:

2a(α)b(α) = (v0 − v∗α)>(βqα − β0).

When α = 0, βqα = β0 and therefore a(α) = 0 since v0

‖v0‖ /∈ Q(β0) and b(α) > 0. Furthermore,
a(α) is continuous in α for any α < α0 since all objects in the expression are continuous.

We now prove that a(α) is increasing with α. Consider 0 < α < α′ < α0 and the optimal
solutions v∗α and v∗α′ , where v∗α 6= v∗α′ because:

δ∗(v∗α | B)− v∗>α β0 = α < δ∗(v∗α′ | B)− v∗>α′ β0 = α′.

Note that by optimality:

L(v∗α, a(α)) = δ∗(v∗α | B)− v∗>α β0 < δ∗(v∗α′ | B)− v∗>α′ β0 + a(α)(
(v0 − v∗α′)

>(v0 − v∗α′)

2
− b(α)),

L(v∗α, a(α
′)) = δ∗(v∗α | B)− v∗>α β0 + a(α′)(

(v0 − v∗α)>(v0 − v∗α)

2
− b(α′)) > δ∗(v∗α′ | B)− v∗>α′ β0.

so that by differencing:

a(α′)(b(α)− b(α′)) > −a(α)(b(α′)− b(α)) ⇒ (a(α′)− a(α)) (b(α)− b(α′)) > 0.

As b(α) is non increasing, it implies that a(α) is increasing with α from a(0) = 0 to limα→α0 a(α) =

+∞.
We can thus generates the arc {v∗α}α>0 equivalently by making a varies between 0 and ∞.

Let us rewrite the minimization program (C.20) in order to consider vectors on Sp since estimates
are defined on Sp only:

L(λq, a) = δ∗(λq | B)− (λq)>β0 + a(
(v0 − λq)>(v0 − λq)

2
− b(α)),

= λ(δ∗(q | B)− q>β0) + a(
(v0 − λq)>(v0 − λq)

2
− b(α)).
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Minimizing wrt λ yields the FOC for the optimal solution λq:

δ∗(q | B)− q>β0 + a(λq − q>v0) = 0,

which implies that:

L(λqq, a) = a(−
λ2

q

2
− b(α)),

−aλq = δ∗(q | B)− q>β0 − aq>v0 ≡ Ψa(q).

When a > 0, minimizing L(λqq, a) is equivalent to maximizing λq and thus equivalent to mini-
mizing Ψa(q). As L(λqq, a) is a strictly convex program, the minimizer of Ψa(q) is unique and
well separated.

Proof of Lemma 15: To begin with, it is useful to note that −a ‖v0‖ provides a lower bound
of Ψa(q),

Ψa(q) = δ∗(q | B)− q>β0 − aq>v0 ≥ −a ‖v0‖ ,

because β0 ∈ B and q and v0

‖v0‖ belong to Sp.
We are going to consider in turn two cases:

• Assume first that v0

‖v0‖ ∈ Q(β0). In such a case, q∗0 = v0

‖v0‖ and Ψa(q
∗
0) = −a ‖v0‖ . Hence,

given that qa is unique and that −a ‖v0‖ is a lower bound for Ψa(q), we have necessarily
qa = q∗0 for any a > 0.

• Assume now that v0

‖v0‖ /∈ Q(β0). By definition of qa as a minimum,

Ψa(qa) = δ∗(qa | B)− q>a β0 − aq>a v0 ≤ Ψa(q
∗
0) = −aq∗>0 v0,

since δ∗(q∗0 | B) = q∗>0 β0. It implies that:

0 ≤ δ∗(qa | B)− q>a β0 ≤ a(qa − q∗0)
>v0 ≤ 2a ‖v0‖ , (C.21)

since β0 ∈ B, (the left-hand side, δ∗(qa | B)−q>a β0, is non-negative) and since ‖qa − q∗0‖ ≤
2. Consequently, we have,

lim
a→0

(δ∗(qa | B)− q>a β0) = 0,

and the distance between set Q(β0) and qa tends to zero by continuity of the function
δ∗(q | B)− q>β0.

Consider now qm any accumulation point of the sequence qa i.e., any point satisfying,
∀η > 0, ∃a0 > 0 such that ∀a < a0, ‖qa − qm‖ < η.12 Because Q(β0) is compact,
qm ∈ Q(β0). We are going to show that qm = q∗0. By definition of qa and q∗0 , we have

Ψa(qa)

a
≤ Ψa(q

∗
0)

a
= −q∗>0 v0 ≤ −q>mv0.

12Such a sequence exists as the distance between qa andQ(β0), a compact set, tends to zero. In the following we
will work with a instead of working with a sequence indexed by a without loss of generality.
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where the first inequality holds true because qa minimizes Ψa on the unit sphere whereas
the second inequality holds true because qm ∈ Q(β0) and q∗0 maximizes q>v0 on Q(β0).

Furthermore, since δ∗(q | B) ≥ q>β0 for any q on the unit sphere, we have,

Ψa(qa)

a
=
δ∗(qa | B)− q>a β0

a
− q>a v0 ≥ −q>a v0.

Combining this inequality with the two previous ones, we have,

−q>a v0 ≤ −q∗>0 v0 ≤ −q>mv0

By taking limits and using that qa tends to qm when a tends to zero, we obtain that q>mv0 =

q∗>0 v0. Given the definition of q∗0, it means that qm is the argument of maxq∈Q(β0) q
>v0.

But this argument is unique and is precisely q∗0. Hence, we have necessarily qm = q∗0 and
therefore:

lim
a→0

‖qa − q∗0‖ = 0. (C.22)

Furthermore, as:

0 ≤ Ψa(q
∗
0)−Ψa(qa)

a
≤ (qa − q∗0)

>v0

we have:
Ψa(q

∗
0)−Ψa(qa) = o(a). (C.23)

Proof of Lemma 16: First, the Lemma is trivially satisfied when v0

‖v0‖ ∈ Q(β0) since qa =

q∗0 = v0

‖v0‖ and therefore:

Ψa(q)−Ψa(qa)

a
≥ −(q − v0

‖v0‖
)>v0 =

1

2
‖v0‖

∥∥∥∥q − v0

‖v0‖

∥∥∥∥2

,

the last equality resulting from the following expansion:

‖q‖2 = 1 =

∥∥∥∥q − v0

‖v0‖
+

v0

‖v0‖

∥∥∥∥2

= 1 + 2(q − v0

‖v0‖
)>

v0

‖v0‖
+

∥∥∥∥q − v0

‖v0‖

∥∥∥∥2

. (C.24)

Consequently, this quantity is bounded from below by a positive number when
∥∥∥q − v0

‖v0‖

∥∥∥ ≥ ε.
Assume now that v0

‖v0‖ /∈ Q(β0). We will first show that, for a given q, the infimum if it is
attained when a tends to zero is strictly positive. Using the results of Lemma (15), we know that
when a→ 0, qa → q∗0 and Ψa(qa)

a
→ −q∗>0 v0.

• Either q ∈ Q(β0) and Ψa(q)
a

= −q>v0 ≥ −q∗>0 v0, by construction of q∗0 . Consequently,

Ψa(q)−Ψa(qa)

a
→
a→0

−(q − q∗0)
>v0,

which is strictly positive when ‖q − q∗0‖ ≥ ε.

• Or q /∈ Q(β0). In this case Ψa(q)
a

→ +∞ and cannot deliver the infimum.
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As qa tends to q∗0 when a tends to zero, there exists some a0 for which the joint events
{0 < a ≤ a0} and {‖q − q∗0‖ ≥ ε} imply that ‖q − qa‖ ≥ ε

2
. Assume now by contradiction that

the infimum over 0 < a ≤ a0 is not positive. By continuity of function Ψa(q)−Ψa(qa)
a

in a and q
when a > 0 (see Lemma 14), and as the infimum is positive at the limit a → 0, a non-positive
infimum can only be obtained at some a > 0. It is a contradiction because qa is a well separated
minimum for any a > 0 (Lemma 14).

The infimum in 0 ≤ a ≤ a0 is therefore positive for any q such that q ∈ Sp∩{‖q − q∗0‖ ≥ ε}.
The last set is a compact set in q. The infimum over such qs is thus positive also.

C.3 Proof of Proposition 12

By condition S, the relative interiors of sets BU and {γ = 0} have points in common and the
infimum is attained at λ0(q) (see end of proof, Section B.4). As Sp is compact, denote Λ a
compact set of Rm such that for all q ∈ Sp, λ0(q) ∈ int(Λ).

The proof consists in three steps:

1. Under assumption D that the unconstrained set BU has no faces, the estimate of the un-
constrained support function is a consistent and asymptotically Gaussian random process
(Proposition 9).

2. The minimization of the estimate δ̂∗n((q, λ) | BU) with respect to λ holding q constant for
any q can be analyzed as in Proposition 10.

(a) If λ0(q), the minimizer of the true support function, is unique, then any near mini-
mizer in λ of δ̂∗n((q, λ) | BU) is a

√
n−consistent and asymptotically normal estimate

of δ∗(q | B).

(b) If λ0(q) is not unique, we define a perturbed criterion so as to construct an estimate,
λn(q) of one single element λ∗0(q). Then δ̂∗n((q, λn(q)) | BU) is a

√
n−consistent and

asymptotically normal estimate of δ∗(q | B).

In both cases, this argument is valid for any finite list of q and the vector of those estimates
are jointly asymptotically normal.

3. The derived process τn(q) =
√
n(δ̂∗n((q, λn(q)) | BU) − δ∗(q | B)) is stochastically

equicontinuous.

Using Andrews (1994, p2251), the three steps prove that τn(q) is a consistent and asymptot-
ically Gaussian random process.

Step 1: According to what was developed above, the empirical stochastic process τU
n (.),

defined for s = (q, λ) ∈ Sm, the unit sphere in Rm, as,

τU
n (s) =

√
n
(
δ̂∗n(s | BU)− δ∗(s | BU)

)
,
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converges to a Gaussian process whose sample paths are uniformly continuous on the unit sphere
Sm, using the usual Euclidean norm. Hence τU

n (.) is stochastically equicontinuous (for instance,
p.2251 of Andrews, 1994).

Step 2: Fix q ∈ Sp the unit sphere in Rp and let S(q) the set of all s(q) = (q, λ0(q)) that
minimize δ∗(s | BU) with respect to λ i.e.:

δ∗(q | B) = δ∗(s(q) | BU) = min
λ∈Λ

δ∗(s | BU).

S(q) is a non-empty subset included in the interior of the compact set SB = Sp×Λ ⊂ Rm by the
above. Note also that to obtain the standard evaluation on the unit sphere some renormalization
is necessary since ‖s‖ ≥ ‖q‖ = 1, and this is done using the positive homogeneity of support
functions:

δ∗(s | BU) = ‖s‖ δ∗( s

‖s‖
| BU).

where s
‖s‖ ∈ Sm. In the following, we will directly deal with the support function δ∗(s | BU)

extended to the compact set SB in this way.
We first consider the case where S(q) is a singleton. In the second part of the proof, S(q)

potentially contains more than one element of Rm, the issue being to select one specific element
of S(q) and to construct a consistent estimate of it.

a) Suppose that S(q) is a singleton, S(q) = {s0 = (q, λ0)} ⊂ int(SB).
Let sn = (q, λn) ∈ SB be any sequence of directions defined as near minimizers of the

empirical counterpart δ̂∗n(sn | BU) defined as,

δ̂∗n(sn | BU) ≤ min
λ∈Λ

δ̂∗n(s = (q, λ) | BU) + oP (1).

Define the estimate of δ∗(q | B) as the value at the near minimizer:

δ̂∗n(q | B) = δ̂∗n(sn | BU). (C.25)

First, standard arguments employed for Z-estimators (see van der Vaart, 1998, for instance) imply
that:

plimn→∞λn = λ0.

Second, because i) τU
n (.) is stochastically equicontinuous ii) sn ∈ Sp × Λ iii) plimn→∞sn = s0 ,

Andrews (1994, equation (3.36), p:2265) shows that:

√
n
(
δ̂∗n(sn | BU)− δ̂∗n(s0 | BU)

)
P→

n→∞
0.

The step finishes by using the asymptotic distribution of δ̂∗n(s0 | BU):

√
n
(
δ̂∗n(s0 | BU)− δ∗(s0 | BU)

)
d
 

n→∞
N(0, Vs0),

which implies that: √
n
(
δ̂∗n(q | B)− δ∗(q | B)

)
d
 

n→∞
N(0, Vs0),
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using equation (C.25) and where Vs0 is consistently estimated by Vsn .
Remark that the same result applies to a finite vector (δ̂∗n(q1 | B), δ̂∗n(q2 | B), ., δ̂∗n(qJ | B))

using the same arguments.

ii) Suppose now that S(q) is not a singleton because there are various minimizers of δ∗(s |
BU) in λ. Note first that set S(q) ⊂ int(SB) is convex and compact because δ∗(s | BU) is
convex and continuous. We are first going to select and characterize a unique (q, λ∗0) from S(q).
Consider the smallest convex cone which includes S(q):

CS(q) = {cs0; s0 ∈ S(q), c ≥ 0}.

and consider the projection of (q, 0) on CS(q). This projection is unique and defined by c∗s∗0
where (c∗, s∗0) is the argument of the minimum:

min
(c≥0,(q,λ)∈S(q))

‖((1− c)q,−cλ)‖2 = min
(c≥0,s∈S(q))

{(1− c)2 + c2λ>λ}

since q>q = 1. It yields c∗ = 1
1+λ>λ

> 0 whereas λ∗0 is the argument of:

min
λ, (q,λ)∈S(q)

λ>λ.

Vector λ∗0 is unique because it is a (normalized) projection. Given this fact, we can define a
sequence of perturbed programs such that s∗0 corresponds to the limit of the sequence of minima.
Specifically, for any a > 0, let :

Ψa(s) = δ∗(s | BU) + aλ>λ.

Because δ∗(s | BU) is convex in λ and λ>λ is strictly convex in λ, Ψa(s) is a strictly convex
function in λ.

The minimum sa = (q, λa) of Ψa(s) is unique because we minimize a strictly convex function
on a compact set SB. Furthermore, we now show that λa tends to λ∗0 when a→ 0.

Lemma 17 The limit of the sequence {λa}a>0 exists when a→ 0 and is equal to λ∗0.

Proof. To begin with, it is useful to note that δ∗(s∗0 | BU) provides a lower bound for Ψa(s),

Ψa(s) ≥ δ∗(s∗0 | BU),

because s∗0 is a minimizer of δ∗(s | BU).

We consider two cases:

• Assume first that (q, 0) ∈ S(q). In such a case, λ∗0 = 0 and Ψa(s
∗
0) = δ∗(s∗0 | BU).

Hence, given that λa is unique and that δ∗(s∗0 | BU) is a lower bound for Ψa(s), we have
necessarily sa = s∗0 for any a > 0 and hence λa = λ∗0.
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• Assume now that (q, 0) /∈ S(q). By definition of λa as a minimum,

Ψa(sa) = δ∗(sa | BU) + aλ>a λa

≤ Ψa(s
∗
0) = δ∗(s∗0 | BU) + aλ∗>0 λ0,

It implies that:

0 ≤ δ∗(sa | BU)− δ∗(s∗0 | BU) ≤ a(λ∗>0 λ∗0 − λ>a λa) ≤ aλ∗>0 λ∗0, (C.26)

so that the distance between sa and the set S(q) = {s; δ∗(s | BU) = δ∗(s∗0 | BU)} tends to
zero when a tends to zero by the continuity of function δ∗(s | BU).

Consider now λm any accumulation point of the sequence λa i.e., any point satisfying,
∀η > 0, ∃a > 0 such that ‖λa − λm‖ < η. Because S(q) is compact, sm = (q, λm) ∈
S(q). We are going to show that sm = s∗0. By definition of λa and λ∗0, we have

Ψa(sa)− δ∗(s∗0 | BU)

a
≤ Ψa(s

∗
0)− δ∗(s∗0 | BU)

a
= λ∗>0 λ∗0 ≤ λ>mλm.

where the first inequality holds true because sa minimizes Ψa whereas the second inequal-
ity holds true because sm ∈ S(q) is compact and λ∗0 minimizes λ∗>0 λ∗0 on S(q). Further-
more, because s∗0 ∈ S(q)

λ>a λa =
Ψa(sa)− δ∗(sa | BU)

a
≤ Ψa(sa)− δ∗(s∗0 | BU)

a
.

Combining the two equations,

λ>a λa ≤ λ∗>0 λ∗0 ≤ λ>mλm.

By taking limits and using that λa tends to λm when a tends to zero, we obtain that λm =

λ∗0. We thus have shown that:
lim
a→0

‖λa − λ∗0‖ = 0.

Furthermore, we check:

0 ≤ Ψa(s
∗
0)−Ψa(sa)

a
≤ λ∗>0 λ∗0 − λ>a λa

so that, since λa → λ∗0 when a→ 0:

Ψa(s
∗
0)−Ψa(sa) = o(a). (C.27)

The next step is to construct an estimate of λa. Before moving on to this step, we are going
to prove a lemma that will be useful for showing that the estimate of λa actually converges to λ∗0.

Lemma 18

∀ε > 0,∃a0 > 0,∃η > 0,∀a such that inf
0<a≤a0,‖λ−λ∗0‖≥ε

Ψa(s)−Ψa(sa)

a
> η. (C.28)
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Proof. First, the Lemma is trivially satisfied when s∗0 = (q, 0) since λa = λ∗0 = 0 for any a and
therefore:

Ψa(s)−Ψa(sa)

a
= λTλ

which is bounded from below by ε2 when ‖λ‖ ≥ ε.

Assume that (q, 0) /∈ S(q). Like for Lemma 16, we will first show that the infimum is positive
for a given q and then use the compactness of the space where q evolves to conclude. We know
from the previous Lemma that λ→ λ∗0 when a tends to 0.

• When s = (q, λ) ∈ S(q), Ψa(s)−Ψa(sa)
a

→ λTλ − λ∗>0 λ0 when a tends to zero; which is
strictly positive when ‖λ− λ∗0‖ ≥ ε.

• When s = (q, λ) /∈ S(q), Ψa(s)−Ψa(sa)
a

→ +∞ when a tends to zero and cannot deliver the
infimum.

As λa → λ∗0 when a tends to zero, there exists some positive a0 such that the joint events
{0 < a < a0} and {‖λ− λ∗0‖ ≥ ε} implies that ‖λ− λa‖ ≥ ε/2. Assume now by contradiction
that the infimum over 0 < a < a0 is not positive. By continuity of function Ψa(s)−Ψa(sa)

a
in a and

s when a > 0, and as the infimum is positive at the limit a → 0, a non-positive infimum can
only be obtained at some a > 0 and sa ∈ SB. It is a contradiction because sa is a well separated
minimum for any a > 0. The compactness of SB ∩ {s ∈ SB, ‖λ− λ∗0‖ ≥ ε} ensures that the
infimum over such ss in this set is positive also.

Finally, we construct the estimate of λa. Fix a > 0. Define the perturbed estimated program
as:

Ψn,a(s) = δ̂∗n(s | BU) + aλ>λ.

and restrict the set over which we take the supremum as s ∈ SB

Define sn,a as a near minimizer of Ψn,a over SB. We can adapt the same kind of argument
than the one used in the proof of Proposition 10 to show that

Ψa(sn,a)−Ψa(sa)

a
≤

sups∈SB

∣∣∣δ∗(s | BU)− δ̂∗n(s | BU)
∣∣∣+OP (n−1/2)

a
.

Let an = OP (n−α) where α < 1/2. Because of equicontinuity and n1/2 convergence of
δ̂∗n(s | BU) to δ∗(s | BU), when s ∈ SB, we have that:

nα sup
s∈SB

∣∣∣δ∗(s | BU)− δ̂∗n(s | BU)
∣∣∣ P→

n→∞
0.

Then:
Ψan(sn,an)−Ψan(san)

an

≤ oP (1).

We thus have:

∀η, lim
n→∞

Pr(
Ψan(sn,an)−Ψan(san)

an

> η) = 0.
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By condition (C.28), for any ε, there exist η > 0 and n0 such that for any n ≥ n0 the event:

{d(sn,an , s
∗
0) ≥ ε} ⊂ {Ψan(sn,an)−Ψan(san)

an

> η}.

Therefore:
∀ε, lim

n→∞
Pr(d(sn,an , s

∗
0) > ε) = 0 =⇒ sn,an − s∗0

P→
n→∞

0.

Then the same argument than in part (i) applies and:
√
n
(
δ̂∗n(san,n | BU)− δ̂∗n(s∗0 | BU)

)
P→

n→∞
0.

We can then use the asymptotic distribution of δ̂∗n(s∗0 | BU) in place of δ̂∗n(san,n | BU).
By the same development, it applies to a finite vector of such estimates defined at values

q1, q2, ., qJ.

Step 3: We now turn to equicontinuity. As the process τU
n (s) is equicontinuous, we know

that for any ε > 0 and η > 0 there exists δ such that:

lim
n→∞

Pr

[
sup

s1,s2∈Sm,‖s1−s2‖<δ

∣∣τU
n (s1)− τU

n (s2)
∣∣ > η

]
< ε.

It is straightforward to extend this result to the compact set SB = Sp × Λ so that:

∀ε, ∀η,∃δ > 0, lim
n→∞

Pr

[
sup

s1,s2∈SB ,‖s1−s2‖<δ

∣∣τU
n (s1)− τU

n (s2)
∣∣ > η

]
< ε. (C.29)

Let s1n and s2n be defined as:

δ̂∗n(s1n | BU) = δ̂∗n(q1, λn(q1) | BU), δ̂∗n(s2n | BU) = δ̂∗n(q2, λn(q2) | BU)

where for j = 1, 2, λn(qj) are minimizers of δ̂∗n(qj, λn(qj) | BU) defined as:

δ̂∗n(sjn | BU) = min
λ∈Λ

δ̂∗n(sj | BU) = min
λ∈Λ

δ̂∗n((qj, λ) | BU),

if they are unique or by the argument used in Step 2 b) if they are not. Consider the difference:

δ̂∗n(s1n | BU)− δ̂∗n(s2n | BU) = min
λ∈Λ

δ̂∗n((q1, λ) | BU)−min
λ∈Λ

δ̂∗n((q2, λ) | BU)

= min
λ∈Λ

(
δ̂∗n((q1, λ) | BU)− δ̂∗n((q2, λ) | BU) + δ̂∗n((q2, λ) | BU))−min

λ∈Λ
δ̂∗n((q2, λ) | BU

)
≥ min

λ∈Λ

(
δ̂∗n((q1, λ) | BU)− δ̂∗n((q2, λ) | BU)

)
.

Or alternatively:

δ̂∗n(s1n | BU)− δ̂∗n(s2n | BU) = min
λ∈Λ

δ̂∗n((q1, λ) | BU)−min
λ
δ̂∗n((q2, λ) | BU)

= min
λ∈Λ

δ̂∗n((q1, λ) | BU)−min
λ∈Λ

(
δ̂∗n((q1, λ) | BU)− δ̂∗n((q1, λ) | BU) + δ̂∗n((q2, λ) | BU)

)
≤ −min

λ∈Λ

(
−δ̂∗n((q1, λ) | BU) + δ̂∗n((q2, λ) | BU)

)
= max

λ∈Λ
(δ̂∗n

(
(q1, λ) | BU)− δ̂∗n((q2, λ) | BU)

)
.
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In consequence:∣∣∣δ̂∗n(s1n | BU)− δ̂∗n(s2n | BU)
∣∣∣ ≤ max

λ∈Λ

∣∣∣δ̂∗n((q1, λ) | BU)− δ̂∗n((q2, λ) | BU)
∣∣∣ .

By definition:

τn(q1)− τn(q2) = τU
n (s1n)− τU

n (s2n) =
√
n(δ̂∗n(s1n | BU)− δ̂∗n(s2n | BU))

so that for any (ε, η) and for any δ satisfying equation (C.29) :

lim
n→∞

Pr

[
sup

‖q1−q2‖<δ

|τn(q1)− τn(q2)| > η

]

= lim
n→∞

Pr

[
sup

‖q1−q2‖<δ

∣∣∣√n(δ̂∗n(s1n | BU)− δ̂∗n(s2n | BU)
)∣∣∣ > η

]

≤ lim
n→∞

Pr

[
sup

‖q1−q2‖<δ

√
nmax

λ∈Λ

∣∣∣δ̂∗n((q1, λ) | BU)− δ̂∗n((q2, λ) | BU)
∣∣∣ > η

]

= lim
n→∞

Pr

[
sup

s1,s2∈SB ,‖s1−s2‖<δ

∣∣∣√n(δ̂∗n((q1, λ) | BU)− δ̂∗n((q2, λ) | BU)
)∣∣∣ > η

]

= lim
n→∞

Pr

[
sup

s1,s2∈SB ,‖s1−s2‖<δ

∣∣∣√n(δ̂∗n(s1 | BU)− δ̂∗n(s2 | BU)
)∣∣∣ > η

]
< ε.

that proves that the process τn(q) is equicontinuous by equation (C.29).
The proof when the minimizers are replaced by near-minimizers can be adapted in a straight-

forward way.
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Figures and Tables

Table 1: Results related to the Monte Carlo simulations - first example

Estimation of the interval boundaries [β−1; β1].
β−1 β1

True value 1.6545 2.3455
n Q1 Q2 Q3 Q1 Q2 Q3

100 1.6089 1.6543 1.7000 2.2990 2.3426 2.3887
500 1.6333 1.6540 1.6739 2.3242 2.3438 2.3653
1000 1.6410 1.6554 1.6697 2.3313 2.3458 2.3601
2500 1.6463 1.6551 1.6640 2.3364 2.3457 2.3544
Q1, Q2, Q3 are the three quantiles of the distribution of the estimated
interval boundaries across simulations.

Table 2: Percentage of rejections for the interior test - first example

H0 : βr ∈ B, Ha : βr /∈ B.
r n = 100 n = 500 n = 1000 n = 2500

-2.00 99.8% 100.0% 100.0% 100.0%
-1.70 95.1% 100.0% 100.0% 100.0%
-1.50 79.9% 100.0% 100.0% 100.0%
-1.30 48.0% 95.5% 99.9% 100.0%
-1.20 30.7% 73.1% 95.0% 100.0%
-1.10 16.5% 32.6% 52.0% 83.2%
-1.00 6.7% 6.0% 6.2% 5.9%
-0.90 2.5% 0.6% 0.1% 0.0%
-0.80 0.7% 0.0% 0.0% 0.0%
-0.70 0.1% 0.0% 0.0% 0.0%
-0.60 0.0% 0.0% 0.0% 0.0%

to
0.60 0.0% 0.0% 0.0% 0.0%
0.70 0.2% 0.0% 0.0% 0.0%
0.80 0.5% 0.0% 0.0% 0.0%
0.90 2.3% 0.5% 0.1% 0.0%
1.00 7.3% 6.5% 5.9% 5.5%
1.10 17.0% 34.4% 49.9% 82.3%
1.20 32.1% 74.6% 93.5% 100.0%
1.30 49.5% 95.3% 99.9% 100.0%
1.50 80.8% 100.0% 100.0% 100.0%
1.70 95.6% 100.0% 100.0% 100.0%
2.00 99.9% 100.0% 100.0% 100.0%

The point tested is βr = β0 + r(β1 − β0).
β1 and β−1 are on the frontier of B.
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Table 3: Percentage of rejections for the Sargan test - second example

H0 : 0 ∈ BSargan, Ha : 0 /∈ BSargan

π0 n = 100 n = 500 n = 1000 n = 2500
1 0.0% 0.0% 0.0% 0.0%

to

0.3 0.0% 0.0% 0.0% 0.0%
0.2 0.1% 0.0% 0.0% 0.0%
0.1 0.8% 0.0% 0.0% 0.0%
0.0 1.5% 0.0% 0.0% 0.0%

0.06 2.6% 0.0% 0.0% 0.0%
0.04 3.2% 0.4% 0.1% 0.0%
0.02 4.1% 1.5% 0.9% 0.8%
0.01 5.3% 3.4% 1.9% 1.8%

0.005 6.1% 4.2% 2.9% 2.8%
0.002 5.9% 4.9% 3.8% 4.1%
0.001 5.9% 4.9% 4.3% 4.2%
0.000 6.3% 4.9% 4.6% 5.1%

Table 4: Percentage of rejections for the interior test - second example

π0 = 0.5 π0 = 0.1
r n = 100 n = 500 n = 1000 n = 2500

0.000 0.0% 0.0% 0.0% 0.0%
0.100 0.0% 0.0% 0.0% 0.0%
0.150 0.0% 0.0% 0.0% 0.0%
0.200 0.0% 0.0% 0.0% 0.0%
0.250 0.0% 0.0% 0.0% 0.0%

0.300 0.0% 0.0% 0.0% 0.0%
0.400 0.2% 0.0% 0.0% 0.0%
0.500 0.3% 0.0% 0.0% 0.0%
0.600 1.6% 0.0% 0.0% 0.0%
0.700 5.6% 2.4% 2.1% 0.7%
0.733 8.1% 5.4% 6.7% 5.3%
0.750 9.5% 8.2% 11.3% 10.6%
0.800 14.0% 19.4% 28.7% 47.8%
0.900 26.4% 57.8% 81.7% 98.9%
1.000 43.8% 88.1% 98.6% 100.0%
1.400 94.2% 100.0% 100.0% 100.0%
1.800 99.8% 100.0% 100.0% 100.0%
2.000 99.9% 100.0% 100.0% 100.0%

r n = 100 n = 500 n = 1000 n = 2500
0.000 0.0% 0.0% 0.0% 0.0%
0.100 0.0% 0.0% 0.0% 0.0%
0.150 0.0% 0.0% 0.0% 0.0%
0.200 0.1% 0.1% 0.1% 0.1%
0.250 0.3% 1.6% 3.1% 5.1%
0.251 0.3% 1.6% 3.5% 5.2%
0.300 1.1% 6.0% 15.9% 30.5%
0.400 7.3% 44.9% 73.6% 97.5%
0.500 19.4% 83.5% 98.1% 100.0%
0.600 37.5% 95.3% 99.8% 100.0%
0.700 55.9% 97.4% 99.8% 100.0%

0.750 62.9% 97.4% 99.8% 100.0%
0.800 68.2% 97.4% 99.8% 100.0%
0.900 75.8% 97.4% 99.8% 100.0%
1.000 80.2% 97.4% 99.8% 100.0%
1.400 83.1% 97.4% 99.8% 100.0%
1.800 83.4% 97.4% 99.8% 100.0%
2.000 83.4% 97.4% 99.8% 100.0%

The points tested are the ones considered in example 1. β1 is on the frontier
of B when there are no supernumerary instruments. The points in bold are

on the frontier of the new set B using z as a supernumerary instrument.
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D Supplementary Appendix

D.1 Additional Monte Carlo experiments

We report three additional experiments to assess the performance of our inference and test pro-
cedures. In these experiments, the dependent variable is bounded and censored by intervals and
the identified set is of dimension two. In the first two experiments, the frontier of the identified
set has no kinks and no exposed faces. In the first experiment, the number of instruments is the
same as the number of parameters and serves as a benchmark while we use one supernumerary
instrument in the second experiment. We explore the case of an identified set that is neither
smooth nor strictly convex in the third experiment.

D.1.1 Smooth and Strictly Convex Sets

Consider the model:
y∗ = 0.x1 + 0.x2 + ε,

where x> = (x1, x2)
> is a standard normal vector while ε is independent of x and uniformly

distributed on [−1/2, 1/2]. The true value of β is (0, 0)>. We assume that y∗ is observed by
intervals defined as (Ik = [−1/2 + k/K;−1/2 + (k + 1)/K], k = 0...K − 1).

The support function of the identified set B is constant (see Appendix D.2.1):

δ∗(q | B) =
2∆√
2π

where ∆ = 1
2K

. In other words, the identified set B is a circle whose radius is 2∆√
2π

(see Table 5).
We draw 1000 simulations in four different sample size experiments: n =100, 500, 1000

and 2500. We report results when the number of intervals, K, is equal to 2 as our results are
robust when K increases. The three quartiles as well as the mean of the distribution of the
estimated support function at one angle are displayed in Table 5 although all angles give the
same results. Even for small sample size, the identified set is well estimated and unsurprisingly,
the interquartile interval decreases when the sample size increases.

With respect to the performance of test procedures, let β0 = 0 be the center of B and let βr a
point on a ray such that the distance between 0 and βr is equal to r times the value of the radius
ofB, a definition that is valid for any ray since setB is a disk around the true value β0 = 0. Point
βr belongs to B if and only if r ≤ 1 and β1 belongs to the frontier. For r varying stepwise from
0 to 3, we computed the rejection frequencies at a 5% level for the two tests developed in Section
4.2: Whether βr belongs to B against the alternative that it does not (Test 1); Whether it belongs
to the frontier of B against the alternative that it does not (Test 2). Results are reported in Table
6. These results show that the size of the three tests is very accurate and remains very close to
5% even for n = 100 and that the power of these tests is very good even in small samples.
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D.1.2 Smooth set with one supernumerary instrument

The simulated model is as before except that the second explanatory variable x2 is now generated
by:

x2 = πe2 +
√

1− π2e3

where (e2, e3) are i.i.d. standard normal variables. Moreover letw = νe3+
√

1− ν2e4 be another
observed variable where e4 is i.i.d. standard normal. Using general notations, we have x =

(x1, x2) and z = (x1, e2, w). Variables x1, e2 and w are used for estimating set B instead of x1

and x2 and we have therefore one supernumerary instrument. Note that parameter π (respectively
ν) measures the strength of the correlation between x2 and e2 (respectively x2 and w).

Setting q = (cos θ, sin θ)>, the support function can be expressed as (see Appendix D.2.2):

δ∗(q | B) =
2∆√
2π

√
cos2 θ +

sin2 θ

π2 + ν2(1− π2)

When ν = 1, set B is the same as in the previous example because x2 is a deterministic function
of e2 and w. Moreover when π and ν are positive and strictly lower than 1, there is some
information loss due to the use of e2 and w instead of x2 and set B is stretched along the second
axis (see the figure of Table 7).

As before, we draw 1000 simulations in four sample size experiments : n =100, 500, 1000
and 2500 with π = ν = 0.9. Table 7 displays descriptive statistics (Mean, quartiles) related to
the distribution of the estimated support function at one angle. Table 8 displays the percentage
of rejections for the tests for different points along the x-axis. The line which corresponds to the
frontier point (r = 1) is reported in bold. As before, there is no significative distortion when
using supernumerary instruments in the estimation and test procedures.

D.1.3 A set with kinks and faces

In this experiment, the explanatory variable has mass points so that the identified set has exposed
faces. Also its support is discrete so that the identified set has kinks. The simulated model is:

y∗ =
1

2
+
x

8
+ ε

where x is equal to−1 with probability 1
2

and to 1 with probability 1
2

and where ε is independent
of x and is uniformly distributed on [−1

4
, 1

4
]. The true value of β is (1

2
, 1

8
)>. As before, we only

observe y∗ by intervals (I1 = [0, 1
2
] and I2 = [1

2
, 1]). The identified set B2 can be shown to be the

convex envelop of the four points (3
4
, 1

8
), (1

2
, 3

8
), (1

4
, 1

8
) and (1

2
,−1

8
) (see Appendix D.2.3). As in

the previous example, we simulate 1000 draws for 4 sample sizes: 100, 500, 1000 and 2500 and
the same conclusions concerning the estimation of the set remain valid here (see Table 9).

One feature of this toy example is that, despite the presence of exposed faces, the additional
term τ1(q) in the asymptotic distribution of the support function (see Proposition 9) vanishes
(see Appendix D.2.3) and we can apply the test procedures developed in the Gaussian case. We
focus on the points belonging to the half-line starting from the central point β∗ = (1/2, 1/8) and
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parallel to the x-axis. Like before, we index the points by r the fraction of the distance to the
frontier along this axis and β1 = (3/4, 1/8) the frontier point is now a kink of set B.

Table 10 displays the rejection rate for the test of the frontier for different values of r (from
0.01 to 2) at a 5%-level test and Table 11 reports the results for the test for the interior. In the
first panel of columns (labeled an = 0), we display results ignoring that there is a kink whereas
by Proposition 10 we should be using perturbed programs (an > 0). Surprisingly, for the frontier
test we do not overreject too much but we overreject for the interior test. In the second panel, we
display the rejection rates using the perturbed program defined in Proposition 10 with an = 0.5

n1/3 .
Rejection rates are pretty close to the nominal size for both the frontier test and the interior test.
Perturbing the program leads to correct quite efficiently for the presence of kinks except perhaps
for very small sample sizes. Sample size properties can also be improved while estimating the
variance with i.i.d. bootstrap techniques.

D.2 Computations of Section D.1
D.2.1 Example of Section D.1.1

The simulated model is:
y∗ = 0x1 + 0x2 + ε

We compute δ∗(q|B) using z = x as instruments. As Σ−1 = E(x>x) = I2, we have:{
zq = xq = cos θx1 + sin θx2,
wq = y −∆ + 2∆1{zq > 0}.

Using  x1

x2

zq

 ∼ N

 0
0
0

 ,
 1 0 cos θ

0 1 sin θ
cos θ sin θ 1

 ,

we obtain:
Ex11zq>0 =

1√
2π

cos θ and Ex21zq>0 =
1√
2π

sin θ,

and therefore:
δ∗(q|B) = E(zqwq) =

2∆√
2π
.

The frontier points are:

βq = E(x>wq) =
2∆√
2π

[
cos θ
sin θ

]
.

D.2.2 Example of Section D.1.2

The simulated model is:
y∗ = 0x1 + 0x2 + ε

x2 = πe2 +
√

1− π2e3, w = νe3 +
√

1− ν2e4 where (e2, e3, e4) is a standard unit normal vector.
It is convenient to define µ = ν

√
1− π2 and a2 = π2 + µ2 = π2 + ν2(1− π2).

64



To conform with general notations, let x = (x1, x2) and z = (x1, e2, w). As there exists one
supernumerary restriction, we first evaluate zF and zH as defined in Appendix B. As E(z>z) =

I3, we have:

E(x>z) =

(
1 0 0
0 π µ

)
,
[
E(x>z)E(z>z)−1E(z>x)

]−1/2
=

(
1 0
0 a−1

)
,

and:

z>F =
[
E(x>z)

(
E(z>z)

)−1
E(z>x)

]−1/2

E(x>z)E(z>z)−1z> =

(
x1

πe2+µw
a

)
,

which is standard unit bivariate normally distributed. Moreover as:

E(z>F z) =

(
1 0 0
0 π

a
µ
a

)
the normalized vector ( 0 µ

a
−π

a
)> belongs to the kernel of this operator and in consequence,

zH = µe2−πw
a

.
To construct BU , we use (zF , zH) and we write:

Σ> =

E
 x1

a−1(πe2 + µw)
zH

( x1 x2 zH

)−1

=

 1 0 0
0 a−1 0
0 0 1

 .

Let q = (q1, q2)
> such that q2

1 + q2
2 = 1 and define:

zq,λ =
(
q> λ

) x1

a−2(πe2 + µw)
zH


= x1q1 + (a−2(πe2 + µw))q2 + zHλ.

The variance of zq,λ is therefore

Vq,λ = q2
1 +

q2
2

a2
+ λ2.

As in the previous example,

wq,λ = y −∆ + 2∆1{zq,λ > 0}.

The covariances of zq,λ with the variables of interest are:

E(zq,λx1) = q1, E(zq,λ(a
−1(πe2 + µw))) = a−1q2, E(zq,λzH) = λ,

so that for instance,

Ex11zq,λ>0 =
1√
2π

q1√
Vq,λ

,

using the normality assumptions. In consequence, a closed-form expression for δ∗(q, λ|BU) is:

δ∗(q, λ|BU) =
2∆√
2π

√
q2
1 +

q2
2

a2
+ λ2.

This function is minimized when λ = 0 and BU is an ellipsoid orthogonal to the hyperplane
γ = 0 . Its projection on the hyperplane is also an ellipse and the identified set is an ellipse:

δ∗(q|B) =
2∆√
2π

√
q2
1 +

q2
2

a2
.
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D.2.3 Example of Section D.1.3

The simulated model is:
y∗ =

1

2
+
x

8
+ ε

and variable z ≡ (1, x1)
> are the instruments. As Σ =

(
E(z>z)

)−1
= I2,we can derive the

variables of interest: 
zq = zΣq = cos θ + x sin θ,
wq = y + 1

2
1{zq > 0}

y = 1
2
1{y∗ ≥ 0.5}.

E(y) = 1
4

and E(xy) = 1
8

so we can derive the frontier points βq:

βq = ΣE(z>wq) = E(z>y) +
1

2
E(z>1{zq > 0}

=

[
1
4
1
8

]
+

[
1
2
E(1{zq > 0})

1
2
E(x11{zq > 0})

]
.

Let θ0 = π/4. For θ being between −θ0 and θ0 zq is always positive whatever the value of x:

E1{zq > 0} = 1

Ex1{zq > 0} = 0

and βq =
[

3
4
; 1

8

]>.
For θ being between θ0 and −θ0 + π, zq is negative when x = −1, otherwise positive:

E1{zq > 0} =
1

2

Ex1{zq > 0} =
1

2
,

and βq =
[

1
2
; 3

8

]>.
We obtain similarly βq =

[
1
4
; 1

8

]> when θ is between θ0 + π and θ0 + π and βq =
[

1
2
;−1

8

]>
for θ being between θ0 − π and −θ0.

The term τ1(q) defined in proposition 9 is equal to zero when P (zq = 0) = 0, i.e. when
θ 6= (2k+1)Π

4
. When θ = Π/4, zq = 0 when x = −1 which occurs with probability 1/2. However

the term q>(Σ̂n − Σ)z> is equal to 1√
2
(1 + x) 1

n

∑n
i=1 xi which is equal to zero when x = −1.

The additional term in the asymptotic distribution τ1(q) is therefore equal to zero. The proof is
similar for other values of θ.

D.3 Proof of Proposition 8

We denote M a generic majorizing constant. The estimate of the support function is:

1

n

n∑
i=1

zn,qiwn,qi =
1

n

n∑
i=1

fθ̂n
(zi, yi

, yi)

where θ̂n = (q, Σ̂n). First, under the conditions of Proposition 8, the class F = {fθ; θ ∈ Θ}
is a Glivenko-Cantelli class. By construction of the estimate Σ̂n (see Appendix C.1 above), θ̂n
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belongs to Θ. It is thus immediate that, for every sequence of functions fθ̂n
∈ F , and uniformly

in q ∈ S, we have: ∣∣∣∣∣ 1n
n∑

i=1

fθ̂n
(zi, yi

, yi)− E(fθ̂n
(zi, yi

, yi))

∣∣∣∣∣ a.s→
n→∞

0. (D.30)

Second, as matrix Σ is estimated by its almost surely consistent empirical analogue Σ̂n:

lim
n→∞

Pr(sup
n>N

∥∥∥Σ̂n − Σ
∥∥∥ ≥ ε) = 0,

we have:
lim

n→∞
Pr(sup

n>N
sup
q∈S

∥∥∥θ̂n − θ
∥∥∥ ≥ ε) = 0.

Use equation (C.11):∣∣∣fθ̂n
(zi, yi

, yi)− fθ(zi, yi
, yi)

∣∣∣ = |zn,qiwn,qi − zqiwqi| ≤ max
(∥∥∥z>i yi

∥∥∥ ,∥∥z>i yi)
∥∥)M ∥∥∥θ̂n − θ

∥∥∥
to conclude that, uniformly over q ∈ S, we have:∣∣∣fθ̂n

(zi, yi
, yi)− fθ(zi, yi

, yi)
∣∣∣ a.s→

n→∞
0. (D.31)

To finish the proof, notice that the sequence fθ̂n
(zi, yi

, yi) is uniformly bounded for q ∈ S,
because, by majorization and triangular inequality, we have:

fθ̂n
(zi, yi

, yi) = |zn,qiwn,qi| ≤
∥∥q>Σ>

n

∥∥ (
∥∥z>i yi

∥∥+
∥∥∥z>i yi

∥∥∥) = ‖Σn‖ (
∥∥z>i yi

∥∥+
∥∥∥z>i yi

∥∥∥)
since ‖q‖ = 1. Therefore, as ‖Σn‖ ≤M :

sup
q∈S

∣∣∣fθ̂n
(zi, yi

, yi)
∣∣∣ ≤M(

∥∥z>i yi

∥∥+
∥∥∥z>i yi

∥∥∥)
As zi, y, yi

are in L2 (Assumption R.iii), it implies that:

E sup
q∈S

∣∣∣fθ̂n
(zi, yi

, yi)
∣∣∣ ≤M < +∞.

Thus, equation (D.31) implies that, by the dominated convergence theorem, uniformly over q,

E
∣∣∣fθ̂n

(zi, yi
, yi)− fθ(zi, yi

, yi)
∣∣∣ a.s→

n→∞
0.

From the latter equation, equation (D.30) and the triangular inequality, we thus conclude that,
uniformly for q ∈ S :

1

n

n∑
i=1

zn,qiwn,qi
a.s→

n→∞
E(zqiwqi).
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D.4 Construction of the Confidence Region in Proposition 11

Like before, for the simplicity of the exposition, we focus on the case where B is strictly convex
and smooth. We here provide a simple way to construct CIn

α when α < 1/2:

CIn
α = {β;

√
n√
V̂qn

(Tn(qn; β)) > Nα}

where
Tn(q; β) = (δ̂∗n(q|B)− q>β),

and where qn is any sequence of local minimizers of Tn(q; β) over the unit sphere (and therefore
depends on β). Therefore, the confidence region is also given by CIn

α = {β; minq∈S(Tn(q; β)) >√
V̂qn√
n
Nα}

The estimated set B̂n is included in CIn
α as Nα < 0 for any α < 1/2 and as for all β

belonging to the the estimated set, B̂n:

min
q∈S

(δ̂∗n(q|B)− q>β) ≥ 0,

Consider any point βf ∈ ∂B̂n ⊂ CIn
α , the frontier of the estimated set B̂n. There exists at

least one, and possibly a set (which is the intersection of a cone and S) denoted C(βf ), of vectors
qf ∈ S such that:

Tn(qf ; βf ) = δ̂∗n(qf |B)− q>f βf = 0,

∀q ∈ Sp, Tn(q; βf ) ≥ Tn(qf ; βf ) = 0

Choose such a qf and consider the points βf (λ), where λ ≥ 0, on the half-line defined by βf and
direction qf :

βf (λ) = βf + λqf .

We have:

Tn(q; βf (λ)) = Tn(q; βf ) + q>(βf − βf (λ))

= Tn(q; βf )− λq>qf

where −λq>qf ≥ −λq>f qf = −λ and Tn(q; βf ) ≥ Tn(qf ; βf ) = 0 for any q, as seen above. As a
consequence,

Tn(q; βf (λ)) ≥ −λ = Tn(qf ; βf (λ)).

where vector qf which minimizes Tn(q; βf ) minimizes also Tn(q; βf (λ)).
We can therefore characterize the points of the half-line which belongs to CIn

α . Given that λ
is positive,

βf (λ) ∈ CIn
α if and only if λ ≤ −

√
V̂qf√
n
Nα,
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so that segment (βf , βf −
q

V̂qf√
n
Nαqf ] is included in CIn

α . We thus proved that:

B̂n ∪ {∪βf∈∂Bn ∪qf∈C(βf ) (βf , βf −

√
V̂qf√
n
Nαqf )} ⊂ CIn

α , (D.32)

where C(βf ) is the cone defined above.
Conversely, let us prove that CIn

α is included in the set on the LHS. Let βc a point in CIn
α .

If βc belongs to B̂n, the inclusion is proved. Assume that βc is outside the estimated set and let
βf the point on the frontier of B̂n which is the projection of βc on B̂n. The projection is unique
because set B̂ is convex.

Write βc − βf = λqf for some direction qf ∈ S and some λ > 0. We have that:

q>f (βc − βf ) ≤ q>f (βc − β),

for any β ∈ B̂n because βf is the projection of βc on set B̂n along the direction qf . We thus have
q>f βf ≥ q>f β which proves that δ̂∗n(qf |B) = q>f βf . The pair (βf , qf ) satisfies the condition of the
previous paragraphs.

As βc is a point of CIn
α , λ is necessary less or equal than the value−

q
V̂qf√
n
Nα. Thus it belongs

to the LHS of equation (D.32). As a consequence, equation (D.32) is an equality.

D.5 Behaviour of ξn(β) when the set is a singleton

When B = {β0}, it means that wq is constant, equal to ye (either y or y). Consequently, β0 =

E(z>x)−1E(z>ye). Let βn be the point where the previous expectations are replaced by their
empirical counterpart: δ̂∗n = q>βn. A CLT can therefore be applied to βn:

√
n(βn − β0) −→

n→+∞
N(0, V ),

where V is some p.d matrix.
If we test a point β 6= β0, ξn(β) tends to −∞ (q0 is in this case β−β0

‖β−β0‖ ).
When β = β0,

Tn(q; β0) =
(
δ̂n(q)− q>β0

)
= q>(βn − β0)

In this case qn = − βn−β0

‖βn−β0‖ and Tn(qn; β0) = −‖βn − β0‖.
And, after standardization:

ξn(β0) = −‖u‖ ,

where u tends asymptotically toward a standard normal distribution. If we use the usual critical
values to construct the confidence region, i.e. Nα, the probability that ξn(β0) is greater than this
value is not 1− α but 1− 2α.
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D.6 Uniform confidence regions

Starting from the end of Section B.1, the diameter of set B is equal to:

∆ = max
q∈Sp

(δ∗(q|B) + δ∗(−q|B)) = max
q∈Sp

(E
(
|zqi| (ȳi − yi)

)
).

As by assumption, ȳi−yi > 0, the limit point ∆ = 0 is outside the range of data that we consider
since it is obtained if and only if ȳi − yi = 0 almost surely |zqi| 6= 0 for any q and thus almost
surely zi 6= 0. Using the regularity condition R.ii, Pr(zi = 0) = 0 and the almost sure statement
extends to all zi. This simplifies notations and notations only.

The empirical counterpart ∆̂n of the diameter of set B is:

∆̂n = max
q∈Sp

(
δ̂∗n(q|B) + δ̂∗n(−q|B)

)
,

= max
q∈Sp

(
1

n

n∑
i=1

|zn,qi| (ȳi − y
i
)

)

Therefore, if we extend our setting to include the case ∆ = 0, ȳi − y
i
= 0 almost surely zi and

we have:
Pr(∆̂n = 0; ∆ = 0) = 1,

so that trivially: √
n
(
∆̂n −∆

)
P−→

n→∞,∆ = 0
0.

More generally, consider a sequence of experiments indexed by α ↓ 0 such that Pr(ȳi− yi
<

α) = 1 and Pr(ȳi − y
i
> α/2) > 0. By Cauchy-Schwartz and since E((ȳi − y

i
)2)1/2 < α, the

diameter ∆ is such that ∆ < αmaxq∈Sp(E(z2
qi))

1/2 ≤ α. ‖Σ‖ ‖zi‖L2 = αM . Therefore ∆ is at
most O(α). Using minima instead of maxima and the other bound on ȳi − y

i
yields that ∆ and

α go to zero at the same rate.
We have:

√
n(∆n −∆) =

√
n

(
max

q

1

n

n∑
i=1

|zn,qi| (ȳi − y
i
)−max

q
E(|zqi| (ȳi − y

i
))

)
.

Denote qα any maximizer of E(|zqi| (ȳi − y
i
)) in experiment α and construct qn as a sequence

of local maximizers of the first maximum term (perturbing the objective function in the case in
which there are kinks as in Proposition 10). Then, as in Proposition 10:

√
n

(
1

n

n∑
i=1

|zn,qni| (ȳi − y
i
)− 1

n

n∑
i=1

|zn,qαi| (ȳi − y
i
)

)
= oP (1),

so that:

√
n(∆n −∆) =

√
n

(
1

n

n∑
i=1

|zn,qαi| (ȳi − y
i
)− E(|zqαi| (ȳi − y

i
))

)
+ oP (1).
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Furthermore, using the same argument as in Proposition 9, write:

√
n(∆n −∆) =

√
n

(
1

n

n∑
i=1

|zn,qαi| (ȳi − y
i
)− E(|zn,qαi| (ȳi − y

i
))

)
+
√
n
(
E(|zn,qαi| (ȳi − y

i
))− E(|zqαi| (ȳi − y

i
)
)

+ oP (1).

The first term is asymptotically equivalent to
√
n
(

1
n

∑n
i=1 |zqαi| (ȳi − y

i
)− E(|zqαi| (ȳi − y

i
))
)

and has therefore a variance approximately equal to V (|zqαi| (ȳi − y
i
)) which is bounded by a

term OP (α2) and therefore OP (∆2). The second term

√
n
(
E(|zn,qαi| (ȳi − y

i
))− E(|zqαi| (ȳi − y

i
)
)
,

can also be easily bounded by a term OP (α) so that:∣∣√n(∆n −∆)
∣∣ ≤ OP (∆).

The next proposition provides an extension of Lemma 4 of Imbens and Manski (2004) in the
multivariate case for constructing a uniform confidence region:

Proposition 19 Let:

σ̂n =

√
V̂qn =

√
q>n Σ̂nV̂ (z>εqn)Σ̂nqn,

where qn is a sequence of local minimizers of a (possibly perturbed) program defined in Propo-
sition 10.

A confidence region C̃I
n

α of asymptotic level equal to 1 − α is defined by the collection of
the points such that ξ(β) ≥ Ñα where Ñα satisfies the equation

Φ

(
Ñα +

√
n

∆̂n

σ̂n

)
− Φ(−Ñα) = α.

lim
n→+∞

inf
β∈B,∆≥0

Pr
(
β ∈ C̃In

α

)
= 1− α.
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D.7 Figures an Tables for the additional Monte Carlo Experiments of Sec-
tion D.1

Table 5: Results related to the additional Monte Carlo simulations - example 1
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B

O

Set B, y = 0.x1 + 0.x2 + ε, (x1, x2)
T ∼ N(0, I2)

Support function δ(q) for q = (0, 1)T

True unknown value 0.199
n Mean Q1 Q2 Q3

100 0.198 0.178 0.197 0.216
500 0.199 0.190 0.199 0.208

1000 0.199 0.193 0.199 0.206
2500 0.199 0.196 0.199 0.203
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Table 6: Percentage of rejections for the two tests - first example of Section D.1

Test 1 Test 2
(H0 : βr ∈ B) (H0 : βr ∈ ∂B)

r n = 100 n = 500 n = 1000 n = 2500 n = 100 n = 500 n = 1000 n = 2500
0.01 0% 0% 0% 0% 70.9% 100% 100% 100%
0.05 0% 0% 0% 0% 69.9% 100% 100% 100%
0.1 0% 0% 0% 0% 67.7% 100% 100% 100%
0.2 0% 0% 0% 0% 60.1% 100% 100% 100%
0.3 0% 0% 0% 0% 51.6% 99.9% 100% 100%
0.4 0% 0% 0% 0% 40.5% 99.6% 100% 100%
0.5 0% 0% 0% 0% 29.4% 97.3% 99.9% 100%
0.6 0.5% 0% 0% 0% 19.6% 85.4% 99% 100%

0.65 0.7% 0% 0% 0% 16.2% 73.3% 97.1% 100%
0.7 1% 0% 0% 0% 12.7% 61.1% 89.8% 99.9%

0.75 1.3% 0.1% 0% 0% 9.7% 45.8% 76.2% 99%
0.8 1.6% 0.1% 0% 0% 7.9% 31.5% 58.2% 92.3%

0.85 2.6% 0.3% 0.2% 0% 6.5% 19.7% 36.5% 73.2%
0.9 3.2% 0.7% 0.5% 0.1% 5.7% 10.4% 19.7% 39.9%

0.95 5.1% 2% 1.5% 0.6% 5.3% 5.1% 8.5% 13.6%
1 6.9% 5% 5.2% 5.5% 5.6% 4.1% 5.2% 5%

1.05 10.1% 10.7% 14% 22.9% 6.5% 6.4% 9.4% 15.3%
1.1 14% 21.5% 29.9% 54.1% 8.4% 12.3% 20.8% 43.2%

1.15 17.7% 33.9% 50.7% 82.8% 11.2% 24% 37.1% 74.4%
1.2 21.5% 47.1% 70.7% 97.1% 14.9% 35.9% 58.7% 93.3%

1.25 25% 62.3% 85.6% 99.6% 19.1% 50.4% 78.1% 99.1%
1.3 30.6% 75.2% 94.7% 100% 22.3% 64.7% 89.9% 100%

1.35 36.4% 86.4% 98.1% 100% 26.2% 77.4% 96.3% 100%
1.4 43.9% 93.4% 99.6% 100% 31.7% 87.6% 98.8% 100%

1.45 49.8% 97.6% 99.9% 100% 37.4% 94% 99.7% 100%
1.5 57.8% 98.8% 100% 100% 45.1% 97.9% 99.9% 100%

2 96.3% 100% 100% 100% 93.8% 100% 100% 100%
2.25 99.3% 100% 100% 100% 98.6% 100% 100% 100%
2.5 99.9% 100% 100% 100% 99.7% 100% 100% 100%

2.75 100% 100% 100% 100% 99.9% 100% 100% 100%
3 100% 100% 100% 100% 100% 100% 100% 100%

The point tested is βr = r√
2Π

[
1
0

]
. β1 is on the frontier of B.
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Table 7: Results related to the additional Monte Carlo simulations - example 2 with supernumer-
ary instruments

Set B

z=(x1,x2)
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Set B, y = 0.x1 + 0.x2 + ε, z = (x1, e2, w)

Support function δ(q) for q = (0, 1)T

True unknown value: 0.243
n Mean Q1 Q2 Q3

100 0.244 0.216 0.242 0.268
500 0.244 0.232 0.244 0.256

1000 0.243 0.234 0.243 0.252
2500 0.243 0.238 0.243 0.248
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Table 8: Percentage of rejections for the two tests - example 2 of Section D.1

Test 1 Test 2
(H0 : βr ∈ B) (H0 : βr ∈ ∂B)

r n = 100 n = 500 n = 1000 n = 2500 n = 100 n = 500 n = 1000 n = 2500
0 0% 0% 0% 0% 62.1% 100% 100% 100%

0.05 0% 0% 0% 0% 62% 100% 100% 100%
0.1 0% 0% 0% 0% 59.7% 100% 100% 100%
0.2 0% 0% 0% 0% 54% 100% 100% 100%
0.3 0% 0% 0% 0% 45.6% 100% 100% 100%
0.4 0% 0% 0% 0% 34.4% 99.5% 100% 100%
0.5 0.1% 0% 0% 0% 23.2% 96.4% 99.9% 100%
0.6 0.4% 0% 0% 0% 15.7% 83.5% 99.3% 100%
0.7 1% 0% 0% 0% 9.7% 59.1% 87.8% 99.8%
0.8 2.8% 0% 0% 0% 6.4% 28% 52.1% 90.7%

0.85 3.6% 0.3% 0.1% 0% 5.7% 15.6% 32.9% 70%
0.9 4.6% 0.9% 0.5% 0.1% 5.4% 8.9% 15.4% 33.7%

0.92 5.2% 1.5% 0.7% 0.2% 5.3% 6.3% 9.5% 23%
0.94 5.4% 2.1% 1% 0.8% 5.6% 5% 6.1% 14.6%
0.96 5.6% 2.8% 2% 1.3% 5.5% 4.7% 4.6% 7.8%
0.98 6.8% 3.5% 3.2% 3.4% 5.9% 4.4% 4.4% 4.8%
0.99 7.1% 4.4% 4.4% 4.1% 5.8% 4.4% 4.4% 5%

1 7.9% 5.4% 5.9% 5.5% 6.1% 4.8% 3.9% 5.2%
1.01 8.3% 6.3% 7.2% 8.5% 6.3% 4.8% 4.7% 5.6%
1.02 8.5% 7.3% 8.4% 11.5% 6.4% 5% 5.8% 6.7%
1.04 9.7% 9.7% 12.1% 18.7% 6.6% 6% 8% 12.4%
1.06 10.2% 12.9% 16.6% 28.5% 7.3% 7.6% 10.1% 19.5%
1.08 11.3% 17.4% 22.4% 40.4% 7.9% 9.9% 14.3% 28.9%
1.1 12.3% 20.3% 29.3% 55.8% 8.5% 12.7% 20.1% 41.4%
1.2 21.6% 47.5% 70.6% 97.3% 13.8% 35.2% 58.6% 94.3%
1.3 33.6% 75.3% 95.9% 100% 22.9% 64.9% 92.2% 100%
1.4 46.1% 93.3% 99.5% 100% 34.7% 87.5% 98.8% 100%
1.5 60.9% 98.3% 100% 100% 47% 97.2% 100% 100%
1.6 69.6% 99.9% 100% 100% 60.9% 99.6% 100% 100%
1.8 88.5% 100% 100% 100% 81.5% 100% 100% 100%

2.05 97.9% 100% 100% 100% 94.8% 100% 100% 100%
2.3 99.8% 100% 100% 100% 99.3% 100% 100% 100%

2.55 100% 100% 100% 100% 100% 100% 100% 100%
2.8 100% 100% 100% 100% 100% 100% 100% 100%
The point tested βr is located on the x-axis. r is the fraction of the distance from the origin w.r.t. to
the distance origin-frontier point on this axis. r = 1 is the frontier point (results in bold), r = 0 to
the origin.
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Table 9: Results related to the additional Monte Carlo simulations - nonsmooth set
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O

B Points tested

Set B, y = 1
2

+ x
8

+ ε, x ∈ {−1, 1}

Support function δ(q) for q = (0, 1)T

True unknown value: 0.375
n Mean Q1 Q2 Q3

100 0.374 0.360 0.375 0.390
500 0.375 0.369 0.375 0.382

1000 0.375 0.371 0.375 0.380
2500 0.375 0.372 0.375 0.378
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Table 10: Percentage of rejections for the test H0 : βr ∈ ∂B. Non-smooth set of Section D.1

Test with an=0 Test with an = 0.5
n1/3

r n = 100 n = 500 n = 1000 n = 2500 n = 100 n = 500 n = 1000 n = 2500
0.010 100% 100% 100% 100% 100% 100% 100% 100%
0.050 100% 100% 100% 100% 100% 100% 100% 100%
0.100 99.8 % 100% 100% 100% 100% 100% 100% 100%
0.200 100% 100% 100% 100% 100% 100% 100% 100%
0.300 99.8 % 100% 100% 100% 99.8 % 100% 100% 100%
0.400 98.5 % 100% 100% 100% 98.5 % 100% 100% 100%
0.500 94.1 % 100% 100% 100% 95% 100% 100% 100%
0.600 78.2 % 100% 100% 100% 84% 100% 100% 100%
0.700 41.9 % 99.8 % 100% 100% 61.3 % 99.8 % 100% 100%
0.800 9.9 % 90.9 % 100% 100% 29.1 % 96.2 % 100% 100%
0.850 4.2 % 60.6 % 94.5 % 100% 15.4 % 85.7 % 99.2 % 100%
0.900 1.8 % 20% 52.6 % 97.7 % 7.6 % 55.3 % 87.3 % 99.9 %
0.910 1.6 % 14.7 % 40.4 % 92.9 % 6.4 % 48.3 % 79.6 % 99.8 %
0.920 1.8 % 9% 28.5 % 84.2 % 5.8 % 40.1 % 70.2 % 98.8 %
0.930 2.3 % 5.6 % 18.8 % 66.4 % 4.8 % 30.8 % 59.8 % 96.2 %
0.940 2.3 % 3.4 % 11% 44.1 % 4.3 % 23.6 % 47% 90.1 %
0.950 2.7 % 2.1 % 6.6 % 25.4 % 3.9 % 17% 33.5 % 76.7 %
0.960 2.9 % 1.7 % 3.4 % 13.1 % 3.7 % 11.9 % 20.9 % 54.4 %
0.970 3.3 % 1.6 % 2.8 % 5.5 % 3.8 % 7.9 % 12% 32.1 %
0.980 3.8 % 2.4 % 3.4 % 2.4 % 3.8 % 4.9 % 8% 14.9 %
0.990 4.9 % 3.9 % 3.9 % 1.9 % 4.7 % 4.2 % 5.3 % 6.2 %
1 % 6.4 % 6.5 % 6.4 % 4.7 % 5.3 % 5.2 % 5.2 % 4.9 %

1.010 7.9 % 9.3 % 11.7 % 12.3 % 5.7 % 7.3 % 9.2 % 9.2 %
1.020 9% 13.1 % 19.7 % 30.4 % 6.4 % 9.9 % 15.8 % 22.6 %
1.030 10.1 % 16.9 % 29.4 % 53.2 % 7.9 % 13.6 % 23.6 % 44.4 %
1.040 12.3 % 25.6 % 41% 73.5 % 9.8 % 19.1 % 34.8 % 67.4 %
1.050 14.1 % 33.7 % 54.3 % 88.2 % 11.9 % 27.8 % 48.6 % 86.4 %
1.060 16.4 % 44% 67.4 % 95.7 % 13.6 % 37.8 % 62.5 % 94.7 %
1.070 19.3 % 52.9 % 80.3 % 98.9 % 15.7 % 46.5 % 76.7 % 98.7 %
1.080 21.8 % 63.3 % 88.7 % 99.5 % 18.1 % 59.1 % 86.8 % 99.4 %
1.090 24.2 % 71% 93.9 % 99.9 % 21.2 % 67.7 % 92.2 % 99.8 %
1.100 27.7 % 79.2 % 97% 100% 23.6 % 76.6 % 96% 100%
1.150 48.4 % 98.5 % 100% 100% 44.6 % 98.3 % 100% 100%
1.200 68.6 % 100% 100% 100% 66% 100% 100% 100%
1.300 95.1 % 100% 100% 100% 94.7 % 100% 100% 100%
1.400 99.9 % 100% 100% 100% 99.8 % 100% 100% 100%
1.500 100% 100% 100% 100% 100% 100% 100% 100%
1.600 100% 100% 100% 100% 100% 100% 100% 100%
1.700 100% 100% 100% 100% 100% 100% 100% 100%
1.800 100% 100% 100% 100% 100% 100% 100% 100%
1.900 100% 100% 100% 100% 100% 100% 100% 100%
2.000 100% 100% 100% 100% 100% 100% 100% 100%
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Table 11: Percentage of rejections for the test H0 : βr ∈ B. Non-smooth set.

Test with an=0 Test with an = 0.5
n1/3

r n = 100 n = 500 n = 1000 n = 2500 n = 100 n = 500 n = 1000 n = 2500
0.010 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.050 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.100 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.200 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.300 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.400 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.500 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.600 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.700 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.800 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
0.850 0.5 % 0 % 0 % 0 % 0.2 % 0 % 0 % 0 %
0.900 1.9 % 0.1 % 0 % 0 % 0.9 % 0 % 0 % 0 %
0.910 2.0 % 0.1 % 0 % 0 % 1.2 % 0 % 0 % 0 %
0.920 2.5 % 0.3 % 0 % 0 % 1.5 % 0.1 % 0 % 0 %
0.930 3.1 % 0.3 % 0 % 0 % 2.0 % 0.1 % 0 % 0 %
0.940 3.3 % 0.4 % 0 % 0 % 2.4 % 0.1 % 0 % 0 %
0.950 4.0 % 1.1 % 0.2 % 0 % 2.9 % 0.6 % 0 % 0 %
0.960 5.5 % 1.8 % 1.1 % 0 % 3.8 % 0.9 % 0.1 % 0 %
0.970 6.6 % 3.3 % 2.3 % 0.2 % 4.8 % 1.5 % 0.6 % 0 %
0.980 8.2 % 5.1 % 3.6 % 1.3 % 5.6 % 2.6 % 1.8 % 0.3 %
0.990 9.1 % 7.4 % 6.2 % 3.3 % 6.3 % 4.6 % 3.3 % 1.4 %
1.000 10.8 % 10.6 % 11.7 % 9.3 % 7.9 % 7.6 % 7.4 % 5.3 %
1.010 12.9 % 14.3 % 20.3 % 22.1 % 9.5 % 10.8 % 14.0 % 15.4 %
1.020 14.8 % 21.4 % 29.5 % 44.7 % 11.5 % 14.7 % 22.6 % 34.3 %
1.030 16.9 % 28.6 % 40.9 % 65.9 % 13.0 % 20.9 % 33.7 % 57.4 %
1.040 20.1 % 38.2 % 53.9 % 83.4 % 15.9 % 30.5 % 47.2 % 79.0 %
1.050 22.5 % 48.8 % 66.8 % 93.2 % 18.7 % 41.0 % 60.6 % 91.6 %
1.060 25.6 % 56.9 % 79.7 % 97.4 % 21.3 % 49.3 % 74.7 % 96.9 %
1.070 29.4 % 65.9 % 88.2 % 99.4 % 23.7 % 61.0 % 85.9 % 98.9 %
1.080 33.1 % 74.7 % 93.3 % 99.8 % 28.0 % 70 % 91.6 % 99.7 %
1.090 37.6 % 81.2 % 96.8 % 100 % 32.5 % 78.2 % 95.9 % 100 %
1.100 43.4 % 87.0 % 98.5 % 100 % 37.3 % 85.0 % 98.2 % 100 %
1.150 61.8 % 99.4 % 100 % 100 % 57.7 % 99.2 % 100 % 100 %
1.200 81.0 % 100 % 100 % 100 % 77.5 % 100 % 100 % 100 %
1.300 97.8 % 100 % 100 % 100 % 97.6 % 100 % 100 % 100 %
1.400 99.9 % 100 % 100 % 100 % 99.9 % 100 % 100 % 100 %
1.500 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
1.600 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
1.700 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
1.800 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
1.900 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
2.000 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
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